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Abstract

We present I/O-optimal algorithms for several funda-
mental problems on planar graphs. Our main contri-
bution is an I/O-efficient algorithm for computing a
small vertex separator of an unweighted planar graph.
This algorithm is superior to all existing external mem-
ory algorithms for this problem, as it requires neither
a breadth-first search tree nor an embedding of the
graph as part of the input. In fact, we derive I/O-
optimal algorithms for planar embedding, breadth-first
search, depth-first search, single source shortest paths,
and computing weighted separators of planar graphs
from our unweighted separator algorithm.

1 Introduction

I/O-efficient graph algorithms have received consider-
able attention because massive graphs arise naturally
in many applications such as web modeling, geographic
information systems, or modeling of large communica-
tion networks. When working with massive data sets,
the transfer of data between internal and external mem-
ory, and not the internal memory computation, is often
the bottleneck. Thus, I/O-efficient algorithms can lead
to considerable run-time improvements.

Planar graphs are a natural abstraction of many real
world problems. They are among the fundamental com-
binatorial structures used in algorithmic graph theory;
separators have played the key role in designing divide-
and-conquer algorithms for planar graphs. The classi-
cal separator theorem for planar graphs of [15], coupled
with linear-time embedding algorithms, led to phenom-
enal developments in algorithmic graph theory. There
are numerous results on computing a variety of sepa-
rators, as well as on applications of separators in vari-
ous fields. These applications include lower bounds on
the size of boolean circuits, approximation algorithms
for NP-complete problems, nested dissection of sparse
systems of linear equations, load balancing in paral-
lel numerical simulations based on the finite elements
method, partitioning triangular irregular networks in
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the field of GIS, and encoding graphs.

Breadth-first search (BFS) and depth-first search
(DFS) are the two most fundamental graph search-
ing strategies. They are extensively used in internal
memory algorithms, as they are easy to perform in lin-
ear time; yet they provide valuable information about
the structure of the given graph. However, it is not
known how to perform BFS and DFS on arbitrary sparse
graphs I/O-efficiently. These are among the major open
problems [20]. This implies in particular that existing,
elegant, algorithms for computing separators of planar
graphs are not I/O-efficient, as they use BFS to parti-
tion the vertices into levels around some root vertex and
then judiciously use these levels to compute the separa-
tor.

1.1 Model of Computation The algorithms in
this paper are designed and analyzed in the Paral-
lel Disk Model (PDM) [21]. In this model, D iden-
tical disks of unlimited size are attached to a ma-
chine with an internal memory capable of holding M
data items. These disks constitute the external mem-
ory of the machine. FEach disk is partitioned into
blocks of B data items each. An I/O-operation is the
transfer of up to D blocks, at most one per disk, to
or from internal memory from or to external mem-
ory. The complexity of an algorithm is the number of
I/O-operations it performs. Sorting, permuting, and
scanning a sequence of N consecutive data items take
sort(N) = ©((N/(DB))logy, 5(N/B)), perm(N) =
O(min(N, sort(N))), and scan(N) = O(N/(DB)) 1/0s,
respectively [21].

1.2 Previous Results A number of I/O-efficient
graph algorithms [1, 2, 5, 6, 8, 12, 14, 16, 17, 18, 19] have
been developed in recent years. We only discuss results
on undirected BFS, DFS, single source shortest paths
(SSSP), embedding, and graph separators here. The
best known SSSP-algorithm for arbitrary undirected
graphs takes O(|V| + (|E|/B)log, |E|) I/Os [14]. The
best known BFS-algorithm for arbitrary undirected
graphs takes O(|V'| 4 sort(|E|)) I/Os [19]. Recently, a
BFS-algorithm for graphs of bounded degree has been
presented in [18]. If d is the maximum vertex degree



in the graph, the algorithm takes O(|V|/(ylog,; B) +
sort(B7|V])) I/Os using O(|V |/ B1~7) blocks of external
memory, for 0 < v < %. The algorithm can be combined
with results from [5] to obtain an SSSP-algorithm for
embedded planar graphs which takes O(|V|/(+ylog; B)+
sort(B?|V])) I/Os [18].

In [12], an O(sort(NN)) I/O algorithm for computing
a 2/3-separator of size O(v/N) for an embedded planar
graph with IV vertices is given, provided that a BFS-tree
is part of the input. In [5], this idea has been extended
to obtain an O(sort(N)) I/O algorithm to compute a
small e-separator of an embedded planar graph, again
provided that a BFS-tree of the graph is given. Using
the computed separator, the SSSP problem can then be
solved in O(sort(IN)) I/Os [5]. In a recent paper [6],
two DFS-algorithms for embedded planar graphs are
presented. The first one takes O(sort(N)logs N) I/Os.
The second one takes O(Z(N)) I/Os, where Z(N) is the
number of I/Os required to compute a BFS-tree of an
embedded planar graph.

In [16, 17], O(sort(N)) I/O algorithms for BFS,
DFS, and SSSP on outerplanar graphs and graphs of
bounded treewidth have been presented. It is shown in
[16] that outerplanar embedding requires Q(perm(N))
I/Os. The same lower bound for BFS, DFS, and SSSP
follows from the Q(perm(N)) I/O lower bound for list-
ranking [8].

In internal memory, the problems of computing
embeddings and separators for planar graphs are well-
studied. We mention the most relevant results here.
In [15], it is shown that a Z-separator of size O(VN)
for a given embedded planar graph G of size N can be
computed in linear time. In [9], the algorithm of [15]
is applied recursively to compute in O(N log N) time a
set S of O(N/v/h) vertices whose removal partitions
G into O(N/h) (possibly disconnected) subgraphs of
size O(h) each of which is adjacent to at most O(v/h)
vertices in S. In [3], it is shown how to compute a set S
of O(\/(g+1/€)N) vertices whose removal partitions
an embedded graph G of genus g into subgraphs of
size at most e N. Other results include results on edge
separators, separators for graphs with multiple vertex
weights, and separators of low cost if a cost function of
the vertices of G is given. All these separator algorithms
use BFS to investigate the structure of the graph. An
embedding of a planar graph can be computed in linear
time, using for instance one of the algorithms of [11, 7].
In [13], it is shown that the SSSP problem can be solved
in linear time on planar graphs with non-negative edge
weights.

1.3 New Results We show how to find a separator
S of size O(N/v/h) whose removal partitions a given

planar graph G into O(N/h) subgraphs, each of size at
most h, so that each subgraph is adjacent to at most
V/h separator vertices. Our algorithm takes O(sort(N))
I/0s, provided that M > 56hlog®(DB). In contrast
to previous results, our algorithm requires neither an
embedding nor a BFS-tree of G to be given as part of
the input. In fact, we use our new separator algorithm
to develop an O(sort(N)) I/O algorithm for planarity
testing and planar embedding. Given a separator S and
a planar embedding of the graph, results of [5, 6] can be
applied to obtain O(sort(N)) I/O algorithms for BFS,
DFS, and shortest paths on planar graphs. Due to the
lack of space we sketch the main ideas here and refer
the reader to [23, 24] for details.

Our separator algorithm can be applied to any class
of sparse graphs (i.e., graphs of bounded arboricity)
having small separators, provided that an efficient in-
ternal memory algorithm for computing separators is
known for that class of graphs. The proof of [16] can
easily be adapted to show that planar embedding re-
quires Q(perm(N)) I/Os (see [23]). Our algorithms for
embedding, BFS, DFS, and SSSP can be made to run in
O(perm(N)) I/0s, thereby matching the lower bounds,
by running our algorithms and the linear-time inter-
nal memory algorithms simultaneously, and stopping as
soon as one the of two algorithms finishes.

In the next subsection, we present some results that
are used in our separator and embedding algorithms.
Section 2 presents our separator algorithm. Section 3
presents an outline of our algorithm for planarity testing
and planar embedding. In Section 4, we briefly discuss
how these two results can be applied to obtain I/O-
optimal algorithms for BFS, DFS, single source shortest
paths, and weighted e-separators on planar graphs.

1.4 Preliminaries Given a set S C V of vertices of
a graph G = (V, E) and a subgraph H C G — S, the
boundary of H, denoted by 0H, is the set of vertices in
S adjacent to H. The following results will be applied
in our separator algorithm.

THEOREM 1.1. [3] Given a planar graph G = (V,E)
and an integer h > 0, it takes O(N) time to compute
a set S CV of O(N/Vh) vertices so that no connected
component of G — S has size exceeding h.

THEOREM 1.2. [9] Given a planar graph G = (V, E)
and a set S CV of vertices whose removal partitions G
into O(N/h) subgraphs Hy,...,H, such that |H;| < h
and 3!, |0H;| = O(N/Vh), it takes O(Nlog N) time
to compute a set S' of O(N/\/E) vertices, S C S’ C
V', whose removal partitions G into O(N/h) subgraphs
Hl,...,H! such that |H!| < h and |0H!| < c¢Vh, for
1 <4 <r and some constant ¢ > 0.



LEMMA 1.1. Let G = (V1, Vs, E) be a simple connected
bipartite planar graph such that the vertices in Vo have
degree at least three each. Then |Va| < 2|V4].

Proof. Consider an embedding G of G. As G is
bipartite, every face of G has at least 4 edges on its
boundary. Thus, |F| < |E|/2. By Euler’s formula,
2= |V| +|F| - E| < V| - |E|/2, so that |E| < 2V.
On the other hand, |E| > 3|V2|, so that 3|V2| < 2|V| =
2(|V4| + |V2|). This implies that |Va| < 2|V4]. O

COROLLARY 1.1. Let G = (V1,V2, E) be a simple con-
nected bipartite planar graph. Let the vertices in Vs
be partitioned into equivalence classes C1,...,C,, where
two vertices v and w are equivalent if they have degree

at most two and are adjacent to the same set of vertices
in Vi. Then ¢ < 6[V1].

Given a graph G = (V, E) and an edge {v,w} € E, the
contraction of edge {v,w} is the operation of removing
w from G and making all edges {u,w} € G, u # v,
incident to v. If the vertices of G have weights, then
the weight of v is increased by the weight of w.

2 Separators for Planar Graphs

2.1 Outline The basic structure of our separator
algorithm is not unlike that of the algorithm used in
[13] to derive a hierarchical separator decomposition
of the given graph, which recursively compresses the
given graph and then refines the current partition as the
compression steps are undone. However, the separators
obtained by the algorithm of [13] are not optimal. We
choose the parameters used in the compression steps
and in computing the intermediate separators so that we
obtain an optimal separator, and show how to perform
each compression step I/O-efficiently.

The main idea of our I/O-efficient separator algo-
rithm is to construct a hierarchy of log,(DB) planar
graphs Gy, ...,G, such that G = Gy, |Gz’+1| < %|Gz|,
and every vertex in G;41 represents a small subgraph of
G; and thus a subgraph of G. Given this hierarchy, com-
pute a small separator S, partitioning G, into relatively
coarse subgraphs such that the number of vertices in G
corresponding to the vertices in S, is small. Then it-
eratively refine graph G, to graphs G, 1,Gr s,...,Go
along with their partitions. The result is a separator
of size O(N / \/E) partitioning G into subgraphs of size
at most hlog?(DB). Given such a partition, load each
subgraph into internal memory and refine it so that no
subgraph has size exceeding h or boundary size exceed-
ing v/h. This can be done using Theorems 1.1 and 1.2
and introduces at most O(N/v/h) additional separator
vertices. Thus, we obtain a separator of size O(N / \/E)
partitioning G into subgraphs of size at most h and with

boundary size at most v/h. If every recursive step can
be realized in O(sort(|G;|)) I/Os, our algorithm takes
O(sort(N)) I/O0s to compute the desired separator.

2.2 The Graph Hierarchy The first step is to
compute the sequence of graphs Gy,...,G,.. We first
describe the construction of graph G;y; from graph
G; and then prove a number of properties of graphs
Go,...,G,.

Given graph Gj, every vertex v € G; has a weight
w(v), which is the number of vertices in G represented
by v. That is, w(v) = 1, for every vertex v € Gy, as
Go = G. The size o(v) of a vertex v € G; is the number
of vertices in G;_; represented by v. We define a series
of weight thresholds p; = 21, for 0 < i < r. Given
G, let Gj; = G; with o(v) =1, for all v € G} ;. The
weight of a vertex in G7,, is the same as its weight in
G;. Aslong as there is an edge {v,w} € G}, such that
w)+w(w) < pi+1 and o(v)+o(w) < 56, contract edge
{v,w} and repeat. Let G7,_; be the resulting graph.

A vertex v in Gj,, is heavy if w(v) > pi11/2 or
o(v) > 28, and light otherwise. For every edge {v,w} €
GYyq, either w(v) + w(w) > piy1 or o(v) + o(w) > 56,
so that at least one of v and w is heavy. Thus, no two
light vertices are adjacent. Partition the light vertices
of degree at most 2 in G, into classes C1, ..., Cy such
that the vertices in each class have the same set of
(heavy) neighbors. Further partition each class C; into
a minimal number of subclasses Cj1,...,Cj; so that
the total weight of each subclass C;;, 1 <1 < kj, is at
most p;+1 and the total size of its vertices is at most 56.

Graph Gy is defined as follows: The vertex set
of Giy1 consists of all heavy vertices of GY,,, all light
vertices of degree at least 3, as well as one vertex v,
for each class Cj;. The vertices in G4 are assigned
the following weights: The weight of a heavy vertex in
Giy1 is the same as in G}, ;. The same is true for all
light vertices of degree at least 3. For every vertex v;,
let w(vjy) = Evecj,, w(v). There is an edge between
two vertices v and w in G;y1 if (i) they are adjacent in
GY,, and heavy or of degree at least 3, or (ii) vertex v
is heavy, w = v;;, and the vertices in C};; are adjacent
tovin GY, ;.

LEMMA 2.1. Let G be a planar graph, and let G =
Go,--.,G be the graphs as defined above. Every graph
Gi, 0 <i <, has the following properties:

(i) Graph G; is planar,
(i) w(v) < p;, for all vertices v € Gj,

(iii) Every vertexr v € G; corresponds to at most 56
vertices in G;_1, for i >0, and

(iv) G4 < 28N/ps.



Proof. Properties (i)—(iii) follow immediately from the
construction of graphs Gy,...,G,. In order to show
Property (iv), let h; be the number of heavy vertices in
G;. It follows from the construction and Corollary 1.1
that |G;| < Th;. Thus, Property (iv) follows if we can
show that h; < 4N/p;.

We prove this claim by induction. We partition
the heavy vertices into two categories. Heavy vertices
of type I are heavy because their weight is at least
pi/2. Type-II vertices are heavy because their size is
at least 28. In general, graph G; contains at most
2N/p; type-I vertices and at most |G;_1|/28 type-II
vertices. That is h; < 2{)—7 + % For ¢ = 1, we obtain
hy < 2p_]:f+% < ‘;—Jl\' because p; = 4. Fori > 1, we obtain

hZSQP_N+|G’2,§1\ <&+hi4—1 <w N _ 4N O

— pi — pi Pi—1 pi’

2.3 The I/0-Complexity of Computing the
Graph Hierarchy Next we show how to compute
graphs G = Go,G4,...,G, I/O-efficiently. Graph G;
is computed from G;_; as follows: Initially, let G} =
Gi—1. An edge {v,w} of G} is called contractible if
w(v) + w(w) < p; and o(v) + o(w) < 56. The con-
tractible subgraph Hy of G} is the graph induced by all
contractible edges in Gj. Hj can easily be extracted
from G} in O(sort(|G;—1])) I/Os. Next compute a max-
imal matching of Hy, which takes O(sort(|Hg|)) I/0s
[17], and contract all edges in the matching. We call a
vertex v of the resulting graph H|, matched if it is the re-
sult of contracting an edge in the matching. Otherwise,
we call v unmatched. Our goal is to construct a graph
H{/ such that no unmatched vertex has an incident edge
which is contractible.

Compute the subgraph H of H{ induced by all edges
incident to unmatched vertices. Graph H is bipartite.
Let V, be the set of unmatched vertices and V,,, be the
set of matched vertices in H. Number the vertices in
V. and V,,, in their order of appearance. Every vertex
v € V,, stores the set of vertices in V, adjacent to
v, sorted by increasing numbers. Let w be a vertex
adjacent to v, v1 < vy < --- < v be the vertices
adjacent to w, and v = v;. Then the copy of w in
the adjacency list of v stores the number of vertex v;41.
If vj41 does not exist, v is being marked as being the
last vertex adjacent to w. Also, v is being marked as the
first vertex adjacent to w if v = v;. This representation
of H can be constructed in O(sort(|Hp|) I/Os from the
edge list of Hj.

Now inspect the vertices in V,, in their order of
appearance and use a priority queue @ to keep track
of candidate edges for contraction. The edges in () are
directed and sorted lexicographically. For every vertex
v € Vi, let wy < wy < --- < w; be the vertices in V,

adjacent to v. For every vertex w; do the following: If v
is not the first vertex adjacent to w; and the minimum
edge in @ is not (v,w;), proceed to the next vertex
wjt1. Otherwise, check whether w(v) +w(w;) < p; and
o(v) + o(w;) < 56. If this is the case, contract edge
{v,w;}. Otherwise, there are two possibilities. If v is
the last vertex adjacent to w;, none of the edges incident
to wj is contractible. If v is not the last vertex, let u
be the vertex stored with w; in the adjacency list of v.
Then add edge (u,w;) to Q.

This procedure contracts an edge unless it is not
contractible or its unmatched endpoint has already been
contracted into another matched vertex, so that the
edge now joins two matched vertices. Thus, none of
the remaining edges that are incident to unmatched
vertices are contractible. The I/O-complexity of this
procedure is O(sort(|Ho|)) [4], as H is planar and its
size is bounded from above by the size of Hy.

Let H} be the graph obtained from H] by con-
tracting the edges in H using the above algorithm. Ex-
tract the contractible subgraph H; of Hjj and repeat the
whole process until the contractible subgraph H,,q of
graph H!' is empty. From the above discussion it follows
that each iteration takes O(sort(|H;|)) I/Os. Moreover,
the sizes of graphs Hy, .. ., Hy are geometrically decreas-
ing, as every vertex in Hj4 is the result of contracting
at least one edge in H;. Thus, the whole contraction
procedure takes O(sort(|Gi—1])) I/Os.

Once G;_1 has been compressed in this manner,
it remains to partition the light vertices of degree
at most two in the resulting graph Gj into classes
Ci,...,Cy; each of these classes has to be partitioned
into subclasses Cj; as described above. This takes
sorting and scanning. Thus, G; can be constructed from
G;—1 in O(sort(|G;—1])) I/0s. As |Go| = N, and the
sizes of subgraphs G; are geometrically decreasing, we
obtain the following lemma.

LeMMA 2.2. The sequence G = Gy, ...,G, of graphs,
as defined in Section 2.2, can be constructed in
O(sort(N)) I/0s using O(N/B) blocks of external mem-
ory, where N = |G|.

2.4 The Separator Hierarchy Having construct-
ed graphs Gy,...,G,, we use them to construct a
separator S of size O(N/ \/E) whose removal partitions
G into connected subgraphs of size at most hlog®(DB).

Using the planar embedding algorithm of [11] and
Theorem 1.1, compute a partition of G, into subgraphs
of size at most hlog?(DB). As |G,| = O(N/(DB)), this
takes O(N/(DB)) I/0Os. Let S, = S]' be the computed
separator, whose size is |S,| < c|G,|/(Vhlog(DB)), for
some constant ¢ defined in [3]. Given a separator Sji1
for graph Gj11, compute a separator S; for graph G as



follows: First construct the set S;. of vertices represented
by the vertices in Sj11. S} is a separator of G; whose
removal partitions G; into subgraphs of size at most
56hlog®(DB). Load every subgraph H of G —S; whose
size exceeds hlog2 (DB) into internal memory, compute
an embedding of H, and partition it into subgraphs of
size at most hlog?(DB), again applying Theorem 1.1.
Let S be the separator obtained by partitioning all
heavy subgraphs of G; — S} in this manner; [S]| <
c|G;|/(Vhlog(DB)), for the same constant c as defined
above. Now S; = S} U S. Iterate this procedure to
compute a separator Sg of Gy = G.

LeEMMA 2.3. The separator Sy of G computed by the
above procedure has size O(N/V'h). The connected

components of G — Sy have size at most hlog?(DB).

Proof. It follows from the above construction
and Lemma 2.1 that [So| < Y. pilS/| <
r 1G] r . 28N —
€Xli=o Pi Vhlog(DB) < e imobi pivVhlog(DB)
Yo \/Elzosg](VDB) 2?;51\[ . The bound on the size

of the connected components of G — Sy is explicitly
ensured by our construction. O

Given separator S;i1, it takes O(sort(|G;|)) I/Os to
construct S} and compute the connected components
of G; — S} [8]. Then it takes O(scan(|G;|)) I/Os to
load each connected component into internal memory
and perform the above partition. As the sizes of graphs
Go, ..., G, are geometrically decreasing, the total I/O-
complexity of this part of the algorithm is O(sort(N)).

2.5 Computing the Final Separator In order to
obtain the final separator, each connected component of
G — Sy has to be partitioned into subgraphs of size at
most A and boundary size at most v/h.

First use Theorem 1.1 to partition the connected
components of G — Sy into subgraphs of size at most h.
This takes O(scan(NN)) I/Os, as each component fits into
internal memory. Let S’ be the set of separator vertices
introduced by partitioning the connected components
of G — Sp in this manner. By Theorem 1.1, |S'| =
O(N/v/h). Let Sy = SoUS'. Then |S}| = O(N/v/h).

Next apply Theorem 1.2 to compute a separator
S D S§ whose removal partitions G into O(N/h)
subgraphs whose boundary sizes do not exceed V. In
order to do this, we need to obtain a partition of G — S}
into O(N/h) subgraphs Hy, ..., H, such that |H;| < h,
for 1 <i <, and 3;_, |0H;| = O(N/vh). For the
partition produced by our algorithm so far, the total
boundary size of the connected components of G — S|
may be w(N/v'h), even though |S)| = O(N/v/h), and
there may be as many as Q(N) connected components

of G — Sj. Next we show how to meet the requirements
of Theorem 1.2.

In order to reduce the total boundary size to
O(N/v/h), build a bipartite planar graph G containing
all separator vertices as well as one “region” vertex per
connected component of G — Sj. There is an edge
between a region vertex wpg corresponding to some
connected component R of G — Sj and a separator
vertex v if v € OR. The weight of a region vertex
wg is w(wg) = |R|. As long as there are two region
vertices v and w of degree at most two with the same
set of neighbors and such that w(v) + w(w) < h, merge
these vertices into a single vertex, and the corresponding
subgraphs into a single subgraph. It follows from
arguments similar to those in Section 2.2 that the
resulting graph G’ has O(N/vV/h) vertices. The total
boundary size of all subgraphs is the same as the number
of edges in G'. As G' is planar, this is O(N/Vh).
Assigning w(v) = 0 to all separator vertices v € G',
the compression procedure of Section 2.2 can now be
used to further merge subgraphs of G — Sj, so that we
finally obtain O(N/h) subgraphs of size at most h each
and total boundary size O(N/V/h).

Even though the partition meets the requirements
of Theorem 1.2 now, we cannot apply Theorem 1.2 to
graphs H;UOH; directly because the construction so far
gives no bound on the size of 0H; better than O (N/v'h),
so that graph H;UJH; may not fit into internal memory.

To overcome this difficulty, we represent each sub-
graph H; and its boundary by another graph H;, which
is obtained by compressing 0 H; to a new set OH;, whose
size is at most 6h. We first define H; and prove that
its size is at most 7h. Then we show how to derive the
desired separator of H; from a separator of H;.

In order to compute H; from H;, consider the
bipartite graph induced by edges {v,w}, v € H; w €
OH;. Partition the vertices in 0H; into a minimal
number of classes so that the vertices in each class are
adjacent to the same set of vertices in H;. Let the
degree of such a class C' be the number of vertices in
H; adjacent to the vertices in C. For each class C' of
degree at most two, replace the vertices in C' by a single
vertex v of weight w(v) = |C|. For all other vertices
v € OH;, w(v) = 1. For all vertices in H;, w(v) = 0.
By Corollary 1.1, |H;| < 7|H;| < 7h. Now load H; into
internal memory and apply Theorem 1.2 to compute a
partition of H; into subgraphs H; 1,...,H; , of weight
at most vh/2 each. By Theorem 1 2 the total size
of the separators computed for all graphs Hy,...,H,
is O(N/v/h), and each subgraph H; ; of H; is adjacent
to at most v/h/2 separator vertices. However, some of
these vertices may have a large weight; that is, they
correspond to many separator vertices in OH;. Thus,



even though the vertices of a subgraph I:Ii,j are adjacent
to at most \/5/2 separator vertices in H;, they may
be adjacent to many separator vertices in H; U 0H;.
But every separator vertex v of large weight is adjacent
to at most two vertices in H;. Thus, replacing every
such vertex with the adjacent vertices in H; results in
a separator of at most twice the size of the separator
computed for H;; but every subgraph of H; is adjacent
to at most VA separator vertices now.

Let S" be the set of separator vertices introduced
in this step, and let S = Sy U S"” be the final separator.
By Theorem 1.2, |S| = O(N/v/h), and the number of
subgraphs H; ; obtained by removing the vertices in S
from G is O(N/h).

THEOREM 2.1. Given a planar graph G and an integer
h > 0, it takes O(sort(N)) I/Os and O(N/B) blocks
of external memory to compute a separator S of size
O(N/Vh) whose removal partitions G into O(N/h)
subgraphs of size at most h and boundary size at most
Vh, provided that M > 56hlog®(DB).

Note that our separator algorithm can be used to
compute a small separator for G as long as graphs
Go, ..., G, satisfy Conditions (ii)—(iv) of Lemma 2.1,
graph G, is planar and all subgraphs of graphs
Gy, - .., G, loaded into internal memory are planar. In
particular, we can augment our algorithm to check for
violation of any of these conditions; if a non-planar sub-
graph is detected or a graph G; has not reduced in
size sufficiently compared to graph G;_1, the algorithm
aborts and reports that G is not planar. If no violation
is detected, graph G may still be non-planar; but the
algorithm is guaranteed to produce a small separator in
O(sort(N)) I/0s.

3 Planarity Testing and Planar Embedding

3.1 Owutline In this section, we outline an algorithm
to test whether a given graph is planar and to derive
a planar embedding of the graph if the answer is
affirmative. ~ Our algorithm is unlike any previous
algorithm, as it uses a separator of the given graph,
in order to derive the embedding. The main idea is to
partition the graph G into subgraphs G, ..., G} using
a small graph separator. Then replace each graph G; by
a constraint graph C; whose size is linear in the number
of separator vertices in G;. These constraint graphs
have the property that the graph A obtained by joining
them at their separator vertices is planar if and only if
G is planar. A planar embedding of G can be obtained
from an embedding of A by locally replacing the planar
embedding of each graph C; with a consistent planar
embedding of G;. As the size of each constraint graph
C; is linear in the number of separator vertices in G;,

the size of A is linear in the size of the separator. Thus,
choosing the separator to be of size O(N/(DB)), the size
of graph A is O(N/(DB)), so that a planar embedding
of A can be obtained in O(N/(DB)) I/0s [11].

The construction of the constraint graph C; of a
graph G; is based on a decomposition of G; into its
connected components, which are then partitioned into
their biconnected components (bicomps); each bicon-
nected component is partitioned into its triconnected
components (tricomps). (See appendix or [10] for a
definition of triconnected components and related con-
cepts.) The constraint graph of a tricomp can be com-
puted rather easily, as the planar embedding of a tri-
connected planar graph is unique [22]. The constraint
graph of a bicomp is obtained by merging the constraint
graphs of its tricomps. Then compute the constraint
graph of a connected component by joining the con-
straint graphs of its bicomps at their cutpoints. The
following are the main steps of our algorithm.

Input: A simple connected graph G = (V, E).

1: if |E| > 3|V| — 6 then

2:  Report that G is not planar. stop.

3: Apply Theorem 2.1 to compute a separator S of
G of size O(N/(DB)) whose removal partitions G
into O(N/(DB)) subgraphs Gi,...,G} such that
|G| < (DB)? and |0G;| < DB, for 1 <i < k.

4: if the previous step fails then

:  Report that G is not planar. stop.

6: Let graphs Gy, ..., G}, be defined as G; = G[V (G;)U
0G|, and let G',...,G] be the connected compo-
nents of graphs Gy, ..., Gp.

7. forj=1,...,ldo

:  if G’ is not planar then

9: Report that G is not planar. stop.

10:  Compute the constraint graph C; of G.

11: Let A:G[S]UclU-"UCl.

12: if A is not planar then

13:  Report that G is not planar. stop.

14: Compute a planar embedding A of A.

15: for y=1,...,l do

16:  Replace the planar embedding of C; induced by

A with a consistent planar embedding of G-

17: Output the resulting embedding G of G.

In Lines 4-5 we make use of the remark at the
end of Section 2. In particular, we try to compute
a small separator for G, not knowing whether G is
planar. If the separator algorithm aborts, G cannot
be planar. Otherwise, a small separator is produced
in O(sort(N)) I/Os. Given that we can construct
graph A so that graph G is planar if and only if A
is planar, and a planar embedding of G can be derived



from a planar embedding of A using local replacements,
the correctness of the algorithm is now obvious. By
Theorem 2.1, Step 3 of the algorithm takes O(sort(N))
I/Os, provided that M > (DB)?log?(DB). Step 14
takes O(N/(DB)) 1/0Os, since we will show that |A| =
O(N/(DB)). Steps 8-10 and 16 can each be carried
out in internal memory, as each graph G; has size at
most (DB)? + DB, and thus each graph G or Cj fits
into internal memory. The iterative local replacement of
graphs Ci,...,C; by graphs G{,...,G] in Lines 15-16
requires some coordination between the different local
replacement steps; this can be achieved in O(sort(N))
I/Os using time-forward processing. Details appear in
the full paper [23]. The rest of this section describes the
computation of constraint graphs Ci,...,C}, assuming
that graphs G!,...,G] are planar.

3.2 The Constraint Graphs Given a graph Gj,
let Bi,...,B; be its biconnected components. The
bicomp-cutpoint-tree T> of G contains one vertex [,
per bicomp B, as well as all cutpoints of Gj. There
is an edge {v,8,} in T» if cutpoint v is contained in
bicomp B,. Let S; be the set of separator vertices in
G}. TFor each vertex v € S;, let B(v) be a bicomp
containing v. These bicomps are called essential. A
bicomp B, is called potentially essential if there are two
essential bicomps Bs and B; such that vertex 8, lies on
the path from S5 to B; in T». All other bicomps are
called inessential. Let K be a connected component
of the graph defined by all inessential bicomps of Gj.
Observe that K shares only a single vertex with the
rest of G, as it does not contain any separator vertices,
except possibly that cutpoint. Thus, after embedding
the graph G obtained by removing all inessential
bicomps from G, these components K can easily be
added to the embedding of G"). In particular, G is
planar if and only if G is planar. Let Tz(l) be the
tree obtained from T3 by removing all subtrees of T3
corresponding to inessential bicomps. Every leaf of Tz(l)
corresponds to an essential bicomp of G}. A vertex of
Tz(l) is important if it corresponds to an essential bicomp
or has degree at least three. All other vertices of T2(1)
are unimportant. A bicomp is important if and only if
its corresponding vertex in Tz(l) is important.

Partition the set of unimportant bicomps of G
into subsets so that each such subset corresponds to
a maximal path of unimportant vertices in T2(1). Let
Gp be the graph obtained by merging all bicomps in
such a subset. Graph Gp shares two cutpoints v and
w with the rest of G. If Gp has a planar embedding
so that v and w are embedded on the boundary of
a common face, replace Gp by a single edge {v,w}.

Figure 1: The constraint graph of graph Gp if vertices
v and w cannot be on the same face.

Otherwise, replace Gp by a triconnected planar graph
of constant size which contains v and w and does not
allow v and w to be embedded on the boundary of a
common face (Figure 1). In the former case, edge {v, w}
can be replaced by an embedding of Gp with v and w
on the outer face and vice versa without affecting the
embedding of the rest of G. In the latter case, if G is
planar, vertices v and w are cutpoints in G, and any
connected component of G\ Gp can be adjacent to at
most one of v or w. Thus, again, the embeddings of
Gp and its constraint graph are interchangeable. Let
G® be the graph obtained from G() after performing
all these replacements. Then G(?) is planar if and only
if G is planar.

Next every important bicomp B of G} has to be
replaced with its constraint graph Cp. Let R(B) be the
set of required vertices of B defined as the set of all
separator vertices and cutpoints in B. Intuitively, these
are the vertices that need to be present in Cz, in order
to join C with G\B. In order to compute Cg, apply the
same strategy as just described to the tricomps of B. In
particular, let 71, ..., 7, be the tricomps of B. Then the
recursive definition of these tricomps immediately gives
rise to a tree structure, which we call the tricomp tree
T3 of B. This tree contains a vertex 7; for each tricomp
Ti- Two vertices 7; and 7; are adjacent if and only if
tricomps 7; and 7; share a virtual edge (see appendix
or [10]). For each required vertex v € R(B), let T (v)
be a tricomp that contains v. We call these tricomps
essential. Potentially essential and inessential tricomps
are defined in the same way as potentially essential and
inessential bicomps.

First remove all inessential tricomps. For every
virtual edge (v,w,?) shared by an inessential and an
essential or potentially essential tricomp 7, replace
edge (v,w,i) by a “real” edge (v,w,i) in 7. Let G®)
be the graph obtained from G?) using this operation.
Consider the subgraphs of G2 obtained by merging
adjacent inessential tricomps. Each such subgraph K
contains one virtual edge (v, w,%), which it shares with
an essential or potentially essential tricomp. Edge
(v,w,i) in G® can be replaced by a planar embedding



(e)

Figure 2: (a) A tricomp 7 (solid edges) and its face-on-vertex graph Gr (dashed edges). Required vertices are
white disks. (b) Graph G’ (c) Graph G%. (d) Graph C%-. (e) The constraint graph C'7 of 7.

of K without affecting the planar embedding of the rest
of the graph. Thus, G® is planar if and only if G(?
is planar. Let T3(3) be the tree obtained from T3 by
removing all vertices in T3 corresponding to inessential
tricomps. Then every leaf in T3(3) corresponds to an
essential tricomp. Again, a vertex of T?E3) is important
if it either corresponds to an essential tricomp, or it
has degree at least three. The remaining vertices are
unimportant. These vertices can be partitioned into
maximal paths consisting of only unimportant vertices.
Let P be such a path and Gp be the graph obtained
by merging all tricomps corresponding to the vertices
on P. Then Gp contains two virtual edges (a, b,4) and
(¢c,d, 7). Replace graph G p by a constant-size constraint
graph Cp representing the possible embeddings of edges
(a,b,1), (¢,d, j), and vertices a, b, ¢, and d with respect
to each other. (See [23] for details.)

The final step is the replacement of each important
tricomp 7 with a constraint graph C'7. Let R(T) be the
set of required vertices in 7. A vertex is required in 7
if it is either part of a separation pair (see appendix or
[10])) or in R(B). If T is a bond (see appendix or [10]),
Cr =T. If T is a simple cycle, C'r is the graph obtained
by iteratively contracting edges incident to vertices that
are not required until only required vertices remain. In
order to construct C'r for a simple triconnected graph
T, compute the face-on-vertex graph G of the unique
planar embedding 7 of 7 (Figure 2a). Gp contains
all vertices of 7 as well as a vertex wy for each face
f of 7. There is an edge between a vertex v of T
and a face vertex wy if v appears on the boundary of
face f. The embedding 7 defines a planar embedding
G r of Gr in a natural manner. Remove all vertices
v € V(T)\R(T) from GF. Also remove all face vertices
that are isolated in the resulting graph. Let G% be
the resulting graph containing all required vertices of
T as well as all face vertices corresponding to faces
with at least one required vertex on their boundaries.

For every vertex v € R(T), remove as many degree-
1 vertices adjacent to v as possible without decreasing
the degree of v below two (Figure 2b). For every face
vertex of degree less than three, add one or two dummy
vertices adjacent to this face vertex, in order to increase
its degree to three (Figure 2c). This is necessary so
that the resulting graph G%. can be made a subgraph of
the face-on-vertex graph of the constraint graph C'r. In
order to construct C'r, connect the required and dummy
vertices clockwise around each face vertex. Let C- be
the graph obtained by removing all face vertices from
the resulting graph, and C’- be the embedding of C7
induced by the embedding of GY% (Figure 2d). Most
faces in C- correspond to face-vertices in G%. Partition
faces that do not correspond to such a face vertex in a
manner that makes the resulting graph triconnected and
guarantees that every face not corresponding to a vertex
in G has at most one required vertex on its boundary.
The resulting constraint graph C7 (Figure 2e) has the
property that the faces with two or more required
vertices on their boundaries in 7 and C'7 are in one-
to-one correspondence so that two corresponding faces
f € T and f' € Cr have the same required vertices
on their boundaries, in the same order. As a result,
graphs 7 and C7 are interchangeable in any planar
embedding of G, as every subgraph of G embedded in
face f of 7 can be embedded without modifications in
the corresponding face f’ of C'r and vice versa. Let A be
the graph obtained from G®) by replacing all important
tricomps with their constraint graphs. Then graph A is
planar if and only if G® is planar. This implies that A
is planar if and only if G is planar.

It is shown in [23] that the constraint graph Cr of
an important tricomp 7 has size O(|R(T)|). For an
important bicomp B, let T3(4) be the tree obtained from

T3(3) by compressing each path whose internal vertices
are unimportant to a single edge. Then all vertices in
T3(4) correspond to important tricomps. Every edge of



T?f4) is represented by a constant size constraint graph in
Cg. T3(4) is easily shown to have size O(|R(B)|), so that
the total size of the constraint graphs corresponding
to edges in T3(4) is O(JR(B)|). Also, the total number
of required vertices in all essential tricomps of B is
O(|R(B)|), so that the total size of all constraint graphs
Cr in Cp is O(J|R(B)|). Thus, |Cs| = O(|R(B)]).
A similar argument applied to the bicomps and the
bicomp-cutpoint-tree of G shows that the constraint
graph C; of G} has size O(|S;|). This implies that
4] = |GIS]| + Xiy |Cil = OWN/(DB)) + 35, ISi] =
O(N/(DB)), so that we obtain the following result.

THEOREM 3.1. Provided that M > (DB)?log’(DB),
it takes O(sort(|V|)) I/Os and O((|V| + |E|)/B) blocks
of external memory to decide whether a given graph
G = (V, E) is planar and to compute a planar embedding
of G if the answer is affirmative.

4 Applications

In this section, we apply Theorems 2.1 and 3.1 to solve
BFS, DFS, and the single source shortest path problem
on planar graphs with non-negative edge weights as
well as compute a weighted e-separator I/O-efficiently.
Given that SSSP can be solved in O(sort(N)) I/Os, the
results on BFS and DFS follow from [6] and the fact
that BFS is SSSP in a graph with unit edge weights.
To solve SSSP, compute a separator of size O(N/(DB))
partitioning G into O(N/(DB)?) subgraphs of size at
most (DB)? and boundary size at most DB, and apply
the algorithm of [5]. The algorithm of [5] is I/O-
efficient only if the input graph has bounded degree.
To satisfy this constraint while maintaining planarity,
replace every vertex v of degree greater than three by
a cycle and connect each edge incident to v to a unique
vertex in the cycle, maintaining the order of the edges
around v. This construction can easily be carried out
in O(sort(N)) I/Os. The resulting graph G’ has size
O(N). Assigning weight 0 to each edge in the cycle, it
is easy to show that the distance between two vertices in
G is the same as the distance between any two vertices
in the corresponding cycles in G'.

Another requirement that has to be satisfied in or-
der to apply the algorithm of [5] is that the number of
boundary sets produced by the separator algorithm is
small. The concept of boundary sets was introduced in
[9]. A boundary set is a maximal set of separator vertices
adjacent to the same set of subgraphs of G'\ S. The al-
gorithm of [5] requires that there be only O(N/(DB)?)
boundary sets. In order to ensure this requirement, par-
tition G' \ S into its connected components Q1,...,Q,
and construct a graph G containing one vertex v; per
connected component ;. There is an edge between

two vertices v; and v; if @; and ; are adjacent to a
common separator vertex. As the vertices in G’ have
degree at most three, G is planar. Assign two weights
w(vi) = |Q;| and v(v;) = |0Q;| to each vertex v;. Then
apply the compression procedure of Section 2.2 to G
so that every vertex v in the resulting graph satisfies
w(v) < (DB)?* and v(v) < DB. This compression cor-
responds to merging the connected components of G'\ S
into O(N/(DB)?) subgraphs G1,...,G; of size at most
(DB)? and boundary size at most DB. Moreover, it is
easily verified that each graph R; = G; U 0G; is either
connected or intersects with at most two other graphs
R; and Ry, which are connected. Now it follows from
[9] that there are only O(N/(DB)?) boundary sets. We
summarize this section in the following theorem.

THEOREM 4.1. It takes O(sort(N)) I/Os and O(N/B)
blocks of external memory to solve BFS, DFS, SSSP

on a planar graph G of size N whose edges hqve non-
negative weights, provided that M > (DB)?log*(DB).

Given a BFS-tree and an embedding of a planar graph
G, the algorithm of [3] can be made to take only
O(sort(N)) I/Os to compute a weighted separator of
a planar graph G. (Details appear in the full paper.)

THEOREM 4.2. Giwen a planar graph G = (V,E)
whose vertices have non-negative weights w(v) so that
Y weqw(®) < 1, and a constant 0 < € < 1, it takes
O(sort(N)) I/Os and O(N/B) blocks of external mem-
ory to compute a separator S of size O(\/N/e) so that
no connected component of G — S has weight exceeding
e, provided that M > (DB)?log®(DB).

5 Conclusions

We have presented I/O-efficient algorithms for a num-
ber of fundamental problems on planar graphs. These
algorithms take O(sort(IN)) I/Os, provided that M >
(DB)?log?(DB). Even though this requirement seems
unreasonable, our separator algorithm requires less in-
ternal memory than that of [5]; but the algorithm of [5]
also requires a BFS-tree and an embedding to be part
of the input, while our algorithm can do without them.

Using Theorem 4.2, we can apply a bootstrapping
approach to reduce the amount of memory required by
our algorithm, provided that the SSSP problem can be
solved in O(sort(|E|)) I/Os under the assumption that
the vertices fit into internal memory (the semi-external
scenario). Only a constant number of bootstrapping
rounds would be required to reduce the memory require-
ment to the smallest reasonable bound of M > DB.
Thus, the complexity of our algorithm would increase
by only a constant factor. Given this observation, we
consider finding an optimal semi-external SSSP algo-
rithm to be a very important open problem.
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Appendix: Triconnected Components

In this appendix, we define the most important con-
cepts relating to the triconnected components of a bi-
connected graph G. Given a subgraph H of G, the
bridges of H in G are defined as follows: Let the ver-
tices in V(@) \ V(H) be partitioned into equivalence
classes such that for any two vertices v and w in such
a class K, there exists a path from v to w in G which
does not contain a vertex in V(H). Each such class K
gives rise to a non-trivial bridge B of H defined as the
graph induced by all edges in G incident to the vertices
in K. A trivial bridge is an edge {v,w} ¢ H such that
v,w € V(H). The trivial and non-trivial bridges of H
are its bridges.

A pair {v, w} of vertices is a separation pair if the
graph H = ({v,w},0) has either at least two non-
trivial bridges or at least three bridges one of which
is non-trivial. Given a separation pair {v,w} with
bridges By, ..., By, a split s(v,w,q) chooses two graphs
B'= By U---UBy and B" = By, U---U By such
that |[E(B')| > 2 and |E(B")| > 2, and partitions G
into two subgraphs G; = (V(B'), E(B") U (v,w,)) and
G, = (V(B"),E(B")U(v,w,1)). Edge (v,w,1) is called
the wvirtual edge corresponding to split s(v,w,i). The
split components of G are defined as the graphs obtained
by recursively splitting G1 and G2 until there are no
more separation pairs. The split components of G are
not necessarily unique. There are three types of split
components: (1) triconnected simple graphs, (2) triple
bonds (two vertices with three edges between them),
and (3) triangles. Now merge all triple bonds with the
same two endpoints into a single bond, and merge all
triangles sharing virtual edges. The resulting graphs are
the triconnected components of G. The triconnected
components of G are unique and of three types: (1)
triconnected simple graphs, (2) bonds, and (3) simple
cycles.



