
A Heuristic Strong Connectivity Algorithm for

Large Graphs

Adan Cosgaya-Lozano⋆ and Norbert Zeh⋆⋆

Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
{acosgaya,nzeh}@cs.dal.ca

Abstract. We present a contraction-based algorithm for computing the
strongly connected components of large graphs. While the worst-case
complexity of the algorithm can be terrible (essentially the cost of run-
ning a DFS-based internal-memory algorithm on the entire graph), our
experiments confirm that the algorithm performs remarkably well in
practice. The strongest competitor is the algorithm by Sibeyn et al. [17],
which is based on a semi-external DFS algorithm developed in the same
paper. Our algorithm substantially outperforms the algorithm of [17] on
most of the graphs used in our experiments and never performs worse. It
thus demonstrates that graph contraction, which is the most important
technique for solving connectivity problems on undirected graphs I/O-
efficiently, can be used to solve such problems also on directed graphs,
at least as a heuristic.

1 Introduction

Driven by the availability of massive amounts of data in a wide range of appli-
cation areas, tremendous efforts have been made over the last two decades to
develop algorithms that can process data sets beyond the size of a computer’s
main memory efficiently. Traditional algorithms perform poorly on such inputs,
as most of these algorithms exhibit little or no access locality and cause a disk
access for almost every computation step, which results in a slow-down by a
factor of about 106 compared to processing the data in memory. I/O-efficient
algorithms, on the other hand, are designed to access data sequentially or in
large blocks, in order to reduce the number of disk accesses to the point where
massive data sets can be processed efficiently.

In the algorithms community, much work has focused on developing provably
I/O-efficient algorithms for a wide range of fundamental problems, particularly
for geometric and graph problems. See [4, 19] for surveys. For graph problems,

⋆ Supported by scholarships funded by the National Council for Science and Technol-
ogy of Mexico, the Natural Sciences and Engineering Research Council of Canada,
and Dalhousie University.

⋆⋆ Supported in part by the Natural Sciences and Engineering Research Council of
Canada, the Canadian Foundation for Innovation, and the Canada Research Chairs
programme.



much progress has been made on undirected graphs and special graph classes. In
contrast, no provably efficient algorithms are known for general directed graphs.
This lack of theoretical results motivates the study of heuristic techniques for
processing directed graphs I/O-efficiently. The most successful effort so far is
the depth-first search (DFS) algorithm by Sibeyn et al. [17], which is a semi-
external algorithm; that is, it can process the edges of the graph I/O-efficiently
if the vertices fit in memory. Since DFS is a central building block used in
many classical graph algorithms, the algorithm of [17] provides a general tool
for solving problems on directed graphs efficiently if the vertices fit in memory.
If, on the other hand, the size of the vertex set exceeds the memory size, the
performance of the algorithm deteriorates to that of an internal-memory DFS
algorithm. Sibeyn et al. demonstrated the effectiveness of their approach in the
semi-external case by using it to compute the strongly connected components
of a variety of directed graphs. A directed graph is strongly connected if, for
every vertex pair (x, y), there exists a directed path from x to y. The strongly
connected components (SCC’s) of a graph are its maximal strongly connected
subgraphs (SCSG’s).

While Sibeyn et al. used strong connectivity merely as an example to demon-
strate the efficiency of their DFS procedure, we propose a heuristic specifically
for computing SCC’s in this paper. The aim is (a) to achieve a better perfor-
mance than [17] on graphs whose vertex sets fit in memory and (b) to process
graphs whose vertex sets do not fit in memory, which, our experiments confirm,
the algorithm of [17] cannot do in a reasonable amount of time. Our algorithm
achieves both goals on a variety of input graphs, outperforming the semi-external
algorithm by a factor of 2–4 on most of the test graphs whose vertices fit in
memory, and being able to efficiently process graphs well beyond the reach of
the semi-external algorithm.

Our algorithm is based on graph contraction: it identifies and contracts
strongly connected subgraphs until the graph fits in memory, and then com-
putes the SCC’s in internal memory. Thus, given its good performance, our
algorithm demonstrates that, at least as a heuristic, graph contraction is useful
for solving connectivity problems on directed graphs. This is interesting because
this technique is the most important tool for solving connectivity problems on
undirected graphs I/O-efficiently, both in theory and in practice.

The remainder of this paper is organized as follows. Section 2 reviews pre-
vious work on implementing I/O-efficient graph algorithms; Section 3 describes
the algorithm; Section 4 discusses implementation details; Section 5 discusses
experimental results; and Section 6 offers concluding remarks.

2 Previous Work

While much theoretical work has focused on developing I/O-efficient graph al-
gorithms, much less is known about their practical efficiency. The main reason
is their algorithmic complexity. Most of these algorithms build on a number
of widely used primitives—list ranking, Euler tour construction, etc.—in addi-



tion to internal-memory algorithms that are used to process the parts of the
graph loaded into memory. No good implementations of these primitives are
publicly available, which makes implementing any I/O-efficient graph algorithm
a formidable task, as it requires the implementation not only of the actual algo-
rithm but also of a number of more elementary, yet non-trivial, building blocks.

In spite of these challenges, a number of experimental results have been
obtained for undirected graphs. Dementiev et al. [10] provided a carefully engi-
neered implementation of a minimum spanning tree (MST) algorithm based on
ideas from [18]. Their algorithm is theoretically inferior to the MST algorithms
of [1, 5, 8] but performs extremely well in practice. Ajwani et al. [2, 3] provided
implementations of the undirected breadth-first search algorithm by Mehlhorn
and Meyer [14] and obtained excellent results on a wide range of graph classes.
The semi-external DFS algorithm by Sibeyn et al. [17] seems to be the only work
that focused specifically on solving fundamental problems on directed graphs.

Other related work includes a large body of work on preprocessing large
graphs, particularly road networks, for fast shortest path queries. The most
recent results in this area include [6, 12, 13, 15].

3 A Contraction-Based Strong Connectivity Algorithm

This section describes a simple contraction-based SCC algorithm referred to as
EM-SCC throughout this paper. Section 4 discusses its implementation.

The algorithm consists of two phases: a preprocessing phase and a contrac-
tion phase. The contraction phase looks for SCSG’s in the input graph G and
contracts each into a single vertex, thereby reducing the size of G without al-
tering its connectivity. This process continues until the graph fits in memory, at
which point the algorithm loads it into memory and computes its SCC’s using
an internal-memory algorithm. In this sense, EM-SCC resembles the connectiv-
ity algorithm for undirected graphs by Chiang et al. [8]. In the undirected case,
however, the graph is guaranteed to fit in memory after a logarithmic number
of contraction steps, while, in the directed case, the algorithm succeeds only if
each round finds sufficiently many and large SCSG’s to contract.

The contraction phase searches for SCSG’s by loading memory-sized sub-
graphs of G into memory and computing their SCC’s. The preprocessing phase
tries to group the vertices and edges of G so that the chance of finding non-trivial
SCC’s in these subgraphs is maximized.

Next we discuss these two phases in detail. Throughout this discussion, we
assume the input graph is connected. It is not hard, however, to extend the
algorithm to disconnected graphs with little or no impact on its performance.

3.1 Preprocessing Phase

The preprocessing phase of EM-SCC is conceptually simple. It arranges the
vertices of G in a list V0 in the order of their first occurrences along an Euler
tour of a spanning tree T of G. It stores the edges in a list E0, which is the



concatenation of “one-sided” adjacency lists of the vertices in V0 arranged in the
same order as the corresponding vertices in V0. The adjacency lists are one-sided
in the sense that an edge xy is stored in the adjacency list Ex of x if x > y, and
in Ey otherwise; vertices are compared by their positions in V0.

The contraction phase discussed in Section 3.2 below sweeps the two lists V0

and E0 in tandem and processes maximal groups of consecutive vertices in V0

that induce memory-sized subgraphs of G. Intuitively, the ordering of the vertices
in V0 produced by the preprocessing phase should ensure that the processed
subgraphs are connected or have few connected components (in the undirected
sense). Assuming sufficiently random edge directions and sufficiently many non-
tree edges, this should lead to non-trivial SCC’s in the processed subgraphs.

To compute lists V0 and E0, the algorithm has to compute the tree T , its
Euler tour, and a ranking of the Euler tour. To compute the spanning tree, we
use the MST algorithm by Dementiev et al. [10] (setting all edge weights to 1).
Sorting and scanning the edge set of T suffices to compute an Euler tour of T .
To rank this tour, we use the list ranking algorithm by Sibeyn [18].

Give the ranked tour, the algorithm finds the first occurrence of every vertex
of G in the tour by sorting and scanning the node list of the tour, numbers the
vertices of G in the order of these occurrences, and places them into V0 in order.
The edge list E0 is constructed by sorting and scanning the edges of G three
times: twice to label each edge with the numbers of its endpoints, and once more
to arrange the edges in the order described above.

Before trying the simple preprocessing strategy discussed here, we experi-
mented with a more sophisticated hierarchical clustering approach, which clus-
tered vertices based on their degrees. The contraction phase then considered
(contracted versions of) clusters of increasing size and decreasing density in its
search for SCSG’s. The intuition was that, assuming the edge directions are suf-
ficiently random, dense graphs are more likely to contain large SCSG’s, so that
this degree clustering approach should lead to a rapid reduction of the graph
size early on in the contraction phase. The cost of computing this clustering,
however, was prohibitive, and the speed-up of the contraction phase compared
to the simple preprocessing described here was insignificant.

3.2 Contraction Phase

The contraction phase of EM-SCC proceeds in rounds. Each round produces a
more compressed version of G from the previous version by identifying SCSG’s
and contracting them. Let G = G0, G1, . . . , Gr be the sequence of graphs this
produces; that is, round i produces graph Gi from graph Gi−1. The algorithm
represents each graph Gi using two lists Vi and Ei whose structure is identical
to that of V0 and E0 described in the previous section.

The ith round partitions Vi−1 into subsets V ′

1 , V ′

2 , . . . , V ′

k of consecutive ver-
tices such that the graphs G′

j = Gi−1[V
′

j ] they induce fit in memory. The algo-
rithm loads these graphs into memory, one at a time, and identifies and contracts
their SCC’s. In more detail, the ith round scans Vi−1 and Ei−1 in tandem, col-
lecting the vertices and edges in the current graph G′

j in memory. Let x be the



first vertex in Vi−1 that belongs to G′

j , and let nj and mj respectively be the
numbers of vertices and edges currently in G′

j . To decide whether to include the
next vertex y in Vi−1 in G′

j , the algorithm scans Ey and counts the edges whose
lower endpoints belong to G′

j , that is, are no less than x; let my be their number.
If nj + 1 vertices and mj + my edges fit in memory, the algorithm includes y

in G′

j and partitions the edges in Ey into two groups: those with lower endpoints
no less than x and those with lower endpoints less than x. It loads the former
into memory (thereby adding them to G′

j) and appends the latter to an initially
empty edge list E′′

i to be processed at the end of this round. Then the algorithm
proceeds to the next vertex in Vi−1.

If adding my edges to G′

j would make it exceed the memory size, the algo-
rithm declares vertex y to be the first vertex of G′

j+1 and appends its entire
adjacency list to E′′

i . Then it computes the SCC’s of G′

j in memory, contracts
them, and eliminates parallel edges that result from these contractions. At the
end, the vertices in G′

j are labelled with ID’s of their SCC’s, that is, with the ID’s
of their corresponding super-vertices in Gi. The algorithm writes this mapping
information back to Vi−1 and appends the sorted list of super-vertices to Vi. The
edges of the contracted version of G′

j are appended to an initially empty edge
list E′

i. This finishes the processing of G′

j , and the algorithm starts to construct
G′

j+1 with y as its first vertex.
The ith round ends after the last vertex in Vi−1 has been consumed. At this

point, the algorithm discards the edge list Ei−1, but not Vi−1, as the information
stored in Vi−1 is necessary to compute the final component labelling of the ver-
tices of G. If the algorithm numbers the vertices of Gi in increasing order as it
produces them, Vi already contains the sorted vertex list of Gi. To produce Ei,
the endpoints of all edges in E′′

i have to be replaced with their corresponding
super-vertices in Gi. Since the edges in E′′

i are already sorted by their upper
endpoints in Gi−1, a single scan of Vi−1 and E′′

i suffices to replace those end-
points. To replace the lower endpoints, the algorithm sorts the edges in E′′

i by
these endpoints and scans Vi−1 and E′′

i again. Finally, it concatenates the result-
ing list with E′

i, and sorts the concatenation primarily by upper endpoints (in
Vi) and secondarily by lower endpoints. A single scan now suffices to eliminate
duplicates from this list, which produces the edge list Ei of Gi.

3.3 Postprocessing

Let Gr be graph produced by the last round of the contraction phase; that is,
Gr fits in memory. Then the algorithm loads Gr into memory and labels every
vertex in Vr with the SCC containing it. What remains to be done is to copy
these labels back to the vertices in G. This is done by iteratively copying these
labels from Vi to Vi−1, for i = r, r − 1, . . . , 1.

To copy the labels from Vi to Vi−1, the algorithm sorts the vertices in Vi−1

by their corresponding super-vertices in Vi. Now every vertex in Vi−1 can be
labelled with the label of its corresponding vertex in Vi using a single scan of
the two sorted lists. Finally, the algorithm returns the vertices in Vi−1 to their
original order, in preparation for the next iteration.



4 Implementation Details

We implemented algorithm EM-SCC in C++ using the STXXL library [9], which
provides I/O-efficient counterparts of the C++ STL containers and algorithms.
In particular, we used STXXL vectors to store the vertex and edge lists of
graphs, the STXXL sorting procedure to perform all sorting steps in the algo-
rithm, and the STXXL priority queue implementation in the list ranking step of
the preprocessing phase. The rest of this section discusses the most important
implementation choices made in the different parts of the algorithm.

Graph representation. As already discussed, each graph Gi is represented
by a vertex list Vi and an edge list Ei. In our implementation, every vertex in
Vi was represented using two integers, one being its own ID, the other one the
ID of the corresponding super-vertex in Gi+1.

Edges were represented as pairs of vertex ID’s, that is, using two integers.
The only exception was the addition of an extra integer to represent the edge
weight up to and including the MST computation. This could have been avoided
by modifying the MST implementation to compute an arbitrary spanning tree
of an unweighted graph. We did not do this, as the MST computation did not
account for a major part of the running time of our algorithm.

MST algorithm. We used the MST algorithm of [10] to compute the
spanning tree T in the preprocessing phase. The implementation was available
from [16]. That algorithm is a sweeping algorithm, which iteratively removes
vertices by contracting the lightest edge incident to each processed vertex. This
strategy can be implemented using an external priority queue or using an I/O-
efficient bucket structure. The default implementation uses a bucket structure,
as it results in slightly better performance; we had no reason to change this.

Euler tour. To compute the Euler tour of T , we used the standard strategy.
We created two copies xy and yx of each spanning tree edge xy and sorted
the resulting edge list by their first vertices. Then we scanned the sorted edge
list and, for each pair of consecutive edges, xy1 and xy2, incident to the same
vertex x, we made edge xy2 the successor of edge y1x in the Euler tour. This
was easily implemented by storing the edges in an STXXL vector and using the
STXXL sorting algorithm to implement the sorting step.

List ranking. The list ranking algorithm of [18] is a sweeping algorithm
similar to the MST algorithm of [10]. The down-sweep removes vertices one by
one from the list until only one vertex remains. For each removed vertex v, its
two incident edges are replaced with a weighted edge between v’s neighbours;
the weight equals the length of the sublist between these two neighbours. The
up-sweep re-inserts the removed vertices in the opposite order and computes
the rank of each vertex v from the rank of one of the two vertices that became
adjacent as a result of the removal of v in the down-sweep.

As discussed in [18], this algorithm can be implemented using a bucket struc-
ture, similar to the one used in the MST algorithm, to pass information between
vertices in the two sweeps. An alternative implementation uses a priority queue
and two stacks. Since our focus was not on engineering an optimal list ranking
algorithm, we opted for the easier implementation using a priority queue.



Internal-memory SCC algorithm. We used the one-pass SCC algorithm
described in [11] to compute the SCC’s of graphs loaded into memory. The
implementation of this algorithm requires two stacks to keep track of partially
identified SCC’s. In order to maximize the amount of memory available for
processing each graph G′

j , we implemented them using STXXL stacks. This
limited the memory footprint of the stacks to 4 pages.

Internal-memory graph representation. To maximize the size of the
subgraphs that can be processed in internal memory in each round of EM-SCC,
we used a fairly compact graph representation in internal memory, consisting
of two arrays: an edge array and a vertex array. The edge array contained the
concatenation of adjacency lists of the vertices. Since the SCC algorithm only
needed access to the out-edges of each vertex, only those edges were stored in the
adjacency lists. When accessing an adjacency list, it was known to which vertex
this adjacency list belonged. Hence, the tail vertex of every edge did not have
to be stored explicitly. This allowed us to represent every edge using a single
integer storing the head vertex of the edge.

We represented every vertex using a two-integer record in the vertex array.
The first integer represented the SCC containing this vertex (once identified), the
other the index of the first edge in its adjacency list in the edge array. Vertex ID’s
did not have to be stored explicitly, as a consecutive numbering of the vertices
allowed us to use the position of a vertex in the vertex array as its ID.

Since this representation stores edges in a different order than on disk, it
was necessary to sort the edges by their tails to construct the internal-memory
representation of a graph G′

j from its external one. This required the use of an
initial edge representation using both its endpoints during the construction of the
internal-memory graph representation. Once the edges were arranged in the right
order, we dropped their tail endpoints, thus halving the memory requirements of
the representation. Since the ability of our algorithm to identify SCC’s improves
with the size of the subgraphs it can process in memory, we decided to process
subgraphs that occupied all of the available main memory (minus some buffer
blocks for caching used by the STXXL vectors) using the compact representation.
As a result, the initial sorting step required to construct this representation used
the STXXL external sorting algorithm to sort up to 2M data, where M denotes
the memory size.

5 Experimental Results

This section discusses our experimental results, comparing the performance of
EM-SCC with that of the semi-external SCC algorithm by Sibeyn et al. (called
SE-SCC here). First we describe our test environment and the data sets used in
our experiments. Then we discuss the results of our experiments.

5.1 Environment and Settings

All experiments were run on a PC with a 3GHz Pentium-4 processor, 1GB
of RAM, and one 500GB 7200RPM IDE disk using the XFS file system. The



operating system was Fedora Core 6 Linux with a vanilla 2.6.20 Linux kernel.
The code was compiled using g++ 4.1.2 and optimization level –O3. All of our
timing results refer to wall clock times in minutes.

Since STXXL allows the specification of the block size for data transfers
between disk and memory, we experimented with different block sizes between
256KB and 8MB. A block size of 2MB resulted in the best performance, since
EM-SCC accesses data in a mostly sequential fashion. This block size was used
throughout our experiments. Two additional parameters control the amount of
memory allocated to the LRU pager used by STXXL vectors to cache accessed
blocks. The first parameter is the page size as a multiple of the block size. Data
is swapped one page at a time. The other parameter is the number of pages to
be cached. We set both parameters to 2, as the mostly sequential data accesses
of EM-SCC did not benefit substantially from a bigger cache, but this would
have left less memory for the graphs to be processed in memory.1

5.2 Data Sets

We tested both algorithms on synthetic graphs and real web graphs. The syn-
thetic graphs were generated using the same data generator used by Sibeyn et
al. [17]. The web graphs were produced by real web crawls of the .uk domain, the
.it domain, and from data produced by a more global crawl using the Stanford
WebBase crawler. They were obtained from http://webgraph.dsi.unimi.it/,
and their characteristics are shown as part of Table 1. Next we give an overview
of the types of synthetic graphs used in our experiments.

Random: These graphs were generated according to the Gn,m model; that is,
m edges were generated, choosing each edge endpoint uniformly at random
from a set of n vertices.

Cycle: The vertices were evenly spaced on a ring, and every vertex had out-
edges to its d = m/n nearest neighbours.

Geometric 1D: The vertices were evenly spaced on a ring of length n. Edges
were generated by choosing their tails uniformly at random. If u was chosen
as the tail of an edge, vertex v was chosen to be the head of this edge with
probability proportional to αd, where α < 1 and d is the distance between
u and v. In our experiments, we chose α = 0.9.

Geometric 2D: The vertices were placed on a
√

n×√
n grid wrapped around

at the edges to form a torus. Edges were generated as for geometric 1D
graphs, but d was chosen to be the Manhattan distance between u and v in
the grid. Here we chose α = 0.8.

1 Using a single disk, a block size of 2MB and a page size of two blocks is equivalent
to using a block size of 4MB and a page size of one block. We chose the former
option because we also tested our algorithms using two disks, in which case the
blocks of each page can be assigned to different disks. Using two disks, our algorithm
experienced a speed-up of about 30%. Since the semi-external algorithm wasn’t able
to take advantage of multiple disks, we do not discuss the timings using two disks
in detail here.



Out-star: Given a star degree s, this graph was generated in ⌊m/s⌋ rounds.
In each round, a tail vertex and s head vertices were chosen uniformly at
random. Then edges were added from the tail to the chosen head vertices.
We chose s = 1000 in our experiments.

In-out-star: This construction was similar to the out-star construction, but
half of the rounds directed the generated edges towards the centre of the
star. Again, we chose s = 1000.

Simple web: This construction started with a small complete subgraph and
added new vertices by connecting them to the current graph. Afterwards, a
small fraction (5% in our case) of random edges were added.

5.3 EM-SCC vs. SE-SCC

Table 1 shows the running times of EM-SCC and SE-SCC on different synthetic
inputs and on the three web graphs. For the synthetic graphs with 225 vertices,
EM-SCC outperformed SE-SCC by a factor between 2 and 4. The only exception
were random graphs and geometric 2D graphs, where SE-SCC took only slightly
longer than EM-SCC. For the two smaller web graphs, EM-SCC outperformed
SE-SCC by a factor between 3 and 4. As can be observed, the performance of SE-
SCC depends strongly on the structure of the input graph, whereas (surprisingly)
the performance of EM-SCC is much more immune to these variations. Sibeyn
et al. characterized geometric 1D graphs as being among the hardest inputs
for their algorithm, and geometric 2D and random graphs as being among the
easiest inputs. This is in line with our observations. On the other hand, cycle
graphs were mentioned as easy inputs in [17], while this was the synthetic input
that took SE-SCC the longest to process in our experiments.

The remaining inputs had at least 226 vertices and were beyond the reach
of SE-SCC on our hardware, as the vertex set no longer fit in memory. (See [7]
for a discussion of the graph representation used by SE-SCC and approximate
vertex numbers it can process without using virtual memory.) We ran SE-SCC
on the smallest of these graphs (with 226 vertices and 229 edges), using virtual
memory, and terminated each of these test runs after 12h without SE-SCC having
produced any result. Since the performance of SE-SCC on the semi-external
instances of random and geometric 2D graphs was comparable to that of EM-
SCC, we expected that SE-SCC would have the least difficulties to process larger
instances of these graph classes, and we let the experiments on these inputs run
for 24h. Again, SE-SCC did not finish within this amount of time.

In contrast, EM-SCC was able to process most of the test graphs in under
two hours, while none took more than 2 1/2 hours. The exceptions were the out-
star graphs and the sparsest of the in-out-star and simple web graphs. The next
section discusses possible reasons why EM-SCC could not process these inputs,
which sheds some light on its limitations.

5.4 The Effect of Graph Structure

The ability of EM-SCC to process certain graphs is limited by the available
amount of main memory. The input graph needs to have few enough SCC’s to



Cycle Geometric 1D

n m m/n EM SE SCC’s n mr m/n EM SE SCC’s

225 229 16 58 208 1 225 229 13.2 51 161 11

226 229 8 71 —1 1 226 229 7.2 65 —1 45084

227 229 4 94 — 1 227 229 3.8 90 — 5.2m

226 230 16 120 — 1 226 230 13.2 103 — 17

Geometric 2D In-out-star

n mr m/n EM SE SCC’s n m m/n EM SE SCC’s

225 229 15.6 58 62 7175 225 229 16 63 141 22490

226 229 7.9 70 —2 45060 226 229 8 79 —1 2.6m

227 229 4.0 91 — 5.2m 227 229 4 — — —

226 230 15.6 117 — 18 226 230 16 134 — 44800

Out-star Simple web

n m m/n EM SE SCC’s n m m/n EM SE SCC’s

225 229 16 65 109 33m 225 229 16 63 113 1.6m

226 229 8 —3 —1 — 226 229 8 86 —1 10.6m

227 229 4 —3 — — 227 229 4 —3 — —

226 230 16 —3 — — 226 230 16 133 — 3.2m

Random Real web graphs

n m m/n EM SE SCC’s n m m/n EM SE SCC’s

225 229 16 61 63 12 18.5m 298.1m 16.1 29 104 3.8m

226 229 8 77 —2 45173 41.3m 1,150.7m 27.9 116 517 6.7m

227 229 4 109 — 5.2m 118.1m 1,019.9m 8.6 124 —1 38.5m

226 230 16 133 — 17

227 230 8 159 — 90279

228 230 4 345 — 10.4m

Table 1. Experimental results on synthetic data and real web graphs. Dashes indicate
inputs that could not be processed by the algorithm. For geometric 1D and 2D graphs,
mr denotes the number of edges requested to be generated. Since the data generator
filters duplicate edges for these two graph types, the actual number of edges, m, is less
than mr. The ratio m/n in the table reflects this. Notes: (1) experiment terminated
after 12h; (2) experiment terminated after 24h; (3) no further compression after a small
number of initial contraction rounds, but graph still beyond memory size.

fit in memory, and the SCC’s have to be composed of short enough cycles for
EM-SCC to find them as part of the memory-sized subgraphs it processes. The
inability of EM-SCC to process all but one of the out-star graphs nor the sparsest
of the in-out-star and simple web graphs reflects these limitations.

Since EM-SCC was not able to process these graphs, we can of course only
extrapolate from the properties of the graphs in these classes the algorithm
was able to process. The smallest simple web graph had about 1.6m SCC’s,
and the smallest out-star graph had about 33m SCC’s. Compared to at most a
few thousand SCC’s in the smallest cycle, geometric 1D and 2D, and random



graphs, these graphs have significantly more SCC’s. For the bigger and sparser
inputs, we suspect that the number of SCC’s exploded, preventing EM-SCC
from compressing the graph down to memory size.

The smallest in-out-star graph had about 22,000 SCC’s, which is more than
for cycle, geometric 1D and 2D, and random graphs, but significantly less than for
out-star and simple web graphs. Therefore, there are two possible explanations
for the inability of EM-SCC to process the sparsest in-out-star graph: either the
lower density of the graph again resulted in an explosion of the number of SCC’s,
or the SCC’s consisted of very long cycles, which EM-SCC was not able to find
using the amount of main memory available on our test machine.

Another interesting observation we made in our experiments was the lack of a
smooth transition between graphs EM-SCC could process efficiently and graphs
it could not process at all. More precisely, all the graphs it was able to process
required one or two contraction rounds, followed by a final round computing
the SCC’s in internal memory. On the other hand, for all inputs the algorithm
was not able to process, it took only a few contraction rounds to reach a stage
where no further contraction took place. For the out-star and in-out-star graphs,
contraction stopped after at most 4 rounds. It is possible that the algorithm had
found all SCC’s at that point, but there simply were too many. For the simple
web graph of density 4, it took 18 contraction rounds to reduce the graph by
only 33%, and subsequent rounds achieved no further contraction. We suspect
that more main memory would have helped in this case to identify and contract
SCC’s consisting of long cycles.

6 Conclusions

We have presented a contraction-based heuristic algorithm, EM-SCC, for com-
puting the strongly connected components of large graphs. Our algorithm demon-
strates that graph contraction is a useful tool for computing SCC’s of large
graphs, as it was able to process a wide range of input graphs faster than the
currently best algorithm by Sibeyn et al., and it was able to process graphs
whose vertex sets did not fit in memory.

The main limitation of EM-SCC is that it relies on the graph to have rel-
atively few SCC’s, consisting of relatively short cycles. This limitation seems
impossible to overcome using graph contraction alone.

An interesting strategy that might speed up EM-SCC on inputs it can pro-
cess is the use of pipelining to pass data between successive contraction rounds
without writing this data to disk.

References

1. J. Abello, A. L. Buchsbaum, and J. Westbrook. A functional approach to external
graph algorithms. Algorithmica, 32(3):437–458, 2002.

2. D. Ajwani, R. Dementiev, and U. Meyer. A computational study of external-
memory BFS algorithms. In Proceedings of the 17th ACM-SIAM Symposium on

Discrete Algorithms, pages 601–610, 2006.



3. D. Ajwani, U. Meyer, and V. Osipov. Improved external memory BFS implementa-
tion. In Proceedings of the Workshop on Algorithm Engineering and Experiments,
2007.

4. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and
M. G. C. Resende, editors, Handbook of Massive Data Sets, pages 313–357. Kluwer
Academic Publishers, 2002.

5. L. Arge, G. S. Brodal, and L. Toma. On external-memory MST, SSSP and multi-
way planar graph separation. Journal of Algorithms, 53(2):186–206, 2004.

6. R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wag-
ner. Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s
algorithm. In Proceedings of the 7th International Workshop on Experimental

Algorithms, volume 5038 of Lecture Notes in Computer Science, pages 303–318.
Springer-Verlag, 2008.

7. A. Beckmann. Parallelizing semi-external depth first search. Master’s thesis,
Martin-Luther-Universität, Halle, Germany, October 2005.

8. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and
J. S. Vitter. External-memory graph algorithms. In Proceedings of the 6th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 139–149, 1995.
9. R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard library for XXL

data sets. Software: Practice and Experience, 38(6):589–637, 2007.
10. R. Dementiev, P. Sanders, D. Schultes, and J. F. Sibeyn. Engineering an external

memory minimum spanning tree algorithm. In Proceedings of IFIP TCS: 3rd

International Conference on Theoretical Computer Science, pages 195–208, 2004.
11. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
12. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contration hierarchies:

Faster and simpler hierarchical routing in road networks. In Proceedings of the

7th International Workshop on Experimental Algorithms, volume 5038 of Lecture

Notes in Computer Science, pages 319–333. Springer-Verlag, 2008.
13. A. V. Goldberg and R. Werneck. Computing point-to-point shortest paths from

external memory. In Proceedings of the 7th Workshop on Algorithm Engineering

and Experiments, pages 26–40, 2005.
14. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear

I/O. In Proceedings of the 10th European Symposium on Algorithms, volume 2461
of Lecture Notes in Computer Science, pages 723–735. Springer-Verlag, 2002.

15. P. Sanders, D. Schultes, and C. Vetter. Mobile route planning. In Proceedings

of the 16th European Symposium on Algorithms, volume 5193 of Lecture Notes in

Computer Science, pages 732–743. Springer-Verlag, 2008.
16. D. Schultes. External memory minimum spanning trees. http://algo2.iti.uni-

karlsruhe.de/schultes/emmst, 2003.
17. J. Sibeyn, J. Abello, and U. Meyer. Heuristics for semi-external depth-first search

on directed graphs. In Proceedings of the 14th ACM Symposium on Parallel Algo-

rithms and Architectures, pages 282–292, 2002.
18. J. F. Sibeyn. External connected components. In Proceedings of the 9th Scandina-

vian Workshop on Algorithm Theory, volume 3111 of Lecture Notes in Computer

Science, pages 468–479. Springer-Verlag, 2004.
19. J. S. Vitter. Algorithms and data structures for external memory. Foundations

and Trends in Theoretical Computer Science, 2(4):305–474, 2006.


