On Reverse Nearest Neighbor Queries

Anil Maheshwari*

Abstract

In this paper, we discuss static and dynamic-
data structures for answering reverse nearest
neighbor queries in two dimensions.

1 Introduction

A well-know proximity concept used, e.g., in
clustering applications is the notion of a point’s
nearest neighbor according to some given met-
ric. The problem of finding nearest neighbors,
formally defined below, has received consider-
able attention in the past, and a variety of algo-
rithms have been devised for this problem and
its variants—see the recent survey by Smid [7].

Problem 1 (Nearest Neighbor) Given a
set S of n points in IR, a distance metric d,
and a query point p in RY, report a point ¢ € S,
for which d(p,q) = min{d(p,r) | r € S}.

The property of being a point’s nearest neigh-
bor, however, is not symmetric: while a point
p can be the nearest neighbor of a point ¢, the
reverse is not necessarily true. This asymmetry
has led to defining the so-called reverse near-
est neighbor problem [4], which, given a point
p, asks for all points for which p is the nearest
neighbor.

*School of Computer Science, Carleton University,
Ottawa, Canada. Email: maheshwa@scs.carleton.ca.

"Westfilische Wilhelms-Universitit Miinster, Insti-
tut fiir Informatik, 48149 Miinster, Germany. Email:
jan@math.uni-muenster.de. Part of this work was done
while on leave at the University for Health Informatics
and Technology Tyrol, 6020 Innsbruck, Austria.

School of Computer Science, Carleton University,
Ottawa, Canada. Email: nzeh@scs.carleton.ca.

Jan Vahrenhold?

Norbert Zeh#

Problem 2 (Reverse Nearest Neighbors)
Given a set S of n points in R, a distance
metric d, and a query point p in R?, re-
port all points q € S, for which d(q,p) =

min{d(q,7) | 7 € SU{p}, r # q}. (see
Figure 1).

Figure 1: Reverse nearest neighbors for p.

Motivation and Related Work: The Re-
verse Nearest Neighbor problem (Problem 2)
has been introduced in the database setting
by Korn and Muthukrishnan [4] along with
several applications, e.g., in decision support
systems, continuous referral systems, or pro-
file based marketing. Korn and Muthukrishnan
presented static and dynamic solutions and also
discussed a bichromatic setting: each point has
one out of two possible colors, and reverse near-
est neighbors are only sought among points of
the other color. In this paper, we only con-
sider the monochromatic problem. The algo-
rithm of [4] performs a preprocessing step to
solve the All Nearest Neighbor problem for S,
that is, to determine for each point in § its
nearest neighbor. Each point ¢ and its nearest
neighbor r define a so-called N'NV-ball centered
at ¢ with radius d(g,r). Then, all A'A-balls
are stored in a data structure that can be used
to report, given a query point p, all NN -balls
containing p. It is easy to verify that the points
corresponding to the NN -balls that contain p
are exactly the points having p as their nearest
neighbor in S U {¢}.

Korn and Muthukrishnan approximate each
NN-ball by its axis-aligned bounding box and
then use an R-tree [3] to maintain these ap-
proximations. Insertions and deletions can be
handled in logarithmic time, but the worst-
case complexity for point-containment queries
is linear—even if no containing boxes are re-
ported. Moreover, approximating the NN -
balls by their bounding boxes can lead to wrong
answers (unless appropriate postprocessing is
done).

Iterating the situation sketched in Figure 2,
we can construct a data set where all bounding
boxes but no N'NV-balls contain a specific query
point p.

~o 7’,’/ N // p

Figure 2: Worst-case situation for an approach
based on bounding boxes.

Our Results: We present efficient data
structures for the static and dynamic ver-
sion of the reverse nearest neighbor problem
in two dimensions that avoid using bound-
ing boxes. The static data structure for a
set of n points uses linear space, can be con-
structed in O(nlogn) time, and can be used
to answer a reverse nearest neighbor query in
O(logn) time. The dynamic data structure
requires O(nlogn) space, it can be updated
O(Q(n)+log? nloglogn) time, and a query can
be answered in O(log?nloglogn) time. Here,
the quantity Q(n) denotes the complexity of
adding or removing a point to resp. from S
while at the same time maintaining for each
point in the S the distance to its nearest neigh-
bor using only O(nlogn) space.

The static data structure is a persistent one-
dimensional search tree created during a plane-

sweep the set of (two-dimensional) NN -discs
defined by the given set of points. The dy-
namic data structure is a fractional cascaded
interval tree over the same set of N'A-discs (or,
rather, quarter-A/N-discs). Both data struc-
tures exploit the (limited) intersection proper-
ties of these discs.

2 The static case

Definition 1 For a set S of points in the
plane and any point p € S, let its NN -disc
D(p,N(p)) be the disc centered at p with radius
N(p) :=d(p,p'), where p’ is the nearest neigh-
bor of p with respect to S\ {p}.

The main observation in [4] is that the points
in RN N (q) are exactly those points p € S for
which ¢ € D(p, N(p)). Hence, to answer a re-
verse nearest neighbor query, it is sufficient to
find all NN -discs containing gq.

Observation 1 Empty disc property: For any
point p € S, the NN -disc D(p, N(p)) does not
contain any other point of S.

In the following, we will discuss the arrange-
ment A of the set of n NN -discs. The complex-
ity of an arrangement of discs in two dimen-
sions is the total number of its 0-dimensional
faces (vertices) and 1-dimensional faces (circu-
lar arcs). Although, in general, the complexity
of an arrangement of n discs can be O(n?) [2],
we show in the following lemma that the com-
plexity of the arrangement A of the NN -discs
in our setting is only O(n).

Lemma 1 The complexity of the arrangement

A of all NN -discs for a set S of n points is
O(n) (see the appendiz for the proof).

Proof. From the empty disc property we know
that for any given point p € S, the NN -disc
D(p, N(p)) does not contain any other point of
S. Observe that the boundary of any two discs
can intersect in at most two points. We show
that in all only O(n) pairs of NN -discs can
intersect, and hence we can conclude that the
complexity of this arrangement is O(n).

Figure 3: Central disc overlaps with 12 other
large discs.

Construct a directed graph G = (V, E) over
the set of NN -discs as follows. Each NN -disc
corresponds to a vertex in V. Two vertices u
and v are joined by a directed edge from u to
v if and only if the corresponding NN -discs
intersect, and the radius of the NN -disc corre-
sponding to u is at least as big as the radius of
the NN -disc corresponding to v. We show that
the indegree of any vertex is bounded. More
specifically, we show that the indegree of any
vertex is no larger than 12.

Consider any disc D, say the one correspond-
ing to a given node v (the center disc in Fig-
ure 3). By a standard packing argument, we
know that there are at most six discs touch-
ing D and having radius at least equal to that
of the radius of D (the light gray discs in Fig-
ure 3). These discs contribute at most six to the
indegree of v. In each of the cavities between
the disc D and these six discs, we can place the
center of one of at most six other discs satis-
fying the empty disc property and having radii
at least equal to that of D (the hollow discs in
Figure 3). These discs account for an increase
in the indegree of v of at most six. O

If we store for each 2-dimensional face of the
arrangement A the NN -disc(s) overlapping it,
we can answer a reverse nearest neighbor query
for a point ¢ by simply performing a point

Y

Figure 4: Events used for the plane-sweep.

location query on A. The answer to the re-
verse nearest neighbor query then consists of
the points whose NN -discs overlap (the face
containing) q.

Next we show how the arrangement A can be
constructed and at the same time preprocessed
to efficiently support point location queries.
The main ingredient of our algorithm is a mod-
ification of the well-known line segment inter-
section algorithm by Bentley and Ottmann [1].
The original plane-sweep algorithm maintains
all segments intersecting the sweep-line ordered
by the y-coordinate of their intersection point.
Intersections are detected by comparing neigh-
boring segments in this y-structure, and the
overall complexity of this algorithm is O((n +
k) logn) where k is the number of intersections.

Our algorithm implicitly computes the ar-
rangement A by also sweeping the plane by a
vertical sweep line from left to right, by increas-
ing z-coordinate, but additionally maintaining
the circles intersecting the sweep-line in a per-
sistent y-structure [6]. The event points are
the extremal left and right end points of each
disc as well as points corresponding to inter-
section points of pair of discs (see Figure 4).
More specifically, we split each circle into an
upper and a lower half-circle such that the re-
sulting circular arcs are monotone with respect
to the sweeping direction. At each extremal
left or right point of a circle we insert resp.
delete the two half-circles into resp. from the
y-structure, and at each intersection point of
two half-circles, we exchange the intersecting
circular arcs in the y-structure.

From Lemma 1 we know that in all there are
O(n) event points. Since the circular arcs defin-
ing the boundary of cells can be expressed by a
simple second order function, it is easy to main-
tain the order of circular arcs along the sweep
line as well as to insert an arc, delete an arc,
or compute the intersection point of a pair of
neighboring arcs. All of these operations can be
performed in O(logn) time. Moreover, for each
face f in the arrangement A, we maintain a list
of all the discs overlapping face f. Exploiting a
standard packing argument, we know that there
are only a constant number of discs overlapping
any given face, and hence this additional infor-
mation can be stored without asymptotically
increasing the space complexity bounds. We
conclude that the arrangement of n discs satis-
fying the empty disc property can be computed
in O(nlogn) time and O(n) space.

To answer a reverse nearest neighbor query
for a query point ¢ = (z4,y,), we use the per-
sistent data structure to recover the status of
the sweep-line as of passing over x = z,. By
searching along the y-coordinate in the recov-
ered y-structure, we locate the face f contain-
ing the query point ¢, and along with f, we also
find all N N-discs overlapping f. As discussed
above, the center points defining these N N-
discs are the solution to the the reverse nearest
neighbor query. It takes O(logn) time to re-
cover the y-structure corresponding to a specific
z-coordinate using the persistent data struc-
ture and then it takes an additional O(logn)
time to locate the face f containing the query
point ¢. Since there are only a constant num-
ber of NN -discs overlapping a face, and they
are also stored with the face, these NN -discs
can be retrieved in additional constant time.
We summarize our discussion in the following
theorem.

Theorem 1 There exists a linear-space data
structure that can be used to answer the (static)
reverse nearest neighbor problem in two dimen-
Such a data structure for a set of n
points can be constructed in O(nlogn) time,
and a query can be answered in O(logn) time.

sions.

3 The dynamic case

In this section, we make an attempt to design a
data structure for a dynamically changing point
set to answer reverse nearest neighbor queries
efficiently. We wish to support the following
operations:

Insert(p,T): Insert the point p (and the asso-
ciated disc) in the data structure 7T'.

Delete(p,T"): Delete the point p (and the as-
sociated disc) from the data structure T

Search(q,T"): Search for all the discs in T" that
contain the query point q.

To state our results, we assume that a data
structure (using O(S(n)) space) exists that re-
quires O(Q(n)) time to update S while at the
same time maintaining for each point the dis-
tance to its nearest neighbor. One of the main
problems, however, is that designing a data
structure for maintaining nearest neighbors in a
dynamic setting using O (nlog®" n) space and
O(log® Y n) update time is regarded an open
problem [7]. Consequently, the relevance of our
result is somewhat dependent on a solution to
this open problem, and we state all complexities
including the terms S(n) and Q(n).

Our approach for designing the dynamic data
structure for the reverse nearest neighbor prob-
lem is as follows. We will split a disc into four
equal sized quarter-discs using coordinate axis
centered at the center of the disc. The bound-
ary of each of these quarter-discs is mono-
tone with respect to both coordinate axes. We
build four data structures, one for each kind of
quarter-discs. As the situations are symmetric,
we only describe the data structure for main-
taining north-east quarter-discs.

We now prove that the set of quarter-discs
has a very useful property:

Theorem 2 For every quarter-disc Q, all
quarter-discs Q1, Q2, ..., Qq of the same type
that overlap Q are pairwise disjoint.

Proof. We show that for every quarter disc @,
all quarter-discs Q1,...,Qq of the same type
that overlap) are pairwise disjoint. We prove
the claim in the Li-metric. The proofs gen-
eralize to the Lo and L..-metrics using rather
simple observations.

W.Lo.g., let @ be the north-east sector of an
Li-disc C with center O. Let Q' be the north-
east sector of another disc C' with center O’ so
that Q N Q" # . We denote points O and O’
as the centers of quarter discs Q and @Q'. We
first partition the plane into seven regions w.r.t.
disc C' and show that point O' can lie in only
two of them. These regions are defined as fol-
lows (see Figure 5):

1. The first region is disc C' itself.

2. Region D is the part of the north-west
quadrant of the coordinate system with
origin O which lies outside the y-range of
disc C.

3. Region A is the north-west quadrant of the
coordinate system with origin O minus re-
gions C' and D.

4. Region E is the north-east quadrant of
the coordinate system with origin O minus
disc C.

5. Region F' is the part of the south-east
quadrant of the coordinate system with
origin O which lies outside the z-range of
disc C.

6. Region B is the south-east quadrant of the
coordinate system with origin O minus re-
gions C' and F.

7. Region G is the south-west quadrant of
the coordinate system with origin O minus
disc C.

Lemma 2 For any quarter disc Q' with cen-
ter O' and so that QN Q' #0, O' € AU B.

Proof. To prove the lemma we show that point
O’ cannot lie in any of the other five regions.
Point O’ cannot lie inside disc C, as no disc

Figure 5: The different regions for point O’.

contains the center of any other disc. Point
O’ cannot lie in region D because otherwise
y(p') > y(O') > y(p), for any two points p € Q
and p’ € @', so that Q N Q" = 0. A similar
argument shows that O' ¢ F.

Now assume that O' € E, and Q N Q" # 0.
Then let p € QN Q'. Since p € Q, Q contains
the axes-parallel rectangle defined by points O
and p. Since every point in @' dominates O’,
2(0) < 2(0') < 2(p) and y(0) < y(0') < y(p).
However, this implies that O’ is contained in
the axes-parallel rectangle defined by O and p
and hence in), which contradicts the condition
that C cannot contain O'.

Finally, assume that O’ € G and Q N Q" #
. Then z(O") < z(0) < z(p) and y(O') <
y(0) < y(p), for every point p € QNQ'. Hence,
d;(0',0) < dy(0',p), so that O € @', which
again leads to a contradiction. O

By Lemma 2, any north-east quarter-disc
overlapping) can have its center only in re-
gions A or B. Lemma 3 shows that if O' €
B, then for any quarter-disc Q" with center
0" e A, Q'NQ" = 0. Lemma 4 shows that
the same is true for any quarter-disc Q" with
center O € B.

Lemma 3 Let Q' and Q" be two quarter-discs
overlapping Q with centers O' € B and O" € A,
respectively. Then Q' N Q" = 0.

Proof. Consider the line ¢ containing the bisec-
tor of the north-east sector of C, as shown in

7/
7/
-l
7/
" // .p3
@) P
/
7
/s \
/0
7
7
/
// » D2
s
7/
2z
7/
7 pl.

Figure 6: A disc C"” with center O” € A and
containing a point p below line £ also contains
point O.

Figure 6. We claim that if disc C" contains
a point to the right of line ¢, then it contains
point O. Since the latter is impossible, disc C”
and hence Q" is completely to the left of line £.
A similar argument shows that disc Q' is com-
pletely below line /4, so that @' N Q" = 0. Tt
remains to show the claim.

Point O is contained in the part of line £
between the two projections of point O” in
z and y-directions onto line £. All points in
this part of line ¢/ have the same Li-distance
from O” as point O. Moreover, there exists
a shortest Li-path from O” to any point be-
low ¢ which intersects ¢ in a point between
these two projections of O” onto line £. Hence,
d;(0",0) < d1(0",p), and disc C" contains
point O. O

Lemma 4 Let Q' and Q" be two quarter-discs
overlapping Q with centers O' € B and O" € B,
respectively. Then Q' N Q" = 0.

Proof. Consider the disc C' with center O’ of
which @’ is the north-east sector. We show that
disc C' partitions region B into three regions as
shown in Figure 7. In particular, we show that
point ¢ is always to the right of the z-range of
disc C, and regions X and Y are completely be-
low the horizontal line through point O’. Given
these properties, we then show that if 0" € X,
either @' NQ" =0 or O’ € Q". Since the latter

Figure 7: The three regions where the center O”
of disc C" may lie.

is impossible, @'NQ"” = 0 in this case. We show
that if 0" € Y, O' € Q". And we show that if
0" € Z, then Q' N Q" = 0.

To see that ¢ is outside of the z-range of
disc C, observe that di(p,q) = di(q,r) =
dl(OI,S). But dl(Ol,t) = dl(OI,ZE) > dl(p, q).
Hence, the part of region E to the right of the
vertical line through O’ is divided into regions
Y and Z by disc C’, as shown in Figure 7. Ev-
ery point in Y is south-east of O'. Every point
in Z is north-east of O'.

To see that every point in X is south-west
of O’, it suffices to show that point y is always to
the left of line £. However, since Q' intersects Q,
point z is above line /, and the segment xy is
parallel to line £. Hence, v is to the left of line £.

For a quarter-disc Q" with center O" € X,
there are two possibilities as shown in Figure 8.
If point p is above line 4, then point ¢ is to
the right of line ¢. Moreover, point p is above
point O' and point ¢ is below point O', so
that Q" contains O, which leads to a contra-
diction. Hence, point p is below line £. But this
implies that every point in Q" is below line Z,
so that Q' N Q" = 0.

For a quarter-disc Q" with center O” €
Z (Figure 9(a)), every point p € Q" domi-
nates O”, and O” dominates O'. Thus, if there
were a point p € Q' N Q", then 0" € Q'. Since
the latter is impossible Q' N Q" = (.

Finally, for a quarter-disc Q" with center
0" € Y (Figure 9(b)), point p has to be above

\\ p
AN ‘&
OB
)QI \\
oY
)
O) \
0" (:]\\\
/

Figure 8: The two possibilities for quarter-discs
with center 0" € X.

line Z because Q" intersects (). Hence, ¢ is to
the left of line £. Moreover, point p is above
point O' and ¢ is below point O’. Hence,
O’ € Q". This leads to a contradiction. O]

Lemma 5 For every Li-quarter disc Q, all L1-
quarter discs Q1,...,Qq of the same type that
overlap @) are pairwise disjoint.

Proof. By Lemma 3, there are no two quarter-
discs Q' and Q" overlapping @ so that O’ € B,
O" € A, and Q' N Q" # 0. By Lemma 4, there
are no two quarter-discs Q' and Q" overlap-
ping @ so that O', 0" € Band Q'NQ" #0. A
similar argument shows that there are no two
quarter-discs Q' and Q" overlapping @ so that
Q,Q" € Aand Q' NQ" € . By Lemma 2,
regions A and B are the only two regions con-
taining centers of quarter-discs overlapping Q).
This proves the lemma. O

a7

(a) If 0" € Z, then Q' N Q" = 0.

q‘x a"

(b) If O" € Y, then O’ € Q".

Figure 9: Quarter-discs in regions Z and Y.

The arguments of Lemmas 2 and 4 carry
over to the Lo and Ls.-metrics with only mi-
nor modifications. The argument of Lemma 3
requires a little closer attention. Here we ar-
gued that every Li-disc C” with center O € A
has to be above line ¢ in Figure 6, and every
Li-disc C" with center O’ € B has to be be-
low that line. The argument was based on the
fact that neither O € C' nor O € C”. Now
if C' and C" are Ly or L..-discs that do not
contain point O, their largest enclosed L-discs
do not contain point O, so that according to
Lemma 3, they are completely on one side of
line /. Now it is easy to verify that this implies
that the north-east quarter-discs of C' and C”
are also completely on one side of line ¢, which

proves Lemma 3 for the Lo and L,,-metrics.
Summarizing these observations, we obtain the
proof for Theorem 2. O

The dynamic data structure is a two-level
tree structure whose base tree is a segment tree
on the z-projections of the quarter-discs. Any
node u of the primary tree corresponds to a
vertical slab Sy, and all the quarter-discs that
span the width of S,,, and not of its parent slab,
are stored in the secondary structure associ-
ated with u. The secondary structure associ-
ated to the node u is an interval tree defined on
the following intervals ordered according to y-
coordinates. For all the quarter-discs stored at
node u, intervals are the intersection of quarter-
discs with the left boundary of S,. The global
(two-level) data structure is augmented such as
to support dynamic fractional cascading [5].

To insert or delete a point (and its quarter-
disc), we proceed as if we are doing that in the
standard segment tree, except that we need to
insert/delete in each of the interval trees along
the search path. It is a straightforward task to
modify the dynamic fractional cascading data
structure of [5] to accommodate interval trees in
place of “catalogue” at the expense of increas-
ing the time complexity of these operations by
a factor of logn.

Reverse nearest neighbor queries are an-
swered as follows. For a query point g use
the primary segment tree structure to locate
a node, say u, containing a set of quarter-
discs whose z-projections encompasses the x-
coordinate of ¢. Also recall that a node in the
segment tree corresponds to an interval, say I,
on the z-axis and the projections of each of the
quarter-discs stored at v along z-axis covers the
interval I. To search in the secondary interval
tree, we locate all the intervals that are stabbed
by y-coordinate of q. We will show that there
are at most two such intervals, and hence we
report at most two quarter-discs in each slab.
Therefore the query procedure is same as that
in dynamic segment trees with the exception
that the search in each node of the tree is done
in an interval tree at the expense of increasing

the query time by a factor of logn.

As a consequence of the Theorem 2, any point
in the plane will be covered by at most two
quarter-discs of the same type. Consider the
slab S, associated with any node u of the seg-
ment tree. Let Z be the set of quarter-discs
associated with the interval tree of node u such
that the y-coordinate of the query point g stabs
the intervals formed by the intersections of all
discs in Z with the left boundary of 5,. Let Q)
be the quarter-disc among the discs in Z whose
horizontal axis h passing through its center is
immediately below the query point gq. Let a be
the intersection point of h and the left bound-
ary of S,. As all discs in Z span the whole
width of S, it is easy to see that the inter-
section point « is in all the discs in the set Z,
hence, by Theorem 2, |Z| < 2. The number of
discs in Z actually containing ¢, however, might
be smaller, as can be seen from Figure 10: In
this situation, the candidate set Z consists of
the quarter-discs @ and @', but only Q' actu-
ally contains the query point gq.

Figure 10: Querying a secondary interval tree.

It is easy to see that the complexity of insert
and delete operations is O(Q(n) log? nlog logn)
and it takes O(log?nloglogn) to answer a
reverse nearest neighbor query. The overall
space requirement for the global structure is in
O(nlogn) [5]. We summarize the result in the
following theorem.

Theorem 3 A set S of n points in the plane
can be maintained under insertions and dele-
tions such that a reverse nearest neighbor query
can be answered in O(logZnloglogn) time.
The time complexity of each update operation

is in O(Q(n) + log® nloglogn), and the space
requirement for maintaining S is O(S(n) +
nlogn).

References

1]

3]

[5]

[6]

J. L. Bentley and T. A. Ottmann. Algo-
rithms for reporting and counting geometric

intersections. IEEE Transactions on Com-
puters, C-28(9):643—647, September 1979.

K. L. Clarkson, H. Edelsbrunner, L. J.
Guibas, M. Sharir, and E. Welzl. Combina-
torial complexity bounds for arrangements
of curves and spheres. Discrete € Com-
putational Geometry, 5(2):99-160, 1990. A
preliminary version appeared in Proceedings
of the 29th Symposium on Foundations of
Computer Science (1988), pages 568-579.

A. Guttman. R-trees: A dynamic index
structure for spatial searching. In B. Yor-
mark, editor, SIGMOD ’8}, Proceedings of
Annual Meeting, volume 14.2 of SIGMOD
Record, pages 47-57. ACM Press, June
1984.

F. Korn and S. Muthukrishnan. Influ-
ence sets based on reverse nearest neigh-
bor queries. In W. Chen, J. Naughton, and
P. A. Bernstein, editors, Proceedings of the
2000 ACM SIGMOD International Confer-
ence on Management of Data, volume 29.2
of SIGMOD Record, pages 201-212, New
York, June 2000. ACM Press.

K. Mehlhorn and S. Naher. Dynamic frac-
tional cascading. Algorithmica, 5(2):215-
241, 1990.

N. I. Sarnak and R. E. Tarjan. Planar
point location using persistent search trees.
Communications of the ACM, 29(7):669—
679, July 1986.

M. Smid. Closest-point problems in compu-
tational geometry. In J.-R. Sack and J. Ur-
rutia, editors, Handbook of Computational
Geometry, chapter 20, pages 877-935. Else-
vier, Amsterdam, 2000.

