
I/O-EFFICIENT PLANAR SEPARATORS∗

ANIL MAHESHWARI† AND NORBERT ZEH‡

Abstract. We present I/O-efficient algorithms for computing optimal separator partitions of
planar graphs. Our main result shows that, given a planar graph G with N vertices and an integer
r > 0, a vertex separator of size O(N/

√
r) that partitions G into O(N/r) subgraphs of size at most

r and boundary size O(
√
r) can be computed in O(sort(N)) I/Os. This bound holds provided that

M ≥ 56r log2 B. Together with an I/O-efficient planar embedding algorithm presented in [33], this
result is the basis for I/O-efficient solutions to many other fundamental problems on planar graphs,
including breadth-first search and shortest paths [5,8], depth-first search [6,9], strong connectivity [9],
and topological sorting [7, 8]. Our second result shows that, given I/O-efficient solutions to these
problems, a general separator algorithm for graphs with costs and weights on their vertices [3] can be
made I/O-efficient. Many classical separator theorems are special cases of this result. In particular,
our I/O-efficient version allows the computation of a separator as produced by our first separator
algorithm, but without placing any constraints on r in relation to the memory size.

Key words. I/O-efficient algorithms, memory hierarchies, graph algorithms, planar graphs,
graph separators

AMS subject classifications. 49M27, 68Q25, 90C06, 90C35

1. Introduction. I/O-efficient graph algorithms have received considerable at-
tention because massive graphs arise naturally in many applications. Recent web
crawls, for example, produced graphs of on the order of 200 million nodes and 2
billion edges. Recent work in web modelling uses depth-first search, breadth-first
search, and the computation of shortest paths and connected components as prim-
itive operations for investigating the structure of the web [12]. Massive graphs are
also often manipulated in geographic information systems (GIS), where many funda-
mental problems can be formulated as basic graph problems. Yet another example
of a massive graph is AT&T’s phone call graph [13]. When working with such large
data sets, the transfer of data between internal and external memory, and not the
internal-memory computation, is often the bottleneck. Thus, I/O-efficient algorithms
can lead to considerable run time improvements.

Planar graphs are a natural abstraction of many real-world problems. For exam-
ple, the graphs arising in GIS are often planar or “almost planar”. On the theoretical
side, planar graphs are among the fundamental combinatorial structures used in al-
gorithmic graph theory. Planar separators have played the key role in designing
divide-and-conquer algorithms for planar graphs. The classical separator theorem
for planar graphs by Lipton and Tarjan [27], coupled with linear-time planar embed-
ding algorithms [10, 18, 24, 26], has led to phenomenal developments in algorithmic
graph theory. Numerous research results that followed describe efficient algorithms
for computing a variety of separators of other sparse graphs and discuss applications
of separators such as lower bounds on the size of Boolean circuits, approximation
algorithms for NP-complete problems, nested dissection of sparse systems of linear

∗An extended abstract of this paper appeared in the Proceedings of the 13th ACM-SIAM Sym-
posium on Discrete Algorithms, San Francisco 2002. Research supported by NSERC and NCE
GEOIDE.

†School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada,
maheshwa@scs.carleton.ca.

‡Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 1W5, Canada
nzeh@cs.dal.ca.

1

2 A. MAHESHWARI AND N. ZEH

equations, load balancing in parallel numerical simulations based on the finite el-
ements method, partitioning triangular irregular networks in the field of GIS, and
encoding graphs.

In external memory, planar separators have been the key to obtaining I/O-efficient
algorithms for a variety of problems on embedded planar graphs, including breadth-
first search (BFS) and single-source shortest paths [5,8], depth-first search (DFS) [6,9],
strong connectivity [9], and topological sorting [7, 8].

Existing internal-memory algorithms for computing planar separators (e.g., [2,3,
27]) are not I/O-efficient because they all use BFS to gather structural information
about the graph and BFS and DFS are among those fundamental graph problems for
which truly I/O-efficient solutions on general graphs are still lacking. The existing
I/O-efficient BFS-algorithms for planar graphs [5,8] are separator-based; hence, using
them in a separator algorithm creates a circular dependency. In this paper, we present
a new algorithm that applies BFS only to a compressed version of the given graph
and combines this with graph contraction techniques to obtain an optimal separator
partition in an I/O-efficient manner. An added benefit of our algorithm is that it does
not rely on a planar embedding of the given graph.

1.1. Model of computation and previous work. The algorithms in this
paper are designed and analyzed in the I/O-model of Aggarwal and Vitter [1]. This
model quite accurately captures the characteristics of current hard drives and yet is
simple enough to allow the I/O-complexity of complex algorithms to be analyzed. In
the I/O-model, the computer is equipped with two levels of memory. The internal
memory (or memory for short) is of limited size, capable of holding M data items.
The disk-based external memory is of conceptually unlimited size and is divided into
blocks of B consecutive data items. All computation has to happen on data in internal
memory. The transfer of data between internal and external memory happens by
means of I/O-operations (or I/Os for short), each of which transfers one block of data
to or from disk. The complexity of an algorithm is the number of I/O-operations it
performs.

For surveys of results obtained in the I/O-model and its extensions refer to [28,32].
The following results are relevant to the work presented in this paper.

It has been shown in [1] that sorting and permuting an array of N data items
take sort(N) = Θ((N/B) logM/B(N/B)) and perm(N) = Θ(min{N, sort(N)}) I/Os,
respectively; scanning an array of size N takes Θ(N/B) I/Os.

In internal memory, that is, in the RAM model, the problem of computing planar
separators is well-studied. Lipton and Tarjan [27] were the first to show that every
planar graph with N vertices has a 2

3 -separator of size O
(√

N
)

, that is, a vertex set

of size O
(√

N
)

whose removal partitions G into two subgraphs containing at most
2N/3 vertices each. They also presented a linear-time algorithm to compute such a
separator. In [21], it has been shown that every graph of genus g has a 2

3 -separator
of size O

(√
gN

)

and that such a separator can be computed in linear time. In [2],

a linear-time algorithm for computing a t-separator of size O
(√

(g + 1/t)N
)

for an
embedded graph of genus g was given; for 0 < t < 1, a t-separator is a vertex set
whose removal partitions G into subgraphs of size at most tN . Other results deal
with computing small simple-cycle separators of planar graphs [29], edge separators
of planar graphs [15], separators of planar graphs with negative or multiple vertex
weights [17], and separators of low cost [3, 16].

In [25], the first I/O-efficient algorithm for computing planar separators was pre-
sented. This algorithm is an external-memory version of Lipton and Tarjan’s algo-

I/O-EFFICIENT PLANAR SEPARATORS 3

rithm and computes a 2
3 -separator of size O

(√
N
)

; its I/O-complexity is O(sort(N)),
provided that a planar embedding and a BFS-tree of the graph are given. In [5], an
external version of Goodrich’s multiway separator algorithm [22] has been developed.
This algorithm computes a t-separator of size O

(

(N/B) logM/B(N/B) +
√

N/t
)

and
takes O(sort(N)) I/Os, again assuming that an embedding and a BFS-tree are given.

A number of subsequent papers develop a hierarchy of reductions that lead to
O(sort(N))-I/O algorithms for a variety of fundamental problems on embedded planar
graphs if an optimal separator decomposition can be obtained in O(sort(N)) I/Os:
In [5,8], separator-based ideas first pioneered in [19] were used to obtain I/O-efficient
shortest-path algorithms for undirected and directed planar graphs. These algorithms
can of course also be used to compute BFS-trees of planar graphs. In [6], a DFS-
algorithm for undirected planar graphs was presented; this algorithm uses BFS in a
planar graph derived from the dual and, hence, also depends on planar separators.
The directed DFS-algorithm of [9] needs to compute directed spanning trees of the
graph; currently the only I/O-efficient algorithm for this problem is the shortest-
path algorithm of [8]. Other I/O-efficient algorithms for planar graphs that rely on
separators are the strong connectivity algorithm of [9] and the algorithms of [7,8] for
topologically sorting planar directed acyclic graphs.

1.2. New results. The two main results of our paper are the following:
(i) Given a planar graph G with N vertices and an integer r > 0, it takes

O(sort(N)) I/Os to compute a vertex separator S of size O
(

N/
√
r
)

whose removal
partitions G into O(N/r) subgraphs of size at most r and boundary size O(

√
r). The

bound on the I/O-complexity of the algorithm holds as long as the internal memory
has size at least 56r log2 B.

(ii) Using a bootstrapping approach based on our second algorithm, discus-
sed below, the memory requirements of the algorithm can be reduced from M =
Ω
(

B2 log2 B
)

to M = Ω
(

B2
)

for the special case when r = B2. This special case is
important because r = B2 is the granularity of the partition required by all separator-
based I/O-efficient algorithms for planar graphs that have been developed so far.

Thanks to our algorithm, a wide variety of problems, as discussed in the previous
section, can be solved in O(sort(N)) I/Os if M = Ω

(

B2
)

. In particular, a shortest-
path tree of a planar graph can be obtained in this complexity. Using this fact, we
show the following I/O-efficient versions of results from [3]:

(iii) Let G = (V,E) be a planar graph with N vertices, let w : V → R
+ and

c : V → R
+ be assignments of non-negative weights and costs to the vertices of G,

and let 0 < t < 1 be an arbitrary constant. Let w(G) =
∑

x∈V w(x) and C(G) =
∑

x∈V (c(x))
2. If the size of the internal memory is Ω

(

B2
)

, it takes O(sort(N)) I/Os

to compute a vertex separator S of cost c(S) ≤ 4
√

2 · C(G)/t such that no connected
component of G− S has weight exceeding tw(G).
If all vertices have weight and cost equal to 1 and we choose t = r/N , we obtain
a separator of size O

(

N/
√
r
)

that partitions the graph into pieces of size at most
r. This matches the result produced by our first algorithm, but without requiring
that M ≥ 56r log2 B. More precisely, it allows the computation of arbitrarily coarse
partitions, while our first algorithm is restricted to computing partitions into pieces
of size O

(

M/ log2 B
)

if an I/O-complexity of O(sort(N)) is desired.
(iv) Let G = (V,E) be a planar graph with N vertices, let w : V → R

+ be an
assignment of non-negative weights to the vertices of G, let 0 < t < 1 be an arbitrary
constant, and let w(G) =

∑

x∈V w(x). If w(x) ≤ tw(G) for every vertex x ∈ V , there

exists an edge separator S ⊆ E of size |S| ≤ 4
√

2(
∑

x∈V (deg(x))
2)/t such that no

4 A. MAHESHWARI AND N. ZEH

connected component of G− S has weight exceeding tw(G). Such a separator can be
computed in O(sort(N)) I/Os, provided that M = Ω

(

B2
)

.
The algorithm in result (i) performs O(N logN) work in internal memory. Result

(iii) and, thus, also results (ii) and (iv) rely on an I/O-efficient shortest-path algorithm
for planar graphs. The currently best such algorithm performing O(sort(N)) I/Os is
the algorithm of [5], which performs O(N logN + BN) work in internal memory.
The algorithms in result (ii)–(iv) inherit this computation bound, but their computa-
tion bound would decrease to O(N logN + T (N)) with the development of a planar
shortest-path algorithm that performs O(sort(N)) I/Os and T (N) = o(N logN+BN)
computation in internal memory.

The presentation of our results is organized as follows: In Section 2, we introduce
the necessary terminology and notation and discuss some technical results that will be
useful in our algorithms. In Section 3, we discuss a graph contraction procedure that
is used many times in our algorithms. Our algorithm for partitioning an unweighted
planar graph is presented in Section 4. The partition produced by the algorithm does
not have all the properties required by the shortest-path algorithm of [5] or any of the
other separator-based I/O-efficient algorithms for planar graphs [7–9]. In Section 5,
we explain how to ensure the required additional properties. In Section 6, we discuss
our I/O-efficient algorithm for computing separators of planar graphs with costs and
weights. In Section 7, we explain how to combine the algorithms from Sections 4
and 6 to reduce the memory requirements of our unweighted separator algorithm to
M = Ω

(

B2
)

. We present concluding remarks in Section 8.

2. Preliminaries.

2.1. Graphs and planarity. We assume that the reader is familiar with stan-
dard graph-theoretic terms and notation as defined, for example, in [23, 31]. In this
paper, all graphs are simple, that is, do not contain parallel edges or loops, even
though the results are easy to generalize to multigraphs. Let G = (V,E) be a graph.
For a set W ⊆ V of vertices, we use G[W] to denote the subgraph of G whose vertex
set is W and whose edge set consists of all edges in G that have both endpoints in
W ; we call G[W] the subgraph of G induced by vertex set W . For a set of vertices
W ⊆ V , let G−W = G[V \W]. For a vertex x ∈ V , let G− x = G− {x}. For a set
of edges F ⊆ E, let G− F = (V,E − F).

For a vertex x ∈ G, the (open) neighbourhood N (x) of x is the set of ver-
tices adjacent to x, that is, N (x) = {y ∈ V : xy ∈ E}; the closed neighbour-
hood of x is N [x] = {x} ∪ N (x). We generalize this to vertex sets and subgraphs
by defining N [V ′] =

⋃

x∈V ′ N [x], N (V ′) = N [V ′] \ V ′, N [G′] = G[N [V ′]], and
N (G′) = G[N (V ′)], where G′ = (V ′, E′). We often call N (G′) the boundary of G′.
The degree deg(x) of a vertex x is the number of edges incident to x. Since we assume
that G is simple, we have deg(x) = |N (x)|.

A graph G is planar if it can be drawn in the plane so that the edges of G do
not intersect, except at their endpoints. Such a drawing of G is called a topological
embedding of G; we denote it by E(G). Every topological embedding of G defines an
order of the edges incident to each vertex x ∈ G clockwise around x. A representation
of these orders for all vertices x ∈ G is called a combinatorial embedding of G, which
we denote by Ĝ. Given a topological embedding E(G) consistent with a combinatorial
embedding Ĝ of G, we call the connected regions of R2 \ E(G) the faces of Ĝ. The
size of a face of Ĝ is the number of edges on its boundary. Let F denote the set of
faces of Ĝ. By Euler’s formula, |V |+ |F | − |E| = 2. In particular, |E| ≤ 3|V | − 6. We
define the size |G| of a planar graph G = (V,E) to be the number of vertices in G.

I/O-EFFICIENT PLANAR SEPARATORS 5

For an embedded planar graph G = (V,E) and an edge e ∈ E, the dual e∗ of e
is the edge f1f2, where f1 and f2 are the two faces of Ĝ that have edge e on their
boundaries. The dual of G is the multigraph G∗ = (F,E∗), where E∗ = {e∗ : e ∈ E}.

A partition of a set S is a collection S = {S1, . . . , Sk} of subsets of S so that
every element of S belongs to exactly one set Si, that is, Si∩Sj = ∅ for all i 6= j, and
⋃k

i=1 Si = S.
Given a graph G = (V,E) and a partition V = {V1, . . . , Vk} of the vertex set

of G, the contraction of V in G is the graph G/V = (V , E′), where E′ = {ViVj :
∃xy ∈ E s.t. x ∈ Vi and y ∈ Vj}. If the vertices of G have weights, we define
w(Vi) =

∑

x∈Vi
w(x) for all 1 ≤ i ≤ k. If the graph G[Vi] is connected for all

1 ≤ i ≤ k, we call G/V an edge contraction. If there exist vertex sets X1, . . . , Xk such
that, for all 1 ≤ i ≤ k and all x ∈ Vi, N (x) \ Vi = Xi, that is, if all vertices in Vi

have the same neighbours in V (G) \ Vi, we call G/V a vertex bundling. We will use
the following facts. The first one states that edge contractions and vertex bundlings
preserve planarity. Intuitively, the second one says that undoing any contraction
preserves separators.

Fact 2.1. If G is planar, then every edge contraction or vertex bundling of G
is planar.

Fact 2.2. Let S ⊆ V; S =
⋃

Vi∈S
Vi; Vi, Vj 6∈ S; and x ∈ Vi and y ∈ Vj. If Vi

and Vj belong to different connected components of (G/V) − S, then x and y belong
to different connected components of G− S.

2.2. Graph separators. Given an assignment w : V → R
+ of weights to the

vertices of a graph G = (V,E) and a parameter 0 < t < 1, we call a set S ⊆ V of
vertices a t-vertex separator of G if no connected component of G − S has weight
greater than tw(G), where w(G) =

∑

x∈V w(x) is the weight of G. Similarly, a t-edge
separator of G is a set S ⊆ E of edges so that no connected component of the graph
G−S has weight exceeding tw(G). Since we are interested mainly in vertex separators
in this paper, we refer to them simply as separators. If G is unweighted, we give every
vertex of G weight one and define separators w.r.t. these weights.

In our separator algorithm for unweighted graphs, we apply the following result
to a compressed version of the graph we want to partition. This produces a first
separator that is then refined during a sequence of refinement steps.

Theorem 2.1 (Aleksandrov and Djidjev [2]). Given a planar graph G of size N ,
an assignment w : V → R

+ of weights to the vertices of G, and a constant 0 < t < 1,
a t-vertex separator of size at most 4

√

N/t for G can be computed in linear time.
By grouping the connected components of G−S, where G is an unweighted graph

and S is a t-separator of G, we obtain a tN -partition of G. More precisely, let r > 0
be an integer, let t = r/N , and let S be a t-separator of G. Then an r-partition of G
is a pair P = (S, {G1, . . . , Gq}) with the following properties:

(i) G1, . . . , Gq are vertex-induced subgraphs of G,
(ii) The set {V (G1), . . . , V (Gq)} is a partition of V (G) \ S,
(iii) N (V (Gi)) ⊆ S for all 1 ≤ i ≤ q, and
(iv) |Gi| ≤ r for all 1 ≤ i ≤ q.

The third condition captures that every subgraph Gi is a collection of connected
components of G− S, that is, no connected component of G− S has vertices in two
such subgraphs.

If G is a planar graph, we call an r-partition P = (S, {G1, . . . , Gq}) normal if
|S| = O(N/

√
r), q = O(N/r), and

∑q
i=1 |N (Gi)| = O(N/

√
r). A normal r-partition

P = (S, {G1, . . . , Gq}) is c-proper for some constant c > 0, if |N (Gi)| ≤ c
√
r for all

6 A. MAHESHWARI AND N. ZEH

Fig. 2.1. A regular partition. The solid regions are connected. Each of the hatched regions is
disconnected but shares its boundary with at most two solid regions and no hatched region.

1 ≤ i ≤ q. If we do not want to specify c, we say that P is proper. A proper r-partition
is stronger than a normal r-partition because the latter may contain subgraphs with
a large boundary, as long as the total size of all subgraph boundaries is small; in the
former, every individual subgraph has to have a small boundary. Finally, we call an
r-partition P = (S, {G1, . . . , Gq}) regular if, for all 1 ≤ i ≤ q, one of the following
conditions holds:

(i) The graph N [Gi] is connected or
(ii) There are at most two indices 1 ≤ j < k ≤ q, i 6∈ {j, k}, such that

N (V (Gi)) ∩ N (V (Gj)) 6= ∅ and N (V (Gi)) ∩ N (V (Gk)) 6= ∅. N [Gj] and N [Gk]
are connected in this case.

This concept is visualized in Figure 2.1, which is reproduced from Frederickson [19].
Frederickson shows that every planar graph has a proper r-partition and that every
planar graph of bounded degree has a regular proper r-partition. The following result
states that a proper r-partition of a planar graph can be obtained efficiently.

Theorem 2.2 (Frederickson [19]). Given a planar graph G of size N and
a normal r-partition P = (S, {G1, . . . , Gp}) of G, a proper r-partition P ′ = (S′,
{G′

1, . . . , G
′
q}) of G such that S ⊆ S′ can be computed in O(N logN) time.

Frederickson also shows how to obtain a normal r-partition of a planar graph in
O(N logN) time. Together with Theorem 2.2, this implies that a proper r-partition
of a planar graph can be computed in O(N logN) time. To prove Theorem 2.2,
Frederickson considers each graph Gi in turn and partitions it into subgraphs of
boundary size O(

√
r). When partitioning Gi, the algorithm requires knowledge only

of N [Gi]. Thus, if |N [Gi]| ≤ M for all 1 ≤ i ≤ p, we can implement Frederickson’s
procedure by loading each graph N [Gi] into internal memory and partitioning Gi

without incurring any further I/Os. Assuming that each graph N [Gi] is stored in
consecutive memory locations, we thus have

Corollary 2.3. Given a planar graph G of size N and a normal r-partition
P = (S, {G1, . . . , Gp}) of G, a proper r-partition P ′ = (S′, {G′

1, . . . , G
′
q}) of G such

that S ⊆ S′ can be computed in O(N/B) I/Os, provided that |N [Gi]| ≤ M for all
1 ≤ i ≤ p.

2.3. Bipartite planar graphs. A graph G = (V,E) is bipartite if the vertex
set V can be partitioned into two sets U and W such that x ∈ U and y ∈W for every
edge xy ∈ E. In this case, we write G = (U,W,E). We use the following two simple
results to bound the sizes of certain bipartite planar graphs in different parts of our
algorithms.

I/O-EFFICIENT PLANAR SEPARATORS 7

(a) (b)

(c) (d)

Fig. 2.2. Illustration of the proof of Corollary 2.5. (a) A bipartite planar graph G = (U,W,E);
the white vertices are in U , the black ones are in W . The circled vertices are in W1. (b) The
subgraph G3 of G induced by all edges incident to vertices in W3. (c) The subgraph G2 of G induced
by all edges incident to vertices in W2. (d) The graph H2 obtained from G2 by contracting the bold
edges in Figure (c).

Lemma 2.4. Let G = (U,W,E) be a simple connected bipartite planar graph such
that every vertex in W has degree at least three. Then |W | < 2|U |.

Proof. Consider a planar embedding Ĝ of G. Since G is bipartite, every face of
Ĝ has size at least 4 and, thus, |F | ≤ |E|/2. By Euler’s formula, |V |+ |F | − |E| = 2,
that is,

2 = |V |+ |F | − |E|
≤ |V | − |E|/2

|E| < 2|V |.

On the other hand, |E| ≥ 3|W |, so that

3|W | < 2|V |
= 2(|U |+ |W |)

|W | < 2|U |.

Corollary 2.5. Let G = (U,W,E) be a simple connected bipartite planar graph
such that no two vertices x, y ∈ W of degree at most two have the same open neigh-
bourhood. Then |G| < 7|U |.

Proof. We have to prove that |W | < 6|U |. To this end, we divide W into three
subsets and bound the size of each of these sets. Let W1 be the set of degree-1 vertices
in W , W2 the set of degree-2 vertices in W , and W3 the set of vertices of degree at
least three in W , that is, W3 = W \ (W1 ∪W2).

Since there are no two vertices x, y ∈ W with deg(x) = deg(y) = 1 and N (x) =
N (y), W1 contains at most |U | vertices, one per vertex in U ; see Figure 2.2(a).

8 A. MAHESHWARI AND N. ZEH

To count the vertices in W3, we consider the bipartite planar graph G3 =
(U3,W3, E3) induced by all edges incident to vertices in W3; see Figure 2.2(b). By
Lemma 2.4 and since U3 ⊆ U , we have |W3| < 2|U3| ≤ 2|U |.

To count the vertices in W2, consider the graph H2 = (U2, E2), where U2 =
N (W2) ⊆ U and E2 = {xz : there exists a vertex y ∈ W2 with N (y) = {x, z}}; see
Figure 2.2(d). Since there are no two vertices x, y ∈ W2 with N (x) = N (y), H2

contains exactly one edge per vertex in W2, that is, |E2| = |W2|. Next we argue that
H2 is planar, which, by Euler’s formula, implies that |W2| = |E2| < 3|U2| ≤ 3|U |.

To see that H2 is planar, consider the subgraph G2 of G induced by all edges
incident to vertices in W2; see Figure 2.2(c). Since G is planar, G2 is planar. H2 can
be obtained from G2 by contracting one of the edges incident to each vertex y ∈W2.
By Fact 2.1, this implies that H2 is planar.

In summary, we have |W | = |W1|+ |W2|+ |W3| < |U |+ 3|U |+ 2|U | = 6|U |, that
is, |G| = |U |+ |W | < 7|U |.

2.4. Primitive operations. Our algorithms make frequent use of a number of
primitive operations. In order to avoid discussing their implementations repeatedly,
we do so here and then refer to this section whenever we make use of such an operation.

Set operations. All elementary operations on two sets A and B—union, intersec-
tion, difference, etc.—can be carried out in O(sort(N)) I/Os if the two sets A and
B are represented as unordered sequences of elements: Sort A and B (assuming that
every element is represented by a unique integer ID). Then scan the two sorted lists
to produce C = A⊙B, where ⊙ ∈ {∩,∪, \}.

Even though not a set operation as such, we want to mention duplicate removal
here: Some operations may produce multisets. In order to obtain a proper represen-
tation of the set of elements in such a multiset, we need to remove duplicates. This
can be done in O(sort(N)) I/Os by sorting and scanning the multiset.

Copying labels. Since pointers are mostly useless in I/O-efficient graph algorithms,
graphs are often represented as a (unsorted) list of vertices, each with a unique vertex
ID, and a (unsorted) list of edges, each labelled with the IDs of its two endpoints.
Edges do not store any pointers to their endpoints. Thus, if certain labels are as-
signed to the vertices of the graph, the edges have no knowledge of the labels of their
endpoints. However, it takes O(sort(N)) I/Os to label all edges with the labels of
their endpoints: Sort the vertices by their IDs. Designate one endpoint of every edge
as being the first endpoint. Then sort the edges by the IDs of their first endpoints.
Now scan the sorted vertex and edge sets to label every edge with the label of its first
endpoint. To label the edges with the labels of their second endpoints, sort the edges
by the IDs of their second endpoints, and repeat the copying process.

Graph contraction. Given a labelling of the vertices of graph G that represents a
partition V = {V1, . . . , Vk} of the vertex set of G, that is, assigns the same label to
two vertices if and only if they belong to the same set Vi ∈ V , the graph G/V can
be computed in O(sort(N)) I/Os: First label the edges of G with the labels of their
endpoints. Now replace every vertex with its label and every edge xy with the edge
ab, where a is the label of x and b is the label of y. Finally, remove duplicates from
the resulting vertex and edge sets.

In this paper, we choose the label of a set Vi ∈ V to be the ID of a representative
x ∈ Vi. We will then often refer to the vertex Vi in G/V as the vertex x, taking the
point of view that x has survived the contraction and all other vertices in Vi have
been contracted into x.

I/O-EFFICIENT PLANAR SEPARATORS 9

Connected components. Chiang et al. [14] proved that it takes O(sort(N)) I/Os
to compute the connected components of an N -vertex planar graph G, that is, to
compute a labelling of the vertices of G such that two vertices have the same label if
and only if they are connected by a path in G.

3. Uniform graph contraction. In this section, we discuss a general contrac-
tion procedure for planar graphs that is used repeatedly in our algorithms. In gen-
eral, when using graph contraction, one repeatedly contracts edges until some goal is
reached (usually a sufficient reduction of the size of the graph). Since it would not
be I/O-efficient to contract edges one at a time, I/O-efficient algorithms based on
graph contraction usually contract many edges simultaneously. More precisely, these
algorithms compute an edge contraction G/V of G such that |V| ≤ c|V |, for some
c < 1; that is, G/V has only a constant fraction of the vertices of G. The algorithms
of [5, 14, 30] for computing connected components and minimum spanning trees are
based on exactly this idea. However, the partition V used in these algorithms is non-
uniform in the sense that some sets Vi ∈ V may be large, while others may be small;
that is, some vertices in G/V represent many vertices in G and others represent only
few. As we will see, our separator algorithm for unweighted graphs relies heavily on
the compression being uniform, that is, on every set Vi ∈ V having constant size. Our
goal in this section is to compute a partition V such that |V| ≤ c|V | and every set in
V has constant size. In order to achieve this, we compute G/V in two phases: first we
compute an edge contraction G1 = G/V1 and then a vertex bundling G2 = G1/V2.

In Section 3.1, we give a high-level description of our uniform contraction pro-
cedure and prove a general bound on the size of the compressed graph it produces.
In Section 3.2, we show how to implement this procedure in O(sort(N)) I/Os on an
N -vertex planar graph.

3.1. The high-level procedure. Our separator algorithm requires not only
that V is a partition of V into subsets of constant size, but also that each subset is
of bounded weight according to appropriately chosen weights assigned to the vertices
in V . In this section, we assume more generally that the input to our contraction
procedure consists of a planar graph G, a constant number of real-valued functions
w1, . . . , wk assigning weights to the vertices of G, and a set of weight thresholds
u1, . . . , uk. Initially, every vertex x satisfies wj(x) ≤ uj for all 1 ≤ j ≤ k; we say
that vertex x is within bounds. Our goal is to compute a contraction G/V of G such
that each set Vi in V is within bounds, that is, wj(Vi) =

∑

x∈Vi
wj(x) ≤ uj for all

1 ≤ j ≤ k. We say that a vertex or set x that is within bounds is light if wj(x) ≤ uj/2
for all 1 ≤ j ≤ k; otherwise, we call it heavy. The main result of this section is stated
in the following theorem.

Theorem 3.1. Let G be a planar graph, w1, . . . , wk real-valued functions as-
signing weights to the vertices of G, and u1, . . . , uk weight thresholds such that every
vertex x ∈ G satisfies wj(x) ≤ uj for all 1 ≤ j ≤ k. Then it takes O(sort(N)) I/Os
to compute a planar graph G2 such that G2 is a contraction of G, all vertices of G2

are within bounds, and more than |G2|/7 vertices in G2 are heavy.

The contraction procedure consists of two phases: The edge contraction phase
computes an edge contraction G1 = G/V1 of G such that all vertices of G1 are within
bounds and every edge of G1 has at least one heavy endpoint. The bundling phase
computes a vertex bundling G2 = G1/V2 of G1 such that all vertices of G2 are within
bounds and there are no two light vertices x, y ∈ G2 of degree at most two that have
the same open neighbourhood. Graph G2 is the final graph we return.

10 A. MAHESHWARI AND N. ZEH

In Section 3.2, we prove that the two phases of this procedure can be implemented
in O(sort(N)) I/Os. Here we prove that G2 has the properties claimed in Theorem 3.1.

By the description of the contraction procedure, the vertices of G2 are explicitly
ensured to be within bounds. Graph G1 is an edge contraction of G, and G2 is a
vertex bundling of G1. Hence, G2 is a contraction of G and, by Fact 2.1, planar. We
have to prove that at least every seventh vertex in G2 is heavy.

Lemma 3.2. If h is the number of heavy vertices in G2, then |G2| < 7h.

Proof. Consider the subgraph G′ of G2 induced by all edges incident to light
vertices in G2. Since G′ contains all light vertices of G2, it suffices to prove that
|G′| < 7h′, where h′ ≤ h is the number of heavy vertices in G′. We use Corollary 2.5
to do so.

First observe that G′ is bipartite: By the definition of G′, every edge in G′ has at
least one light endpoint. If there was an edge with two light endpoints in G′ ⊆ G2,
then G1 would have to contain an edge with two light endpoints because G2 is a
vertex bundling of G1; but we ensure explicitly that G1 contains no such edge.

Observe also that no two light vertices of degree at most two in G2 have the
same neighbours. Hence, the same is true in G′, and G′ satisfies the conditions of
Corollary 2.5 with U being the set of heavy vertices and W being the set of light
vertices in G′. Thus, by Corollary 2.5, |G′| ≤ 7h′.

3.2. I/O-efficient implementation. In this section, we discuss how to imple-
ment the two phases of the contraction procedure in O(sort(N)) I/Os.

3.2.1. Edge contraction phase. To implement the edge contraction phase, we
compute a set F of edges and define V1 to be the partition of V corresponding to
the connected components of (V, F). We use VF to denote this partition. We choose
the edges in F so that the graph (V, F) is a forest, which makes the computation of
connected components and, thus, the computation of the partition VF easy [14].

The set F is not necessarily a subset of E. However, whenever we add an edge xy
to F , there exists an edge x′y′ ∈ E such that x and x′ belong to the same set V1, and
y and y′ belong to the same set V2 in VF . Hence, if G[V1] and G[V2] are connected,
so is G[V1 ∪ V2], and the addition of edge xy to F maintains that G/VF is an edge
contraction of G.

We compute the edge set F iteratively, starting with F = ∅. Each iteration
computes a set F ′ of edges such that G/VF∪F ′ is an edge contraction of G and each
of its vertices is within bounds. The edges in F ′ are then added to F . This iterative
process stops as soon as every edge in G/VF has at least one heavy endpoint. At this
point, we define G1 = G/VF .

To compute the set F ′ efficiently, each iteration consists of three steps: The first
step extracts the subgraph H1 of G/VF induced by all edges in G/VF whose endpoints
are both light. We call these edges contractible and call H1 the contractible subgraph
of G/VF . The second step computes a maximal matching F ′

1 of H1 and contracts
the edges in F ′

1, producing the graph H2 = H1/VF ′

1
. We call a vertex in H2 matched

if it represents the two endpoints of an edge in F ′
1; otherwise, the vertex represents

only one vertex in H1, and we call it unmatched. Note that all neighbours of an
unmatched vertex are matched because F ′

1 is maximal. The third step adds edges
between matched and unmatched vertices to a set F ′

2 so that every non-singleton set
in VF ′

2
contains exactly one matched vertex. To determine which edges to add to F ′

2,
each unmatched vertex x is inspected in turn. If there is a matched neighbour y of x
that is contained in a light set Vy in VF ′

2
, we add the edge xy to F ′

2, thereby adding

I/O-EFFICIENT PLANAR SEPARATORS 11

Algorithm 1 The edge contraction phase.

Procedure ContractEdges

Input: A weighted graph G = (V,E) and a set of weight thresholds based on which
every vertex in G is classified as light or heavy.

Output: An edge contraction G1 = G/VF of G.

1: H ← G
2: F ← ∅
3: while H is not empty do
4: Step 1: Extract the contractible subgraph

H1 ← the contractible subgraph of H

5: Step 2: Contract a maximal matching

Compute a maximal matching F ′
1 of H1

H2 ← H1/VF ′

1

6: Step 3: Contract edges incident to unmatched vertices

F ′
2 ← ∅

Let VF ′

2
be the partition of V (H2) defined by F ′

2.
for every unmatched vertex x ∈ H2 do

if x has a (matched) neighbour y contained in a light set Vy ∈ VF ′

2
then

Add edge xy to F ′
2 and increase the weights of Vy by the corresponding weights

of x.
end if

end for

F ← F ∪ F ′
1 ∪ F ′

2

H ← H2/VF ′

2

7: end while
8: G1 ← G/VF

x to Vy. After this third step, we define F ′ = F ′
1 ∪ F ′

2 and add the edges in F ′ to F .
This finishes the iteration.

Note that testing the loop condition—whether G/VF contains two adjacent light
vertices—is easy because, by the definition of H1, this is the case if and only if H1 is
non-empty. It is also unnecessary to compute G/VF from scratch after each iteration:
Each iteration is interested only in the contractible subgraph of G/VF . If H1 and H ′

1

are the contractible subgraphs of G/VF and G/VF∪F ′ , respectively, it is easy to see
thatH ′

1 ⊆ H1/VF ′ = H2/VF ′

2
. Thus, each iteration has to compute onlyH2 = H1/VF ′

1

and H = H2/VF ′

2
, and the next iteration can extract its contractible subgraph from

H . This leads to the contraction procedure shown in Algorithm 1.
Before providing the implementation details and analyzing the I/O-complexity of

this procedure, we show that it correctly implements the edge contraction phase of
our uniform graph contraction procedure.

Lemma 3.3. Let G1 be the graph produced by procedure ContractEdges. Then
G1 is an edge contraction of G, every vertex of G1 is within bounds, and every edge
of G1 has at least one heavy endpoint.

Proof. We prove by induction on the number of iterations that the graph G/VF
is an edge contraction of G and that all its vertices are within bounds. Since we exit
with G1 = G/VF only when every edge in G/VF has a heavy endpoint, this proves

12 A. MAHESHWARI AND N. ZEH

the lemma.

Before the first iteration, G/VF = G is a trivial edge contraction of G because
F = ∅. Moreover, all vertices of G are assumed to be within bounds.

So assume that, before the current iteration, G/VF is an edge contraction of G
and all its vertices are within bounds. We want to prove that the same is true for
G/VF∪F ′ .

First we prove that G/VF∪F ′ is an edge contraction of G. Since G/VF is an edge
contraction of G, every set in VF induces a connected subgraph of G. Every edge xy
added to F ′

1 is an edge of H1 ⊆ G/VF . Hence, there exist two sets V1, V2 ∈ VF and
an edge x′y′ ∈ E(G) such that x, x′ ∈ V1 and y, y′ ∈ V2. By adding edge xy to F ′

1,
the sets V1 and V2 are merged into the set V1 ∪ V2 in VF∪F ′

1
. Since G[V1] and G[V2]

are connected, the existence of edge x′y′ ∈ E(G) implies that G[V1 ∪V2] is connected,
and G/VF∪F ′

1
remains an edge contraction of G after adding edge xy to F ′

1.

As for Step 3, every edge added to F ′
2 is an edge of H2 = H1/VF ′

1
⊆ G/VF∪F ′

1
.

Since we have just argued that G/VF∪F ′

1
is an edge contraction of G, the same argu-

ment as in the previous paragraph implies that G/VF∪F ′

1
∪F ′

2
is an edge contraction of

G.

To see that all vertices of G/VF∪F ′ are within bounds, we start by observing
that all vertices of G/VF∪F ′

1
are within bounds. Indeed, each vertex x ∈ G/VF∪F ′

1

represents one or two vertices in G/VF . In the former case, x is obviously within
bounds. In the latter case, the two vertices represented by x both belong to H1 and
are thus light; hence, x is within bounds in this case as well.

In the third step, when adding an edge xy to F ′
2, x is an unmatched vertex of

H2, that is, represents a single vertex in H1 and is thus light. The set Vy containing
y is light because otherwise we would not add edge xy to F ′

2. Thus, after adding xy
to F ′

2, and thereby x to Vy , the vertex in G/VF∪F ′

1
∪F ′

2
representing Vy remains within

bounds. Arguing inductively over all edges added to F ′
2 in Step 3, we obtain that

all vertices in G/VF∪F ′

1
∪F ′

2
are within bounds. This finishes the proof of the lemma.

Procedure ContractEdges is fairly easy to implement in O(sort(N)) I/Os. To
prove this, we show how to implement every iteration of the while-loop in Lines 3–7
in O(sort(|H |)) I/Os, that |H | decreases by a factor of at least two from one iteration
to the next, and that the rest of the algorithm takes O(sort(N)) I/Os. We start by
analyzing the I/O-complexity of one iteration of the while-loop.

Extracting the contractible subgraph. The contractible subgraph of H can be ex-
tracted in O(sort(|H |)) I/Os: First we label all edges with the weights of their end-
points, and then we scan the edge set to discard all edges with at least one heavy
endpoint. The result is the edge list of the contractible subgraph. Now we scan this
edge list and create a list of their endpoints. To produce the vertex list of H1, we
remove duplicates from the resulting list. As discussed in Section 2.4, all steps of this
construction take O(sort(|H |)) I/Os.

Computing and contracting a matching. Zeh [33] presents an algorithm that
computes a maximal matching of a graph G = (V,E) in O(sort(N)) I/Os, where
N = |V | + |E|. Since H1 is planar, we have N = O(|H1|) when applying this pro-
cedure to H1. Hence, the matching can be computed in O(sort(|H1|)) I/Os. Once
the matching is given, its edges can be contracted in O(sort(|H1|)) I/Os, using the
contraction procedure from Section 2.4.

Contracting edges between matched and unmatched vertices. To contract edges
between matched and unmatched vertices, that is, to implement Step 3 of the iteration,

I/O-EFFICIENT PLANAR SEPARATORS 13

we start by extracting all edges in H2 that are incident to unmatched vertices. This
is easily done in O(sort(|H2|)) = O(sort(|H1|)) I/Os by labelling all edges with the
statuses of their endpoints and discarding all edges with two matched endpoints.
(Recall that every edge in H2 has at least one matched endpoint.)

For the resulting bipartite graph H ′, we compute the following information: Let
Vm be the set of matched vertices, and Vu the set of unmatched vertices in H ′. We
arbitrarily number the vertices in Vm as y1, . . . , yr and the vertices in Vu as x1, . . . , xs.
We sort the edges in H ′ by their unmatched endpoints as primary keys and by their
matched endpoints as secondary keys. For every edge xiyj , we store the unmatched
endpoint xi′ of the next edge incident to yj ; that is, if yj is adjacent to vertices
xi1 , . . . , xit with i1 < · · · < it, then, for 1 ≤ h < t, edge xihyj stores the ID of vertex
xih+1

. Edge xityj stores nil to indicate that it is the last edge incident to yj.

This information can easily be computed in O(sort(|H ′|)) I/Os: We sort the
edges by their matched endpoints as primary keys and by their unmatched endpoints
as secondary keys. Then we scan the sorted edge list to compute, for every edge xiyj ,
the endpoint of the next edge incident to yj . (If the next edge in the sorted sequence
is xi′yj , then this endpoint is xi′ . If the next edge is xi′yj′ with j′ 6= j, then edge xiyj
stores nil.) Now we sort the edges by their unmatched endpoints as primary keys and
by their matched endpoints as secondary keys.

Given that graph H ′ has been prepared in this manner, we find the edges in F ′
2 as

follows: We scan the sorted edge list, which is equivalent to inspecting the unmatched
vertices in sorted order and scanning their adjacency lists. For every vertex xi, as
soon as we find an edge xiyj such that the set Vyj

is light, we add edge xiyj to F ′
2

and increase each weight wh(Vyj
) by the corresponding weight wh(xi) of xi. The

remaining edges in xi’s adjacency list are then ignored. If all neighbours of xi are
contained in heavy sets, no edge incident to xi is added to F ′

2.

In order to implement this procedure correctly, we need a mechanism to inform
every edge incident to a vertex yj about the current weights of the set Vyj

at the
time when this edge is inspected. We use a priority queue Q to do this. Initially, we
have wh(Vyj

) = wh(yj) for all h, because F ′
2 = ∅ and, hence, Vyj

= {yj}. For every
matched vertex yj , we insert the initial weights of Vyj

into Q, with priority equal
to the ID of the first edge incident to yj . For every edge xiyj inspected during the
scan, we perform a Delete-Min operation on Q to retrieve the current weights of Vyj

.
If edge xiyj is added to F ′

2, the weights of Vyj
are updated; otherwise, they remain

unchanged. Then, if edge xiyj stores a vertex xi′ 6= nil as the next unmatched vertex
incident to yj , we insert the current weights of Vyj

into Q, now with priority xi′yj .

The whole procedure requires one scan of the sorted edge list of H ′ and two
priority queue operations per edge, once the edges of H ′ are stored in the right
order and store the appropriate successor pointers as defined above. If we use a
buffer tree [4] to implement the priority queue, every priority queue operation takes
O((1/B) logM/B(r/B)) = O((1/B) logM/B(|H ′|/B)) I/Os amortized. Thus, the con-
struction of F ′

2 takes O(sort(|H ′|)) = O(sort(|H1|)) I/Os.

Total cost of the loop. The previous three paragraphs establish that each iteration
of the while-loop takes O(sort(|H |)) I/Os. Also observe that |H | = N before the first
iteration. To prove that the cost of the whole loop is O(sort(N)) I/Os, it is therefore
sufficient to show that |H | decreases by a factor of at least two from one iteration to
the next.

Lemma 3.4. The loop in Lines 3–7 of procedure ContractEdges takes
O(sort(N)) I/Os.

14 A. MAHESHWARI AND N. ZEH

Proof. Assume that there are k iterations. For 1 ≤ i ≤ k, let H(i) and H
(i)
1

be snapshots of H and H1 at the beginning of the i’th iteration and after Step 1
of the i’th iteration, respectively. Then the total cost of Step 1 over all itera-
tions is O

(
∑k

i=1 sort
(∣

∣H(i)
∣

∣

))

, and the cost of Steps 2 and 3 over all iterations is

O
(
∑k

i=1 sort
(∣

∣H
(i)
1

∣

∣

))

. It is easy to see that
∣

∣H(i+1)
∣

∣ ≤
∣

∣H
(i)
1

∣

∣ for all 1 ≤ i < k.

Hence, the total cost of all iterations is O
(

sort
(
∣

∣H(1)
∣

∣

)

+
∑k

i=1 sort
(
∣

∣H
(i)
1

∣

∣

))

, which is

O(sort(N)+
∑k

i=1 sort(|H
(i)
1 |)) because H(1) = G. Next we prove that, for 1 ≤ i < k,

∣

∣H
(i+1)
1

∣

∣ ≤
∣

∣H
(i)
1

∣

∣/2. Hence,
∑k

i=1

∣

∣H
(i)
1

∣

∣ ≤ 2
∣

∣H
(1)
1

∣

∣ ≤ 2N , and the total cost of the
loop is O(sort(N)) I/Os.

Consider the i’th iteration. After Step 2, there are at most |H(i)
1 |/2 matched

vertices in H2 because each of them represents two vertices in H
(i)
1 . To bound the

number of vertices in H
(i+1)
1 by |H(i)

1 |/2, we argue that every vertex in H
(i+1)
1 rep-

resents a set V ′ in VF ′

2
that contains a matched vertex. In particular, we argue that

every vertex in H(i+1) = H2/VF ′

2
that represents a singleton set in VF ′

2
containing

only an unmatched vertex has only heavy neighbours and, thus, does not belong to
the contractible subgraph of H(i+1). To see that this is true, observe that we inspect
every unmatched vertex x in H2 to check whether it has a matched neighbour y whose
containing set Vy ∈ VF ′

2
is light; if so, we add the edge xy to F ′

2, thereby adding x to

Vy. Thus, if x remains in a singleton set, all its neighbours in H(i+1) are heavy. This
finishes the proof.

I/O-complexity of the edge contraction phase. To complete the analysis, we have
to consider the costs of Lines 1, 2, and 8 of the algorithm. Lines 1 and 2 are easy to
implement in O(N/B) I/Os. Line 8 requires computing the connected components
of the graph GF = (V, F). This can be done in O(sort(N)) I/Os (see Section 2.4).
The connected components algorithm identifies components by labelling every vertex
in a connected component of GF with a representative. As argued in Section 2.4, the
graph G/VF can then be computed in O(sort(N)) I/Os. Together with Lemmas 3.3
and 3.4, this proves

Lemma 3.5. The edge contraction phase of the uniform graph contraction proce-
dure takes O(sort(N)) I/Os.

3.2.2. Bundling phase. The bundling phase assumes that no two light vertices
in the input graphG1 are adjacent. By Lemma 3.3, this is true for the graph produced
by the edge contraction phase. We first extract all light vertices of degree at most
two and represent each such vertex x as a triple (x, y1,nil) or (x, y1, y2), depending
on whether it has one or two (heavy) neighbours. We sort these triples by their last
two components, thereby storing all vertices with the same neighbours consecutively.
Then we scan this sorted list, that is, we scan each group C of vertices with the same
neighbours. For each such group, we form subgroups, starting with the first vertex in
C. For every subgroup, we record its total weights W1, . . . ,Wk, which are the sums
of the corresponding weights of the vertices in the group. For every inspected vertex
x, we add it to the current group if Wh ≤ uh/2 for all 1 ≤ h ≤ k. Otherwise, vertex x
starts a new group. Groups are represented by labelling every vertex in a group with
the ID of the first vertex in the group. The final grouping represents the partition
V2 of V (G1), and we compute the graph G2 = G1/V2 using the graph contraction
procedure from Section 2.4.

Lemma 3.6. Given an N -vertex planar graph G1 that has no two adjacent
light vertices and all of whose vertices are within bounds, the bundling phase takes

I/O-EFFICIENT PLANAR SEPARATORS 15

O(sort(N)) I/Os and produces a vertex bundling G2 = G1/V2 of G1 that contains no
two light vertices of degree at most two that have the same open neighbourhood. All
vertices in G2 are within bounds.

Proof. The I/O-bound of the procedure is obvious because we sort and scan the
vertex and edge sets of G1 a constant number of times and then apply the contraction
procedure from Section 2.4. It is also obvious thatG1/V2 is an vertex bundling because
we add two vertices to the same set in V2 only if they have the same neighbours.

Next assume that G2 contains two light vertices x and y of degree at most two
and such that N (x) = N (y). Then x and y are the representatives of two sets V1 and
V2 in V2 that are subsets of the set C of all vertices with neighbourhood N (x), and
both sets are light. Assume w.l.o.g. that V1 is formed before V2, and let z be the first
vertex in C that is not in V1. Since V1 is light, z would have been added to V1, a
contradiction.

Now assume that G2 contains a vertex x that is out of bounds. Since all vertices
of G1 are within bounds, x must represent some set V1 formed by collecting vertices
that belong to a set C of light vertices with the same neighbours. Let y be the last
vertex in C that is added to V1. Since we add y to V1, V1 is light before the addition
of y. Since y is light, this implies that V1 remains within bounds after adding y to it,
a contradiction.

Lemmas 3.5 and 3.6 together establish the I/O-complexity of the uniform graph
contraction procedure claimed in Theorem 3.1 and, thus, finish the proof of Theo-
rem 3.1.

4. An algorithm for partitioning unweighted graphs. In this section, we
present our main result: an I/O-efficient algorithm for computing a proper r-partition
of an unweighted planar graph G. In particular, we prove

Theorem 4.1. Given a planar graph G and an integer r > 0, a proper r-partition
of G can be computed in O(sort(N)) I/Os, provided that M ≥ 56r log2 B.

Our algorithm (Algorithm 2) consists of three steps. The first two compute a
separator S0 of size O(N/

√
r) that defines an

(

r log2 B
)

-partition of G. The last step
then refines this partition to an r-partition by adding at most O(N/

√
r) more vertices

to the separator. The reason for not computing an r-partition immediately in the first
two steps is that Step 2 consists of logB iterations, each of which adds O(N/

√
r′)

vertices to the separator if an r′-partition is desired. By choosing r′ = r log2 B, we
ensure that the total number of separator vertices chosen in the first two steps is
O(N/

√
r), and the refinement in Step 3 increases this number by only a constant

factor.
Step 3 is easy to implement I/O-efficiently: Given the assumption that M ≥

56r log2 B, every connected component of G − S0 fits in internal memory. Hence,
we can compute the desired r-partition by loading each component of G − S0 into
memory and applying Theorem 2.1 to it without incurring any further I/Os.

In Steps 1 and 2, we apply the same idea iteratively. In Step 1, we construct a
hierarchy of ℓ = ⌊logB⌋ − 1 planar graphs G0, . . . , Gℓ, where G0 = G and |Gℓ| =
O(N/B). We obtain each graph Gi from the previous graph Gi−1 using the uniform
graph contraction procedure from Section 3. Given the reduced size of Gℓ, we can
compute an

(

r log2 B
)

-partition of Gℓ in O(N/B) I/Os using Theorem 2.1. Let Sℓ be
the set of separator vertices used in this partition. In Step 2, we undo the contraction
steps that produced graphsG1, . . . , Gℓ fromG0, one graph at a time. In each iteration,
we derive a separator Si for Gi from the separator Si+1 computed for Gi+1 in the
previous iteration. We do this as follows: Since Gi+1 is obtained from Gi using the

16 A. MAHESHWARI AND N. ZEH

uniform graph contraction procedure, every vertex in Gi+1 represents a set of vertices
in Gi. Let S

′
i be the set of vertices in Gi represented by the vertices in Si+1. In order

to obtain an
(

r log2 B
)

-partition of Gi, we partition every component of Gi − S′
i into

subgraphs of size at most r log2 B and add the separator vertices used in this partition
to a set S′′

i . The separator Si is the union of sets S′
i and S′′

i . S0 is the separator of
G0 = G obtained at the end of this process.

In order to carry out Step 2 efficiently, and in order to obtain a small separator
S0 at the end of Step 2, the graph hierarchy G0, . . . , Gℓ computed in Step 1 has to
satisfy a number of properties.

First, we want every graph Gi+1 to have roughly half as many vertices as Gi. This
guarantees that the cost of Steps 1 and 2 is dominated by the cost of the computation
on G0 = G and, since ℓ = ⌊logB⌋ − 1, that Gℓ has size O(N/B).

Second, during the construction of the separator Si from S′
i, we would like to use

an internal-memory algorithm to partition each connected component of Gi−S′
i; that

is, we want each such component to fit in memory. Since Si+1 defines an
(

r log2 B
)

-

partition of Gi+1 and M ≥ 56r log2 B, every connected component of Gi − S′
i fits in

memory if every vertex in Gi+1 represents at most 56 vertices in Gi.
Finally, observe that, once we add a vertex x in Gi to Si, all vertices in G rep-

resented by x belong to S0. Thus, to guarantee that S0 is small, we have to ensure
that no vertex in Gi represents too many vertices of G.

These conditions are formalized in the following properties we require the graph
hierarchy G0, . . . , Gℓ to have:

n
(GH1) ℓ = ⌊logB⌋ − 1,
(GH2) G = G0,
(GH3) For i = 0, . . . , ℓ, Gi is planar,
(GH4) For i = 0, . . . , ℓ, |Gi| ≤ 7N/2i−1,
(GH5) For i = 1, . . . , ℓ, every vertex in Gi represents at most 56 vertices in Gi−1,

and
(GH6) For i = 0, . . . , ℓ, every vertex in Gi represents at most 2i+1 vertices in G.
In Section 4.1, we show how to compute a graph hierarchy with these properties

in O(sort(N)) I/Os. In Section 4.2, we show that the desired separator S0 of G can be
computed from this graph hierarchy in O(sort(N)) I/Os. In Section 4.3, we provide
the details of Step 3 and show that this step can be carried out in the same I/O
bound as Steps 1 and 2, thereby establishing the complexity of Algorithm 2 claimed
in Theorem 4.1.

4.1. The graph hierarchy. The first step of our algorithm is the computation
of a hierarchy of graphs G0, . . . , Gℓ that satisfy Properties (GH1)–(GH6). We start
by setting G0 = G. Then we compute each graph Gi from the previous graph Gi−1

using the uniform graph contraction procedure from Section 3. To ensure Properties
(GH5) and (GH6), we assign a weight w(x) and a size s(x) to every vertex in Gi−1;
the former is equal to the number of vertices in G represented by x, the latter is equal
to the number of vertices in Gi−1 represented by x, that is, equal to 1. We then
pass a weight threshold uw = 2i+1 and a size threshold us = 56 to the contraction
procedure.

Note that the assignment of weights and sizes to the vertices of Gi−1 before the
construction of Gi is easily accomplished. Initially, we set w(x) = s(x) = 1 for every
vertex x in G0 = G. Subsequently, before computing Gi from Gi−1, the size of every
vertex in Gi−1 can be reset to 1 in a single scan over the vertex set of Gi−1; as a

I/O-EFFICIENT PLANAR SEPARATORS 17

Algorithm 2 Computing a separator for an unweighted planar graph.

Procedure Separator

Input: A planar graph G = (V,E) and an integer r > 0.
Output: A proper r-partition P = (S,R) of G.

1: ℓ← ⌊logB⌋ − 1

2: Step 1: Compute the graph hierarchy

G0 ← G
for i = 1, . . . , ℓ do

Compute a graph Gi that satisfies Properties (GH3)–(GH6) from Gi−1.
end for

3: Step 2: Compute the separator S0

Apply Theorem 2.1 to compute a separator Sℓ ⊆ V (Gℓ) of size O(|Gℓ|/(
√
r logB))

and whose removal partitions Gℓ into connected components of size at most r log2 B.
for i = ℓ− 1, . . . , 0 do

Compute a separator Si for Gi. Separator Si consists of two sets S′
i and S′′

i . S′
i

is the set of vertices represented by the vertices in Si+1. S′′
i is the set of separator

vertices introduced in order to partition the connected components of Gi − S′
i into

subgraphs of size at most r log2 B.
end for

4: Step 3: Compute the final partition

Compute the partition P = (S,R) by dividing the connected components of G − S0

into O(N/r) subgraphs of size at most r and boundary size O(
√
r) and adding the

required separator vertices to S0.

result of the construction of Gi−1 from Gi−2, every vertex in Gi−1 already stores its
correct weight.

Lemma 4.2. A graph hierarchy G0, . . . , Gq with Properties (GH1)–(GH6) can be
constructed in O(sort(N)) I/Os.

Proof. First we prove that the graph hierarchy computed by the procedure we
have just described has the desired properties. Properties (GH1) and (GH2) are
trivially satisfied. Property (GH3) is easy to prove by induction: For i = 0, G0 = G
and is thus planar. For i > 0, the planarity of Gi follows from the planarity of Gi−1

because, by Theorem 3.1, the uniform contraction procedure preserves planarity.

Properties (GH5) and (GH6) are also easy to show by induction. In particular,
w(x) = 1 ≤ 2 for every vertex x ∈ G0, and Property (GH5) holds vacuously in this
case. When constructingGi fromGi−1, every vertex inGi−1 is within bounds because,
by the induction hypothesis, it has weight at most 2i and size 1 (after resetting its
size to 1). Hence, by Theorem 3.1, every vertex in Gi is within bounds and, thus, has
weight at most 2i+1 and size at most 56.

It remains to show Property (GH4). For graph G0, Property (GH4) holds because
|G0| = |G| = N ≤ 7N/2−1. To prove the claim for graphs G1, . . . , Gℓ, let hi be the
number of heavy vertices in Gi. By Theorem 3.1, each graph Gi has size less than
7hi. To prove Property (GH4), it is therefore sufficient to prove that hi ≤ N/2i−1.

We prove this claim by induction. We partition the heavy vertices into two
categories. A heavy vertex of type I has weight exceeding 2i. A type-II vertex has
weight at most 2i and size greater than 28. Graph Gi contains less than N/2i type-I

18 A. MAHESHWARI AND N. ZEH

vertices and less than |Gi−1|/28 type-II vertices; that is, hi < N/2i + |Gi−1|/28.
For i = 1, we obtain h1 < N/2 +N/28 < N/20. For i > 1, we obtain

hi <
N

2i
+
|Gi−1|
28

(4.1)

≤ N

2i
+

hi−1

4
(4.2)

≤ N

2i
+

N

2i
(4.3)

=
N

2i−1
. (4.4)

Line (4.2) follows from Line (4.1) because |Gi−1| ≤ 7hi−1, as argued above. Line (4.3)
follows from Line (4.2) by the induction hypothesis.

To bound the I/O-complexity, we recall that, by Theorem 3.1, the construction
of graph Gi from graph Gi−1 takes O(sort(|Gi−1|)) I/Os. By Property (GH4), we

have
∑ℓ

i=0 |Gi| = O(N). Thus, the total I/O-complexity is
∑ℓ

i=1 O(sort(|Gi−1|)) =
O(sort(N)).

4.2. The separator hierarchy. In Step 2 of Algorithm 2, we use the graph
hierarchy computed in the first step to construct a relatively coarse partition of G.
In particular, we compute a separator S0 of size O(N/

√
r) whose removal partitions

G into connected components of size at most r log2 B.

First we compute a partition of Gℓ into subgraphs of size at most r log2 B. To
do so, we use an arbitrary linear-time planar embedding algorithm (e.g., [11]) to
compute a planar embedding of Gℓ and then apply Theorem 2.1 to compute the
desired partition. Let Sℓ = S′′

ℓ be the computed separator.

In the loop in Step 2, we apply the following iterative strategy to compute sep-
arators Sℓ−1, . . . , S0 for graphs Gℓ−1, . . . , G0: Given the separator Si+1 computed
for graph Gi+1 in the previous iteration, we construct the set S′

i of vertices in Gi

represented by the vertices in Si+1. Then we apply Theorem 2.1 to each connected
component of Gi − S′

i whose size exceeds r log2 B, in order to partition it into sub-
graphs of size at most r log2 B. Let S′′

i be the set of separator vertices introduced by
partitioning the connected components of Gi−S′

i in this manner. Then Si = S′
i∪S′′

i .

Lemma 4.3. The separator S0 of G computed in Step 2 of Algorithm 2 has size
O(N/

√
r). The connected components of G− S0 have size at most r log2 B.

Proof. The bound on the size of the connected components of G−S0 is explicitly
guaranteed by the construction. We bound the size of S0 as follows: For every vertex
x ∈ Gi, let R0(x) be the set of vertices in G represented by x. From our computation
of S0 it follows that, for every vertex y ∈ S0, there exists a unique set S′′

i and a unique
vertex x ∈ S′′

i such that y ∈ R0(x). Hence, we have

|S0| =
ℓ

∑

i=0

∑

x∈S′′

i

|R0(x)|.

By Property (GH6), we have |R0(x)| = w(x) ≤ 2i+1 for all x ∈ S′′
i . Hence,

|S0| ≤
ℓ

∑

i=0

2i+1|S′′
i |.

I/O-EFFICIENT PLANAR SEPARATORS 19

Since we compute S′′
i by applying Theorem 2.1 to disjoint subgraphs of Gi, partition-

ing each into pieces of size at most r log2 B, we have |S′′
i | ≤ 4|Gi|/(

√
r logB). By

Property (GH4), this implies that |S′′
i | ≤ 28N/(2i−1

√
r logB). Thus,

|S0| ≤
ℓ

∑

i=0

2i+1 28N

2i−1
√
r logB

=

ℓ
∑

i=0

112N√
r logB

=
112N√

r
.

Lemma 4.4. Step 2 of Algorithm 2 takes O(sort(N)) I/Os to compute the sepa-
rator S0, provided that M ≥ 56r log2 B.

Proof. The computation of the separator Sℓ takes O(N/B) I/Os, by Theorem 2.1
and because graph Gℓ has size at most 7N/2ℓ−1 = O(N/B). Since the sizes of graphs
G0, . . . , Gℓ are geometrically decreasing, it suffices to show that the separator Si

can be constructed from Si+1 in O(sort(|Gi|)) I/Os. This implies then Step 2 takes
O(sort(|G0|)) = O(sort(N)) I/Os.

Since the uniform graph contraction procedure labels every vertex x in Gi with
the vertex in Gi+1 representing x, we can compute the separator S′

i in O(sort(|Gi|))
I/Os: First we sort the vertices in Si+1 by their IDs, and the vertices in Gi by their
representatives in Gi+1. Then we scan the two lists and mark all those vertices in Gi as
being in S′

i whose representatives in Gi+1 belong to Si+1. Now it takes O(sort(|Gi|))
I/Os to compute the connected components of Gi − S′

i (see Section 2.4).

Since every connected component of Gi+1 − Si+1 has size at most r log2 B, it
follows from Property (GH5) and Fact 2.2 that every connected component of Gi−S′

i

has size at most 56r log2 B ≤M ; that is, each such component fits in memory. Thus,
we can load each connected component of Gi − S′

i whose size exceeds r log2 B into
memory and apply Theorem 2.1 to partition it into connected components of size at
most r log2 B. As the computation of Theorem 2.1 is carried out in internal memory,
partitioning the connected components of Gi − S′

i into subgraphs of size at most
r log2 B takes O(|Gi|/B) I/Os. Thus, the computation of Si takes O(sort(|Gi|)) I/Os,
and the total I/O-bound follows.

4.3. Computing the final partition. In order to obtain the final partition in
Step 3 of Algorithm 2, the connected components of G−S0 have to be partitioned into
subgraphs of size at most r. We also have to merge subgraphs to reduce their number
to O(N/r), while maintaining the bounds on their size and boundary size. We do this
as follows: First we use Theorem 2.1 to partition each connected component of G−S0

into pieces of size at most r. This adds O(N/
√
r) vertices to the separator and, thus,

increases the separator size by only a constant factor. The resulting partition may
contain more than O(N/r) subgraphs, and the total boundary size of its subgraphs
may exceed O(N/

√
r). We group the subgraphs in the current partition to reduce their

number to O(N/r) and their total boundary size to O(N/
√
r). Finally, we partition

each subgraph in the resulting partition into subgraphs of boundary size O(
√
r). This

is similar to Frederickson’s approach [19] and, as argued below, increases the number
of subgraphs in the partition and the total boundary size by only a constant factor.

Since every connected component of G − S0 has size at most r log2 B ≤ M , the
partition of G − S0 into connected components of size at most r can be computed
by loading each connected component of G − S0 into internal memory and applying
Theorem 2.1 to it. Let S′ ⊇ S0 be the separator produced by this step. Section 4.3.1
discusses how to obtain a normal r-partition P ′ = (S′, {G′

1, . . . , G
′
r}) of G from S′.

Section 4.3.2 then refines this partition to make it proper.

20 A. MAHESHWARI AND N. ZEH

4.3.1. Grouping components. Intuitively, we compute the partition P ′ in two
phases: The first phase groups connected components of boundary size at most two
with other components that have the same boundary, while ensuring that none of the
resulting subgraphs has size greater than r. This phase reduces the total boundary
size of all subgraphs to O(N/

√
r). The second phase merges subgraphs that share

boundary vertices until no two subgraphs sharing boundary vertices can be merged
without producing a subgraph of size greater than r. This reduces the number of sub-
graphs to O(N/r). Note that merging subgraphs in this manner cannot increase the
total boundary size; that is, the total boundary size of all subgraphs in the partition
remains O(N/

√
r), and the resulting partition P ′ is normal.

To determine which connected components to group in these two phases, we
use an auxiliary graph H0 whose vertices represent separator vertices and connected
components of G − S′. Both phases operate on H0, grouping component vertices
rather than actual components. After the two phases have been applied to H0, we
obtain P ′ by merging the components in the partition that correspond to merged
component vertices in H0.

Graph H0 contains all vertices in S′ and one vertex per connected component
of G − S′. There is an edge between two separator vertices in H0 if such an edge
exists in G. There is an edge between a separator vertex x and a component vertex
representing a component G′ of G− S′ if x ∈ N (G′). Finally, every vertex in H0 has
a weight equal to the number of vertices in G it represents.

Graph H0 is easily constructed from G and S′ in O(sort(N)) I/Os: First we
compute the connected components of G−S′, thereby labelling every vertex in G−S′

with the ID of the component it belongs to; we also label every vertex in S′ with its
own ID. Then we apply the contraction procedure from Section 2.4 to G.

Reducing the total boundary size. Merging components of boundary size at most
two that have the same boundary is equivalent to merging component vertices in H0

that have the same neighbours and degree at most two. The latter is easily achieved
using the uniform graph contraction procedure (in fact, only the bundling phase is
sufficient). For the purpose of applying this procedure, we change the weight of every
separator vertex to r, leave the weights of all component vertices unchanged, and set
the weight threshold to r. Then the edge contraction phase does nothing because
every edge of H0 has at least one endpoint that is a separator vertex, that is, is heavy.
The bundling phase merges light component vertices that have the same neighbours
and degree at most two. By Theorem 3.1, the application of the uniform contraction
procedure takes O(sort(|H0|)) = O(sort(N)) I/Os. The next lemma proves that this
produces a graphH1 from H0 whose component vertices represent subgraphs of G−S′

of size at most r each and sufficiently small total boundary size. Note that the bound
on the size of H1 stated in the lemma implies the claimed bound on the boundary
size of the corresponding partition of G because the total boundary size is equal to
the number of edges between component vertices and separator vertices in H1. Since
H1 is planar and has size O(N/

√
r), there are only O(N/

√
r) edges in H1.

Lemma 4.5. Applying the uniform contraction procedure to H0 produces a planar
graph H1 of size O(N/

√
r). Every vertex in H1 has weight at most r.

Proof. Since H0 is an edge contraction of G, Fact 2.1 implies that H0 is planar.
By Theorem 3.1, this implies that H1 is planar. Before applying the contraction
procedure to H0, all vertices are within bounds, that is, have weight at most r.
Hence, by Theorem 3.1, every vertex in H1 has weight at most r. Finally, to bound
the size of H1, observe that H1 contains only O(N/

√
r) heavy vertices: O(N/

√
r)

I/O-EFFICIENT PLANAR SEPARATORS 21

separator vertices and O(N/r) heavy component vertices; the latter is true because
the total weight of all component vertices in H1 is at most N . By Theorem 3.1, this
implies that H1 has O(N/

√
r) vertices.

Reducing the number of subgraphs. To reduce the size of H1 to O(N/r) by further
merging vertices, we first reset the weight of every separator vertex to 1 and then
apply the uniform contraction procedure to H1, again with weight threshold r. Since
|H1| ≤ N , this takes O(sort(N)) I/Os, by Theorem 3.1. Since a vertex is heavy if its
weight exceeds r/2, and the total weight of all vertices in the resulting graph H2 is
N , there are at most 2N/r heavy vertices in H2. By Theorem 3.1, this implies that
the total size of H2 is O(N/r). Moreover, since no vertex in H1 has weight exceeding
r, Theorem 3.1 implies that no vertex in H2 has weight exceeding r. Thus, we have

Lemma 4.6. Applying the uniform contraction procedure to H1 produces a planar
graph H2 of size O(N/r). Every vertex in H2 has weight at most r.

The final grouping. Every component vertex in H2 now represents a subgraph in
the partition P ′. We finish the computation of P ′ by labelling every non-separator
vertex with the ID of the subgraph it belongs to. This is easily achieved by sorting
and scanning the vertex sets of G, H0, H1, and H2 a constant number of times.
Indeed, every vertex in G − S′ is initially labelled with the connected component of
G− S′ that contains it, that is, with its representative in H0. Similarly, every vertex
in H0 is labelled with its representative in H1, and every vertex in H1 is labelled with
its representative in H2. Thus, sorting and scanning suffices to label every vertex in
H1, and subsequently every vertex in H0 and G, with its representative in H2. This
labelling represents the subgraphs in P ′.

Lemma 4.7. Given the separator S0, a normal r-partition P ′ of G can be com-
puted in O(sort(N)) I/Os.

Proof. The I/O-bound of computing P ′ from S0 follows from the above discussion
of the different steps required to obtain P ′ from G and S0.

There are only O(N/r) subgraphs in P ′ because there are only O(N/r) component
vertices in H2 and each of them defines one subgraph in P ′. Every subgraph in the
partition has size equal to the weight of its representative in H2; by Lemma 4.6, no
vertex in H2 has weight exceeding r. Finally, by Lemma 4.5, there are only O(N/

√
r)

edges in H1. Each such edge represents an adjacency between a separator vertex and
a subgraph in the partition P ′′ of G represented by H1. Thus, P ′′ has total boundary
size O(N/

√
r). Since partition P ′ is obtained by merging subgraphs in P ′′, the total

boundary size of the subgraphs in P ′ cannot be greater than the total boundary size
of the subgraphs in P ′′.

4.3.2. Ensuring small boundary size. In order to obtain a proper r-partition
from the normal r-partition P ′, we have to reduce the boundary size of each individual
subgraph to O(

√
r) by further partitioning each subgraph in P ′ whose boundary size

exceeds this bound. In order to do so, we apply Corollary 2.3. This, however, requires
that each graph N [G′

i] fits in memory. While |G′
i| ≤ r ≤M , the graph N [G′

i] may be
big and may not fit in memory.

We solve this problem by first augmenting the separator so that its size increases
by only a constant factor and every graph G′′

i in the resulting partition satisfies
|N [G′′

i]| = O(r) ≤ M . This then allows us to apply Corollary 2.3 to obtain the final
partition.

To augment the separator, we consider each graph G′
i in the partition P ′ in turn.

Let G̃i be the graph obtained fromN [G′
i] as follows: First we remove all edges between

vertices in N (G′
i). Then we merge all vertices in N (G′

i) whose resulting degree is at

22 A. MAHESHWARI AND N. ZEH

most 2 and that have the same set of neighbours (which all belong to G′
i). For every

vertex in G̃i that represents more than one vertex in N (G′
i), we add its neighbours in

G′
i to a set S′′

i . Then we define P ′′ = (S′′, {G′′
1 , . . . , G

′′
p}), where G′′

i = G[V (G′
i) \ S′′

i]
and S′′ = S′ ∪⋃p

i=1 S
′′
i ; that is, in P ′′, the vertices in S′′

i are removed from the graph
G′

i and are added to the separator.
Lemma 4.8. Let P ′′ = (S′′, {G′′

1 , . . . , G
′′
p}) be the partition obtained from P ′ using

the above transformation. Then P ′′ is normal, and every graph N [G′′
i], 1 ≤ i ≤ p,

has size O(r).
Proof. Let P ′ = (S′, {G′

1, . . . , G
′
p}). Then |S′| = O(N/

√
r) and

∑p
i=1 |N (Gi)| =

O(N/
√
r) because P ′ is normal. Now consider subgraphs G′

i and G′′
i , and let

Nsh(G
′
i) = N (G′

i) ∩ N (G′′
i) and Ndis(G

′
i) = N (G′

i) \ N (G′′
i).

We start by proving that |S′′
i | ≤ |Ndis(G

′
i)|: Consider a vertex x ∈ S′′

i . This
vertex belongs to S′′

i because there exists a vertex y ∈ G̃i that represents a set Vy of
h ≥ 2 vertices in N (G′

i) that are adjacent to x. We charge each such vertex 1/h ≤ 1/2
for the addition of x to S′′

i . Since each vertex in Vy is adjacent to at most two vertices
in G′

i, each vertex in Vy is charged for at most two vertices, and the charge to each
vertex is at most 1. Thus, the total number of charged vertices is an upper bound
on |S′′

i |. Note, however, that all neighbours of a charged vertex that belong to G′
i are

added to S′′
i . Hence, every charged vertex belongs to Ndis(G

′
i) and |S′′

i | ≤ |Ndis(G
′
i)|.

This immediately implies that partition P ′′ is normal: The size of S′′ is |S′′| =
|S′|+∑p

i=1 |S′′
i | ≤ |S′|+∑p

i=1 |Ndis(G
′
i)| ≤ |S′|+∑p

i=1 |N (G′
i)| = O(N/

√
r). For each

graph G′′
i , we have |N (G′′

i)| ≤ |Nsh(G
′
i)| + |S′′

i | ≤ |Nsh(G
′
i)| + |Ndis(G

′
i)| = |N (G′

i)|.
Therefore,

∑p
i=1 |N (G′′

i)| ≤
∑p

i=1 |N (G′
i)| = O(N/

√
r).

To bound the size of each graph N [G′′
i], we partition its vertices into two groups:

those in G′
i and those in Nsh(G

′
i). Since |G′

i| ≤ r, N [G′′
i] can contain at most r vertices

that belong to G′
i. Next observe that there are no two vertices x and y of degree at

most two in Nsh(G
′
i) such that N (x) = N (y): if there were two such vertices, their

neighbours in G′
i would have been added to S′′

i . Thus, the subgraph of G induced
by the edges between vertices in Nsh(G

′
i) and vertices in G′

i satisfies the conditions
of Corollary 2.5, and the number of vertices in Nsh(G

′
i) is less than 6|G′

i| ≤ 6r. The
size of N [G′′

i] is therefore at most 7r.
The computation of partition P ′′ takes O(sort(N)) I/Os: The computation of

graph G̃i, for every graph N [G′
i], is easily carried out using the uniform graph con-

traction procedure after assigning weight 1 to every separator vertex and weight
2N to every vertex in G′

i; the weight threshold is 2N . The construction of set S′′
i

now requires scanning the vertex set of G̃i and adding the neighbours of all sep-
arator vertices of weight at least 2 and degree at most 2 to S′′

i . Thus, the com-
putation for each graph N [G′

i] takes O(sort(|N [G′
i]|)) I/Os, and the total cost is

∑p
i=1 O(sort(|N [G′

i]|)) = O(sort(N)).
To obtain the final partition, we apply Theorem 2.2 to every subgraph G′′

i in
partition P ′′ whose boundary size exceeds c

√
r, for an appropriate constant c > 0. By

Corollary 2.3, this can be done in O(N/B) I/Os and increases the size of the separator
and the number of graphs in the partition by only a constant factor; that is, this final
step produces a proper r-partition of G.

Since we have shown that all three steps of Algorithm 2 can be carried out in
O(sort(N)) I/Os and the final partition we obtain is proper, we have thus shown
Theorem 4.1.

5. Regular partitions. Our result from the previous section provides an algo-
rithm for computing proper r-partitions of planar graphs, as long as r is small; but

I/O-EFFICIENT PLANAR SEPARATORS 23

the computed partitions are not necessarily regular. In general, without a bound on
the degrees of the vertices in the graph, a regular proper r-partition may not exist.
For planar graphs of degree three, however, regular proper r-partitions do exist [19],
and the algorithms of [5,7–9] rely on the existence of such partitions. In this section,
we show how to modify the partition produced by Algorithm 2 to obtain a regular
proper r-partition for a planar graph of degree three.

Given such a graph G, we use Algorithm 2 to compute a proper r-partition
P = (S, {G1, . . . , Gp}) of G. We are, however, interested only in the separator S
and discard the grouping of the connected components G − S into subgraphs. Next
we regroup the connected components of G− S to obtain the desired regular proper
r-partition P ′ = (S, {G′

1, . . . , G
′
q}). This grouping is again similar to [19].

We use an auxiliary graph H to compute the desired grouping. Graph H contains
one vertex per connected component of G−S. There is an edge between two vertices
in H if the two corresponding components of G − S share a boundary vertex. Since
every vertex in G has degree at most three, graph H is planar. We give two weights
s(x) and b(x) to each vertex x in H : s(x) is the size, that is, the number of vertices
in the connected component represented by x; b(x) is the size of the component’s
boundary. Note that s(x) ≤ r and b(x) ≤ c

√
r, for some c > 0, because P is a proper

r-partition.

Now we apply the uniform graph contraction procedure to H , with thresholds
us = r and ub = c

√
r. This produces a graph H ′ each of whose vertices represents a

set of vertices in H and, thus, a set of connected components of G − S. The graphs
G′

1, . . . , G
′
q in partition P ′ are defined as the graphs represented by the vertices in

H ′. By the arguments in Section 4.3, this partition of G − S can be computed in
O(sort(N)) I/Os.

Theorem 5.1. Given an N -vertex planar graph G none of whose vertices has
degree greater than three, and an integer r > 0, a regular proper r-partition of G can
be computed in O(sort(N)) I/Os, provided that M ≥ 56r log2 B.

Proof. The I/O-complexity of the procedure follows immediately from The-
orem 4.1 and our discussion above. Next we argue that the produced partition
P ′ is proper. Since the partition P produced by Algorithm 2 is proper, we have
|S| = O(N/

√
r). This implies that the total boundary size of the connected com-

ponents of G − S cannot exceed O(N/
√
r) because every vertex in G has degree at

most three and, thus, every vertex in S is adjacent to at most three connected com-
ponents of G − S. Therefore, there are only O(N/r) heavy vertices in H ′: at most
2N/r vertices of size greater than r/2 and O(N/r) vertices of boundary size greater
than c

√
r/2. By Theorem 3.1, this implies that |H ′| = O(N/r), that is, that parti-

tion P ′ has O(N/r) subgraphs. Since every vertex x in H has weights s(x) ≤ r and
b(x) ≤ c

√
r, Theorem 3.1 implies that the same is true for every vertex in H ′. Thus,

no subgraph in partition P ′ has size exceeding r or boundary size exceeding c
√
r, and

partition P ′ is proper.

In order to prove that P ′ is regular, we analyze the two phases of the computation
of H ′ from H . The edge contraction phase of the uniform contraction procedure
merges only vertices that are adjacent. In G, this corresponds to merging connected
components of G − S that share boundary vertices. Thus, for every graph G′′

i in
the resulting partition, the graph N [G′′

i] is connected. The bundling phase merges
only vertices of degree at most two that have the same neighbours. Moreover, these
neighbours are heavy, that is, are not merged with any other vertices during the
bundling phase. Thus, the merging of vertices during the bundling phase corresponds

24 A. MAHESHWARI AND N. ZEH

to producing merged subgraphs that are potentially disconnected but share boundary
vertices with at most two other subgraphs G′

j and G′
k, which satisfy that N [G′

j] and
N [G′

k] are connected.

6. Separators of low cost and edge separators. In this section, we show
that the results from Sections 4 and 5 can be used to obtain an I/O-efficient version
of the following theorem by Aleksandrov et al. [3].

Theorem 6.1 (Aleksandrov et al. [3]). Given a planar graph G = (V,E), a
cost function c : V → R

+, a weight function w : V → R
+, and a real number

0 < t < 1, there exists a t-vertex separator S of cost c(S) ≤ 4
√

2C(G)/t for G, where
c(S) =

∑

x∈S c(x) and C(G) =
∑

x∈V (c(x))
2. Such a separator can be computed in

linear time.
In this theorem, the sizes of the subgraphs in the computed partition are measured

in terms of the total weight assigned to their vertices by a weight function w. Similarly,
the size of the separator S is measured in terms of the total cost assigned to the vertices
in S by a cost function c. The former is a fairly standard notion already considered
in the classical paper by Lipton and Tarjan [27]. The latter is a more recent concept
that allows a number of separator theorems to be seen as special cases of Theorem 6.1.
Theorem 2.1, for example, can be obtained from Theorem 6.1 by choosing c(x) = 1
for all x ∈ V , and Aleksandrov et al. have shown how to obtain a generalization of the
edge separator theorem of [15] from Theorem 6.1 (see also Theorem 6.3 in Section 6.3).
The main result of this section is

Theorem 6.2. Given a planar graph G = (V,E), a cost function c : V → R
+,

and a weight function w : V → R
+, a separator S as in Theorem 6.1 can be computed

in O(sort(N)) I/Os, provided that M = Ω
(

B2 log2 B
)

.
Theorem 6.2 is more general than Theorem 4.1 because it takes vertex costs and

weights into account; moreover, even in the unweighted case, Theorem 4.1 requires
that r = tN = O

(

M/ log2 B
)

, while Theorem 6.2 places no such restriction on r.
Our exposition of the algorithm that proves Theorem 6.2 is organized as follows:

In Section 6.1, we review the algorithm by Aleksandrov et al., as it forms the basis
for our I/O-efficient version. In Section 6.2, we provide I/O-efficient implementations
of the three main steps of this algorithm, thereby obtaining an I/O-efficient version
of the algorithm. This proves Theorem 6.2. In Section 6.3, we briefly argue that this
also leads to an I/O-efficient version of the edge separator algorithm of [3].

We assume throughout Sections 6.1 and 6.2 that the given graph is triangulated;
since any planar graph can be triangulated in O(sort(N)) I/Os [25], and a separator
of the resulting triangulation is also a separator of the original graph, this is not a
restriction.

6.1. The algorithm of Aleksandrov et al.. The algorithm of [3] can be seen
as a non-trivial extension of Lipton/Tarjan’s algorithm [27]. The first observation is
that every simple cycle C in G separates the vertices inside C from those outside C
in the given embedding of G; see Figure 6.1(a). The central goal then is to compute
a collection of cycles that partition G into regions of the desired weight. These
cycles are chosen from the set of fundamental cycles w.r.t. a spanning tree T of G,
where a fundamental cycle F (e) consists of an edge e ∈ E(G) \ E(T) and the path
in T connecting the two endpoints of e; see Figure 6.1(b). We refer to an edge
e ∈ E(G) \ E(T) as a non-tree edge, while every edge in T is a tree edge.

In order to obtain a separator of low cost in this manner, it is necessary to bound
the number of fundamental cycles comprising the separator, as well as the total cost
of the vertices on each fundamental cycle. As we will see below, the former is easy,

I/O-EFFICIENT PLANAR SEPARATORS 25

(a) (b)

Fig. 6.1. (a) The bold cycle separates the white vertices on its outside from the grey ones on
its inside. (b) The dashed non-tree edge defines the bold fundamental cycle.

as the number of required cycles is inversely proportional to t. To ensure that each
fundamental cycle is of low cost, Aleksandrov et al. compute T as a shortest-path tree
w.r.t. appropriate edge weights that guarantee that the depth of every vertex x in T
(that is, the weighted distance of x from the root of T) is equal to the total cost of the
vertices on the path from the root of T to x; the cost of any fundamental cycle is then
at most twice the radius of T , where the radius of the tree is the maximum depth of
any of its vertices. By itself, this does not guarantee low cost of each fundamental
cycle yet because T may have a large radius. To fix this, Aleksandrov et al. first find a
set of vertices of low total cost whose removal partitions T into subgraphs G0, . . . , Gp

of low depth, where the depth of a graph Gi is the maximal difference between the
depths (in T) of any two vertices in Gi; see Figure 6.2(a). We call these graphs
G0, . . . , Gp layers. They then triangulate each layer and obtain a spanning tree for
the resulting triangulation whose radius is bounded by the depth of the layer. Hence,
each fundamental cycle w.r.t. this spanning tree has low cost, and the layer can be
partitioned using fundamental cycles; see Figure 6.2(b).

In summary, the algorithm therefore consists of two phases: The first phase com-
putes the shortest-path tree T and partitions G into shallow layers by removing an
appropriate set of vertices of low total cost. The second phase partitions each layer by
removing the vertices belonging to a small set of fundamental cycles. The separator
consists of all vertices removed in these two phases.

Next we provide more details on the three parts of the algorithm: the compu-
tation of the shortest-path tree T , the partitioning of G into shallow layers, and the
partitioning of each layer using fundamental cycles.

6.1.1. The shortest-path tree. To compute the spanning tree T used in the
separator algorithm, recall that we assume that G is triangulated. The algorithm
starts by choosing one face f , adding a new vertex s of cost and weight zero inside
this face, and connecting s to the three vertices on the boundary of f .

Next, every edge xy of G is replaced with two directed edges xy and yx, and
each directed edge xy is assigned a weight w′(xy) = c(y); that is, the weight of every
edge is equal to the cost of its head. Tree T is the shortest-path tree obtained by
computing single-source shortest paths from s w.r.t. edge weights w′. It is easy to
see that the distance of a vertex x from s in T equals the cost of x’s ancestors in T ,
including x itself. For every vertex x ∈ G, let its depth be d(x) = distT (s, x), and let

26 A. MAHESHWARI AND N. ZEH

L(ℓ1)

L(ℓ2)

L(ℓ3)

L(ℓ4)

G0

G1

G2

G3

G4

s2

L(ℓ3)
ℓ3

(a) (b) (c)

Fig. 6.2. (a) The partition of G into layers G0, . . . , G4 using levels L(ℓ1), . . . , L(ℓ4). (b) The
partition of G2 into subgraphs of weight at most tw(G) using fundamental cycles. The dotted edges
are the ones introduced to connect all vertices that were adjacent to vertices in L(ℓ2) to the new root
vertex s2. The dashed edges are the non-tree edges defining the fundamental cycles that are used to
partition G2. (c) The definition of level L(ℓ3). The bold edges are all edges in T spanning depth
ℓ3. Their bottom endpoints are in L(ℓ3). The sets V −(ℓ3) and V +(ℓ3) are shown in light and dark
grey, respectively. Note that there are no edges between V −(ℓ3) and V +(ℓ3).

the radius of T be r(T) = max{d(x) : x ∈ V }.
6.1.2. Cutting G into layers. The set of vertices used to partition G into

shallow layers is the union of a set of levels L(ℓ1), . . . , L(ℓp), where each level L(ℓi)
is the set of bottom endpoints of all edges spanning depth ℓi: L(ℓi) = {y : e = xy ∈
T and d(x) < ℓi ≤ d(y)}. See Figure 6.2(c) for an illustration.

Every level L(ℓi) is a separator of G whose removal partitions the vertex set V
of G into two sets V −(ℓi) = {x ∈ V : d(x) < ℓi} and V +(ℓi) = {x ∈ V : d(x) ≥
ℓi and x 6∈ L(ℓi)} so that no vertex in V −(ℓi) is adjacent to a vertex in V +(ℓi). A set
of levels L(ℓ1), . . . , L(ℓp) then partitions G into p + 1 subgraphs G0, . . . , Gp, where
G0 = G[V −(ℓ1)], Gp = G[V +(ℓp)], and, for 0 < i < p, Gi = G[V +(ℓi) ∩ V −(ℓi+1)].
Graphs G0, . . . , Gp are the layers we want to compute.

There is obviously a trade-off between the cost of levels L(ℓ1), . . . , L(ℓp) and the
cost of partitioning the layers G0, . . . , Gp using fundamental cycles. By choosing more
levels ℓ1, . . . , ℓp, the layers can be made more shallow, thereby reducing the cost of
the fundamental cycles used to partition them. This, however, increases the total cost
of levels L(ℓ1), . . . , L(ℓp).

As we will see, this trade-off is balanced by partitioningG into p+1 = ⌊r(T)/h⌋+1
layers of depth at most 2h, where h =

√

tC(G)/8. This is achieved by choosing the
value ℓi defining each level L(ℓi) from the interval ((i− 1)h, ih] so that the level L(ℓi)
has minimal cost among all levels L(ℓ) with (i − 1)h < ℓ ≤ ih. Indeed, this ensures
that two consecutive values ℓi and ℓi+1 differ by at most 2h, that is, every layer has
depth at most 2h. As shown by Aleksandrov et al., it also ensures that the cost of
the union S1 of levels L(ℓ1), . . . , L(ℓp) is c(S1) ≤ C(G)/h = 2

√

2C(G)/t.

6.1.3. Partitioning the layers. The removal of levels L(ℓ1), . . . , L(ℓp) parti-
tions G into layers G0, . . . , Gp. If a layer Gi has weight at most tw(G), it does not
have to be partitioned further. In general, however, Gi may have a weight exceeding
tw(G) and needs to be partitioned into subgraphs of weight at most tw(G). This is

I/O-EFFICIENT PLANAR SEPARATORS 27

done by augmenting Gi to obtain a triangulation that has a spanning tree Ti of diam-
eter not exceeding the depth of Gi; this augmented version of Gi is then partitioned
using fundamental cycles w.r.t. Ti.

The augmentation of G0 involves simply triangulating it. For i > 0, graph Gi

is augmented in two steps: First a vertex si of weight and cost zero is added to Gi

and connected to all vertices in Gi that, in G, are adjacent to vertices in L(ℓi). The
resulting graph is then triangulated, and the edges of Gi are assigned weights as in
Section 6.1.1. Tree Ti is now chosen to be a shortest-path tree of Gi with root si,
where s0 = s. See Figure 6.2(b) for an illustration.

The approach to find the fundamental cycles used to partition Gi into subgraphs
of weight at most tw(G) can be explained as follows: Let T ∗

i be the dual of Ti. This
tree is obtained from the dual G∗

i of Gi by removing all those edges that are dual to
edges in Ti. Thus, every edge e∗ in T ∗

i corresponds to a non-tree edge e of Gi and,
hence, represents a fundamental cycle F (e) in Gi. If the vertex corresponding to the
outer face of Gi is chosen as the root of T ∗

i , the descendant vertices and edges of e∗

in T ∗
i represent the region enclosed by F (e).

The goal now is to assign weights w∗(e∗) to the edges of T ∗
i so that the total

weight of the edges in T ∗
i equals the total weight of the vertices in Gi, and the total

weight of the descendant edges of an edge e∗ in T ∗
i is an upper bound on the weight

of the vertices in Gi enclosed by F (e). Given such an assignment of edge weights,
it suffices to partition T ∗

i into a small number of subtrees of weight at most tw(G)
by removing a set of edges from T ∗

i ; the vertices on the corresponding fundamental
cycles then form a separator partitioning Gi into subgraphs of weight at most tw(G).

The weight function w∗ is obtained by charging the weight of every vertex x in
Gi to some edge e∗ of T ∗

i : If x has at least one incident non-tree edge, edge e∗ is
chosen to be the dual of one of these edges. Otherwise, e∗ is chosen to be the dual of
a non-tree edge e both of whose endpoints are neighbours of x in Ti. It is easy to see
that such an edge always exists.

The weight function is easily seen to have the two properties above: Since every
vertex of Gi is charged to exactly one edge of T ∗

i , the total weight of the edges in T ∗
i

equals the total weight of the vertices in Gi. A vertex x in the region enclosed by a
fundamental cycle F (e) must have been charged to an edge e∗1 in T ∗

i such that e1 is
also contained in the region enclosed by F (e). Thus, e∗1 is a descendant edge of e∗ in
T ∗
i , and the weight of the descendant edges of e∗ is an upper bound on the weight of

the vertices in Gi enclosed by F (e). See [2] for a more rigorous argument.

In order to partition T ∗
i into subtrees of weight at most tw(G) by removing a set

of edges Xi, a leaf of T ∗
i is chosen as the root of T ∗

i , and the edges of T ∗
i are then

inspected bottom-up. For every edge e∗, if the total weight of all its descendant edges,
including e∗ itself, exceeds tw(G), the subtree below e∗ is pruned from T ∗

i by adding
e∗ to the edge separator Xi. The edges in the pruned subtree are then no longer
counted when determining the total weight of the descendant edges of any ancestor
of e∗.

Since the vertices in the dual of a planar triangulation have degree at most three
and the root of T ∗

i has degree one, T ∗
i is a binary tree. Thus, the above procedure

ensures that each subtree in the produced partition has weight at most tw(G) and,
hence, that the fundamental cycles in the set F(Xi) = {F (e) : e∗ ∈ Xi} partition Gi

into subgraphs of weight at most tw(G). To bound the number of fundamental cycles
in F(Xi), observe that every edge e∗ in Xi has descendant edges of total weight
at least tw(G)/2 and that every edge of T ∗

i is counted as a descendant edge of at

28 A. MAHESHWARI AND N. ZEH

most one edge in Xi. Hence |F(Xi)| = |Xi| ≤ 2w∗(T∗

i)
tw(G) = 2w(Gi)

tw(G) . The total number

of fundamental cycles used to partition the layers G0, . . . , Gp is therefore at most
2w(G)
tw(G) = 2/t. Since each layer has depth at most 2h, the cost of the vertices on one

fundamental cycle is at most 4h and, hence, the total cost of all fundamental cycles
in F(X0) ∪ · · · ∪ F(Xp) is at most 8h/t = 2

√

2C(G)/t.
Let S2 be the set of vertices on the fundamental cycles in F(X0) ∪ · · · ∪ F(Xp).

The final separator S = S1 ∪S2 partitions G into subgraphs of weight at most tw(G)
and has cost c(S1) + c(S2) ≤ 4

√

2C(G)/t.
Aleksandrov et al. [3] showed how to implement this procedure in linear time.

In the next section, we show how to carry out the three steps of the algorithm in
O(sort(N)) I/Os.

6.2. An I/O-efficient algorithm.

6.2.1. Computing T . In order to compute the shortest-path tree T , we need
to compute a planar embedding of G, triangulate G, add a new vertex of cost and
weight 0 inside one of its faces, assign weights w′(e) to the edges of G, and finally
compute single-source shortest paths w.r.t. these edge weights.

A planar embedding of G can be computed in O(sort(N)) I/Os [33]; an embedded
planar graph can be triangulated in the same I/O-bound [25]. Next we extract a
description of the faces of the triangulation as lists of vertices, each containing the
boundary vertices of one face sorted clockwise around that face; this can also be done
in O(sort(N)) I/Os. We add a vertex s to G and traverse the vertex list representing
one of the faces of G to add edges between s and the vertices on the boundary of this
face to G. Now it takes O(sort(N)) I/Os to label every edge of G with the costs of its
endpoints, replace every edge of G with its corresponding directed edges, and assign
weights as defined in Section 6.1.1 to these edges (see Section 2.4). The shortest-path
tree T can now be computed in O(sort(N)) I/Os using the shortest-path algorithm
of [8].

This procedure for computing T is where we depend on Theorems 4.1 and 5.1. The
embedding algorithm of [33] relies on a proper B2-partition of G; the shortest-path
algorithm of [8] requires a regular proper B2-partition.

6.2.2. Cutting T into layers. To compute the levels L(ℓ1), . . . , L(ℓp) used to
partition G into layers G0, . . . , Gp, we first need to compute the values ℓ1, . . . , ℓp and
then extract the vertices belonging to S1 = L(ℓ1) ∪ · · · ∪ L(ℓp).

To compute values ℓ1, . . . , ℓp, we label both endpoints of every edge in T with
their costs and their distances from s. Then we sort the edges of T by the distances
of their tails from s and scan the sorted edge list to simulate a sweep from ℓ = −∞ to
ℓ = +∞. During this sweep, we maintain the cost c(L(ℓ)) of the current level L(ℓ) and
keep track of the value i such that (i− 1)h < ℓ ≤ ih. We also maintain the minimum
cost cmin(i) of all levels L(ℓ

′) with (i−1)h < ℓ′ ≤ ih we have seen so far, as well as the
level ℓi such that (i− 1)h < ℓi ≤ ih and c(L(ℓi)) = cmin(i). When ℓ = d(xj), for some
vertex xj , we perform the following operations: First we test whether d(xj+1) > ih. If
so, we have finished processing all levels L(ℓ′) with (i−1)h < ℓ′ ≤ ih.; so we report ℓi,
increase i by one, and initialize cmin(i) = +∞. Then we decrease c(L(ℓ)) by c(xj) and
increase c(L(ℓ)) by the total cost of the heads of all edges having xj as their tail. This
produces c(L(d(xj+1))). If c(L(d(xj+1))) < cmin(i), we set cmin(i) = c(L(d(xj+1)))
and ℓi = d(xj+1).

Given values ℓ1, . . . , ℓp and the edge set of T as sorted above, the set S1 =
L(ℓ1) ∪ · · · ∪ L(ℓp) can be extracted as follows: We scan the list of values ℓ1, . . . , ℓp

I/O-EFFICIENT PLANAR SEPARATORS 29

and the edge set of T , again to simulate a sweep from ℓ = −∞ to ℓ = +∞. During
the sweep we maintain the index i of the next level ℓi to be passed by the sweep;
initially, i = 1. When the sweep passes the tail of an edge xy, its tail is at a depth less
than ℓi. Thus, we add its head y to L(ℓi) if d(y) ≥ ℓi. When the sweep passes level
ℓi, we increase i by one and, thus, start constructing the next level L(ℓi+1). Since
this computation of set S1 requires sorting and scanning the edge set of T a constant
number of times, its I/O-complexity is O(sort(N)).

6.2.3. Partitioning the layers. The final step of the algorithm extracts graphs
G0, . . . , Gp, computes shortest-path trees T0, . . . , Tp for these graphs, and partitions
each graph Gi, 0 ≤ i ≤ p, into subgraphs of weight at most tw(G) using fundamental
cycles w.r.t. Ti.

Computing the layers. To compute graphs G0, . . . , Gp, we first compute the set
V −S1 and sort the vertices in V −S1 by their distances from s. We scan the vertices
in V − S1 and the values −∞ = ℓ0, . . . , ℓp+1 = r(T) to partition V − S1 into sets
V0, . . . , Vp, where Vi = {x ∈ V − S1 : ℓi < d(x) ≤ ℓi+1}. For 1 ≤ i ≤ p, we add a new
vertex si to Vi. This produces the vertex sets of graphs G0, . . . , Gp.

Next we partition E into sets E0, . . . , Ep, E
−

1 , . . . , E−
p , and E+ such that every

edge in Ei has both endpoints in Vi; every edge xy in E−

i has one endpoint, say y, in Vi,
and the other endpoint, x, satisfies x ∈ S1 and d(x) < d(y); and set E+ contains the
remaining edges. This partition is easily computed in O(sort(N)) I/Os: We label every
edge with the membership of its endpoints in V0, . . . , Vp or S1 and with their distances
from s. Every edge can then determine its membership in one of the sets based on
its local information, and we can sort E to obtain the desired partition. Graph Gi is
now defined as Gi = (Vi, Ei ∪ E′

i), where E′
i = {siy, ysi : xy ∈ E−

i and d(x) < d(y)}.
Finally, we triangulate Gi using the algorithm of [25].

This procedure requires sorting and scanning the vertex and edge sets of G a
constant number of times. In addition, we invoke the O(sort(N))-I/O triangulation
algorithm of [25] on graphs G0, . . . , Gp, whose total size is O(N). Hence, the con-
struction of graphs G0, . . . , Gp takes O(sort(N)) I/Os.

Computing shortest-path trees and their duals. Each shortest-path tree Ti can
be computed in O(sort(|Gi|)) I/Os using the procedure described in Section 6.2.1.
To construct T ∗

i , we compute the dual G∗
i = (Fi, E

∗
i) of Gi, which can be done in

O(sort(|Gi|)) I/Os [25]. Then we remove all edges dual to edges in Ti from E∗
i . This

takes another O(sort(|Gi|)) I/Os (see Section 2.4). Thus, in total, the construction of
trees T0, . . . , Tp and T ∗

0 , . . . , T
∗
p takes O(sort(N)) I/Os.

Computing dual edge weights. Before computing an edge separator of T ∗
i and the

corresponding set of fundamental cycles, we have to assign weights w∗(e∗) as defined
in Section 6.1.3 to the edges of T ∗

i . We do this in two phases: First we partition Vi

into two sets V ′
i and V ′′

i such that every vertex in V ′
i has an incident non-tree edge,

while all edges incident to a vertex in V ′′
i are tree edges. While doing this, we also

identify a non-tree edge e incident to each vertex x ∈ V ′
i and add w(x) to w∗(e∗). In

the second phase, we find a non-tree edge e for every vertex x ∈ V ′′
i such that both

endpoints of e are neighbours of x in Ti; we add w(x) to w∗(e∗). The details follow.
To implement the first phase, we create a list Yi of non-tree edges of Gi. More

precisely, Yi contains directed edges xy and yx for every non-tree edge xy of Gi. We
sort the edges in Yi by their tails and the vertices in Vi by their IDs. Now a single
scan of lists Vi and Yi suffices to identify all vertices x in Vi such that Yi contains at
least one edge with tail x. These are the vertices in V ′

i ; all other vertices belong to
V ′′
i . During this scan, we also extract, for every vertex x ∈ V ′

i , the first edge e with

30 A. MAHESHWARI AND N. ZEH

tail x from Yi and add a pair (e∗, w(x)) to a list W . This list will be used after the
second phase to compute the weights of the edges in T ∗

i .
To implement the second phase, we observe that, for every vertex x ∈ V ′′

i and
every non-tree edge yz such that y and z are both neighbours of x in Ti, one endpoint
of yz, say y, must be a child of x in Ti, and the other, z, must be x’s parent in Ti or
another child of x. This implies in particular that, for every non-tree edge yz, there
exists at most one vertex x ∈ V ′′

i such that y and z are both neighbours of x in Ti.
Our goal, therefore, is to partition the non-tree edges of Gi into sets E(x) such that
both endpoints of each edge in E(x) are neighbours of x in Ti; for every vertex x ∈ V ′′

i ,
we then choose one edge from E(x) and add the pair (e∗, w(x)) to W . To obtain the
partition into sets E(x), we first label every vertex x ∈ Ti with its grandparent in Ti:
We create a second copy Pi of Vi, sort the vertices in Pi by their IDs and the vertices
in Vi by the IDs of their parents. This ensures that the vertices in Vi are stored in
the same order as their parents in Pi. Since each vertex in Pi also stores the ID of
its parent, a single scan of Vi and Pi now suffices to label every vertex in Vi with the
ID of its grandparent. Now we label every non-tree edge of Gi with the parents and
grandparents of its endpoints. A non-tee edge yz, belongs to E(x) if and only if x is
the parent of both y and z or, w.l.o.g., x is the parent of y and z is the grandparent
of y. This can now be tested based on the local information stored with edge yz. If
edge yz satisfies this condition, we label it as belonging to E(x). We sort the non-tree
edges by their membership in sets E(x) and scan V ′′

i and the sorted edge list to add
a pair (e∗, w(x)) to W for every vertex x ∈ V ′′

i and the first edge e ∈ E(x).
To finish the computation of the weights of the edges in T ∗

i , we sort the edges of
T ∗
i by their IDs and the pairs in W by their first components. A single scan of these

two sorted lists now suffices to add w(x) to w∗(e∗), for every pair (e∗, w(x)) ∈ W .
Since this procedure sorts and scans lists of size O(|Gi|) a constant number of

times, the assignment of weights to the edges of T ∗
i takes O(sort(|Gi|)) I/Os. The

total cost for all graphs G0, . . . , Gp is therefore O(sort(N)).

Computing the edge separator and fundamental cycles. To obtain the edge sep-
arator Xi of T ∗

i , we root T ∗
i in an arbitrary leaf, compute a preorder numbering of

T ∗
i w.r.t. the chosen root, and direct all edges in T ∗

i from children to parents. This
can be done using the Euler tour technique and list ranking [14]. The construction
of the edge separator Xi as described in Section 6.1.3 can now be implemented using
the time-forward processing technique of [14]. Given the edge separator Xi of T

∗
i pro-

duced by this procedure, we mark the endpoints of all edges e ∈ Gi such that e∗ ∈ Xi

and then process Ti bottom-up (using time-forward processing again) to identify all
vertices of Gi that belong to the fundamental cycles defined by the edges in Xi. We
add these vertices to S2.

This procedure applies the Euler tour technique, list ranking, and time-forward
processing to Ti and T ∗

i , both of which have size O(|Gi|). Hence, this takes
O(sort(|Gi|)) I/Os. Apart from this, we sort and scan lists of size O(|Gi|). Thus,
partitioning each graph Gi takes O(sort(|Gi|)) I/Os, and the computation of the
whole separator S2 takes O(sort(N)) I/Os.

6.2.4. Final remarks. Since we have shown that the computation of both S1

and S2 takes O(sort(N)) I/Os, Theorem 6.2 is proven. Since the algorithm relies on
the separator algorithm of Section 4 and the shortest-path algorithm of [8], it inher-
its their memory requirements. In particular, the latter requires a proper Θ

(

B2
)

-

partition as part of the input and uses Θ
(

B2
)

main memory to carry out its compu-
tation. The algorithm from Section 4 can be used to produce the desired partition in

I/O-EFFICIENT PLANAR SEPARATORS 31

O(sort(N)) I/Os, provided that M = Ω
(

B2 log2 B
)

.

As a final comment, note that the shortest-path algorithm of [8] relies on a regular
proper Θ

(

B2
)

-partition, which is guaranteed to exist only if the graph has bounded
degree. The triangulations in which we need to compute shortest paths may not satisfy
this constraint, but given an embedding, each planar graph G can be transformed into
a planar graph G′ of size O(|G|) such that every vertex in G′ has degree at most three.
This is done by replacing every vertex x of degree deg(x) > 3 with a cycle of deg(x)
vertices and making every edge incident to x incident to a different vertex on this
cycle. This takes O(sort(|G|)) I/Os. Moreover, if the edges in each cycle replacing
a high-degree vertex are given weight 0, this transformation preserves the distances
between vertices. Thus, the algorithm of [8] can be used to compute shortest paths
in G and in the layers G0, . . . , Gp.

6.3. Edge separators. The final result of this section is an I/O-efficient edge
separator algorithm. Aleksandrov et al. [3] showed that Theorem 6.1 can also be
used to compute optimal edge separators of planar graphs: Define the cost of each
vertex to be equal to its degree. Then compute a vertex separator S of cost at
most 4

√

2(
∑

x∈V (deg(x))
2)/t and add all edges incident to a vertex in S to the edge

separator.

It is easy to verify that the computation of the vertex costs and the extrac-
tion of the edge separator from the computed vertex separator can be carried out in
O(sort(N)) I/Os. Hence, the following result is an immediate consequence of Theo-
rem 6.2.

Theorem 6.3. Let G = (V,E) be a planar graph, let 0 < t < 1 be a real number,
and let w : V → R

+ be a weight function so that w(x) ≤ tw(G) for all x ∈ V . Then
there exists a set S of at most 4

√

2(
∑

v∈V (deg(v))
2)/t edges so that no connected

component of G − S has weight exceeding tw(G). Such an edge separator S can be
found in O(sort(N)) I/Os, provided that M = Ω

(

B2 log2 B
)

.

7. Improving the memory requirements. In this final section of the paper,
we show how to reduce the memory requirements of our algorithm from Section 4 to
M ≥ max

(

196B2, 7r
)

. The resulting algorithm also produces a separator significantly
smaller than the one produced by the algorithm in Section 4. However, these two
improvements come at the expense of increasing the internal-memory computation of
the algorithm from O(N logN) to O(N logN +NB).

Recall the reason why M ≥ 56r log2 B is required for the algorithm in Section 4:
If we choose to compute an r′-partition of each graph Gi in the graph hierarchy, then
the separator vertices introduced at each level correspond to O

(

N/
√
r′
)

vertices in G;
no better upper bound is known. Since there are ⌊logB⌋ levels in the hierarchy, and
we want a separator of size O(N/

√
r), we have to ensure that O

((

N/
√
r′
)

logB
)

=

O(N/
√
r), which we achieve by choosing r′ = r log2 B. This now forces us to use

56r log2 B main memory because, as argued in Section 4, every piece of Gi − S′
i has

size at most 56r′ = 56r log2 B, and we need to load each such piece into memory to
partition it into smaller pieces.

So the central problem is that, if we were to choose r′ = r, then every level in
the hierarchy adds O(N/

√
r) vertices to the final separator of G, that is, we would

obtain a separator that is too big by a factor logB. Next we explain how to avoid
this problem by using a recursive bootstrapping approach.

The centerpiece of the algorithm is the separator algorithm from Section 6, now
using vertex costs and weights equal to 1. This algorithm takes O(sort(N)) I/Os

32 A. MAHESHWARI AND N. ZEH

using only Θ(B) main memory if we ignore the costs and memory requirements of
computing an embedding of G, computing the shortest-path tree T of G, and com-
puting the shortest-path trees T0, . . . , Tp for layers G0, . . . , Gp. Given appropriate
separator decompositions, the computation of the embedding and the shortest-path
computations take O(sort(N)) I/Os and require Θ

(

B2
)

main memory [5, 33]. Our
strategy is to obtain these separator decompositions by recursive application of our
algorithm.

Embedding G. To compute a planar embedding of G, we require a proper Θ
(

B2
)

-
partition P = (S, {G1, . . . , Gq}) of G. We obtain this partition as follows: First
we apply the uniform graph contraction procedure to G and recursively compute
a proper B2-partition P̃ =

(

S̃,
{

G̃1, . . . G̃q

})

of the resulting graph G̃. Then we

choose S to be the set of vertices in G represented by the vertices in S̃, and each
graph Gi in P to be the subgraph of G represented by the vertices in G̃i. To bound
the number of vertices in G represented by each vertex in G̃, we assign weight 1
to every vertex in G and provide a weight threshold u, to be specified later, to the
uniform graph contraction procedure. This guarantees that |S| ≤ u

∣

∣S̃
∣

∣ = O(N/B),

|Gi| ≤ u
∣

∣G̃i

∣

∣ = O
(

B2
)

and |N (Gi)| = O(B) for all 1 ≤ i ≤ q. It also ensures that
∑q

i=1 |N (Gi)| ≤ u
∑q

i=1

∣

∣N
(

G̃i

)∣

∣ = O(N/B). Thus, P is a proper Θ
(

B2
)

-partition
of G. An embedding of G can now be obtained from P in O(sort(N)) I/Os [33]. In
total, the cost of computing a planar embedding of G is O(sort(N)) I/Os plus the
cost of the recursive call on G̃.

Computing T, T0, . . . , Tp. Given a planar embedding of G, we use the procedure
from Section 6.2.4 to transform G into a planar graph G′ of degree at most three and
so that the distances between vertices in G are the same as the distances between
their representatives in G′. This takes O(sort(N)) I/Os. Now we apply the procedure
from the previous paragraph to obtain a proper Θ

(

B2
)

-partition of G′ and then
use the procedures from Sections 4.3 and 5 to augment this partition to obtain a
regular proper B2-partition of G′. The construction of G′ takes O(sort(N)) I/Os
and, as discussed in the previous paragraph, the cost of computing a proper Θ(B2)-
partition of G′ is O(sort(|G′|)) plus the cost of the recursive call on a compressed
version G̃′ of G′. As discussed in Sections 4.3 and 5, augmenting the computed
partition to a regular proper Θ(B2)-partition also takes O(sort(|G′|)) I/Os. Given
such a partition, we use the single-source shortest-path algorithm of [8] to obtain a
shortest-path tree T ′ of G′ in O(sort(|G′|)) I/Os, which is easily transformed into
a shortest-path tree T of G in the same number of I/Os. Thus, the total cost of
computing T is O(sort(N) + sort(|G′|)) plus the cost of the recursive call on G̃′.

The shortest-path trees T0, . . . , Tp are obtained by applying the same procedure
to graphs G0, . . . , Gp. We denote the degree-3 graphs obtained from G0, . . . , Gp by
G′

0, . . . , G
′
p and the compressed versions of G′

0, . . . , G
′
p for which we recursively com-

pute proper B2-partitions by G̃′
0, . . . , G

′
p. Using this notation, our discussion above

implies that the computation of each tree Ti takes O(sort(|Gi|)+sort(|G′
i|)) I/Os plus

the cost of a recursive call on G̃′
i.

Analysis. Summing up the costs of the individual steps of our algorithm, the cost
of computing a proper B2-partition of G is

T (N) = O(sort(N)) + O
(

sort
(∣

∣G′
∣

∣

))

+ T
(∣

∣G̃
∣

∣

)

+ T
(∣

∣G̃′
∣

∣

)

+
q

∑

i=0

(

sort(|Gi|) + sort
(
∣

∣G′
i

∣

∣

)

+ T
(
∣

∣G̃′
i

∣

∣

)

)

.

I/O-EFFICIENT PLANAR SEPARATORS 33

The first O(sort(N)) term includes the cost of computing the separator once the trees
T, T0, . . . , Tp have been computed.

To bound this recurrence by O(sort(N)), we first bound the sizes of the different
graphs involved in the computation: Graph G has N vertices. Graph G′ has at
most 6N vertices, at most two per edge in G. Graphs G0, . . . , Gp contain at most
N vertices, as they are vertex-disjoint subgraphs of G. Thus, graphs G′

0, . . . , G
′
p also

contain at most 6N vertices. The total size of graphs G,G′, G0, . . . , Gp, G
′
0, . . .G

′
p is

therefore O(N), which implies that the sort(·)-terms in the above recurrence sum to
O(sort(N)), simplifying the recurrence to

T (N) = O(sort(N)) + T
(∣

∣G̃
∣

∣

)

+ T
(∣

∣G̃′
∣

∣

)

+

p
∑

i=0

T
(∣

∣G̃′
i

∣

∣

)

.

Now, if we choose u = 196, graph G̃ contains at most |G|/98 heavy vertices and, by
Theorem 3.1, has size at most |G|/14. Similarly,

∣

∣G̃′
∣

∣ ≤ |G′|/14 and, for 0 ≤ i ≤ p,
∣

∣G̃′
i

∣

∣ ≤ |G′
i|/14. Thus, we have

∣

∣G̃
∣

∣ +
∣

∣G̃′
∣

∣+

p
∑

i=0

∣

∣G̃′
i

∣

∣ ≤ |G|
14

+
|G′|
14

+

p
∑

i=0

|G′
i|

14

≤ N

14
+

6N

14
+

6N

14

=
13N

14
,

and the recurrence solves to T (N) = O(sort(N)). The memory requirements of the
embedding and shortest-path algorithms are at most uB2 = 196B2, as we provide
them with uB2-partitions. This proves that we can compute a t-vertex separator
and, thus, a t-edge separator, for any 0 < t < 1, in O(sort(N)) I/Os, provided
that M ≥ 196B2. In order to obtain a (regular) proper r-partition from an (r/N)-
separator, we still have to be able to load subgraphs of size at most 7r into internal
memory. This leads to the following result.

Theorem 7.1. The partitions in Theorems 4.1 and 5.1 can be computed in
O(sort(N)) I/Os, provided that M ≥ max

(

196B2, 7r
)

. The separators in Theo-
rems 6.2 and 6.3 can be computed in O(sort(N)) I/Os, provided that M ≥ 196B2.

The memory requirements in Theorem 7.1 can be reduced further to M ≥
max

(

cB2, 7r
)

and M ≥ cB2, for an arbitrarily small constant c > 0. Indeed, 196B2

memory is required because we recursively compute B2-partitions of the compressed
graphs, which correspond to

(

196B2
)

-partitions in the uncompressed graphs. In-

stead, we can compute
(

cB2/196
)

-partitions of the compressed graphs, thereby ob-

taining
(

cB2
)

-partitions of the uncompressed graphs. This affects the sizes of the
produced separators—and, thus, the performance of the embedding and shortest-path
algorithms—by only a constant factor but reduces the memory requirements.

8. Conclusions. In this paper, we have demonstrated that different types of
separator decompositions of planar graphs can be computed I/O-efficiently. Using
these partitions, a wide variety of fundamental problems on planar graphs can be
solved I/O-efficiently.

A number of open questions remain, however. The constant factors in our
algorithms—in terms of the size of the produced separator, the memory requirements,
and the efficiency—are big. In order for the algorithms to be of practical value, these

34 A. MAHESHWARI AND N. ZEH

constant factors have to be reduced. Furthermore, even though the individual steps
of the algorithm are fairly simple, the algorithm consists of too many of them. This
makes the algorithm tedious to implement and impacts the efficiency of the algo-
rithm; for example, only a small number of sorting steps are affordable in practice.
From a practical point of view, it would therefore be desirable to have a simpler, even
possibly theoretically suboptimal algorithm for computing separators I/O-efficiently.
On the theoretical side, the most important open questions are whether separators
can be computed in O(sort(N)) I/Os using o

(

B2
)

main memory and whether they
can be computed in O(sort(N)) I/Os cache-obliviously. See [20] for a discussion of
cache-obliviousness.

Acknowledgements. We would like to thank Richard Cole and the anonymous
referees for helpful comments on how to improve the presentation of the results in
this paper.

REFERENCES

[1] Alok Aggarwal and Jeffrey Scott Vitter, The input/output complexity of sorting and
related problems, Communications of the ACM, (1988), pp. 1116–1127.

[2] Ljudmil Aleksandrov and Hristo Djidjev, Linear algorithms for partitioning embedded
graphs of bounded genus, SIAM Journal of Discrete Mathematics, 9 (1996), pp. 129–150.

[3] L. Aleksandrov, H. Djidjev, H. Guo, and A. Maheshwari, Partitioning planar graphs
with costs and weights, in Proceedings of the 4th Workshop on Algorithm Engineering
and Experiments, vol. 2409 of Lecture Notes in Computer Science, Springer-Verlag, 2002,
pp. 98–107.

[4] Lars Arge, The buffer tree: A technique for designing batched external data structures, Algo-
rithmica, 37 (2003), pp. 1–24.

[5] Lars Arge, Gerth Stølting Brodal, and Laura Toma, On external-memory MST, SSSP
and multi-way planar graph separation, Journal of Algorithms, 53 (2004), pp. 186–206.

[6] Lars Arge, Ulrich Meyer, Laura Toma, and Norbert Zeh, On external-memory planar
depth first search, Journal of Graph Algorithms and Applications, 7 (2003), pp. 105–129.

[7] Lars Arge and Laura Toma, Simplified external memory algorithms for planar DAGs, in
Proceedings of the 9th Scandinavian Workshop on Algorithm Theory, vol. 3111 of Lecture
Notes in Computer Science, Springer-Verlag, 2004, pp. 493–503.

[8] Lars Arge, Laura Toma, and Norbert Zeh, I/O-efficient algorithms for planar digraphs, in
Proceedings of the 15th ACM Symposium on Parallelism in Algorithms and Architectures,
2003, pp. 85–93.

[9] Lars Arge and Norbert Zeh, I/O-efficient strong connectivity and depth-first search for
directed planar graphs, in Proceedings of the 44th IEEE Symposium on Foundations of
Computer Science, 2003, pp. 261–270.

[10] K. Booth and G. Lueker, Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences, 13
(1976), pp. 335–379.

[11] J. Boyer and W. Myrvold, Stop minding your P’s and Q’s: A simplified O(n) planar em-
bedding algorithm, in Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, 1999, pp. 140–146.

[12] A. Broder, R. Kumar, F. Manghoul, P. Raghavan, S. Rajagopalan, R. Stata andA.
Tomkins, and J. Wiener, Graph structure in the web, in Proceedings of the 9th Interna-
tional World-Wide Web Conference, 2000. http://www9.org.

[13] Adam L. Buchsbaum and Jefferey R. Westbrook, Maintaining hierarchical graph views, in
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 566–
575.

[14] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar-
ren Erik Vengroff, and Jeffrey Scott Vitter, External-memory graph algorithms, in
Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, January
1995, pp. 139–149.

[15] Krzystof Diks, Hristo N. Djidjev, Ondrej Sykora, and Imrich Vrto, Edge separators
of planar and outerplanar graphs with applications, Journal of Algorithms, 14 (1993),
pp. 258–279.

I/O-EFFICIENT PLANAR SEPARATORS 35

[16] Hristo N. Djidjev, Partitioning graphs with costs and weights on vertices: Algorithms and
applications, Algorithmica, 28 (2000), pp. 51–75.

[17] Hristo N. Djidjev and John R. Gilbert, Separators in graphs with negative and multiple
vertex weights, Algorithmica, 23 (1999), pp. 57–71.

[18] S. Even and R. E. Tarjan, Computing an st-numbering, Theoretical Computer Science, 2
(1976), pp. 339–344.

[19] Greg N. Frederickson, Fast algorithms for shortest paths in planar graphs, with applications,
SIAM Journal on Computing, 16 (1987), pp. 1004–1022.

[20] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran,
Cache-oblivious algorithms, in Proceedings of the 40th IEEE Symposium on Foundations
of Computer Science, 1999, pp. 285–297.

[21] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan, A separator theorem for graphs of
bounded genus, Journal of Algorithms, 5 (1984), pp. 391–407.

[22] M. T. Goodrich, Planar separators and parallel polygon triangulation, Journal of Computer
and System Sciences, 51 (1995), pp. 374–389.

[23] F. Harary, Graph Theory, Addison-Wesley, 1969.
[24] J. Hopcroft and R. E. Tarjan, Efficient planarity testing, Journal of the ACM, 21 (1974),

pp. 549–568.
[25] David Hutchinson, Anil Maheshwari, and Norbert Zeh, An external memory data struc-

ture for shortest path queries, Discrete Applied Mathematics, 126 (2003), pp. 55–82.
[26] A. Lempel, S. Even, and I. Cederbaum, An algorithm for planarity testing of graphs, in

Theory of Graphs: International Symposium (Rome 1966), New York, 1967, Gordon and
Breach, pp. 215–232.

[27] Richard J. Lipton and Robert Endre Tarjan, A separator theorem for planar graphs, SIAM
Journal on Applied Mathematics, 36 (1979), pp. 177–189.

[28] Ulrich Meyer, Peter Sanders, and Jop Sibeyn, eds., Algorithms for Memory Hierarchies:
Advanced Lectures, vol. 2625 of Lecture Notes in Computer Science, Springer-Verlag, 2003.

[29] Gary L. Miller, Finding small simple cycle separators for 2-connected planar graphs, Journal
of Computer and System Sciences, 32 (1986), pp. 265–279.

[30] Kameshwar Munagala and Abhiram Ranade, I/O-complexity of graph algorithms, in Pro-
ceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, January
1999, pp. 687–694.

[31] W. T. Tutte, Graph Theory, Cambridge University Press, 2001. First published by Addison-
Wesley, 1984.

[32] J. S. Vitter, External memory algorithms and data structures: Dealing with massive data,
ACM Computing Surveys, 33 (2001), pp. 209–271.

[33] Norbert Zeh, I/O-Efficient Algorithms for Shortest Path Related Problems, PhD thesis,
School of Computer Science, Carleton University, 2002.

