[/O-Efficient Algorithms for Computing Planar
Geometric Spanners*

Anil Maheshwarif Michiel Smid* Norbert Zeh?
January 19, 2007

Abstract

We present I/O-efficient algorithms for computing planar Steiner spanners for point
sets and sets of polygonal obstacles in the plane.

Keywords: External-memory algorithms, computational geometry, geometric spanners,
shortest paths.

1 Introduction

Geometric spanners are sparse subgraphs of the complete Euclidean graph over a set of points
or vertices of obstacles. They have played a key role in efficient algorithmic solutions for
several fundamental geometric problems including shortest path computations; the design
of fault-tolerant networks; computing nearest neighbours, closest pairs, and approximate
Euclidean minimum spanning trees; and n-body simulation. A number of efficient, algorithms
for constructing a variety of spanners in Euclidean space have been proposed (see [17, 25, 28]
for an overview). These algorithms are designed in the RAM model, which assumes that the
cost of a memory access is independent of the accessed memory location. However, large
data sets are unlikely to fit into the internal memory of a computer; in such a situation,
the cost of a memory access varies dramatically depending on whether the accessed data
item is stored in memory or on disk. Hence, the number of disk accesses is the dominating
factor that determines the running time of an algorithm on a massive data set. In [19, 23],
I/O-efficient algorithms for computing Euclidean spanners have been proposed. However,
once the spanner has been computed, one is usually interested in answering short(est)-path
queries on the computed spanner. It is not known how to do this I/O-efficiently for the
spanners constructed in [19, 23]. The best bound for reporting a path in the spanner of a

*Research supported by NSERC, GEOIDE NCE and CFI. A preliminary version of this paper appeared
in the Workshop on Algorithms and Data Structures, Providence, RI, 2001.

tSchool of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K18
5B6. {maheshwa,michiel}@scs.carleton.ca.

tFaculty of Computer Science, 6050 University Ave, Halifax, NS, Canada B3H 1W5. nzeh@cs.dal.ca.

point set constructed in [23] is O(sort(N))! I/Os. For sets of obstacles in the plane and the
spanners of [19], one has to revert to using a shortest-path algorithm for general graphs;
but none of the existing shortest-path algorithms are I/O-efficient for sparse graphs. In
this paper, we propose I/O-efficient algorithms for computing planar Steiner spanners for
point sets and sets of polygonal obstacles in the plane. Planarity is desirable because I/O-
efficient shortest-path algorithms [3] and data structures for answering shortest-path queries
on planar graphs [5, 21] exist. This is the main motivation for studying planar geometric
spanners in the I/O setting.

1.1 Model of Computation and Previous Work

The most widely accepted model for the design and analysis of I/O-efficient algorithms is
the I/O-model of Aggarwal and Vitter [1]. In this model, the computer is assumed to be
equipped with two levels of memory. The internal memory (or memory for short) is of
bounded size, capable of holding M data items. The disk-based external memory is of
conceptually unlimited size and is divided into blocks of B consecutive data items. All
computation has to happen on data in internal memory. Data are moved between internal
and external memory using I/0O-operations (or 1/Os for short), each of which transfers one
block of data between the two memory levels. The complexity of an algorithm is the number
of I/O-operations it performs. Our algorithms are designed and analyzed in the I/O-model.

For surveys of results obtained in the I/O-model and its extensions, refer to [24, 30].
Next we discuss the results that are relevant to our work.

It is shown in [1] that sorting an array of size N takes sort(N) = © (% log %) I/Os in

the I/O-model; scanning an array of size N takes scan(N) = ©(N/B) I/Os. A wide variety
of problems whose solution takes (/N log N) time in the RAM model have an Q(sort(N))
lower bound in the I/O-model [4], including a wide range of geometric problems.

Some of our constructions will use the buffer tree [2], which is an extension of the well-
known B-tree data structure [8]. The buffer tree outperforms the B-tree in applications
where a large number of updates (insert/delete operations) and queries need to be performed
and immediate query responses are not required. In particular, processing a sequence of N
updates and queries takes O (% log %) = O(sort(N)) I/Os, while the same would take
O(Nlogy N) 1/Os using a B-tree.

Our paper deals with external-memory algorithms for constructing geometric spanners.
Next we outline some of the key results in internal and external-memory in this area. A
geometric t-spanner is a graph that approximates the complete Euclidean graph of a point
set, or the visibility graph of a set of polygonal obstacles so that the distances between points
or obstacle vertices are preserved up to a constant factor ¢t. The value ¢ is called the spanning
ratio of the spanner. The concept of geometric spanner graphs has been introduced by Chew
[14]. Keil and Gutwin [22] prove that the spanning ratio of the Delaunay triangulation is
no more than 72T Ty~ 2.42. Unfortunately, by a result of [14], the Delaunay triangulation
cannot be used when a spanning ratio arbitrarily close to 1 is desired. In fact, it is easy
to show that there are point sets such that no planar graph over such a point set has a

lsort(N) = © (% log %), where the parameters N, M and B are explained in Section 1.1.

spanning ratio less than v/2. The first to show how to construct a t-spanner in the plane,
for ¢ arbitrarily close to one, were Keil and Gutwin [22|. Independently, Clarkson [15]
discovered the same construction for two and three dimensions. Ruppert and Seidel [26]
generalize the result to higher dimensions, using the construction of a f-frame due to Yao
[31]; their algorithm takes O (N log? ' N) time. Vaidya [29] and Salowe [27] were the first to
give optimal O(N log N)-time algorithms for constructing ¢-spanners in higher dimensions.
Their algorithms use hierarchical subdivisions similar to that induced by a fair split tree
[11]. Consequently, the well-separated pair decomposition of [9, 12] can also be used to
obtain an O(N log N)-time algorithm for constructing t-spanners [10]. Clarkson [15] shows
that a modification of the f-graph for sets of polygonal obstacles is a ¢-spanner for the
visibility graph of these obstacles. Arikati et al. [7] show how to construct a planar t-
spanner among obstacles that contains only O(N) additional vertices, called Steiner points.
Both constructions [7, 15] take O(/N log N) time.

Eppstein [17], Narasimhan and Smid [25] and Smid [28] present surveys of results on
spanners and proximity problems. For a comprehensive discussion of the WSPD and its
applications, we refer the reader to [13].

In external memory, efficient solutions to a wide range of geometric problems have been
obtained in the last decade. Related to the computation of geometric spanners, we observe
that the algorithms of [16, 18] for computing the convex hull of a point set in three dimensions
can be used to obtain the Voronoi diagram of a point set in two dimensions in O(sort(N))
I/Os; the Delaunay triangulation of the point set can be computed in O(sort(/N)) I/Os from
the Voronoi diagram. In [19], it is shown how to compute a fair-split tree and a well-separated
pair decomposition (WSPD) of a point set in d dimensions; the algorithm takes O(sort(NV))
I/Os and uses O(N/B) blocks of external-memory. A linear-size t-spanner, for any ¢t > 1,
can be computed in O(sort(N)) I/Os from the WSPD. By choosing spanner edges carefully,
the spanner can be guaranteed to have spanner diameter 2log N. It is also shown in [19]
that Q(min{ /N, sort(N)}) I/Os are required to compute any linear-size t-spanner of a given

point set, for any ¢ > 1. In [23], it is shown how to compute t-spanners for sets of polygonal
obstacles in O(sort(N)) I/Os.

1.2 New Results

The main result of this paper is an O(sort(/N))-I/O algorithm to construct a planar L;-
Steiner spanner of size O(N) and spanning ratio 1 + € for any set of polygonal obstacles
in the plane with N vertices and any ¢ > 0. Using this result we obtain O(sort(N))-I/O
algorithms for constructing planar Lo-Steiner spanners of size O(NV) for point sets and sets
of polygonal obstacles in the plane.

The solution presented here follows the framework of the algorithm proposed in [7]. How-
ever, the details differ substantially. In particular, the data structure used to maintain the
sweep-line status in the algorithm for constructing a planar L;-Steiner spanner differs con-
siderably from the one used in [7] and also leads to a simplified internal memory algorithm?.

2Most of the proofs in [7] were omitted due to the limited space in the conference proceedings. Interested
readers may to refer to Zeh [32] for proofs of some of the critical lemmas stated in [7].

The computed spanners have linear size and can be computed in linear space, except
for the solution of the endpoint dominance problem, which we invoke as a subroutine in a
number of places. The currently best algorithm for this problem uses (’)(% log/ s %) space.

1.3 Organization of the Paper

In Section 2 we introduce necessary definitions and terminology, as well as the relevant results
and concepts from [7] and [19] used in this paper. In Section 3 we present an I/O-efficient
algorithm for constructing a planar L;-Steiner spanner for any set of polygonal obstacles in
the plane. Algorithms for constructing planar Lo-Steiner spanners for point sets and sets of
polygonal obstacles in the plane are presented in Section 4.

2 Preliminaries

This section introduces the necessary notation and terminology and provides some algorith-
mic background needed by our algorithms. In Section 2.1 we provide necessary definitions.
In Section 2.2 we define the fair split tree for a point set. In Sections 2.3 and 2.4 we discuss
internal-memory algorithms by Arikati et al. [7] for computing planar L;-Steiner spanners
for point sets and sets of obstacles, respectively, on which our algorithms are based.

2.1 Definitions

A geometric graph G = (S, E) over a point set S in the plane is a graph with vertex set
S and edge set E; in particular, every vertex in G has a location in the plane, and every
edge is a straight line segment between its endpoints. A geometric graph G = (V, E) is a
t-Steiner spanner for the complete graph £(S) on a set S of points in the plane if S C V
and, for every pair of vertices p,q € S, distg(p,q) < t- dist(p, g), where dist(p, ¢) denotes
the distance between p and ¢ in an appropriate metric. The vertices in V' \ S are called
Steiner points. The wvisibility graph V(P) of a set P of polygonal obstacles with vertex set
S is the subgraph of £(S) that contains only those edges that do not cross the interior of
any obstacle. A geometric graph G = (V, E) is a t-Steiner spanner for V(P) if S C V, no
edge in G crosses the interior of any obstacle in P, and, for every pair of vertices p,q € S,
dist(p, g) < t - distyp)(p, g)-

For a given point set S C R?, the bounding rectangle R(S) is the smallest rectangle
containing all points in S, where a rectangle R is the Cartesian product [z1,x]] X [xe, z4] of
two closed intervals. The length of R in dimension i is ¢;(R) = x} — ;. The minimum and
maximum lengths of R are /i, (R) = min{/¢;(R), ¢2(R)} and L. (R) = max{¢;(R), ls(R)}.
We call R a boz if £yax(R) < 3lmin(R). If all lengths of R are equal, R is a square and we
denote its side length by £(R) = lmin(R) = fmax(R). For a point set S, let £;(S) = £;(R(S5)),
gmin(‘s) = Emin(R(S))’ and Kmax(s) = Kmax(R(S))'

2.2 Fair Split Tree

A split of a point set S is a partition of S into two non-empty point sets lying on either side
of a line perpendicular to one of the coordinate axes and not intersecting any points in S.
A split tree T of S is a binary tree over S defined as follows: If S = {z}, T contains a single
node {z}. Otherwise, perform a split to partition S into two subsets S; and S,. Tree T is
now constructed from two split trees for point sets S; and Sy whose roots are the children of
the root node S of T'. Note that we use the same notation to refer to subsets of S and the
nodes in 7" that represent them. For a node A in T, the outer rectangle R(A) is defined as
follows: For the root S, let R(S) be the square with side length £(R(S)) = lmax(S), centered
at the center of R(S). For all other nodes A, the hyperplane used for the split of the parent
of A, p(A), divides R(p(A)) into two open boxes. Let R(A) be the one that contains (the
set) A. A fair split of A is a split of A where the line splitting A is at distance at least
max(A)/3 from each of the two sides of R(A) parallel to it. A split tree formed using only
fair splits is called a fair split tree.

The following are alternative, more restrictive, definitions of outer rectangles and fair
splits which in particular ensure that all outer rectangles are boxes. The algorithm of [19]
for constructing a fair split tree makes sure that the splits satisfy these conditions. For the
root S of T, the outer rectangle R(S) is defined as above. Given the outer rectangle R(A)
of a node, a split is fair if it splits R(A) perpendicular to its longest side, and the splitting
line has distance at least %Emax(f%(A)) from the two sides of R(A) parallel to it. Let R(A;)
and R(Aj) be the two rectangles produced by this split. We call R(A;) and R(A;) the split
rectangles of Ay and A,, respectively. Fori € {1,2}, let R, = R(4;). The following procedure
defines R(Ai): If R! can be split fairly, let R(AZ) = R!. Otherwise, split R} perpendicular to
its longest side so that the splitting line has distance at least %zm(R;) from the two sides of
R} parallel to it. Only one of the two resulting rectangles is non-empty. Repeat the process
after replacing R; with this non-empty rectangle. The following theorem states that a fair
split tree can be computed I/O-efficiently.

Theorem 2.1 (Govindarajan et al. [19]) Given a set S of N points in the plane, a fair
split tree T of S can be computed in O(sort(N)) I/Os and linear space.

2.3 Planar Steiner Spanner for a Point Set

Let S be the given point set and let C' be a minimal square that contains all points of S. The
construction of a Steiner spanner for S uses a subdivision of C, denoted by D', into O(N)
regions of two types: box cells and donut cells. A box cell is a box and contains exactly one
point in S. A donut cell is the set-theoretic difference Z = R\ R’ of two boxes R and R' with
the following properties: (1) Z does not contain any point in S. (2) Box R' is contained in
box R. (3) The distance of each side ¢’ of R' from the corresponding side of R is either zero
or at least ||e’||/3.

Such a subdivision D' = D'(T) can be obtained quite naturally from a fair split tree T’
of S: For every leaf p of T, we add the split rectangle R(p) as a (box) cell to D'(T). For
every internal node A of T with R(A) # R(A), we add the region R(A)\ R(A) as a (donut)
cell to D'(T).

Lemma 2.1 (Arikati et al. [7]) The collection D'(T) defines a subdivision of C whose
regions are either box or donut cells.

Given the subdivision D' as defined above, a planar L;-spanner D" for point set S
can be constructed in internal-memory as follows: Let INTERVAL(e,) be a procedure that
partitions segment e into a minimal number of subsegments of length at most r by adding
equally spaced Steiner points on edge e. We perform INTERVAL(e, 7v||e||), for every boundary
edge e of a cell in the subdivision, where v = ¢/3 and ¢ = 1+ € is the spanning ratio we want
D" to have. For every cell R and every boundary edge e of R, we shoot rays orthogonal to
e from the endpoints of e and the Steiner points on e toward the interior of R until they
meet another boundary edge of R. For every box cell R containing a point p € S, we also
shoot rays from p in all four axis-parallel directions until they meet the boundary of R. To
preserve the planarity of D", we introduce all intersection points between perpendicular rays
as Steiner points. Then we add all ray segments between consecutive intersection points to
the edge set of D". Arikati et al. [7] show that D" is the desired spanner.

Lemma 2.2 (Arikati et al. [7]) Graph D" has size O(N/~%) and L-spanning ratio at
most 1 + 3.

2.4 Planar Steiner Spanner for a Set of Obstacles

Let P be a set of polygonal obstacles in the plane. First we define a planar subdivision D,
so that we can obtain an L;-spanner of P by partitioning the cells of this subdivision as
in Section 2.3 and removing all edges that are inside obstacles. It is not hard to see that
such a subdivision D; can be obtained by superimposing the subdivision D defined by the
obstacles in P and the subdivision D' obtained from the set of obstacle vertices using the
construction in Section 2.3. Unfortunately, D; may have size Q(N?), thereby leading to a
spanner of super-linear size. In [7], it is shown that another subdivision D, with the desired
properties can be derived from D; by removing edges between cells. This subdivision has
linear size and can be constructed without constructing D; explicitly. In this section, we
recall the definitions of D; and Ds.

Subdivision D;: Let S be the vertex set of the obstacles in P, and let D' = (S, E') be
the subdivision D' defined for point set S in Section 2.3, viewed as a graph. Let D = (S, E)
be the graph defined by the obstacles in P. Then let D; be the superimposition of graphs
D' and D; that is, the edges of D' and D are split at their intersection points, and these
intersection points are introduced as vertices of Dy, in addition to the vertices of D' and D.

In order to derive subdivision Dy from D;, we need to distinguish between a region of
the subdivision Dy and a face of the graph D,. Every face f of graph D, is contained in a
region R of subdivision D’. While the boundary of face f may have many vertices on it,
we ensure that the corresponding region R(f) has constant boundary size. The boundary
of R(f) contains only those vertices on the boundary of f that are vertices of the region
R, obstacle vertices, or intersection points between the boundary of region R and obstacle
edges. All other vertices are removed by combining their incident edges (which are collinear)
into a single edge. See Figure 2.1 for an illustration.

|
o
9-‘—6—%-.’1—-- - T —————— x__l\
|
1
1

_-+ - -9 -9 1 1 7————’ :

: ?_—L ¢ f—_ :]] I
_-T -- & — I - :

S | ISV |

Figure 2.1: A face with many vertices on its boundary (a) and its corresponding region (b).

The regions of subdivision D; can be partitioned into two classes: A red region is a
quadrilateral R(f) so that no vertex of face f is in SU S’ (see Figure 2.2a), that is, all the
vertices of face f are intersection points between edges in F and E’. All remaining regions
are blue (see Figure 2.2b). A blue region R(f) can be of two types, depending on whether
or not face f has a vertex in SUS’. If face f has no vertex in SU S’ on its boundary, region
R(f) is bounded by six or eight edges. If face f has a vertex in SUS’, the shape of R(f) can
vary. However, region R(f) can be bounded by at most 16 edges: 6 obstacle edges and 10
edges from E’. (See the right region in Figure 2.2b as an example.) Hence, every region of
D has constant complexity. This constant complexity of regions is maintained in Dy, which
is important for the construction of the Steiner spanner from Ds.

Ladders, rungs, and the red graph: The construction of D, merges adjacent red regions
in Dy, where adjacency is defined by means of a red graph of subdivision D;. This graph is
a subgraph of the dual of D;. It contains a vertex for every red region of D; and an edge
between two vertices if the two corresponding regions share an edge that is part of an edge
in E'. Since every red region has two edges from E’ on its boundary, every vertex in the red
graph has degree at most two. Hence, every connected component of the red graph is a path
(see Figure 2.3).

Consider the set of red regions corresponding to a connected component of the red graph.
These regions are bounded by the same two obstacle edges and a set of edges in E'. We
call such a set of red regions a ladder. The two obstacle edges on their boundaries are the
sides of the ladder; the edges from E' are its rungs. In other words, the set of all rungs
of graph D; contains all edges in D; that are contained in edges of D’ and both of whose
endpoints are intersection points of edges in E and E’. We call the topmost rung of a ladder
its top rung. Left, right, and bottom rungs are defined in a similar manner. All of these four
types of rungs are called extremal rungs. To simplify the description of the algorithm for
constructing Ds, we also consider a single rung between two blue regions to be a ladder. We
call such a ladder trivial, while a ladder formed as the union of red regions is non-trivial.

Subdivision D,: Subdivision D, is now obtained by removing the non-extremal rungs
from all ladders of D;, that is, the red regions of each non-trivial ladder are merged into a
single red region. Arikati et al. [7] show that subdivision D, has linear size by showing that

Figure 2.2: (a) Two red regions. (b) The simplest and the most complicated blue regions.

there are O(N) extremal rungs of ladders remaining in D;.

Lemma 2.3 (Arikati et al. [7]) Subdivision Dy has size O(N).

The procedure for deriving a spanner for obstacle set P from subdivision D, is similar
to the one presented in Section 2.3: We remove all regions inside obstacles from D,. For
each remaining region R, we consider all edges on its boundary that are contained in edges
of E'. For each such edge e, we apply procedure INTERVAL(e, 7v||€/||), where € is the edge of
subdivision D' that contains edge e, and shoot rays from the endpoints of e and from the
resulting Steiner points toward the interior of R until they meet another boundary edge of
R. Again, we add all intersection points between these rays as Steiner points to Dy. Let D"
be the resulting graph. The construction explicitly ensures that D" is planar. Arikati et al.
[7] show that the size of D" is small and that its spanning ratio is at most 1 + 3.

Lemma 2.4 (Arikati et al. [7]) Graph D" has size O(N/~*) and Li-spanning ratio at
most 1 + 3ry.

3 1I/0O-Efficient Algorithms for Constructing Planar L;-
Steiner Spanners

In this section, we describe an I/O-efficient algorithm for constructing a planar L;-Steiner
spanner for a point set S. This is a simple extension of the results presented in Section 2.3.
Then we construct a planar L;-Steiner spanner for a set P of polygonal obstacles in the plane.
Since the subdivision is constrained by the obstacle edges, it is harder to compute in this
case. In order to compute the subdivision, we again follow the framework of the algorithm
of [7], which employs a plane-sweep to carry out its task. However, our representation of the
sweep-line status uses only a single buffer tree instead of two balanced search trees. This
simplification is the key to obtaining an I/O-efficient algorithm because the approach of [7]

Figure 2.3: A non-trivial ladder and its corresponding connected component of the red graph.

requires immediate query responses on the two trees and no I/O-optimal batched search
structure is known that answers queries immediately.

In Section 3.1 we present an I/O-efficient algorithm for constructing a planar L;-Steiner
spanner for a point set. In Section 3.2 we show that the subdivision D, defined in Section 2.4
can be used to derive a planar L;-Steiner spanner for obstacles in an I/O-efficient manner.
In Sections 3.3 and 3.4, we present an I/O-efficient algorithm for computing the subdivision
Dz.

3.1 Planar L;-Steiner Spanner for a Point Set

In this section, we show how to construct a planar L;-Steiner spanner for a point set S in
an I/O-efficient manner. First we compute a planar subdivision defined by S and introduce
additional vertices and edges inside every region of this subdivision as defined in Section 2.3.
Then we use this subdivision to construct the spanner.

The first step in obtaining the spanner is to compute the subdivision D'(T") as defined
in Section 2.3. The construction of D'(T) requires computing a fair split tree 7" of S and
scanning the vertex set of T' to extract the cells of D'(T). By Theorem 2.1, a fair split tree
of size O(N) for S can be computed in O(sort(N)) I/Os. The extraction of the cells takes
O(scan(N)) I/Os. Every node of T adds at most one cell to D'(T), so that we obtain the
following lemma.

Lemma 3.1 The subdivision D'(T) can be computed in O(sort(N)) I/Os and linear space.
Its size is O(N).

Given D'(T), it now remains to construct the spanner graph D" from it, as defined in
Section 2.3.

Lemma 3.2 The graph D" can be constructed in O(sort(N/~?)) I/Os.

Proof. By Lemma 3.1, subdivision D’ can be computed in O(sort(N)) I/Os. Given the cells
of D', we scan this set of cells to partition each of them as described in Section 2.3 and
add the segments in the resulting partition to the edge set of D" and their endpoints to
the vertex set. Since each cell has a constant-size description, we can load it into internal
memory and generate the set of vertices and edges in this cell in a linear number of I/Os.

9

(a) (b) (c)

Figure 3.1: Superimposing overlapping edges.

By Lemma 2.2, the total number of vertices and edges is O(N/~?), so generating them takes
O(scan(N/~?)) 1/Os. Since each cell is partitioned separately, the resulting vertex set may
contain duplicates, and the edge set may contain edges that overlap, that is, are part of the
same line and have a non-zero intersection (see Figure 3.1a). The duplicates in the vertex
set of D" can be removed in O(sort(N/~?)) I/Os by sorting and scanning this set.

To construct the final edge set of D", we have to replace overlapping edges, which can be
done in the following manner: First we split every edge that contains vertices other than its
endpoints into shorter edges at these vertices. This results in an edge set that contains every
edge twice (see Figure 3.1b). We remove these duplicates (see Figure 3.1c). To perform this
computation I/O-efficiently, while avoiding the generation of duplicate edges altogether, we
proceed as follows: We deal with horizontal and vertical edges separately. We describe the
procedure for horizontal edges. The procedure for vertical edges is similar. First we sort the
horizontal edges by their y-coordinates and the x-coordinates of their left endpoints. Then
we scan this sorted edge list, in order to generate the set of edges along every horizontal line
in left-to-right order.

Sorting the initial edge set of D” in this manner takes O(sort(N/7?)) I/Os. The scan to
partition the edges takes O(scan(N/v?)) I/Os. O

If we choose 7 = ¢/3, Lemmas 2.2 and 3.2 lead to the following result.

Theorem 3.1 Given a point set S in the plane and a real number € > 0, a planar Steiner
spanner of size O(N/€*) and with L,-spanning ratio 1+ € can be computed in O(sort(N/e*))
1/0s.

3.2 Planar L;-Steiner Spanner for Obstacles

In this and the next two subsections, our goal is to construct the planar L;-Steiner spanner
for obstacles I/O-efficiently. Assume for now that we are given the subdivision Dy as defined
in Section 2.4. Then the next lemma shows that the desired spanner D” can be obtained
from it in an I/O-efficient manner. Sections 3.3 and 3.4 are concerned with the I/O-efficient
construction of Ds.

Lemma 3.3 Given a set P of obstacles and the corresponding subdivision Dy, a planar L,-
Steiner spanner of size O(N/~?) and spanning ratio at most 1 + 3y for P can be computed
in O(sort(N/~?%)) 1/0s.

Proof. Similar to the construction of spanner D" for a point set S, the set of Steiner points
and incident edges contained in each region of Dy can be generated in internal memory,

10

because each such region has constant complexity. Hence, a scan of the set of regions suffices
to generate all Steiner points and edges in O(scan(N/~?)) I/Os. Again, we have to remove
duplicates from the resulting vertex set and split overlapping edges at internal vertices. We
do this using the same procedure as in Section 3.1. The only complication is that now edges
are not only horizontal and vertical, as in the proof of Lemma 3.2. However, all generated
edges are either part of an edge in D’ or an obstacle edge, or they are new edges generated by
partitioning the regions of D,. The latter edges can be added to the edge set of D" without
modification. The former edges are the ones that may have to be split. Instead of sorting
these edges by their y-coordinates, we now sort them by the identities of the obstacle edges
or edges of D’ containing them. All edges that are contained in the same edge e are sorted
by the distances of their closer endpoints to one of the endpoints of e. Once the edges have
been sorted in this manner, a single scan of the sorted edge set suffices again to perform the
edge splitting. The overall complexity of this algorithm is O(sort(N/?)) I/Os. O

If we choose v = €/3, the following result can be obtained by using Lemmas 2.4, 3.3 and
3.5. The latter shows that the subdivision D, can be computed 1/O-efficiently.

Theorem 3.2 Given a set P of polygonal obstacles with a total of N wvertices and a real
number € > 0, a planar L,-Steiner spanner of size O(N/€e?) and with spanning ratio at most
1+ € for P can be computed in O (sort(N/e*)) I/0s.

3.3 Computing the Subdivision

Having shown that subdivision D, can be used to derive an L;-Steiner spanner with spanning
ratio 1 + € for obstacle set P, we have to provide an I/O-efficient algorithm for constructing
this subdivision. As mentioned before, subdivision D; may have size Q(N?2), so that con-
structing D; and removing all non-extremal rungs from the ladders of D; does not lead to
an efficient algorithm.

The solution proposed in [7], whose framework we follow here, first constructs a super-
graph D3 of Dy whose size is O(N). Due to the linear size of D3, we can afford to compute
the red graph of D3 explicitly and remove non-extremal rungs from Ds. Graph Dj is con-
structed by identifying potential top, bottom, left, and right rungs of each ladder in D; and
computing the edge set of D3 as the union of the set of these rungs, the set of all edges in
D, incident to vertices of D', and the set of obstacle edges. In this section, we describe the
I/O-efficient construction of subdivisions D3 and D,, once the set of rungs of subdivision
D3 has been computed. An I/O-efficient algorithm for computing these rungs is described
in Section 3.4.

3.3.1 Computing Subdivision Dj

Let E% be the set of potential top, bottom, left, and right rungs, and let E% be the set of
edges in D; such that each such edge is completely contained in an edge of D' and has at
least one endpoint in S’ (the vertex set of D'). We call the edges in Ef short. Subdivision
Dj is defined by all obstacle edges, that is, the set of edges in E; the set of rungs in E%; and
the set E of short edges of D;. Since we assume that sets E' and EY}, are already given, we

11

have to compute only the set E% of short edges and extract a representation of subdivision
D3 as an embedded planar graph from the edge set £ U E, U Ef of D3. We describe these
two steps next.

Computing the short edges. The set Ef of short edges can be computed by answering
ray-shooting queries on P and shortening the edges in E’ appropriately. In particular, let
p € S’ be a vertex of D’. Then there are at most four edges in E’ incident to p. For each such
edge ¢ € F’', we shoot a ray p from p in the direction of edge ¢’ until it meets an obstacle edge
e. Let ¢ be the intersection point of e and p, and let ¢” = (p, q). If &” C €', we add €” to the
set E§ of short edges. Otherwise, we add edge €’ to this set. The ray-shooting queries used
to compute edges e” are axes-parallel, and there are O(N) of them to be answered. Hence,
we can use the endpoint dominance algorithm of [6] to answer these queries in O(sort(N))
I/Os. Given the set of answers to these queries, a single scan of this set is sufficient to decide,
for every edge €' € E’, whether to add edge €' or " to E¥.

Computing graph Dj. A representation of subdivision D3 as an unordered edge set
E U Ej, U EY is not very useful for computing D, from Dj; a representation of Dj as a
graph is required. The geometric information pertaining to the vertices and edges of Dj
then provides us with a planar embedding 153 of graph Dj.

The vertex set of Ds is easily constructed as the set of endpoints of all edges in EUE,UEY.
Duplicates can be removed from the generated vertex set by sorting and scanning this set.
To compute the edge set of D3, every obstacle edge has to be split at the endpoints of rungs
and short edges lying on this obstacle edge. Once all obstacle edges have been split, duplicate
rungs and short edges have to be removed from the edge set, since these edges may have
been generated more than once.

The computation of rungs and short edges can easily be augmented so that every edge
in B U EY stores the identities of the obstacle edges containing its endpoints. Hence, we
can split the obstacle edges as follows: We sort the set of endpoints of edges in Ef, U E§
by the obstacle edges containing them and so that the endpoints lying on the same obstacle
edge are sorted by their distances from one endpoint of that edge. We scan this sorted list
of endpoints and the list E of obstacle edges to split obstacle edges. Duplicate rungs and
short edges can be removed from the resulting edge set of D3 by sorting and scanning this
set.

In the above construction, we sort and scan sets of size O(N) a constant number of times.
Hence, the construction of the graph Dj from the edge set E U ER, U E§ takes O(sort(NV))
I/Os. Together with the fact that the set of short edges can be computed in O(sort(N))
I/Os, we obtain the following lemma.

Lemma 3.4 Given the set E of obstacle edges, the set EYy, of rungs of subdivision D3, and
subdivision D', a representation of D3 as an embedded planar graph can be computed in
O(sort(N)) I/0s.

12

3.3.2 Computing Subdivision D,

To construct subdivision Dy from graph Djs, we compute the dual Dj of graph Dj, extract
the red graph of D3 from Dj, and remove all those edges from D5 that are dual to edges in
the red graph of Dj. The result is a graph Dj whose faces define the regions of Dy. We scan
the list of edges on the boundary of each face of D} and merge consecutive collinear edges
to produce a constant-size description of each region of Ds.

Given a planar embedding Dj of Ds, it is shown in [21] how to compute the dual D3 of Ds
in O(sort(N)) I/Os. The computation of this algorithm can easily be augmented to colour
every vertex of Dj either red or blue, depending on the type of its corresponding region, and
to mark every edge of Dj as being dual to an obstacle edge or an edge of D'. We identify
all edges of D3 that have at least one blue endpoint. Then we scan the edge set of Dj to
remove all edges with at least one blue endpoint and edges that are dual to obstacle edges.
Let E% be the resulting set of edges. The edges in F} are the edges of the red graph of Ds.
Each edge in Ej is dual to a non-extremal rung of a ladder in D;. We scan the set Ej to
construct the set EY of rungs dual to the edges in Ej. Finally, we sort and scan the edge set
E3 of D5 and the set Ef to remove the rungs in EY from Dj. This produces the graph Dj.

The faces of D} correspond to the regions of subdivision Dy. To construct a represen-
tation of Dy as a collection of regions, we compute a representation of the faces of D} as a
collection of edge lists, each storing the edges of one face clockwise around that face. Such a
representation can be computed in O(sort(N)) I/Os [21]. Once this representation is given,
a single scan of these edge lists suffices to compute constant-size representations of the re-
gions R(f), for all faces f of Dj. In particular, we scan each edge list and merge consecutive
collinear edges of the same type (subsegment of an edge in E or E’). By the discussion in
Section 2.4, only O(1) edges remain per face.

In the above construction of subdivision D, from graph Ds, the computation of the
dual of D3 and the extraction of the list of edges on the boundaries of the faces of Dj takes
O(sort(N)) I/Os [21]. Besides that, we sort and scan lists of length O(N) a constant number
of times. By Lemma 3.6 below, the rungs of subdivision D3 can be computed in O(sort(N))
I/Os. Lemma 3.4 shows that D3 can then be obtained in O(sort(N)) I/Os. Thus, we have
the following result.

Lemma 3.5 Given a set P of polygonal obstacles in the plane, subdivision Dy can be com-
puted in O(sort(N)) I/Os, where N is the total number of obstacle vertices.

3.4 Computing the Rungs

The construction of subdivision D, in Section 3.3 assumes that the set E; of extremal rungs
of subdivision D; is given. Computing this set of rungs is the difficult part of the algorithm.
The remainder of this section is dedicated to describing a procedure for computing set E’, in
O(sort(N)) I/Os. In [7], a plane-sweep algorithm is used to compute each type of extremal
rungs separately. We follow this approach, but simplify the sweep-line data structure so that
the approach leads to an I/O-efficient algorithm.

Since top, bottom, left, and right rungs are computed using four similar plane sweeps,
we only describe the computation of top rungs. Let Ej be the set of horizontal edges of

13

Procedure FINDTOPRUNGS

Input: The set E} of horizontal edges of subdivision D’ and the set E of obstacle edges.
Output: A set EY of size O(N) that contains the top rungs of all ladders in D;.

1: E}z «— 0

2: L < ((a,b)), where a and b are the left and right sides of square C.
{L is the list of intervals intersected by the sweep line, sorted from left to right.}
{C is the square containing all polygon vertices.}

3: Mark interval (a,b) as “non-ladder”.

4: Y ={y(p):p€ StU{yle) : e € E}}
{Y is the set of y-coordinates where the set of intervals in L changes.}
5: for all y € Y, sorted from —oo to +00 do
6: if y = y(p), for some point p € S then
7: Let e; and e; be the two edges incident to p, where e; is to the left of or below es.
8: if p is the bottom corner of an obstacle in P then
9: PROCESSBOTTOMCORNER(p, €1, €2, L, EY)
10: else if p is the top corner of an obstacle in P then
11: PROCESSTOPCORNER(p, €1, €3, L, EY)
12: else
13: PROCESSNONEXTREMALCORNER(D, €1, €2, L, E')
14: end if
15: else
16: Let e € E} such that y = y(e).
17: PROCESSHORIZONTALEDGE(e, L, E%)
18: end if
19: end for

20: for all remaining intervals (/,7) € L do
21: Add the top rung of interval (I,7) to E% if ({,7) is a ladder interval.
22: end for

Algorithm 3.1: Finding the top rungs of all ladders in D;.

14

Procedure PROCESSBOTTOMCORNER(p, €1, €2, L, E'y)

: Find the interval (/,7) € L containing point p.
if (I,r) is a ladder interval then
Add the top rung of (I,r) to set E%.
end if
: Replace ([,) with three non-ladder intervals (I, e;), (e1,e2), and (e, r) in L.

BANEE o

Procedure PROCESSTOPCORNER(p, €1, €2, L, E'Y)

1: Let (I,e1), (e1,€2), and (ez,7) be the three intervals incident to edges e; and e,.
2: Add the top rungs of all ladder intervals in {(I, e1), (e1,€2), (€2, 7)} to EY,.
3: Replace (I,e1), (e1,e2), and (e, r) with a single non-ladder interval (/,7) in L.

Procedure PROCESSNONEXTREMALCORNER(p, €1, €2, L, E;)

1: Let (I,e;) and (e1,r) be the two intervals incident to edge e;.

2: Add the top rungs of all ladder intervals in {(I, e;), (e1,7)} to E%.

3: Replace intervals ([, e;) and (e;,7) with two non-ladder intervals (,e;) and (eq,), re-
spectively.

Procedure PROCESSHORIZONTALEDGE(e, L, EY)

Locate the intervals (I1,71) and (I, %) in L that contain the endpoints of edge e.
Let (lg,72), ..., (lk—1,7k—1) be the intervals between (l1,7;) and (I, 7x) in L.

Add the top rungs of all ladder intervals in {(I1,71), (lg, 7x)} to E¥.

Mark intervals (I1,71) and (I, 7x) as “non-ladder”.

Mark intervals (lg,79),. .., (lx—1,7%k—1) as “ladder” and make edge e their top rung.

Algorithm 3.2: The four procedures used for processing event points in Algorithm 3.1.

15

subdivision D’. Then we use Algorithm 3.1 to compute all potential top rungs. The algorithm
employs a plane sweep in the (+y)-direction to carry out its task. During the sweep, it
maintains a set of intervals defined by intersections between the sweep line £ and obstacle
edges. In particular, let eq, ..., e be the edges in F intersected by the sweep line, sorted from
left to right. Then the set of intervals currently stored for £ is (e, €2), (€2, €3), ..., (€x_1, €x)-
Each such interval (e;, e;11) is classified as ladder or non-ladder, depending on whether the
algorithm has already found a rung whose endpoints lie on e; and e;,;. In particular, for an
interval I = (e;, e;41), let h be the highest edge in E} below ¢ and intersecting both e; and
e;+1. Interval I is a non-ladder interval if A does not exist or the quadrilateral defined by ¢,
ei, €11, and h contains a point from S U S’. Otherwise, I is a ladder interval.

During the sweep, an interval can be created or destroyed only when the sweep passes
the y-coordinate of an endpoint of an edge in E. The type of an interval can change only
when the sweep passes the y-coordinate of an edge in Ej. The algorithm deals with these
different types of event points and maintains the list of intervals, their classification, and,
for ladder intervals, their top rungs. It is easy to verify that the algorithm maintains the list
of intervals and their classification correctly, so that the rule for reporting top rungs is also
correct. We have to present a data structure to represent the sweep-line status so that the
list of intervals can be maintained I/O-efficiently.

The data structure has to support updates of the status of a sequence of consecutive
ladder intervals at the cost of o(1) changes to the data structure per interval in the sequence.
To see why this is necessary, observe that an edge e € E} may intersect (V) obstacle edges,
so that the status of (V) intervals has to be updated when the sweep passes edge e. Since
there are O(V) edges in Ej}, the number of required updates of the sweep-line data structure
would be Q(N?) if each updated interval caused (1) updates of the data structure. In order
to achieve o(1) data structure updates per modified interval, our data structure, just as the
one presented in [7], exploits the following observation.

Observation 3.1 (Arikati et al. [7]) Two consecutive ladder intervals have the same top
rung.

The data structure proposed in [7] exploits this fact by representing intervals and their
status in two separate binary search trees. The first tree, T, stores the current set of intervals
sorted from left to right. The second tree, T', represents the status of all intervals in a
compressed form by storing only one entry for each consecutive sequence of intervals of the
same type. Since every event point generates or destroys only O(1) intervals, procedure
FinpDTorRuNGs performs only O(N) updates of tree T. Counting the number of updates
of tree T" is not quite that easy. However, it can be shown that every generation or deletion
of an entry in tree 7' can be charged to a blue region in subdivision D; so that every region
is charged only O(1) times. Every change of the status of an existing entry in 7" can be
charged to an edge in E}. Hence, only O(V) updates of tree 7" are performed, and procedure
FinDTorRuNGs takes O(N log N) time.

In order to obtain a data structure that allows the sweep to be performed in O(sort(V))
I/Os, we could try to replace trees T and 7" with buffer trees. Unfortunately, this simple
idea cannot be applied, as the updates of tree T are driven by the answers to queries on
tree T" and vice versa, so that immediate query responses are required. The efficiency of the

16

buffer tree, however, is achieved by delaying query responses and answering queries whenever
a large enough number of queries have accumulated.

Next we show how to represent the sweep-line status using only a single buffer tree. The
fact that the buffer tree delays the processing of updates and queries still creates problems
that have to be dealt with. In order to support our claim that our data structure is simpler
than the one proposed in [7], we present the algorithm as if it used an (a, b)-tree, which does
not buffer updates or queries. In Section 3.4.2, we discuss the problems created by delayed
updates and show how to deal with them.

3.4.1 A Simplified Sweep-Line Data Structure

Our sweep-line data structure consists of a single (a, b)-tree T' [20]. The leaves of T store
the current set of intervals sorted from left to right. Every internal node stores the obstacle
edges separating the intervals stored at descendants of its children.

In order to obtain a classification of the intervals as ladder and non-ladder intervals,
every interval I stores a label A(I) = (y, 7, p), and every internal node v of T stores a label
A(v) = (y, T, p). For an interval I, label A\(I) = (y, 7, p) signifies that interval I was of type 7
just after sweep-line ¢ crossed y-coordinate y. If 7 = “ladder”, p is the topmost rung of the
ladder in interval I below or on the horizontal line at y-coordinate y. For an internal node,
label A\(v) = (y, 7, p) signifies that every interval I stored at a descendant of v was of type 7
just after sweep-line ¢ crossed y-coordinate y. If 7 = “ladder”, p is the topmost rung of the
ladder in interval I below or on the horizontal line at y-coordinate y.

We maintain the invariant that, at any time, the correct type and top rung of an interval
I can be determined as follows: Let vy be the leaf of T storing interval I, and let vy, ..., v
be the proper ancestors of vy in 7. Let A\(I) = (yo,70,00), and let A(v;) = (vi, 7i, ps), for
1 <4 < k. Then interval [is of type 7; and its top rung is p; if 7, = “ladder”, where
y; = max{y; : 0 < j < k}; that is, in terms of the plane sweep, the most recent information
stored on the path (vg,...,vx) in T is the correct characterization of interval I.

The basic query operation on tree 7" is operation REPORT(I), which searches for interval
I and reports its top rung if interval [is a ladder interval. To do this, it traverses the path in
T from the root to the leaf storing interval I and finds the triple with maximal y-coordinate
stored on this path. By the above invariant, this triple contains the correct type and top
rung of interval I. Given at least one point in interval I, the obstacle edges stored at the
internal nodes of T are sufficient to locate the leaf storing interval I.

Next we discuss the required updates of tree 7" when the sweep-line passes an event point.
We discuss the update procedures in Algorithm 3.2 for the four different types of event points
separately and argue that each of them maintains the above invariant.

PROCESSBOTTOMCORNER: A bottom corner p € S of an obstacle is a vertex whose incident
edges e; and ey are both above p. Let e; be to the left of e5. Then the top rung of the
interval I = (I, r) containing point p has to be reported if interval I is a ladder interval,
and interval I has to be replaced with three non-ladder intervals (I, e1), (e1,e2), and
(e9,7). To achieve this, we apply an operation REPORTANDSPLIT(/, ey, €5, y(p)) to
tree T. This operation first applies operation REPORT(I) to locate interval I and
report its top rung if necessary. Then it replaces interval I with three new intervals

17

I, = (l,e1), I, = (e1,€2), and I3 = (e, 7). Every interval [, j € {1,2,3}, is assigned a
label A(I;) = (y(p), “non-ladder”, null). Since y < y(p), for every label A(v) = (y, T, p)
stored at an ancestor of intervals Iy, I, and I3 in T, this correctly marks all three
intervals as non-ladder intervals.

The replacement of interval I with intervals I, I, and I3 may cause tree T to become
unbalanced. Tree 7" can be rebalanced using the standard procedure for rebalancing
an (a,b)-tree after an INSERT operation. A node created during a node split inherits
the labels of the node that has been split.

PROCESSTOPCORNER: A top corner p € S of an obstacle is a vertex whose incident edges
e; and ey are both below p. Let e; be to the left of e5. Then the top rungs of the
ladder intervals among intervals I, = (l,e;), Iy = (e1,e2), and I3 = (eg,r) incident to
edges e; and e; need to be reported, and intervals I, I, and I3 need to be replaced
with a single non-ladder interval I = (I,r). To achieve this, we apply three operations
0, = REPORTANDREPLACE(I1,I,y(p)), oo = REPORTANDDELETE(]y), and 03 =
REPORTANDDELETE(]3) to tree T. Operation o; searches for interval I, reports its
top rung if it is a ladder interval, and replaces it with interval I. The label of interval
I is set to A(I) = (y(p), “non-ladder”, null), thereby correctly marking interval I as a
non-ladder interval. Operations oy and o3 search for intervals I and I3, report their
top rungs if necessary, and delete these intervals. After deleting intervals I and I3, tree
T can be rebalanced using the standard rebalancing procedure for DELETE operations
on (a,b)-trees. There are, however, a few complications:

The first one is that we may end up fusing two nodes v; and vy with different labels
into a single node v. When this happens, we first update the labels of all children of v,
and vy and then store no label at all at node v. For a child w of node v;, its new label
is the one among A(v;) and A(w) with higher y-value. It is easily verified that, given
these label updates, a node fusion maintains the correct classification and top rung for
every interval stored in 7.

The second complication is that procedure PROCESSTOPCORNER is supplied only with
the two edges e; and e, incident to point p. This allows intervals I;, I5, and I3 to be
located in T, but is not sufficient to provide operation o; with a complete description
of interval I. In order to work around this problem, we apply operations o, and o3
first and augment operation o3 so that it reports the right boundary edge of interval
I3, which is also the right boundary of interval I. Together with the left boundary of
interval I, operation o; can now compute a complete description of interval 1.

The final problem is that the search information in T may be invalidated by operation
o1. This happens when the separating obstacle edges to the right of the path traversed
by operation o, intersect interval I. This is possible because interval I spans three of
the intervals previously stored in 7". Operation o; can change these edges to the right
boundary of interval I while it traverses the path in 7" to the leaf storing interval I;.

PROCESSNONEXTREMALCORNER: A non-extremal corner p € S of an obstacle is a vertex
such that an obstacle edge e; is incident to p from below, and another obstacle edge
ey is incident to p from above. At such an event point, the following updates are

18

necessary: Let I = (I,e;) and I, = (e;,r) be the two intervals on both sides of edge e;.
Then the top rungs of both intervals need to be reported, depending on whether they
are ladder intervals; and intervals I; and I, need to be replaced with two non-ladder
intervals I] = (I, e2) and I} = (e, 1), respectively. This can be achieved by applying two
operations REPORTANDREPLACE(]y, I], y(p)) and REPORTANDREPLACE(ly, I}, y(p))
to tree T

Observe that, after this event point, the sweep line no longer intersects edge e; and
instead intersects edge es. Therefore, in order to maintain the correct search informa-
tion in tree T, every occurrence of edge e; as a dividing segment between the children
of some node v has to be replaced with e;. It is easy to see that the affected nodes
have to be stored on the root-leaf path traversed by the second REPORTANDREPLACE
operation, and this operation can replace all occurrences of e; with ey as it traverses
this path.

PROCESSHORIZONTALEDGE: The last type of event point is the y-coordinate of a segment
s € E}. Let p; and p, be the left and right endpoints of segment s, and let I; and I,
be the intervals containing these two endpoints, respectively. Then the top rungs of
intervals I; and I, need to be reported, depending on whether these intervals are ladder
intervals; intervals I; and I, have to be marked as non-ladder intervals; and all intervals
between I; and I, have to be marked as ladder intervals with top rung s. We achieve
this by applying an operation o = MAKELADDER(]}, I,,y(s)) to tree T. Operation o
searches down the tree until it finds the first node v such that intervals I; and I, are
stored at descendants of different children of v. Let wq, ..., wy be the children of v, and
let w; and w; be the two children such that intervals [; and I, are stored at descendants
of w; and wj, respectively. Then operation o changes the label of every node wy, ¢ <
h < j,t0 Mwp) = (y(s), “ladder”, s). Now we split operation o into two operations o; =
MAKERIGHTLADDER({}, y(s)) and 0, = MAKELEFTLADDER(I,,y(s)). Operation o,
continues down the path from w; to the leaf storing interval I;. Operation oy follows
the path from w; to the leaf storing interval I,. At every visited internal node ¢/,
operation o; performs the following operation: Let wi, ..., w} be the children of node
v', and let interval I; be stored at a descendant of w;. Then the label of every node
wy, © < h < k, is changed to A(w},) = (y(s), “ladder”,s). When the leaf vy storing
interval I; is reached, the top rung of interval I; is reported if necessary, based on the
information collected by operations o and 0; along the path from the root of 7" to leaf
vg. Then the label of interval [is set to A(I;) = (y(s), “non-ladder”, null). Operation
0, performs the same updates w.r.t. interval I, but labels all intervals to the left of the
search path as ladder intervals. It is easily verified that an interval appears between I,
and I, if and only if it is stored at a descendant of a node wy, or wj, in T whose label
is changed to “ladder”. Hence, this procedure correctly updates the type information
of every interval.

Each of the above update procedures for the four different types of event points traverses a
constant number of root-to-leaf paths in 7. Each procedure spends O(b) time per visited
node. In internal memory, we would choose b = O(1), so that every event point can be

19

processed in O(log N) time. As there are O(NN) event points, procedure FINDTOPRUNGS
finds all top rungs in O(N log N) time.

3.4.2 Buffering Updates

In order to make the sweep-line data structure I/O-efficient, the first step is to turn the
(a, b)-tree into a buffer tree. Query and update procedures remain the same. But they are
processed in a batched fashion, so that processing O(N) queries and updates now takes
O(sort(N)) I/Os. However, the delayed processing of updates creates problems:

(i) The z-order of obstacle edges and, hence, the order of intervals defined by these edges
is not a total order. While all segments intersected by a horizontal line have a well-
defined order, edges whose y-spans are disjoint are incomparable. This does not create
any problems for a standard (a,b)-tree because queries and updates are processed
immediately and the search information in tree 7' is updated so that all separating
edges stored at internal nodes of 7" intersect the current sweep line. In a buffer tree, on
the other hand, delayed updates can lead to the situation that some nodes in T store
splitter edges that are incomparable to points on the current sweep line because they
are completely below the sweep line. Thus, it is not clear at this point at which child
of such a node to continue the search for a particular interval.

(ii) We argued in Section 3.4.1 that, when operation REPORTANDREPLACE is applied in
procedure PROCESSTOPCORNER, the information about the right boundary of interval
I can be collected by first deleting interval I3 and then replacing interval I; with interval
I. In a buffer tree, this strategy cannot be applied because the deletion of interval I3
would have to be processed immediately. This makes it impossible to guarantee that
a large enough number of queries and updates has accumulated at a node of T" before
emptying the buffer of this node. But this is crucial for the I/O-efficiency of the buffer
tree.

Our solution for Problem (i) is to define a total order of the intervals by precomputing the
set of all intervals defined by obstacle edges and numbering them in a manner consistent
with the partial z-order of these intervals. Intervals are then stored in the buffer tree sorted
according to their numbers. This solves the first problem, but creates a new problem:

(iii) An update operation cannot search for an interval in 7" using the location of a point p
in the interval because tree 7" no longer stores any geometric search information. Thus,
every update operation has to be provided with the numbers of the intervals involved
in the update.

The fourth and final problem is the following:

(iv) The procedure for updating splitter values that are invalidated by an application of
operation REPORTANDREPLACE requires the immediate processing of this operation,
which is not feasible using a buffer tree. Hence, the numbering of the intervals has
to be defined so that, if the splitter values in the buffer tree are chosen carefully, an
application of operation REPORTANDREPLACE does not invalidate any splitters.

20

As mentioned above, our solution for Problem (i) is to precompute the set of intervals and
assign a unique number v(I) to each interval /. We obtain a total order of the set of
intervals as the total order defined by numbering v. Below we discuss the computation of
this numbering and argue that it satisfies the condition in Problem (iv). To solve Problems
(ii) and (iii), we compute three lists Lg, Lp, and Lg. List Lg stores pairs (I, [5), where
interval I; is replaced by interval I, during the sweep. List Lp stores single intervals that
are removed from tree 7" using operation REPORTANDDELETE during the sweep. List Ly
stores pairs (I;, I.) of intervals, where intervals I; and I, contain the left and right endpoints
of a segment in E;. The elements of lists Lg, Lp, and Ly are sorted by the y-coordinates
of the corresponding event points. Every interval [in lists L, Lp, and Ly stores both its
bounding segments as well as its number v(I). The I/O-efficient version of Algorithm 3.1
now proceeds as follows:

We use a buffer tree instead of an (a, b)-tree to store the set of intervals intersected by the
sweep line. These intervals are sorted by their numbers, which is consistent with the z-order
of these intervals, by the definition of the numbering v. Operation REPORTANDREPLACE
retrieves the next pair ([, ls) from list Lg. It searches for interval I; in T, using number
v(I1), and replaces I; with I5. Operation REPORTANDSPLIT retrieves the next three pairs
(I, 1), (I, Iy), and (I,I3) from Lg. It searches for interval I in T and replaces this interval
with intervals I, I, and I5. Operation REPORTANDDELETE retrieves the next interval I
from list Lp, searches for interval I in T, and removes this interval. Operation MAKELAD-
DER retrieves the next pair ([;, I,) from list Ly and makes a ladder between intervals [; and
I..

The correctness of this modified version of Algorithm 3.1 is easily verified. Its I/O-
complexity is O(sort(/N)) because it performs O(N) updates and queries on a buffer tree T
of size O(N) and scans lists Lg, Lp, and L. Below we show how to compute the numbering
v as well as lists Lg, Lp, and Ly in O(sort(N)) I/Os, which proves the following lemma.

Lemma 3.6 Given a set P of polygonal obstacles and the subdivision D' defined by the set
S of obstacle vertices, the set of top rungs of subdivision D3 can be computed in O(sort(N))
I/0s, where N = |S]|.

The replacement tree. To compute the numbering v and lists Lg, Lp, and Ly, we use
a rooted tree defined on the set of all intervals. We call this tree the replacement tree Tg.
We show that this tree can be computed in O(sort(N)) I/Os. The extraction of numbering
v and lists Lg, Lp, and Ly from tree Tg takes O(sort(N)) I/Os, as we show below.

To construct the vertex set of Tk, we have to compute the set of all intervals defined by
edges of the obstacles in P. This set of intervals is easily obtained from a trapezoidation of
the obstacle set (see Figure 3.2). In particular, the y-span of each trapezoid ¢ defines the life
span of the interval defined by the two obstacle edges on the boundary of ¢ during the sweep;
the interval is created when the sweep passes the bottom boundary of the trapezoid, and
it is replaced by a new interval when the sweep passes the top boundary of the trapezoid.
Since a trapezoid is an interval augmented with the range of y-coordinates where this interval
is valid, we henceforth consider intervals and trapezoids to be the same, choosing between
these two names for the same object depending on the context.

21

Figure 3.2: A trapezoidation of a set of polygons.

Figure 3.3: The replacement tree of the trapezoidation in Figure 3.2. A left-to-right preorder
numbering of this tree defines a total order of the trapezoids.

22

As already mentioned, tree Tk contains one node per trapezoid. The root of Ty is the
unbounded trapezoid extending to infinity in (—y)-direction. Every other trapezoid has a
parent defined as follows: Consider an obstacle vertex p € S. If p is a bottom corner, the
three trapezoids I;, I, and I3 incident to p from above are the children of the trapezoid I
below p. If p is a top corner, let I, I, and I3 be the three trapezoids incident to p from
below, sorted from left to right. Then the trapezoid I above p is the child of trapezoid I;.
Finally, for a non-extremal corner, there are two trapezoids Iy and Iy incident to p from
below and two trapezoids I{ and [} incident to p from above. Let I; be to the left of I,
and let I] be to the left of I}. Then I{ is the child of I, and I} is the child of I. This
construction is illustrated in Figure 3.3.

Lemma 3.7 The replacement tree Ty of the set of intervals defined by the obstacles in P
can be computed in O(sort(N)) 1/0s.

Proof. A trapezoidation of the obstacle set P can be computed in O(sort(N)) I/Os using
the endpoint dominance algorithm of [6]. In particular, this algorithm computes the set
of horizontal edges incident to every obstacle vertex and the obstacle edges containing the
other endpoints of these edges; that is, after applying this algorithm, we obtain a represen-
tation of the trapezoidation as the set of obstacle edges and horizontal edges defining the
trapezoidation. Using the same algorithm as for deriving a representation of subdivision
D3 as an embedded planar graph (see Section 3.3), we can derive a representation of the
trapezoidation as an embedded planar graph in O(sort(N)) I/Os.

Using an algorithm from [21], the faces of the trapezoidation can be identified in O(sort(N))
I/Os. The output of the algorithm is a representation of the faces as a collection of lists,
each storing the vertices of one face clockwise around the face. From this representation, we
generate pairs (v, f), where v is a vertex on the boundary of face f. Then we sort the list

of these pairs lexicographically, so that, for each vertex v, pairs (v, f1),..., (v, f1) are stored
consecutively. The edge set of tree T can now be produced in a single scan of this list of
vertex-face pairs. O

Computing a total order of the intervals. In order to obtain a total order of all
trapezoids, we compute a preorder numbering v of Tx that is consistent with a depth-first
traversal of T that visits the children of every node in left-to-right order (see Figure 3.3).
Then we define a total order “<” on the intervals as I) < I, if v(I;) < v(I3). The following
lemma, is easy to show by induction on the set of obstacle vertices, which is where the set of
intervals intersected by the sweep-line changes.

Lemma 3.8 Let I1,...,1I; be the set of trapezoids intersected by a horizontal line £, sorted
from left to right. Then v(I) < --- < v(I).

Lemma 3.8 and the above discussion establish that the total order defined by the preorder
numbering v can be used to sort the intervals in 7" from left to right. Next we describe a
rule for choosing the splitters in tree 7" so that REPORTANDREPLACE operations do not
invalidate these splitters. Let w; and w;,; be two consecutive children of a node v in 7.
Then we choose the splitter between w; and w;1; to be o; = min{v(I) : I € Z(w;y1)}, where

23

Z(z) is the set of intervals stored in the subtree rooted at node x. Note that this is a rule
we apply whenever we choose a new splitter; it is not an invariant we maintain at all times.

Now consider an application of operation REPORTANDREPLACE or REPORTANDSPLIT
that replaces an interval I; with another interval I;. Let vy be the leaf of the buffer tree
T that stores interval I;, and let vy, ..., v, be the ancestors of leaf vy, sorted by increasing
distance from wvy; that is, vy is the root of tree 7. For 1 < i < k, let 0; and o] be the two
splitters stored at node v; 41 so that, for all intervals I' € Z(v;), 0; < v(I') < o). Then we
prove the following lemma.

Lemma 3.9 If operation REPORTANDREPLACE or REPORTANDSPLIT replaces an inter-
val Iy with an interval 1o, and vy, ..., v are the ancestors of the leaf vy of the buffer tree T’
that stores interval I, then o; < v(l2) < of, for all 1 <i < k.

Proof. Since we assume that the search information stored in tree 7T is correct before the
replacement of interval I; with interval 5, we have o; < v(I;) < o}, for all 1 <4 < k. This
immediately implies that o; < v(I,), for all 1 < i < k, because interval I, is a descendant
of interval I; in tree 7, and, hence, v(I;) < v(I). We have to show that v(Iy) < o}, for all
1<i<k.

For the sake of this proof, we introduce the notion of a slot in tree T'. Every slot holds an
interval. Operation REPORTANDREPLACE leaves the set of slots unchanged, but changes
the content of the slot holding interval I; by storing interval I, in this slot. When splitting
an interval I into intervals Iy, Iy, and I3, operation REPORTANDSPLIT places I; into the
the slot currently holding interval I and creates two new slots holding /> and I5. The two
created slots are immediately to the right of the slot holding interval I;.

Now consider a splitter o. Then o} = v(I'), for some interval I'. Let £ be a horizontal line
intersecting interval I'; and let Iy be the ancestor of interval I; in T that is intersected by line
£. If we can show that interval I is to the left of interval I’, we obtain that v(Iy) < v(I'), by
Lemma 3.8. Since Iy and I’ are intersected by the same horizontal line, I’ is not a descendant
of Iy; interval I, is a descendant of interval Iy; hence, v(Iy) < v(I') = o} because any preorder
numbering v of Ty assigns a set of consecutive numbers to the descendants of any node in
Tr. In order to show that interval I is to the left of interval I’, we show that the slot holding
interval I is to the left of the slot holding interval I'.

So assume the contrary, that is, that Iy = I’ or interval I, is stored in a slot to the
right of the slot storing interval I’. In both cases, the slot holding interval I is stored at a
descendant of a node to the right of splitter o;. Hence, if Iy and I; are stored in the same
slot, we obtain the desired contradiction. Otherwise, the slot holding interval I; has been
created from the slot holding interval I, by a sequence of REPORTANDSPLIT operations.
This operation changes the content of an existing slot and creates two new slots to the right
of the existing slot. Hence, the slot holding interval I; is to the right of splitter o} in this
case as well. O

By Lemma 3.9, no updates of the splitters in the tree are required after an application
of operation REPORTANDREPLACE or REPORTANDSPLIT. Hence, the plane sweep can be
carried out I/O-efficiently using a buffer tree instead of an (a, b)-tree. We have to show that

24

the preorder numbering v used to order the intervals in 7' can be computed in O(sort(N))
I/Os.

We use the Euler tour technique and list-ranking to compute v. The Euler tour describes
a depth-first traversal of tree Tr. We have to ensure that it visits the children of every node
in left-to-right order. For every vertex I € Tg with incident edges (I, I1),...,(I,Iy), let I
be the parent of I in Tr, and let I, ..., Iy be the children of I, sorted from left to right.
Then we define succ((;,1)) = (I,Ij11), for 1 < j < k, and succ((Ix,I)) = (I,1;). This
produces the desired Euler tour.

Computing the replacement and deletion lists. Lists Ly and Lp can be computed
in a natural manner from tree Tx. In particular, every edge ([, I3) in Tg defines an entry
in list Lp because there is an edge (I,1) in Ty if and only if interval I; is replaced by
interval I during the sweep. Similarly, every leaf of 1% is removed from 7' during the
sweep, using operation REPORTANDDELETE. Hence, the contents of lists Lg and Lp can
be computed in a single scan of the vertex and edge sets of tree Tr. To arrange the elements
(I1,17), ..., (I, I) in Lg in the correct order, we sort them by the y-coordinates of the edges
shared by trapezoids I; and IJ’-, 1 < j < s. We sort the elements [4,...,I; of list Ly by
the y-coordinates of their top edges. This computation of lists Ly and L takes O(sort(N))
I/Os.

Computing list Lyg. To construct list Ly, we have to compute the intervals I; and I,
containing the endpoints of each edge e € E}, that is, we have to answer O(XN) point location
queries on the trapezoidation of the obstacle set P. To do this, we scan the vertex set of tree
Tr and add, for every node I € Tk, the left boundary of trapezoid I to a list X. Then a point
p is contained in trapezoid I if and only if a ray shot from p in (—z)-direction meets this
left boundary of interval I. Hence, we can answer the point location queries for all segment,
endpoints in O(sort(N)) I/Os by applying the endpoint dominance algorithm of [6] to the
set X of left boundaries and the set of endpoints of all segments in E}. The answers to all
queries can be combined to pairs (1}, I,) in O(sort(/N)) I/Os. Given the set of these pairs, we
obtain list Ly by sorting all pairs ([;, I,) by the y-coordinates of their corresponding edges
in E}.

We summarize the above discussion in the following lemma, which completes the proof
of Lemma 3.6.

Lemma 3.10 A total order of all intervals defined by the edges of all obstacles in P as well
as lists Lp, Lp, and Ly can be computed in O(sort(N)) 1/0s.

4 A Planar L,-Steiner spanner

Given that planar L;-Steiner spanners for sets of points and obstacles in the plane can be
computed I/O-efficiently, we can use them to compute planar L,-Steiner spanners. In our
description, we assume that we want to find a spanner for a set of obstacles; the case of a
point set is similar. The construction is based on the following observation: If an edge e is

25

close to vertical, that is, its angle to the y-axis is at most #, then the L;-length of e is a
(cos @ + sin #)-approximation of the Euclidean length of edge e. For simplicity, we use only
that ||e]|; < (1 +sinf)||e|l2. We construct an Lo-spanner with spanning ratio 1 + € for a set
P of polygonal obstacles as follows: We choose a constant € such that (1 +¢)? < 1+ e.
For example, € = €/3 satisfies this condition for any 0 < ¢ < 3. Let 0 < § < 7/2 so
that sinf = ¢. Then we choose /6 = O(1/¢) coordinate systems at angles 0,6, 26, ...
to a fixed reference coordinate system and construct L;-Steiner spanners Go,...,G, for P
with stretch factor 1 + ¢ in these coordinate systems. Let G be the graph obtained as the
superimposition of graphs Gy, ..., G; that is, the vertex set of graph G contains all vertices
of graphs Gy, ..., G, as well as all intersection points between edges in these graphs. The
edge set contains all edges obtained by splitting the edges of graphs Gy,...,G, at their
intersection points. The following lemma of Arikati et al. [7] shows that graph G is a planar
Ly-Steiner spanner with spanning ratio 1 + € for the obstacle set P.

Lemma 4.1 (Arikati et al. [7]) Graph G has size O(N/€*) and is an Lo-Steiner spanner
with spanning ratio 1 + €.

We have to show how to construct graph G I/O-efficiently. In order to compute graph
G, we apply the following procedure, starting with graphs Gy, ..., G, and repeating it until
a single graph remains, which is graph G: We form pairs of graphs in the current set of
graphs. For each pair (G',G"), we apply the red-blue line segment intersection algorithm
of [6] to compute the set of intersection points between the edges in G' and G”. We sort
and scan the union of the vertex sets of graphs G’ and G” with the set of intersection points
to remove duplicates and thereby obtain the vertex set of the superimposition G° of graphs
G' and G”. The red-blue line segment intersection algorithm can be augmented so that it
labels every intersection point with the two edges of graphs G’ and G” intersecting at this
point. Hence, we can apply the procedure from Section 3.3 to obtain the edge set of G°.
This procedure computes graph G° in O(sort(|G°|)) 1/Os.

Using the above procedure, we compute a hierarchy of graphs where graphs Gy, ..., G,
are at level 0, and every graph at level ¢ is produced by superimposing at most two graphs
at level i — 1. Every graph at level ¢ is the superimposition of at most 2¢ level-0 graphs.
Hence, by the same arguments as in the proof of Lemma 4.1 in [7], the size of a level-i graph
is at most O(2%N/e?). On the other hand, the number of these graphs can be bounded by
[37/(2%)]. Hence, one level of the hierarchy of graphs can be computed in O(sort(2'N/e?))
I/Os, so that the computation of graph G takes

) " O(sort(2'N/€*)) = O(sort(N/e*))

1=0

I/Os, where h = [log(37/€)| is the number of levels in the hierarchy. This proves the
following result.

Theorem 4.1 Given a set P of polygonal obstacles with N wertices, a planar Lo-Steiner
spanner of size O(N/e*) and with spanning ratio 1 + € can be computed in O(sort(N/e*))
I/0s.

26

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and
related problems. Communications of the ACM, pages 1116-1127, September 1988.

Lars Arge. The buffer tree: A technique for designing batched external data structures.
Algorithmica, 37(1):1-24, 2003.

Lars Arge, Gerth Stglting Brodal, and Laura Toma. On external-memory mst, sssp and
multi-way planar graph separation. J. Algorithms, 53(2):186-206, 2004.

Lars Arge and P. B. Miltersen. On showing lower bounds for external-memory compu-
tational geometry problems. In J. Abello and J. S. Vitter, editors, Ezternal Memory
Algorithms and Visualization. AMS, 1999.

Lars Arge and Laura Toma. External data structures for shortest path queries on planar
digraphs. In Xiaotie Deng and Ding-Zhu Du, editors, ISAAC, volume 3827 of Lecture
Notes in Computer Science, pages 328-338. Springer, 2005.

Lars Arge, Darren E. Vengroff, and Jeffrey S. Vitter. External-memory algorithms for
processing line segments in geographic information systems. In Proceedings of the 3rd
Annual European Symposium on Algorithms, volume 979 of Lecture Notes in Computer
Science, pages 295-310. Springer-Verlag, 1995.

S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar
spanners and approximate shortest path queries among obstacles in the plane. In Pro-
ceedings of the 4th Annual FEuropean Symposium on Algorithms, volume 1136 of Lecture
Notes in Computer Science, pages 514-528. Springer-Verlag, 1996.

R. Bayer and E. McCreight. Organization of large ordered indexes. Acta Informatica,
1:173-189, 1972.

P. B. Callahan and S. R. Kosaraju. A decomposition of multi-dimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. In Proceedings of
the 24th Annual ACM Symposium on the Theory of Computing, pages 546-556, 1992.

P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems
in higher dimensions. In Proceedings of the 4th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 291-300, 1993.

P. B. Callahan and S. R. Kosaraju. Algorithms for dynamic closest pair and n-body
potential fields. In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 263-272, 1995.

P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest neighbors and n-body potential fields. Journal of the
ACM, 42:67-90, 1995.

27

[13] Paul B. Callahan. Dealing with Higher Dimensions: The Well-Separated Pair Decompo-
sition and Its Applications. PhD thesis, Johns Hopkins University, Baltimore, Maryland,
1995.

[14] P. Chew. There is a planar graph almost as good as the complete graph. In Proceedings
of the 2nd Annual ACM Symposium on Computational Geometry, pages 169-177, 1986.

[15] K. L. Clarkson. Approximation algorithms for shortest path motion planning. In Proc.
ACM Symp. on Theory of Computation, volume 19, pages 56-65, 1987.

[16] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos. Randomized external-
memory algorithms for some geometric problems. In Proc. ACM Symp. on Computa-
tional Geometry, volume 14, pages 259-268. ACM Press, 1998.

[17] D. Eppstein. Spanning trees and spanners. In Jorg-Riidiger Sack and Jorge Urrutia,
editors, Handbook of Computational Geometry. North-Holland, 2000.

[18] Michael T. Goodrich, Jyh-Jong Tsay, Darren Erik Vengroff, and Jeffrey Scott Vitter.
External-memory computational geometry. In Proceedings of the 34th Annual IEEE
Symposium on Foundations of Computer Science, November 1993.

[19] Sathish Govindarajan, Tamds Lukovszki, Anil Maheshwari, and Norbert Zeh. I/O-
efficient well-separated pair decomposition and its applications. Algorithmica, 45:585—
614, 2006.

[20] S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.
Acta Informatica, 17:157-184, 1982.

[21] D. Hutchinson, A. Maheshwari, and N. Zeh. An external memory data structure for
shortest path queries. Discrete Applied Mathematics, 126:55-82, 2003.

[22] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete
Euclidean graph. Discrete and Computational Geometry, 7:13-28, 1992.

[23] T. Lukovszki, A. Maheshwari, and N. Zeh. I/O-efficient batched range counting and its
applications to proximity problems. In Proceedings of the 21st Conference on Founda-
tions of Software Technology and Theoretical Computer Science, volume 2245 of Lecture
Notes in Computer Science, pages 244-255. Springer-Verlag, 2001.

[24] Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for Memory Hi-
erarchies, Advanced Lectures [Dagstuhl Research Seminar, March 10-14, 2002/, volume
2625 of Lecture Notes in Computer Science. Springer, 2003.

[25] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University
Press, Cambridge, UK, 2007.

[26] J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean graph.
In Canadian Conference in Computational Geometry, volume 3, pages 207-210, 1991.

28

[27] J. S. Salowe. Constructing multidimensional spanner graphs. International Journal on
Computational Geometry € Applications, 1:99-107, 1991.

[28] M. Smid. Closest-point problems in computational geometry. In Jorg-Riidiger Sack and
Jorge Urrutia, editors, Handbook of Computational Geometry. North-Holland, 2000.

[29] P. M. Vaidya. A sparse graph almost as good as the complete graph on points in K
dimensions. Discrete & Computational Geometry, 6:369-381, 1991.

[30] J. S. Vitter. External memory algorithms and data structures: Dealing with massive
data. ACM Computing Surveys, 33, 2001.

. C. Yao. On constructing minimum spanning trees in k-dimensional space and relate
31] A.C. Yao. O i ini i in k-di ional d related
problems. SIAM Journal on Computing, 11:721-736, 1982.

[32] N. Zeh. I/0 Efficient Algorithms for Shortest Path Related Problems. PhD thesis,
School of Computer Science, Carleton University, Ottawa, Canada, 2002.

29

