1/O-Efficient Algorithms for Shortest Path
Related Problems

By
Norbert Ralf Zeh

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfilment of
the requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for Computer Science
School of Computer Science
Carleton University

Ottawa, Ontario
April 28, 2002

© Copyright
2002, Norbert Ralf Zeh

The undersigned hereby recommend to
the Faculty of Graduate Studies and Research

acceptance of the thesis,

1/O-Efficient Algorithms for Shortest Path Related Problems
submitted by

Norbert Ralf Zeh

Dr. Frank Dehne
(Director, School of Computer Science)

Dr. Anil Maheshwari
(Thesis Co-Supervisor)

Dr. Jorg-Rudiger Sack
(Thesis Co-Supervisor)

Dr. Roberto Tamassia
(External Examiner)

Carleton University

April 28, 2002

To My Grandparents

Joseph and Gertrud Leschinsky

Wish you were here . ..

Abstract

In this thesis, we study I/O-efficient algorithms for problems related to computing
shortest paths in outerplanar and planar graphs and in spanner graphs for point sets
in d-dimensional space and sets of obstacles in the plane.

In particular, we show in the first part of the thesis that the following problems
can be solved in sorting complexity or even in a linear number of I/Os: outerplanarity
testing, outerplanar embedding, planarity testing, planar embedding, computing op-
timal e-separators of planar and outerplanar graphs, breadth-first search, depth-first
search, and single source shortest paths on planar and outerplanar graphs.

In the second part of the thesis, we show that the well-separated pair decompo-
sition of [37] can be computed in sorting complexity. We use this decomposition to
construct two types of Euclidean spanners of linear size for point sets in d dimensions.
The first spanner is derived in a natural manner from the well-separated pairs in the
decomposition. The second spanner is a supergraph of the first spanner. The partic-
ular structure of this spanner makes it possible to construct a data structure which
can be used to report spanner paths in an I/O-efficient manner. For sets of polygonal
obstacles in the plane, we use a subdivision derived from the fair split tree of a point
set to compute a planar Steiner spanner of the set of obstacles. Given the results
from the first part of the thesis and results from [2, 100, 177], the planarity of the
graph can be exploited to compute spanner paths I/O-efficiently and to preprocess
the graph so that shortest path queries can be answered and paths in the graph can

be traversed in an I/O-efficient manner.

As part of the results in Part I of the thesis, we present improved and much
simplified algorithms for computing maximal matchings and maximal independent
sets of general undirected graphs. As an additional application of the well-separated
pair decomposition, which is at the core of the algorithms presented in Part II, we
obtain nearly I/O-optimal algorithms for solving the K-nearest neighbor and K-

closest pair problems for point sets in d dimensions.

Acknowledgements

First of all, T would like to thank my two supervisors, Anil Maheshwari and Jorg-
Riidiger Sack, for their unfailing support without which I could not have completed
the work presented here.

Anil has become more of a friend than a supervisor in these over three years we
worked together. His ability to ask the right questions and then listen quietly gave me
room to develop my own ideas, guided by his experience expressed in those questions.
His broad interest made it virtually impossible to find a research question he would
not be interested in. His quiet, yet joyful, manner always made it a pleasure to work
with him. He taught me that the best way to get out of a dead end is to laugh about
it and then move on.

My co-authors Lars Arge, Tamdas Lukovszki, Anil Maheshwari, Ulrich Meyer,
Michiel Smid, and Laura Toma have been excellent fellow researchers to work with.

The members of my thesis examination committee deserve my thanks for carefully
reading this thesis and for their helpful and encouraging comments. I would also like
to thank them for making the defense an entirely pleasant and stress-free experience.
Roberto Tamassia deserves special thanks for bringing the previous results on dynamic
planarity testing discussed at the end of Chapter 9 to my attention.

I would like to thank Anil Maheshwari, Jorg-Riidiger Sack, Carleton University,
NSERC, and NCE Geoide for their financial support without which I could not have
afforded to study at Carleton University.

Though not directly contributing to my studies, there are a few people who helped

me in their own way to finish this thesis. Jason Morrison was my brother-in-arms.

vi

We helped each other to deal with our frustrations and shared each other’s excitement
about a new idea or an accepted publication. Jit Bose always helped when help was
needed, in his function as Graduate Advisor of the School of Computer Science and
as a friend.

My parents deserve my utmost gratitude for their loving care, for always believing
in my ability to finish this work, and for never reproaching me because my work so
often made me neglect family matters.

Last but not least, my fiancée Nelly Matsumoto has been with me more than half
of the time that I worked on this thesis. She has coped with my grumpiness when
immersed in my work. And she has done everything in her power to make my home
an excellent working environment. Most importantly though, her boundless love and
her unbelievable happiness, which she manages to transmit to everybody she meets,

gave me new energy every day.

vii

Contents

Abstract

Acknowledgements

1 Introduction

1.1 Motivation

3

1.2 Summary of the Thesis

Model of Computation
2.1 The Parallel Disk Model
2.2 Relation to Standard Models

221
2.2.2

RAM Algorithms o o
PRAM Algorithms L.

2.3 Related Models of Computation

2.4 Dealing with Performance Trade-offs

Preliminaries
3.1 I/O-Complexities o vttt
3.2 Definitions

3.2.1
3.2.2
3.2.3
3.2.4

Weighted Graphs and Shortest Paths
Connectivity of Graphs
Special Vertex and Edge Sets

viii

iv

vi

11
11
13
13
14
16
17

3.3

3.2.5 Forests and Spanning Graphs
3.2.6 Planarity and Outerplanarity of Graphs
3.2.7 Graph Separators and Graph Partitions
3.2.8 Geometric Graphs and Geometric Spanners

Problem Definitionso

4 Previous Work

4.1

4.2

Graph Algorithms oo L
4.1.1 Graph Searching o L.
4.1.2 Shortest Path Problems on Graphs
4.1.3 Planarity Testing and Planar Embedding
4.1.4 Graph Separators oL
Geometric Spanners and Proximity Problems
4.2.1 Closest Pairs o000
4.2.2 K-Closest Pairs 0.
4.2.3 All Nearest Neighbors

4.2.4 Geometric Spanners

I Graph Algorithms

5 Techniques for Solving Graph Problems

5.1

5.2

Data Structures Lo
5.1.1 An I/O-Efficient Queue
5.1.2 An I/O-Efficient Stack
5.1.3 The Buffer Tree—An I/O-Efficient Search Tree
5.1.4 An I/O-Efficient Priority Queue
Paradigms and Techniques
5.2.1 Data Structuring oo
5.2.2 Graph Contraction

5.2.3 Time-Forward Processing

31
32
32
34
39
40
41
42
43
44
45

49

8

9

5.24 List Ranking o o000 59

5.2.5 The Euler Tour Technique 61
5.3 Primitive Operations 62
Greedy Algorithms 66
6.1 Computing a Maximal Independent Set 68
6.2 Coloring Graphs of Bounded Degree. 68
6.3 Computing a Maximal Matching 69
Outerplanar Graphs 72
7.1 Outerplanarity Testing and Outerplanar Embedding 73

7.1.1 Outerplanar Embedding of Biconnected Graphs 74

7.1.2 Outerplanar Embedding—The General Case 79

7.1.3 Outerplanarity Testing 87
7.2 Triangulationo Lo L 90
7.3 Computing Separators of Outerplanar Graphs 98
7.4 DFS, BFS, and Single Source Shortest Paths 103
75 Lower Bounds oL 112
Planar Separators 116
8.1 Preliminaries Lo 116

8.1.1 Separator Theorems 116

8.1.2 Bipartite Planar Graphs 117
8.2 Overview of the Algorithm 119
8.3 The Graph Hierarchy 120
8.4 'The Separator Hierarchy 131
8.5 Computing the Final Partition 133
Planarity Testing and Planar Embedding 141
9.1 Triconnected Planar Graphs: A Characterization 142
9.2 Overview of the Algorithm, 143

9.3 Computing the Constraint Graphs. 147

9.4 The Constraint Graph of a Tricomp 148
9.5 The Constraint Graph of a Bicomp 156
9.5.1 Discarding Inessential Tricomps 158
9.5.2 Compressing Chains of Inessential Tricomps 160
9.5.2.1 The Constraint GraphofaFan 160

9.5.2.2 The Constraint Graph of a Core 165

9.5.3 The Constraint Graph of the Bicomp 167

9.6 The Constraint Graph of a Connected Component 169
9.6.1 Discarding Inessential Bicomps 170
9.6.2 Compressing Chains of Inessential Bicomps. 171
9.6.3 The Constraint Graph of the Component 173

9.7 The Approximate Graph 174
9.8 Constructing the Final Embedding 175
9.8.1 Extracting the Embeddings of Constraint Graphs 176
9.8.2 Replacing the Embedding of a Constraint Graph. 178
9.8.3 Constructing Local Embeddings 179
9.8.4 Updating the Interlaced Edge Cycles 183
9.8.5 [Iterative Replacement of Subgraphs 183
9.8.5.1 Updating the Augmented Constraint Graph 184

9.8.5.2 Adding Pointers to the Final Edge Lists 186

9.9 A Lower Bound for Planar Embedding 187
10 Applications of Planar Separators 190
10.1 Breadth-First Search and Single Source Shortest Paths 190
10.2 Separators of Low Cost and Edge Separators 193
10.2.1 Outline of the Algorithm 194
10.2.2 An I/O-Efficient Algorithm 196

xi

11 Depth-First Search in Planar Graphs 201

11.1 A Partition of the Graph into Layers 202
11.2 Depth-First Search ina Layer 205
11.3 Depth-First Search in a Biconnected Component 210
11.4 Depth-First Search in a Connected Planar Graph 213

IT Geometric Spanners and Proximity Problems 214
12 The Well-Separated Pair Decomposition and Applications 215
12.1 Definitionso 216
12.2 Searching a Hierarchy of Rectangles 219
12.2.1 The Topology Tree—A Review 220

12.2.2 The Topology Buffer Tree 223

12.2.3 Querying a Hierarchy of Rectangles 230

12.2.3.1 Deepest Containment Queries 230

12.2.3.2 Restricted Containment Queries 231

12.3 Constructing a Fair Split Tree 235
12.3.1 Constructing T oL 238

12.3.2 Constructing 7" 245

12.3.3 Constructing 7" 248

12.4 Constructinga WSPD o oL 249
12.5 Applications of the WSPD L. 253
12.5.1 Computing a t-Spanner 254

12.5.2 K-Nearest Neighbors 255

12.5.3 K-Closest Pairs 258

13 The Dumbbell Spanner 261
13.1 Dumbbell Trees o L 262
13.2 The Dumbbell Spanner 264
13.2.1 From Tree Paths to Spanner Paths 264

xii

13.2.2 A Spanner of Logarithmic Diameter

13.3 Constructing the Dumbbell Trees

13.3.1 The Length Grouping Property

13.3.2 The Empty Region Property
13.3.2.1 Bounding the Degree of the Proximity Graph

13.3.2.2 Computing the Proximity Graph

13.3.3 The Nesting Property

13.3.4 Constructing the Dumbbell Trees

14 A Planar Steiner Spanner

14.1 A Planar L;-Steiner Spanner for Point Sets
14.1.1 A Planar Subdivision
14.1.2 The Spanner

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles
14.2.1 A Modified Planar Subdivision
14.2.2 The Spanner
14.2.3 Computing the Subdivision
14.2.3.1 Computing Subdivision D3

14.2.3.2 Computing Subdivision Dy

14.2.4 Computing the Rungs
14.2.4.1 A Simplified Sweep-Line Data Structure

14.2.4.2 Buffering Updates

14.3 A Planar Lo-Spannero

15 Conclusions and Open Problems

Bibliography

xiii

284
285
286
287
291
292
296
301
301
303
304
308
312
321

325

327

Chapter 1

Introduction

1.1 Motivation

Strategies for systematically exploring graphs such as breadth-first search and depth-
first search are fundamental for the design and analysis of graph algorithms. Depth-
first search, for example, is applied in algorithms for solving such fundamental prob-
lems as computing the connected, biconnected, and triconnected components of a
given graph [98] and deciding whether a given graph is planar [97]. Shortest path
problems arise naturally in areas such as robotics, computational graph theory, and
computational geometry. Recent applications include the area of web modelling [32],
where depth-first search, breadth-first search, shortest paths, and connected com-
ponents are used to explore the structure of the web, and Geographic Information
Systems (GIS), where many fundamental problems can be solved using graph algo-
rithms. Our interest in shortest path problems arose in the context of computing
approximate shortest paths on triangular irregular networks [119, 120, 121], which
are a commonly used data structure to represent elevation models in GIS [115, 116].

Web modelling applications and GIS often have to handle massive data sets that
do not fit into the main memory of state-of-the-art computers. Recent web crawls, for
example, produce graphs of on the order of 200 million vertices and 2 billion edges [32].

Thus, most of the data is stored on disk, while only a small fraction of the data can

1.1 Motivation 2

reside in main memory at any point in time. In this situation the transfer of data
between internal and external memory, and not the internal memory computation, is
often the bottleneck of the algorithm, as the seek time of state-of-the-art hard-drives
is about six orders of magnitude larger than the time it takes to access a memory
location in main memory [147, 171].

The largest portion of the time it takes to transfer a data item between disk and
main memory is spent on positioning the read-write head of the disk. Once the head is
positioned, successive data items can be read at a reasonable speed [147, 171]. Thus,
it is desirable to transfer more than one data element per I/O-operation between disk
and main memory, in order to amortize the large seek time over a larger number
of transferred data items. This has lead computer architects and operating system
designers to partitioning hard disks into blocks of consecutive data items. One block of
data can be transferred between main memory and disk in a single I/O-operation. In
order to take advantage of the resulting higher throughput, an algorithm should use as
many elements read in an I/O-operation as possible in subsequent computation steps.
The gain achieved by grouping the data items into blocks is lost if the algorithm uses
only few data items per block it reads and discards the remaining items in the block.
Thus, in order to be I/O-efficient, an algorithm should organize its computation so
that it follows the blockwise manner in which the data is stored in external memory.
For most non-trivial problems the design of such algorithms is a challenging task.

Given that an I/O-efficient algorithm should use all data in a block transferred to
main memory before loading the next block into main memory, locality of access in
such algorithms is desirable, while random access is what is to be avoided. In geo-
metric computations, locality of access can often be ensured by sorting the geometric
objects by their positions along one of the coordinate axes and then processing them
in this order. For graph algorithms, on the other hand, it is difficult to devise a general
scheme to make an algorithm access the vertices of a graph in a blockwise fashion.

This is true because a vertex can be connected to any other vertex in the graph. That

1.1 Motivation 3

is, interactions between vertices that need to be explored by the algorithm are often
of a non-local nature.

As a result, earlier algorithms for solving graph problems I/O-efficiently spend
O(1) I/Os per vertex, while the use of I/O-efficient data structures such as queues,
stacks, search trees, and priority queues allows these algorithms to access the edges
of the graph in a blockwise fashion. For dense graphs, the number of 1/Os spent on
randomly accessing the vertices of the graph can be amortized over the larger number
of edges in the graph, so that these algorithms are I/O-efficient and often optimal for
dense graphs. For sparse graphs, however, such an amortization argument cannot be
applied, so that the design of 1/O-efficient algorithms for sparse graphs is a field with
a large number of challenging open problems.

The lack of success in designing algorithms that are I/O-efficient on sparse graphs
in general suggests that one should try to exploit the structure of special classes of
sparse graphs to design 1/O-efficient algorithms for these graph classes. This idea is
by no means new, as it has for instance been applied to obtain more efficient internal
memory algorithms for shortest path problems on planar graphs [73, 74, 111] or linear
time algorithms for problems on graphs of bounded treewidth which are NP-hard in
general [17, 27].

The first part of this thesis focuses on this idea. We propose I/O-efficient algo-
rithms for breadth-first search, depth-first search, shortest paths, and related prob-
lems on outerplanar and planar graphs. The choice of the problems is motivated by
the fact that they are fundamental. They are used as primitives in a wide range of
more complex graph algorithms. The choice of the graph classes is motivated by the
fact that they are well-studied. They exhibit sufficient structure to be exploited by
algorithms designed particularly for these graph classes and are still general enough
to hope that graphs arising in real applications may belong to these classes. For
example, the graphs studied in the work of [119, 120, 121] are close to being planar,
and algorithms for planar graphs can easily be adapted to handle these graphs.

1.2 Summary of the Thesis 4

The second part of this thesis focuses on shortest path problems of a geometric na-
ture: the construction of sparse geometric spanner graphs and the reporting of short
spanner paths between two query points in these graphs. In internal memory, geo-
metric spanners have been applied successfully to a number of proximity and shortest
path problems including the computation of approximate shortest paths among a set
of polygonal obstacles in the plane. The success of these graphs in internal memory
is based on the fact that they are sparse. Given a spanner which approximates the
complete Euclidean graph of a point set or the visibility graph of a set of polygonal
obstacles sufficiently well, a spanner path provides a good approximation of the geo-
metric shortest path between its two endpoints. If the spanner is sparse, a shortest
path in the spanner can be computed efficiently using Dijkstra’s algorithm.

In external memory, the situation is more complicated. While a reduction of the
number of edges in the graph certainly leads to a considerable speed-up of shortest
path algorithms, we would like to exploit the structure of the spanner graphs, in
order to either obtain algorithms that can compute spanner paths in the constructed
spanners in o(1) I/Os per vertex, or preprocess the spanner graph so that spanner
paths can be reported I/O-efficiently. These are the problems we address in the

second part of the thesis.

1.2 Summary of the Thesis

In this section, we summarize the results obtained in this thesis. The thesis is divided
into two parts. The first part of the thesis is dedicated to problems related to solving
breadth-first search (BFS), depth-first search (DFS), and the single source shortest
path (SSSP) problem in planar and outerplanar graphs. In the second part, we
present algorithms for computing sparse spanners of the complete Euclidean graph
of a point set in d-dimensional space and the visibility graph of a set of polygonal
obstacles in the plane. We also show how to build data structures for these spanners
so that approximate shortest path queries between two query vertices can be reported

efficiently. Next we discuss the results of each chapter in detail.

1.2 Summary of the Thesis

Problem

Previous Result

Our Result

General graphs

Maximal matching

(@) (%sortﬂV\)log2 %) 1]

O(sort(|V| + |E|)) [128]

Maximal independent set o(V]+ |E|) O(sort(|V| + |E]))
Coloring graphs of bounded | O(|V| + |E|) O(sort(|V| + |E|)) [126]
degree

Outerplanar graphs

Outerplanarity testing, O(N) [135] | O(perm(N)) [127]
outerplanar embedding

BFS, DFS, SSSP, weighted | O(sort(N)log N) [28, 43] | O(scan(N)) [127]
e-separator

Planar graphs

Planarity testing O(sort(N)log®> N) [112, 43] | O(perm(N)) [129]
Planar embedding O(sort(N)log N) [145, 43] | O(perm(N)) [129]
BFS, SSSP O(N) [111] | O(perm(N)) [12, 129]
DFS O(sort(N)log N) [105, 43] | O(perm(N)) [13, 129]
Weighted e-separator O(sort(N'*%) log® N) [83, 43] | O(perm(N)) [129]

Table 1.1
Graph algorithms.

Part I: Graph Algorithms

Our work on graph algorithms focuses mainly on problems on planar and outerplanar

graphs which are related to solving BFS, DFS, and the single source shortest path

problem on these graphs. However, we also propose a simple framework to derive

I/O-efficient solutions for a number of fundamental graph problems on general graphs

from the internal memory algorithms for these problems. The solutions for the latter

problems are used as primitives in our algorithms for planar graphs as well as in our

spanner algorithms discussed in Part II. Table 1.1 summarizes our results. Next, we

discuss them in detail.

1.2 Summary of the Thesis 6

Greedy algorithms. In Chapter 6, we study the properties a greedy graph algo-
rithm has to have, in order to be I/O-efficient. In particular, we want to simulate the
algorithm in O(sort(N)) I/Os using the time-forward processing technique. While it
is obvious that the simulation succeeds under the conditions we state, we still obtain
interesting new results using this approach. In particular, we obtain simple algo-
rithms for computing maximal independent sets and maximal matchings of arbitrary
graphs that outperform existing algorithms for these problems. We also obtain an
O(sort(N)) I/0 algorithm for (A + 1)-coloring a graph of degree A. This work has
been published in [126, 128].

Outerplanar graphs. In Chapter 7, we study the I/O-complexity of solving BFS,
DFS, and SSSP on outerplanar graphs, and of computing small e-separators of these
graphs. We show that these problems can be solved in O(scan(N)) I/Os, once an
outerplanar embedding is given, represented in an appropriate manner. We also
show that an outerplanar embedding can be obtained in O(perm(N)) I/Os and how
to augment the embedding algorithm to test any given graph for outerplanarity in
the same number of I/Os. We prove Q(perm(NN)) I/O lower bounds for all of these
problems, except outerplanarity testing and computing e-separators. Previous, more

complicated, versions of these results have been published in [127].

Planar graphs. In Chapters 8 through 11, we study the I/O-complexity of BFS,
DFS, and SSSP on planar graphs, and of computing small e-separators of these graphs.
In Chapter 8, we show that an unweighted e-separator of a planar graph can be
obtained in O(sort(N)) I/Os, provided that the available amount of main memory
is sufficiently large. In Chapter 9, we use this separator algorithm to develop an
O(perm(N)) I/O algorithm to test whether a given graph is planar and if so, compute
a planar embedding of the graph. We also show that Q(perm(N)) I/Os are required
to compute a planar embedding of a planar graph. In Chapter 10, we discuss how
to combine these two results with existing results of [9, 12] to solve SSSP and BFS

on planar graphs in O(sort(/V)) I/Os and to compute e-separators of low costs and

1.2 Summary of the Thesis 7

small e-edge separators of these graphs. In Chapter 11, we use the fact that a planar
embedding and a BFS-tree of a planar graph can be obtained in O(sort(/N)) I/Os, in
order to develop an O(sort(N)) I/O algorithm for DFS in planar graphs.

The results in Chapters 8 and 10 have been published in [129]. The result in Chap-
ter 9 has been published in [129]. The result in Chapter 11 has been published in [13].

Part Il: Geometric Spanners and Proximity Problems

The first part of the thesis deals with shortest path problems in abstract graphs
whose combinatorial structure stems from their close relation to geometric structures.
In Part II of the thesis, we turn to the problems of solving proximity problems and
answering approximate shortest path queries in geometric domains. In particular,
we show that a number of well-known geometric spanner graphs can be constructed
I/O-efficiently. We propose techniques to report spanner paths in these graphs in an
I/O-efficient manner. The core of these algorithms is an I/O-efficient procedure to
construct a well-separated pair decomposition of a point set in d dimensions. We use
this decomposition to solve the K-nearest neighbor and K-closest pair problems I/O-
efficiently. Tables 1.2 and 1.3 summarize our results. Next we discuss these results

in detail.

The well-separated pair decomposition and applications. The well-separated pair
decomposition (WSPD) [37] is a powerful tool to solve proximity problems in higher
dimensions. In particular, Callahan and Kosaraju [34, 35, 37, 38, 40] show that the
WSPD can be used to solve the K-nearest neighbor and K-closest pair problems in
O(Nlog N+ KN) and O(N log N + K) time, respectively. In Chapter 12, we present
O(sort(KN)) and O(sort(N + K)) I/O algorithms for these two problems, also using
the WSPD.

Another important application of the WSPD is the construction of sparse spanner
graphs. In particular, it has been shown in [35] that a ¢-spanner of linear size for a

point set in higher dimensions can be derived from a WSPD of the point set.

1.2 Summary of the Thesis 8

Spanner Previous Result Our Result

WSPD-spanner | O(sort(N)log N) construction, O(sort(N)) construction,

in R4 O(log N) path reporting [34, 43] | O(log N) path reporting [91]

Dumbbell O(N log N) counstruction, O(sort(N)) construction,

spanner in R? O(log N) path reporting [18] | O(log N/(DB)) path reporting
[126]

Planar Steiner | O(N log N) construction [16] | O(sort(N)) construction [126]

spanner, point

sets
Planar Steiner | O(N log N) construction [16] | O (D—A;g log s %) construction
DB
spanner, [126]
obstacles
Table 1.2

Algorithms to construct geometric spanners and report spanner paths in these graphs.

In [34, 35, 37, 38, 40], sequential and parallel algorithms for computing a WSPD
have been proposed. The sequential algorithm is based on a binary divide-and-
conquer approach, which can only be made to run in O(scan(N)log N) I/Os. Sim-
ulating the parallel algorithm using the PRAM-simulation technique of [43] leads to
an O(sort(N)log N) I/O algorithm. We show in Chapter 12 that an O(sort(N)) I/0
algorithm can be obtained by combining parts of both algorithms with existing
paradigms for I/O-efficient algorithms. This combination is non-trivial, and the
paradigms for I/O-efficient algorithms are applied in novel, non-standard ways. This

work has been published in [91].

The dumbbell spanner. A disadvantage of the WSPD-spanner constructed by the
algorithm in Chapter 12 is that we do not know how to report spanner paths between
query points [/O-efficiently. In Chapter 13, we propose an O(sort(/N)) I/O procedure
to construct the dumbbell spanner of [18], which is a supergraph of the WSPD-
spanner. This spanner has the desirable property that it can be decomposed into a

constant number of trees so that for any two points, there is a spanner path which is

1.2 Summary of the Thesis 9

Problem Previous Result Our Result

K-closest pairs O(sort(N 4+ K)log N) [34, 39, 43] | O(sort(N + K)) [91]

K-nearest neighbors | O(sort(KN)log N) [34, 39, 43] | O(sort(KN)) [91]
Table 1.3

Algorithms for fundamental proximity problems using the well-separated pair decomposition.

a subgraph of one of these trees. Thus, we can use existing techniques for reporting
paths in trees [100, 177] to report spanner paths in this graph. Our algorithm for
constructing the dumbbell spanner is based on the algorithm of [18]. Our contribution
is to show that the different phases of the algorithm of [18] can be performed I/O-
efficiently. This work has been published in [126].

A planar Steiner spanner. Even though the dumbbell spanner can be preprocessed
so that spanner paths can be reported I/O-efficiently, it is of little use when try-
ing to solve the approximate shortest path problem among polygonal obstacles. Its
hierarchical nature makes it difficult to construct this spanner for sets of polygonal
obstacles. In [125], it is shown that another ¢-spanner, namely the f-graph of a set of
polygonal obstacles can be constructed in O(sort(N)) I/Os. Unfortunately, it is not
known whether there exists a data structure that allows spanner paths in the #-graph
to be reported in an I/O-efficient manner.

The planar Steiner spanner of [16] tries to show a way out of this dilemma. It
can be constructed for sets of polygonal obstacles and has the desirable property
of being planar. Planarity is a useful property, as planar graphs allow the single
source shortest path problem to be solved I/O-efficiently. Also, planar graphs can
be preprocessed to answer shortest path queries and traverse paths in these graphs
I/O-efficiently [2, 100, 177]. On the other hand, it is known that it is in general
impossible to construct a planar graph with spanning ratio less than /2 for a given
point set. Hence, the construction in [16] reverts to adding additional (Steiner) points

to the point set, in order to achieve planarity. They show that a linear number of

1.2 Summary of the Thesis 10

such Steiner points is sufficient, so that the complexity of reporting spanner paths
does not increase by more than a constant factor.

In Chapter 14, we show how to construct the spanner of [16] for point sets and
sets of polygonal obstacles in the plane in an I/O-efficient manner. The construction
for point sets is straightforward, once the underlying planar subdivision has been
obtained. We argue that a fair split tree, which is the underlying structure of the
WSPD, can be used to obtain a planar subdivision which is essentially as good as the
subdivision used in [16]. Thus, the spanner for point sets can be constructed I/O-
efficiently. For sets of polygonal obstacles, our algorithm simulates the plane sweep
of [16]. However, the algorithm of [16] uses two interacting binary search trees to
maintain the sweep-line status. In particular, queries on one tree need to be answered
immediately to drive the updates of the other tree. This creates problems because
the buffer tree [11], which is the only known search tree which achieves optimal I/O-
performance in an offline setting, does not support immediate query responses. We
show that the sweep-line status can be maintained in a single buffer tree, thereby
allowing the plane-sweep to be performed I/O-efficiently. We also believe that the
internal memory algorithm obtained by replacing the buffer tree by a standard (a, b)-
tree is simpler than the original algorithm of [16]. This work has been published
in [126].

Chapter 2

Model of Computation

Since the analysis of the I/O-complexity of algorithms is not as well-established as the
analysis of their running time or their space requirements, we dedicate a few pages
to the discussion of the model of computation we adopt in this thesis. We investigate
its relationship to well-established models of computation, which allows a comparison
between existing algorithms for the problems we consider and our algorithms. We
also mention other models that have been proposed for analyzing the I/O-complexity
of algorithms, and justify our choice of a model. At the end of the chapter, we
present a simple technique to obtain an I/O-efficient algorithm from two I/O-efficient
algorithms that solve the same problem. The constructed algorithm achieves the

same performance as the faster of the two algorithms on the given input data.

2.1 The Parallel Disk Model

The first widely accepted model for analyzing the I/O-complexity of algorithms was
the I/0-model of Aggarwal and Vitter [6]. In this model, a single processor is equipped
with a random access (internal) memory capable of holding M data items and a
disk (external memory) of unlimited size. The disk is partitioned into blocks of
B consecutive data items. The processor is allowed to perform its computation only

on data items held in internal memory. In order to access other data items, the

11

2.1 The Parallel Disk Model 12

processor has to make room for these data items by transferring data from internal to
external memory and then loading the desired data items into internal memory. This
transfer of data is achieved by means of I/O-operations. In a single I/O-operation,
the processor can load up to D blocks of data into internal memory, or write up to
D blocks of data to disk, where D > 1 is the number of independent read-write heads
that can be used. The complexity of an algorithm in the I/O-model is the number of
I/O-operations it performs.

Note that the I/O-model completely ignores the time it takes to perform the ac-
tual computation. This is motivated by the fact that an I/O-operation is by about
six orders of magnitude slower than a computation step [147, 171]. Thus, an algo-
rithm that performs considerably less I/Os, even at the expense of performing more
computation steps, can be expected to be faster than an algorithm performing more
I/O-operations, as long as the amount of computation performed by the algorithm
stays within reasonable bounds.

The partitioning of the disk into blocks of size B is motivated by the fact that
the major share of time spent on an I/O-operation is spent on moving the read-write
head to the location of the block. Once the read-write head is at the right location,
it takes almost as much time to read B consecutive data items, as it takes to read a
single data item. Thus, existing file systems partition the disk into blocks of a certain
size, in order to amortize the seek time over a larger number of data items that are
read or written.

A characteristic of real disk systems which is not captured by the I/O-model is
that on a disk with multiple (independent) read-write heads, there is often only one
head per platter. Hence, every head is restricted to accessing the data stored on its
platter rather than being able to access any data item. Vitter and Shriver propose an
extension of the I/O-model, the Parallel Disk Model (PDM) [172], as a more realistic
model to describe existing disk systems which takes the restriction just described
into account. This model is now the most widely accepted model for the design and

analysis of I/O-efficient algorithms. It is also the model we adopt in this thesis. In

2.2 Relation to Standard Models 13

this model, D > 1 independent disks are attached to the processor. Each disk is
assumed to have a single read-write head. This is not a restriction, since the different
platters of disks with independent read-write heads can be modelled as separate disks.
As in the I/O-model, an I/O-operation can transfer up to D blocks of data between
internal and external memory; but now this is allowed only if each of these blocks is
read from or written to a different disk.

A number of simulation techniques have been proposed which allow algorithm
designers to benefit from the higher practicality of the PDM and the simplicity of the
I/O-model at the same time. Most notably, Sanders et al. [152] propose a randomized
technique to achieve optimality for algorithms designed in the I/O-model when run on
a machine with multiple disks. A simple, suboptimal, deterministic technique is disk-
striping [149]. Using this technique, the D disks are viewed as one large “virtual disk”
of block size DB, where the ¢-th block of the “virtual disk” contains the ¢-th block of
each of the D disks.

2.2 Relation to Standard Models

2.2.1 RAM Algorithms

The model. The most extensively studied and most broadly used model for design-
ing algorithms and analyzing their performance is the random access machine (RAM).
Algorithms designed for this model consist of a single thread of execution. That is,
the instructions of the algorithm are executed one at a time. Legal instructions are
elementary arithmetic and logical operations, instructions to read and write data
from or to memory, and elementary control constructs to realize branching, loops,
and recursion. Each of these operations is assumed to take O(1) time on a data item
representable by O(log N) bits, where N is the size of the input. Thus, in order to
estimate the time it takes an algorithm to solve a given problem, it is sufficient to

count the number of operations executed by the algorithm.

2.2 Relation to Standard Models 14

A number of variations of this model have been proposed, which can be distin-
guished based on the set of arithmetic operations that are considered primitives of
the machine. Since most operations of a more powerful RAM model can be simulated
at a small, though non-constant, cost in a weaker RAM model, these variations are
of limited relevance in the context of this thesis, as we ignore the computation cost of
our algorithms. Nevertheless, the operations performed by our algorithms fit in the
algebraic model of computation, which allows only multiplication, division, addition,
and subtraction as primitive arithmetic operations of the machine. In particular, the
floor function is not considered a primitive.

Our geometric algorithms assume that the machine words that can be manipu-
lated in O(1) time per operation are real numbers. This avoids the hassle of dealing
with precision problems. However, these issues would have to be addressed when

implementing our algorithms.

The 1/0-complexity of RAM algorithms. Since every computation step of a RAM
algorithm can access at most one data item which is not in internal memory, every
computation step of the algorithm takes at most one I/O. Hence, any RAM algo-
rithm which takes T'(N) time performs at most 7'()NV) I/Os. This simple observation
becomes important in combination with contraction or sampling techniques where
preliminary information about the given problem instance is gathered by applying a
RAM algorithm to a problem instance of reduced size. Due to the reduced size of the
sample or the contracted problem instance, even spending one I/O per computation
step is I/O-efficient in terms of the size of the uncontracted or unsampled problem

instance.

2.2.2 PRAM Algorithms

The model. The parallel random access machine (PRAM) is a generalization of
the RAM which allows programs to consist of several threads of execution. The

cost of an operation is the same as in the RAM model. However, the machine now

2.2 Relation to Standard Models 15

consists of multiple RAM-type processors with access to a global memory shared by
all processors. The processors are employed to collectively solve a given problem.
The time it takes to solve the problem is the maximal amount of time spent by
any one of the processors. Usually the goal is to design algorithms that take time

polylogarithmic in the size of the input using a polynomial number of processors.

The 1/0-complexity of PRAM algorithms. An interesting approach for design-
ing I/O-efficient algorithms has been proposed by Chiang et al. [43]. This approach
derives I/O-efficient algorithms from existing PRAM algorithms. It is based on the
observation that P simultaneous computation steps, one per processor, can be simu-
lated in O (sort(P) + D—]\%) I/Os! as follows: Assume that the contexts of the P pro-
cessors are stored consecutively on disk, and the content of the shared memory is
stored on disk. In order to simulate the next computation step of each of the proces-
sors, assume that this computation step consists of a read access to shared memory,
followed by an arithmetic or logical operation, which in turn is followed by a write
access to shared memory. Instead of accessing the data item for processor number
directly, the list of processor contexts is scanned in O (D—PB) I/Os to produce a list of
read requests. These read requests are sorted by their memory addresses. In a single
scan of the sorted list of read requests and the memory representation, the content of
the requested memory location is assigned to each read request. Now the list of read
requests is re-sorted by their originating processors. In a single scan of the sorted list
of read requests and the list of processor contexts, the requested data is transferred
to the contexts of the processors. Now each processor performs its local computation
and generates a write request. The list of write requests is processed in a manner
similar to the processing of read requests.

As each step of the PRAM algorithm can be realized in O (sort(P) + 25) 1/Os,
a P-processor PRAM algorithm which runs in 7(N, P) time can be realized in

lsort(N) = © (D—A; log i %) denotes the number of I/Os it takes to sort a list of N elements.

2.3 Related Models of Computation 16

O (T(N, P) (sort(P) + 2%)) I/Os. In particular, any O(log, N) time algorithm us-

ing a linear number of processors takes O(sort(/V)log, N) I/Os when simulated in

N

Tog v) Processors

external memory. Note, however, that even an algorithm using O (
will take O (D—]\; logy N) I/Os. If the computation steps of the algorithm correspond
to a recursion such that the amount of data processed in each recursive step as well
as the number of processors participating in each recursive step are geometrically
decreasing, the algorithm takes only O (sort(P) + 2%) I/Os. The latter special case
of this simulation technique has been employed to derive a number of I/O-optimal

graph algorithms for sparse graphs from existing PRAM-algorithms [43].

2.3 Related Models of Computation

While the PRAM model tries to model shared memory machines, coarse grained
models of parallel computation model message passing systems, where the only means
of communication between processors is the exchange of messages between them.
Coarse grained models include the BSP model [170], the BSP* model [21], and the
CGM model [57]. In [56], the EM-BSP, EM-BSP*, and EM-CGM models have been
proposed as extensions of the BSP, BSP*, and CGM models which allow the analysis
of the performance of parallel algorithms in terms of computation, communication,
and I/0.

Even though I/O-efficient algorithms in terms of the PDM can be obtained from
efficient EM-BSP, EM-BSP*, or EM-CGM algorithms by simulating multiple proces-
sors on a single processor, the relevance of work in these models to the work presented
here is limited for the following reasons: Few algorithms have been developed directly
in any of these models. Rather, efficient algorithms for the EM-CGM model are ob-
tained through a general, optimal, simulation of CGM-algorithms in this model. Only
few algorithms for more complicated graph or geometric problems have been devel-
oped in the BSP or BSP* model, as the large number of parameters used by these
models to describe the given machine make them difficult to use for analyzing the com-

plexity of non-trivial algorithms. Algorithms designed for the CGM model are often

2.4 Dealing with Performance Trade-offs 17

obtained by simulating an existing PRAM algorithm for a certain number of commu-
nication rounds and then applying a specialized CGM-algorithm to a subproblem of
reduced size or complexity. Applying the PRAM-simulation technique described in
the previous section directly to the PRAM algorithm, we obtain algorithms of com-

parable or better I/O-performance without cascading multiple simulation techniques
(PRAM — CGM — EM-CGM — PDM).

2.4 Dealing with Performance Trade-offs

In this section, we discuss a simple technique for the following problem: Given two
algorithms A; and A, that solve a problem P, it may be that there are some in-
stances of problem P where algorithm A; performs better and some instances where
algorithm A, outperforms algorithm A4;. We want to construct an algorithm A
which achieves the performance of the better of the two algorithms on the given in-
put instance without knowing in advance which algorithm will perform better. The

following lemma provides the tool to achieve this.

Lemma 2.1 Given two algorithms A; and A, that solve a problem P in Z;(N) and
Zy(N) 1/Os using S1(N) and S2(N) space, respectively, there exists an algorithm A
that solves problem P in O(min(Z;(N),Zy(N))) I/Os and O(S1(N) + Se(N)) space,
provided that min(Z;(N),Zo(N)) = Q(scan(V)).

Proof. Given an instance P of problem P, we create two identical copies P; and P, of
instance P. This takes O(scan(/N)) I/Os. Now we run algorithm A; on instance P,
and simultaneously run algorithm A, on instance P,. When algorithm A; cannot
proceed without performing an I/O-operation, we let algorithm 4; perform this I/O-
operation and then switch to algorithm A;. When algorithm 4, cannot proceed with-
out performing an I/O-operation, we let algorithm A, perform this I/O-operation and
then switch back to algorithm 4;. We stop this procedure as soon as one of the two
algorithms finishes. The I/O-complexity of this procedure is O(min(Z;(N), Zy(N))).
The required space is O(S;(N) + Sa(N)). O

Chapter 3

Preliminaries

In this chapter, we introduce the common terminology and notation used throughout
the thesis. Specific definitions that apply only to particular chapters are provided as

needed in each chapter.

3.1 1/0-Complexities

We use the following shorthands for the I/O-complexities of sorting, permuting, and
scanning a list of NV data items:
N N
sort(N) = © (— log E)
perm(N) = ©(min(sort(N), N))

i) (2)

These shorthands have been introduced in the literature because the I/O-complexities
of these operations arise frequently in the analysis of algorithms.

Firstly, scanning, sorting, and permuting a list of data items are fundamental
operations that arise as subproblems in many algorithms. In particular, algorithms
that are designed to be I/O-efficient often sort the data in an appropriate order and

then scan the list of data items in their order of appearance, while an equivalent RAM

18

3.2 Definitions 19

algorithm would be allowed to access the data items in a random fashion without
paying a performance penalty.

Secondly, these I/O-complexities have important relations to well-known time-
complexities in the RAM model. In particular, sort(/N) is the equivalent of the
©(Nlog N) time bound for sorting N data items. Usually, if a problem can be
solved in O(N log N) time, we hope to be able to design an algorithm which solves
this problem in O(sort(/V)) I/Os. The scanning bound is the equivalent of the linear
time bound for this problem in the RAM model. Hence, we refer to scan(N) as a
linear number of I/Os, while we consider N I/Os to be superlinear. This point of view
is reasonable because an algorithm that spends NV I/Os to solve a problem of size N
does not utilize the throughput of the I/O-system. Finally, the permutation bound
is interesting, as it is superlinear, while permuting N data items in the RAM model
takes linear time. This implies that a superlinear lower bound can be shown for the
number of I/Os it takes to solve many non-trivial problems that can be solved in lin-
ear time in the RAM model, only because these problems contain some permutation

problem as a subproblem.

3.2 Definitions

In this section, we introduce standard definitions and concepts related to graphs.
These concepts are well-established in the literature. Even though different definitions
are used for the same concepts in the literature, they are all similar to the ones
presented here. Our definitions are closest to the ones used in [69, 93]. The definition

of the triconnected components of a graph is taken from [97].

3.2.1 Graphs

A (multi)graph is an ordered pair G = (V, E) of a set V and a multiset E. Graph G is
simple if F is a set, i.e., every element of E appears exactly once in E. The elements

of V' are the vertices of G; the elements of F are its edges. An edge e € E is a pair of

3.2 Definitions 20

vertices v,w € V, v # w. If the pair is ordered, we write e = (v, w) and call edge e
directed. Otherwise, we write e = {v,w} and call edge e undirected. Graph G is
directed or undirected if all its edges are directed or undirected, respectively. If G is
not simple, it may be necessary to distinguish between multiple edges with the same
endpoints. To do this, we assign a unique number i to every edge {v,w} or (v, w) and
refer to this edge by the triple (v, w,). If G is undirected, triples (v, w,) and (w, v,)
refer to the same edge. For an edge e = (v, w) or e = {v, w}, vertices v and w are
the endpoints of e. If e is directed, v is the source and w is the target of e. Vertices
v and w are said to be adjacent. Edge e is incident to v and w.

For a vertex v of an undirected graph G = (V, E), the neighborhood of v is the
set 'g(v) = {w € V : {v,w} € E}. The degree deg;(v) of v is defined as the
number of edges incident to v. For a vertex v of a directed graph G = (V, E), the
in-neighborhood of v is the set I'(v) = {u € V : (u,v) € E}. The out-neighborhood
of v is the set I'f(v) = {w € V : (v,w) € E}. The neighborhood of v is the
set Tg(v) = Tgz(v) UTE(v). The in-degree degg(v) of v is the number of edges
with target v. The out-degree degg,(v) of v is the number of edges with source v. The
degree of v is defined as deg(v) = degg(v)+degd (v). If the graph G is clear from the
context, we write I'(v), deg(v), ... instead of I'¢(v),degs(v),.... The degree deg(Q)
of a graph G is defined as the maximum degree of all its vertices.

A subgraph of a graph G = (V, E) isa graph H = (W, F) with W C V and F C F.
For a subset W C V of vertices, the subgraph induced by W is the graph G[W] =
(W, {{v,w} € E:v,w € W}). Analogously, the subgraph induced by a subset F C F
of edges is the graph G[F] = ({v,w : {v,w} € F} F). For a set W of vertices, we
define the graph G — W as the graph G[V \ W]. For a single vertex v, we define
G —v=G—{v}. For aset F of edges, G — = G[E\ F|. For a graph H = (W, F),
we define G — H = G — F. For a graph G = G; U G5 such that V(G1) NV (Gs) =W
and a graph G} with V(G)) N V(G2) = W, let G[G1/G"] be the graph G U Go.
Intuitively, G|G1/G"] is the graph obtained from G by replacing subgraph G; with
graph G. Similar definitions apply for directed graphs.

3.2 Definitions 21

A path is a graph P = (V, E), where V = {vg,..., v} and E = {{v;_1,v;} : 1 <
i < k}. In this case, we write P = (v,...,vs) and call vy and vy the endpoints
of P. If P is directed, we call vy the source and vy the target of P. For a path
P = (vg,...,v;) and two indices 0 < i < j < k, we define P(v;,v;) as the subpath
(viy ..., v;) of P. We call path P simple if vertices vy, . .., vx_1 and vertices vy, ..., vy
are pairwise distinct. Path P is a cycle if vg = vg. In this case, we write P =
(vo,-..,vk—1). The size of a path is the number of edges in P. Directed paths and
cycles are defined analogously.

A tree T = (V, E) is an undirected graph with |E| = |V| —1 and so that for every
pair of vertices v, w € V, there is a path in 7" with endpoints v and w. In particular,
tree T does not contain cycles, and the path between any two vertices v and w is
unique. A subtree of T is a subgraph of 7" which is itself a tree. A tree T = (V, E)
is rooted if it has a distinguished root verter r. In this case, we call a vertex v an
ancestor of another vertex w, and w a descendant of v, if v is on the unique path
from r to w in T. We call v the parent of w, denoted by pr(w), and w a child of v,
if v is an ancestor of w and {v,w} € E. For two vertices v and w, the lowest common
ancestor LCAr(v,w) is the vertex u € T such that v is an ancestor of v and w, and
no descendant of u has this property. For a vertex v € T, we define T'(v) to be the
smallest subtree of T" which contains all descendants of v. For a subtree T" of T, we
define the root of T' as the unique vertex r' € T so that pr(r') & T".

A graph G = (V,E) is bipartite if V. = Vi UV, Vi NV, = B, and for every
edge {v,w} € E, v € V; and w € V. In this case, we write G = (V1, V4, E). Observe
that every cycle in a bipartite graph is of even size.

We denote the complete graph with n vertices as K, = ({1,...,n} : {{i,5} :
1 <i < j <n}). We denote the complete bipartite graph with m + n vertices as
Kpn={1,....m}5,{m+1,....om+n},{{i,j+m}:1<i<mand1<j<n}).

The contraction of an edge e = {v,w} in a graph G = (V, F) is the operation of
replacing vertices v and w by a new vertex x and every edge {y,u} € E, y € {v,w}

and u & {v,w}, by an edge {z,u}.

3.2 Definitions 22

3.2.2 Weighted Graphs and Shortest Paths

We call a graph G = (V, E) weighted if we are given an assignment w : V' — R or
w : E — R of weights to the vertices or edges of GG. If necessary, we distinguish
between these two possibilities by calling G vertex-weighted or edge-weighted. For
a vertex-weighted graph G, the weight of a subgraph H of G is defined as w(H) =
Y wen w(v). Similarly, w(H) = > ., w(e) for an edge-weighted graph G. For a
path P in an edge-weighted graph G, we also refer to the weight of P as its length.
We call a subgraph of G positive or negative if its weight is positive or negative,
respectively.

Given an edge-weighted graph G = (V, E), a shortest path from a vertex v to a
vertex w is a path of minimum length among all paths with source v and target w
in G. Such a shortest path is well-defined only if G does not contain a negative cycle
which contains a vertex on a path from v to w. In this case, we define the distance
from v to w in G as distg (v, w) = w(Il(v,w)), where [I(v, w) is a shortest path from v

to w.

3.2.3 Connectivity of Graphs

An undirected graph G = (V, E) is connected if for every two vertices v,w € V,
there exists a path P C G with endpoints v and w. The connected components of a
graph G = (V, E) are its maximal connected subgraphs.

For a connected graph G = (V, E), a vertex v € V is a cutpoint of G if G — v is
disconnected. Graph G is biconnected if it does not have any cutpoints. The bicon-
nected components or bicomps of a connected graph GG are the maximal biconnected
subgraphs of G. For a disconnected graph, we define its bicomps to be the bicomps of
its connected components. The bicomps and cutpoints of a connected graph G define
a tree Thic(G), which we call the bicomp-cutpoint-tree of G. Let vy, ..., v, be the cut-
points of G, and By, . .., B, the bicomps of G. Then the vertex set of T};.(G) contains
vertices vy,..., v, as well as ¢ bicomp vertices Bi, ..., 3. There is an edge {v;, 5;}

in Tyic(G) if v; € B;. It is easy to verify that T (G) is indeed a tree. For two vertices

3.2 Definitions 23

v € B; and w € Bj, every path from v to w in G contains all cutpoints on the path
from f; to B; in Ti,ic(G). Often, tree Th;.(G) is rooted by choosing a bicomp vertex 3,
as the root of Tp;i.(G). In this case, we call B, the root bicomp of G. The parent
cutpoint of a bicomp B; # B, is the cutpoint v so that v = p(8;). The parent bicomp
of bicomp B; is the bicomp B; so that §; = p(p(5;))-

An ear-decomposition £ = (Py, ..., P) of a biconnected graph G is a decompo-
sition of GG into simple paths Py, ..., P, such that U?:o P; = G, P consists of a
single edge, the endpoints of every path P;, ¢« > 1, are in GG;_1, and no other vertices
of P; are in G; 1, where G; | = U;;%PJ The paths P; are called ears. An open
ear-decomposition is an ear-decomposition such that for every ear, the two endpoints
are distinct. We call an ear P;, j > 0, trivial if it consists of a single edge. Otherwise,

we call ear P; non-trivial. Ear Py is always considered non-trivial.

Lemma 3.1 (Whitney [175]) A graph G = (V, E) is biconnected if and only if it

has an open ear-decomposition.

Given a graph G = (V| E) and a subgraph H = (W, F) of G, the bridges of H are
defined as follows: Consider the connected components of G — V(H). Let K be such
a component. Then K defines a non-trivial bridge of H which is the subgraph of G
induced by all edges incident to vertices in K. A trivial bridge is an edge in G — H
with both endpoints in H. The trivial and non-trivial bridges are the bridges of H
in G.

A pair {v,w} of vertices of a biconnected graph G is a separation pair if graph
H = ({v,w}, 0) has at least two non-trivial bridges in G or at least three bridges, one
of which is non-trivial. We refer to the bridges of H as the bridges of pair {v, w}.
If pair {v,w} has at least two non-trivial bridges, we call {v,w} a non-trivial sep-
aration pair. If G is a simple graph, then all separation pairs of G are non-trivial.
Graph G is triconnected if it does not have a separation pair.

Given a separation pair {v, w} with bridges By, ..., By, the split s(v,w,) chooses
two graphs B’ and B" such that B' = B, U---U By, B" = By, U---U By,
|E(B'")| > 2and |E(B")| > 2, and creates two graphs G = (V(B'), E(B")U{(v,w,i)})

3.2 Definitions 24

and Gy = (V/(B"), E(B")U{(v,w,i)}) from G. Edge (v, w, 1) is called the virtual edge
corresponding to split s(v, w,). The split components of G are defined as the graphs
obtained by recursively splitting G; and G5 until there are no more separation pairs.
There are three types of split components: (1) triconnected simple graphs, (2) triple
bonds (two vertices with three edges between them), and (3) triangles. The split
components of a biconnected graph are not necessarily unique.

The merge m(v,w,i) of two graphs G; and Gy sharing a virtual edge (v, w, 1)
constructs a graph G = (V(G1) UV (Gs), (E(G1) \ {(v,w,9)}) U (E(G2) \ {(v,w,1)}))
from G; and G,. A graph G can be reconstructed from its split components by
recursive application of merge operations. To construct the triconnected components
of a biconnected graph G, partition GG into a set of split components, then merge
bonds sharing virtual edges until no two bonds share a virtual edge, and merge
simple cycles sharing virtual edges until no two simple cycles share a virtual edge.
The resulting graphs are the triconnected components or tricomps of G. If G is not
biconnected, the tricomps of G are the triconnected components of its bicomps. The
triconnected components of G are unique and of three types: (1) triconnected simple
graphs, (2) bonds, and (3) simple cycles. The separation pairs corresponding to the
remaining virtual edges are the Tutte pairs of G.

The recursive definition of the tricomps of a biconnected graph G gives rise to a
tree Ti,i(G), which we call the tricomp tree of G. If Ty, ..., 7, are the tricomps of G,
T4i(G) contains vertices 71,...,7,. There is an edge {7;,7;} in T3,i(G) if tricomps
7i and 7; share a virtual edge. In particular, there exists a bijection between the edges
of Ti;i(G) and the Tutte pairs of G. Every path between two vertices v € 7; and w € T
contains at least one member of each of the Tutte pairs corresponding to the edges

on the path from 7; to 7; in T}, (G).

3.2.4 Special Vertex and Edge Sets

An independent set is a subset I C V of the vertices of graph G = (V, E) so that no

two vertices in I are adjacent in G. Independent set I is mazimal if there is no set I’,

3.2 Definitions 25

I C I' CV, which is independent. That is, every vertex in V'\ I is adjacent to at least
one vertex in I. A matching is a subset M C E of the edges of graph G = (V, E) so
that no two edges in M share an endpoint. Matching M is mazimal if there is no
matching M', M C M’ C E. That is, every edge in F'\ M shares an endpoint with
at least one edge in M.

3.2.5 Forests and Spanning Graphs

A forest F' is a graph whose connected components are trees. We call F' rooted if
every tree in F' is rooted.

A spanning graph of a connected graph G = (V, E) is a connected subgraph H =
(V,F) of G. If H is a tree, we call H a spanning tree of G. A spanning forest of
a graph G is a subgraph of G which contains a spanning tree for every connected
component of G.

A spanning graph H = (V| F) of an edge-weighted graph G = (V, E) is called a
t-spanner of G, for some ¢t > 1, if for any two vertices v and w in G, disty (v, w) <
t - distg(v, w). We call the parameter ¢ the spanning ratio or stretch factor of H.
A path P of length at most t - distg(v, w) from v to w in H is called a t-spanner
path. For every pair of vertices v, w € G, consider the t-spanner path in H from v
to w with the minimum number of edges. Then the spanner diameter of H is the
maximal number of edges of these shortest t-spanner paths between all pairs of vertices

v,w € G.

3.2.6 Planarity and Outerplanarity of Graphs

Graphs as defined above are abstract combinatorial objects. They are usually visual-
ized by drawing them in R? or R?, representing every vertex v as a distinct point & (v)
and every edge e with endpoints v and w as a contiguous curve &(e) with endpoints
E(v) and &(w). We call a drawing £(G) of graph G in the plane a topological pla-
nar embedding of G if for any two edges e; = {v,w} € G and e; = {z,y} € G,
E(er) NE(er) = {E(v), E(w)} N {E(x),E(y)}. That is, no two edges intersect, except

3.2 Definitions 26

at their endpoints. We call graph G planar if it has a topological planar embedding.
Given a topological embedding £(G) of G, the faces of £(G) are the maximal con-
nected regions of R? — £(V U E). For a face f, the boundary of face f is the set of
vertices v and edges e so that £(v) and £(e) are contained in the closure of face f.
A triangulation A(G) of a planar graph G is a planar supergraph of G so that all faces
in a planar embedding of A(G) are bounded by three edges. The dual G* of a planar
embedding G of a planar graph G is defined as follows: G* contains a vertex f* for
every face f of G. There is an edge {ff, f;} in G* if faces f, and f, share an edge,
i.e., there is an edge which is on the boundary of both f; and f,.

A graph G = (V, E) is outerplanar if it has a topological embedding £(G) so
that there exists a face f of £(G) which has all vertices of G on its boundary. We
refer to f as the outer face of G. Euler’s formula states that for every planar graph,
|V|+ |F| — |E| = 2. This implies in particular that |E| < 3|V | — 6, for every planar
graph, and |E| < 2|V| — 3, for every outerplanar graph.

Combinatorial characterizations of these two classes of graphs are provided by
the following two results, where two graphs are homeomorphic if they can both be
obtained from the same graph using edge splits. An edge split is the operation of

replacing an edge {v, w} by two edges {v,z} and {z, w}, where z is a new vertex.

Theorem 3.1 (Kuratowski, e.g. [69]) A graph G = (V, E) is planar if and only if

it does not have a subgraph which is homeomorphic to K5 or Kj 3.

Theorem 3.2 (e.g. [93]) A graph G = (V, E) is outerplanar if and only if it does

not have a subgraph which is homeomorphic to K4 or Ky 3.

Using Theorems 3.1 and 3.2, it is not hard to show that every graph which can be
obtained from a planar or outerplanar graph by means of edge contractions is itself
planar or outerplanar, respectively. Note that an edge contraction is not the inverse
operation of an edge split.

Most algorithms for planar and outerplanar graphs do not require a topological

embedding of these graphs. They only use the order of the edges incident to every

3.2 Definitions 27

vertex clockwise around that vertex which is induced by the topological embedding.
A combinatorial embedding G of a planar or outerplanar graph G is a representation
of the orders of edges around all vertices of G which are induced by a topological
embedding of G. It is easy to see that for two topological embeddings £, (G) and &(G)
of a graph G which correspond to the same combinatorial embedding G of G, there
exists a bijection between the faces of £(G) and £ (G) so that two corresponding
faces have the same boundary. Hence, we can define the faces of G as the faces of
any topological embedding consistent with G.

Since a combinatorial embedding is sufficient for most graph algorithms, we re-
strict our attention to combinatorial embeddings only and refer to them simply as

embeddings in the rest of this thesis.

3.2.7 Graph Separators and Graph Partitions

We call a set S C V of vertices an e-vertez separator of a weighted graph G = (V, E),
for 0 < € < 1, if no connected component of G — S has weight more than ew(G).
Similarly, an e-edge separator of G is a set S C E of edges so that no connected
component of graph G' = (V,E \ S) has weight exceeding sw(G). Since we are
interested mainly in vertex separators in this thesis, we refer to vertex separators
simply as separators. If G is unweighted, we assume that every vertex of G has
weight one.

It is a well-known fact that every tree has a %—separator of size one. Every out-
erplanar graph has a %—separator of size two. Lipton and Tarjan [124] show that
every planar graph G = (V, E) has a %—separator of size O (\/N), where N = |V|.
Recursive application of these results implies that every tree or outerplanar graph
has an e-separators of size O(1/¢), for any 0 < € < 1, and every planar graph has an
e-separator of size O (\/]T)

Let h > 0 be an integer, ¢ = h/N, and S be an e-separator of a graph G. Let
Hi,...,H, be the connected components of G —S. Then an h-partition of G is a
pair P = (S, {G,...,G,}) with the following properties:

3.2 Definitions 28

() U, Gi=G S,

(i) GiNnGj =0, forall 1 <i4,5 <r,i#j,
(iii) For all 1 <4 < g, there exists an index 1 < j < r, so that H; C G, and
(iv) [V(Gy)| < h,foralll <i<r.

Intuitively, every graph G is obtained by merging a number of connected components
of G — S. For every graph G;, 1 < j < r, we define the boundary of G; as the
set 0G; C S of separator vertices that are adjacent to vertices in Gj.

If G is a planar graph, we call an h-partition P = (S, {G1,...,G.}) normal if r =
O(N/h) and 3, |8G;| = O (N/\/E). A normal h-partition P = (S, {G1, ..., G,})
is c-proper, for some constant ¢, if [0G;| < evh, for all 1 < i < r. We call P proper
if P is 1-proper. Finally, let R; = G[V(G;) U 0G|, for all 1 < i < r. Then we call
an h-partition P = (S,{G4,...,G,}) regular if for all 1 < i <r, one of the following

conditions holds:
(i) Graph R; is connected, or

(ii) There are at most two indices 1 < h < j < r, i ¢ {h,j}, so that R, N Ry, # ()
and R; N R; # (0. In this case, R, and R, are connected.

It can be shown that every planar graph has a proper h-partition and every planar

graph of bounded degree has a regular proper h-partition (see e.g. [73]).

3.2.8 Geometric Graphs and Geometric Spanners

We call an edge-weighted graph G' = (V, E) a geometric graph if each of its vertices has
an associated location in R¢, and every edge e = {v,w} € E has a real weight w(e) =
dist, (v, w), where dist,(v, w) denotes the distance between points v and w in the
L,-metric. For two closed point sets A and B, let dist,(A, B) = min{dist,(a,b) : a €
A and b € B}. We denote the length of a line-segment e in the L,-metric by |e||,.

3.3 Problem Definitions 29

For a point set S C R?, the complete Euclidean graph £(S) is the geometric graph
E(S) = (S, {{p,q} : p,q € S}). The lengths of the edges in £(S) are measured in the
Lo-metric. A t-spanner of point set S is a t-spanner of £(S5).

For a set P of polygonal obstacles in the plane with vertex set S, we define the
visibility graph V(P) as the subgraph of £(S) which contains an edge {p, ¢} if and
only if this edge does not intersect the interior of an obstacle in P. A t-spanner of P

is a t-spanner of V(P).

3.3 Problem Definitions

Since we consider breadth-first search, depth-first search, and the single source short-
est path problem on different classes of graphs, we define these problems here and do
not repeat these definitions when discussing our algorithms for solving these problems
on different classes of graphs.

In order to define these problems, we have to introduce a few definitions related
to spanning trees of connected graphs. Given a connected graph G = (V, E) and a
spanning tree T = (V, F') of G, we call every edge in F' a tree edge and every edge
in £\ F a non-tree edge of G. If T is rooted at some vertex r, we call a non-tree
edge {v, w} a back-edge if w.l.o.g. v is an ancestor of w. Otherwise, we call edge {v, w}
a cross-edge. The level £r(v) of a vertex v € T is the number of edges in the unique

path from r to v in T'.

Breadth-first search. A breadth-first spanning tree or BFS-tree of a connected graph
G is a rooted spanning tree of G so that for any edge {v, w} € G, |tr(v) —br(w)| < 1.
In particular, there are no back-edges w.r.t. 7' in G if G is simple. Breadth-first search

or BFS is the problem of computing a BFS-tree of a given graph G.

Depth-first search. A depth-first spanning tree or DFS-tree of a connected graph G
is a rooted spanning tree of G so that all non-tree edges in G' are back-edges w.r.t. T'.

Depth-first search or DFS is the problem of computing a DFS-tree of a given graph G.

3.3 Problem Definitions 30

Single source shortest paths. A shortest path tree of a connected edge-weighted
graph G with source s is a spanning tree 7' of G rooted at vertex s so that for every
vertex v € G, the path in T from s to v is a shortest path from s to v in G. The
single source shortest path (SSSP) problem is the problem of computing a shortest

path tree for a given graph G' and a source vertex s.

Chapter 4

Previous Work

In this chapter, we give an overview of existing results in the areas of research we
address. Section 4.1 discusses previous results on solving the graph problems we
consider. Section 4.2 discusses existing results on computing spanners and proximity
problems.

The results in every section are divided into sequential algorithms, parallel al-
gorithms, and external memory results. Sequential algorithms are included mostly
for historical completeness, and for the sake of comparison, as they do not lead to
I/O-efficient solutions in general. The discussion of parallel algorithms does not dis-
tinguish between the different types of PRAMs (i.e., EREW, CREW, CRCW), as
the different restrictions are irrelevant when these algorithms are simulated using
the PRAM simulation of [43] (see Section 2.2.2). Given the general analysis of the
I/O-efficiency of PRAM algorithms provided in Section 2.2.2, we do not explicitly
state the I1/O-efficiency of the PRAM algorithms we discuss, unless the number of
processors used and the amount of data processed in each step of the algorithm is
geometrically decreasing.

Similarly, a sequential algorithm running in O(7T(/N)) time can be assumed to take

O(T(N)) I/Os unless stated otherwise.

31

4.1 Graph Algorithms 32

4.1 Graph Algorithms

4.1.1 Graph Searching

Breadth-first search (BFS) and depth-first search (DFS) are two fundamental tech-
niques for systematically exploring a graph. Both techniques can be realized in linear
time by very simple algorithms; yet they provide valuable information about the
given graph. Most notably, all existing separator algorithms are based on breadth-
first search. Depth-first search has been used to derive linear-time algorithms for
a number of fundamental problems such as connectivity, biconnectivity [163], and
triconnectivity [97] of graphs, as well as planar embedding [98]. Unfortunately, the
vertex access patterns of these two search strategies are inherently sequential and
seem to be inherently random. Reif [146] shows that ordered DFS is P-complete,
thus not admitting any algorithm that solves this problem in polylogarithmic time
with a polynomial number of processors, unless every problem solvable in polynomial
time can be solved in polylogarithmic time using a polynomial number of processors.
No truly efficient parallel or I/O-efficient algorithms are known for these two problems
on general graphs. We discuss important previous results next.

When trying to compute a BFS-tree of a given graph in parallel, the problem
does not appear much simpler than solving the more general single source shortest
path problem on the given graph. Consequently, not much work has been done on
computing BFS-trees in parallel. Ghosh and Bhattacharjee [85] present a parallel
algorithm that computes a BFS-tree of an arbitrary graph in O(log|V|logd) time
using O(|V|®) processors, where d is the diameter of the graph. In [109], the number
of processors has been reduced to O(|V|*/log|V]). Gazit and Miller [84] present
an algorithm for computing a BFS-tree of a given graph in O(log”|V|) time using
O(|V|*376) processors. For shortest path algorithms see Section 4.1.2.

A number of parallel DFS-algorithms have been proposed. Using the same frame-
work as for their BFS-algorithm, Kim and Chwa [109] obtain an O(log |V'|logd) time
algorithm which uses O(|V|?/log |V|) processors. Aggarwal and Anderson [4] present

4.1 Graph Algorithms 33

a randomized algorithm which computes a DFS-tree for a given undirected graphs
in O(Taa(|V]) log® |V|) time using O(Paar(|V])) processors, where Ty (|V]) and
Py (|V]) are the time and number of processors required to find a minimum weight
perfect matching of a |V|-vertex graph with maximum edge weight |V|. In [5], the
result has been generalized to directed graphs, leading to an algorithm that com-
putes a DFS-tree for such graphs in O(log® |V |(Tarar(|V]) + log® [V])) time using
O(Pya(|V]) + M(|V])) processors, where M(N) is the sequential time complexity
for multiplying two N X N integer matrices. For planar graphs, a number of im-
proved DFS algorithms have been proposed. The algorithm of Smith [162], though
generally inefficient, provided the fundamental idea of using cycle separators for com-
puting a DFS-tree of a planar graph. In [101, 156], O(log|V'|) time and linear pro-
cessor algorithms for computing a cycle separator are presented, thereby leading to
O(log?|V|) time DFS-algorithms, using the same number of processors.! He and
Yesha [94] present another planar DFS-algorithm with the same time and processor
bounds. In [105], the processor bound for finding a simple cycle separator has been
reduced to O(|V|/log|V|), thereby leading to an O(log® |V|) time DFS-algorithm for
planar graphs which uses O(|V'|/log|V'|) processors. Hagerup [92] presents an inter-
esting idea of using BFS in the face incidence graph to derive a DFS-tree of an em-
bedded planar graph. Given a BFS-tree of the face incidence graph, a DFS-tree of the
given graph can be computed in O(log |V|) time using O(|V|) operations. For directed
planar graphs, Kao [104] presents a DFS algorithm which takes O(log® |V'|) time using
O(|V|/log |V]) processors.

In external memory, the best known BFS-algorithm for undirected graphs is
due to Munagala and Ranade [136] and takes O(|V| + sort(|E|)) I/Os. The best
known DFS-algorithm for undirected graphs due to Kumar and Schwabe [118] takes
O ((|V| + %) log, % + sort(|E|)) I/Os. Chiang et al. [43] propose a DFS-algorithm

'Tn both papers [101, 156], the last case of the case analysis in finding the cycle separator is not
handled correctly, and the produced separator may not be a simple cycle.

4.1 Graph Algorithms 34

M
baum et al. [33] propose BFS and DFS-algorithms for directed graphs which take
O ((\V| + %) log, % + sort(|E\)) I/Os, thereby matching the DFS bound of [118]
for the undirected case. In [132], Meyer shows that for any 0 < v < 1/2, the

for directed graphs which takes O (\V\ + Mscan(|E|) +sort(|E|)> I/Os. Buchs-

I/O-complexity of solving BFS on graphs of bounded degree can be reduced to

O (vh‘)‘éd‘ 5 +sort(B7|V\)), at the expense of increasing the space used by the al-

gorithm to O(B"|V]).

4.1.2 Shortest Path Problems on Graphs

The problem of computing shortest paths in graphs with real edge weights is well-
studied. Shortest path problems can be divided into three groups according to the
number of vertex pairs for which shortest paths are to be computed. The all pairs
shortest path problem (APSP) is the problem of computing shortest paths for all
pairs of vertices in the graph. The single source shortest path problem (SSSP) is the
problem of computing shortest paths from a single vertex to all other vertices in the
graph. Another important problem is that of finding a shortest path between two
query vertices. Without preprocessing, however, this problem is no easier than the
single source shortest path problem.

Note that a shortest path between two vertices v and w exists only if the graph
does not contain a negative cycle which contains a vertex on a path from v to w.
This is trivially true if all edges have non-negative weights. In this case, Dijkstra’s
algorithm [60], when implemented using Fibonacci heaps [79], solves the single source
shortest path problem in O(|V|log, |V| + |E]) time. If the graph contains negative
edges, the Bellman-Ford algorithm [23, 72] solves the single source shortest path
problem in O(|V||E]) time. The all pairs shortest path problem can be solved in
O(|V]?) time using the Floyd-Warshall algorithm [71, 173]. For sparse graphs, John-
son [103] presents an APSP algorithm which takes O(|E||V | + |V [*log, |V|) time.

For graphs with non-negative integer weights, Ahuja et al. [7] propose an SSSP-
algorithm that takes O (|E|+ [V|{/log, W) time, where W is the maximal edge

4.1 Graph Algorithms 35

weight. Gabov and Tarjan [81] present an algorithm that solves the single source
shortest path problem in O (\/m |E| log2(|V|W)> time in the presence of negative
edge weights, where W is the absolute value of the edge weight of largest magnitude in
the graph. Thorup [164] presents a linear-time single source shortest path algorithm
for graphs with integer edge weights. In [165], the result is generalized to graphs with
edge weights which are floats.?

For planar and outerplanar graphs, more efficient shortest path algorithms have
been developed. Frederickson [73] proposes an algorithm, based on a recursive sep-
arator decomposition of the graph, which takes O (\Vh/W) time to solve the
single source shortest path problem on planar graphs with non-negative edge weights.
In the same paper, an O(|V|?) time algorithm to solve the APSP problem on planar
graphs is presented. This algorithm is optimal if the output is to be represented as the
distances between all pairs of vertices. In a later paper [74], two improved algorithms
are presented which solve the APSP problem in O(q|V|) and O(|V'| +¢?) time, where
q is the size of the smallest face-on-vertex cover. That is, two data structures are
constructed, which allow answering shortest path queries in O(Llog N) time, where
L is the length of the reported path. Both algorithms are based on a “hammock
decomposition” of the graph, which has later been applied to solve a number of other
problems. In [62], an improved APSP algorithm based on a hammock decomposition
is presented. The algorithm takes O(|V|log|V| + ¢?) time to build a data structure
which can answer shortest path queries in O(log N + L) time. The search for fast
shortest path algorithms for planar graphs culminated in the linear time algorithm
of [111]. As the algorithm of [73], it is based on a separator decomposition of the
graph, but uses a rather complicated data structure consisting of a hierarchy of pri-
ority queues to achieve linear running time. For the case of negative edge weights,

an O(N*3log(NW)) time algorithm for the single source shortest path problem is

2Floats are the numbers used in existing machines to approximate real numbers. The algorithm
uses the fact that both integers and floats are represented as machine words; only the interpretation
of the bits in the word is different.

4.1 Graph Algorithms 36

presented in [111]. Here, W denotes the largest absolute value of the weights of edges
with negative weights.

The single source shortest path problem can be solved on outerplanar graphs and
graphs of bounded treewidth in linear time, by applying dynamic programming to
a tree-decomposition of the graph. In [76], Frederickson shows that an outerplanar
graph can be preprocessed in linear time so that shortest path queries between any
two vertices can be answered in O(log N + L) time. In [65], the time for distance
queries has been reduced to O(log N). The query time has been reduced even further,
to O(«a(N)), in [75].

In the PRAM model, it is still one of the fundamental open problems to design
truly efficient shortest path algorithms. Existing algorithms either use transitive clo-
sure computations (e.g., matrix multiplication) or exploit the structure exhibited by
special classes of graphs. The former are highly inefficient in terms of the work they
perform. The latter work only for restricted classes of graphs. The obvious algo-
rithm that comes to mind to solve the all pairs shortest path problem is powering
the distance matrix defined by the edge lengths log N times. This takes matrix mul-
tiplication, i.e., O(IN?®) processors and O(log® N) time. For the single source shortest
path problem, there is no obvious way to parallelize it other than essentially solving
all pairs shortest paths. For sparse graphs with small separators, Pan and Reif [139]
present improved algorithms for the single source shortest path and the all pairs
shortest path problems. Their SSSP algorithm takes O (\/m log|V|> time if no
separator decomposition is given. Otherwise, the algorithm takes O(log” |V|) time on
a CRCW PRAM and O(log® |V|) time on an EREW PRAM. The work performed
by the algorithm is O(|V|?/2). For the all pairs shortest path problem, they present
an O(|V|?log |V|) work algorithm which takes O (\/mlog \V\) time if no separator
decomposition is given, and O(log”> N) or O(log® N) time otherwise, depending on
whether a CRCW or EREW PRAM is used. Klein and Sairam [113] present a ran-
domized algorithm which solves the approximate single source shortest path problem
in O ([Vie2log|V|log* |V|> time using O((|E|log|V'|)/e~?) processors, with high

4.1 Graph Algorithms 37

probability. Distances are approximated within a factor of 1+¢ from their true values.
For planar graphs, they give an improved algorithm which uses the same number of
processors, but reduces the running time to O(|V|*/3¢ 21og |V |log* |V|). Cohen [48]
presents an algorithm that solves the approximate multi-source shortest path prob-
lem in polylogarithmic time and performs O(|E||V|* + s(|E| + |[V|'t)) work, where
s is the number of sources, and o« > 0 is an arbitrary constant. The approxima-
tion factor is 1 + O(1/ polylog|V'|). For graphs with small separators, Cohen [47]
presents a multi-source shortest path algorithm which takes polylogarithmic time
and performs O(|V|** + s(|[V| + |V|*)) work, where p is a constant 0 < p < 1
so that every graph with k£ vertices which is in the considered class has a separa-
tor of size k*. For a planar graph and a single source, for example, the algorithm
performs O(|V[*/2) work. The algorithm assumes that a separator decomposition of
the graph is given as part of the input. For sparse graphs whose edges have non-
negative integer weights, Klein and Subramanian [114] present a randomized algo-
rithm that solves the single source shortest path problem in O(polylog(|E|+ L)) time
using O(|E|?) processors, where L is the maximal edge length in the graph. For
planar graphs, they present an improved algorithm which uses O(|V|) processors.
Traff and Zaroliagis [166] present a simple single source shortest path algorithm
for planar directed graphs which takes O((N?® + N'=*)log N) time and performs
O(N'*elog N) work. The algorithm is based on a parallelization of Frederickson’s
algorithm [73]. Replacing Dijkstra’s algorithm with the algorithm of [111] in the se-
quential shortest path computation, the work can be reduced to O(N'*%) [166]; but
the simplicity of the algorithm is lost. Pantziou, Spirakis, and Zaroliagis [140] present
an algorithm for preprocessing a planar graph so that distance and shortest path
queries can be answered in O(log |V]) and O(log |V'| + L) time, respectively, where L
is the number of edges in the reported path. The algorithm takes O(log? |V|) time
using O(q|V | + M (q)) processors, where M (k) is the number of processors required
to multiply two k£ X k matrices, and ¢ is the number of faces in a given face-on-vertex

cover of the graph. In [62], the processor bound has been improved to O(|V|+ M(q)),

4.1 Graph Algorithms 38

using an O(|V'|) preprocessing algorithm for outerplanar graphs as a building block.
The results of [62, 140] are based on a parallelization of the hammock decomposition
pioneered by Frederickson [73]. In [106], this decomposition has been generalized to
arbitrary graphs, thereby allowing any graph to be decomposed into a small num-
ber of outerplanar graphs, depending on the structure of the given graph. Every
sparse graph can be decomposed into O(|V|) outerplanar graphs. This decompo-
sition is obtained in O(log |V |loglog|V|) time using O(|V| + |E|) processors on a
CREW PRAM. If a CRCW PRAM is used, the time bound becomes O(log|V|). The
authors of [106] use this decomposition to design an algorithm that preprocesses a
given graph in O(log® |V|) time using O(y|V| + M (7)) processors and O(|V|) space
for fast shortest path queries; but they do not state the query bound. Here, v de-
notes the number of outerplanar graphs into which the given graph has been de-
composed. Similar improvements as for planar graphs allow the processor bound to
be reduced to O(|V| + M(y)). For planar graphs, the processor bound can be re-
duced to O(y|V|) or O(|V|++?%/log® v) at the expense of increasing the running time
to O(log” |V| + log® 7).

In external memory, the best known algorithm for the SSSP problem in graphs
with non-negative edge weights is due to Kumar and Schwabe [118]. Their algorithm
takes O(|V|+ (|E|/B)log, |E|) I/Os. It is an implementation of Dijkstra’s algorithm
using an external tournament tree as priority queue. As with the BFS-algorithm
of [136], the algorithm is efficient for dense graphs, but performs poorly on sparse
graphs. In [52], a randomized single source shortest path algorithm is presented
which takes O(|V|/D + sort(|E|)) I/Os with high probability on regular directed
random graphs. For planar graphs of bounded degree, Arge, Brodal, and Toma [12]
show that the single source shortest path problem can be solved in O(sort(/N)) I/Os,
provided that a regular proper (DB)?-partition of the graph is given.

4.1 Graph Algorithms 39

4.1.3 Planarity Testing and Planar Embedding

In the last few decades it has been shown that planar graphs and outerplanar graphs
allow more efficient solutions to a number of graph problems than the general solutions
for arbitrary graphs. Almost all these algorithms exploit the topological information
provided by a planar or outerplanar embedding of the graph. Thus, it is an important
problem to decide whether a given graph is planar or outerplanar and if so, compute
a planar or outerplanar embedding of the graph.

The search for efficient planarity testing algorithms culminated in the linear time
algorithm of Hopcroft and Tarjan [98]. An earlier algorithm of Lempel, Even, and
Cederbaum [122] has later been made to run in linear time using techniques from [30,
70]. In [44], Chiba et al. give the details of using the algorithm of [30] to obtain a
planar embedding of the given graph. Mehlhorn and Mutzel [131] provide important
implementation details of the embedding phase of Hopcroft and Tarjan’s algorithm.
In [31], Boyer and Myrvold present a very elegant linear-time algorithm for planarity
testing and planar embedding. The algorithm is much simpler than all previous
algorithms for this problem.

In the PRAM model, Klein and Reif [112] present a planar embedding algorithm
which runs in O(log® N) time using O(N) processors, thereby improving on previous
results of [102, 133]. As the algorithm of [30], it uses PQ-trees to maintain the set
of valid planar embeddings of the graph, which is reduced step-by-step using careful
modifications of the tree as more constraints in the graph are discovered. In [145],
Ramachandran and Reif present a parallel algorithm to compute a planar embedding
of a planar graph in O(log N) time using the same number of processors as required

for finding the connected components of a graph and performing bucket sort.?

3Contrary to a claim made in [145], we believe that the algorithm cannot be used to test whether
a given graph is planar.

4.1 Graph Algorithms 40

4.1.4 Graph Separators

A separator of a graph is a subset of the vertices (or edges) of the graph whose removal
partitions the graph into subgraphs with few vertices. Separators are interesting
from an algorithmic point of view, as they can be used to design efficient divide-and-
conquer algorithms. If the number of vertices in the separator is small, the number
of interactions between the different subgraphs is limited, so that the split or join
phases of the algorithm become efficient.

It is well-known that every tree has a %—vertex separator of size one. This immedi-
ately implies the existence of a %—vertex separator of size two for outerplanar graphs.
Lipton and Tarjan [124] were the first to show that every planar graph has a %—vertex
separator of size O (\/N) . They also present a linear time algorithm to compute such
a separator. In [86], the result is generalized to embedded graphs of bounded genus.
In particular, the paper presents a linear time algorithm to compute a %—vertex sep-
arator of size O (\/g_N), where g is the genus of the graph. Frederickson [73] applies
the result of [124] recursively to compute a c-proper h-partition of a planar graph in
O(N log N) time. Aleksandrov and Djidjev [8] show how to compute such a partition
in linear time if the constraint on the number of graphs and the boundary size of
each individual component is dropped. Their result generalizes to embedded graphs
of bounded genus. Other results include results on computing edge separators [61],
vertex separators with negative and multiple vertex weights [64], and separators with
vertex costs and weights [63]. Miller [134] presents a linear time algorithm to find a
simple cycle separator of size O(y/fN) for a biconnected planar graph whose largest
face has f edges on its boundary.

A number of algorithms for computing separators in parallel have been proposed.

Gazit and Miller [83] present a randomized parallel algorithm to compute a 2-vertex
separator of a planar graph in O(log® N) time using O(N + F'*%) processors, where
F is the number of faces in the graph. Using random-sampling, Klein [110] improves

the work bound of the algorithm to O(N log” N) at the expense of increasing the

4.2 Geometric Spanners and Proximity Problems 41

running time to O(N°®), for any ¢ > 0. Goodrich [88] gives a parallel and gener-
alized version of Lipton and Tarjan’s result, showing that it takes O(log N) time
using O(N/log N) processors to compute a separator of size O(N'/?*¢) that divides
a given planar graph into O(N¢) subgraphs of size O(N'7¢). The algorithm requires
a BFS-tree and an embedding of the graph to be given as part of the input. In
some applications, including DF'S, it is desirable that the computed separator have
a particularly simple structure. In [134], Miller presents an algorithm to compute
a simple cycle %—separator of size O (\/f—N) for an embedded biconnected planar
graph, where f is the size of the largest face of the graph. Provided that an embed-
ding and a BFS-tree of the graph is given, the algorithm takes O(log N) time using
O(N) processors. In the case of depth-first search, the size of the separator is not
important. For this case, O(log® N) time and linear processor algorithms are given
in [94, 101, 156]. In [105], the running time has been reduced to O(log N) using
O(N/log N) processors, thereby achieving an optimal linear work bound.

The first to present an I/O-efficient algorithmn for computing graph separators were

Hutchinson, Maheshwari, and Zeh [100]. Their algorithm takes O(sort(N)) I1/Os
to compute a %—vertex separator of size O (\/N) for an embedded planar graph,
provided that a BFS-tree of the graph is part of the input. The algorithm is an
I/O-efficient variant of the algorithm of Lipton and Tarjan [124]. Arge, Brodal,
and Toma [12] generalize the approach of [100] to obtain an e-vertex separator of
size O (sort(N)+ +/N/ 5) for an embedded planar graph. The algorithm is based on
the algorithm of [88] and takes O(sort(/N)) I/Os, again assuming that a BFS-tree of

the graph is given as part of the input.

4.2 Geometric Spanners and Proximity Problems

We conclude our survey of previous results with a discussion of results on comput-
ing geometric spanners and solving proximity problems. Eppstein [67] and Smid

[160, 137] give excellent surveys of results in these areas. We only discuss the most

4.2 Geometric Spanners and Proximity Problems 42

relevant results here and refer the reader to these publications for a more exten-
sive discussion. In Sections 4.2.1 through Section 4.2.3, we review previous results
on proximity problems. In Section 4.2.4, we discuss previous work on constructing

geometric spanners.

4.2.1 Closest Pairs

The closest pair problem is that of finding the distance between the closest two
points among the elements of a point set in R?. This problem can trivially be solved
in O(N?) time by examining all possible point pairs and reporting the shortest dis-
tance. But this leaves a gap to the Q(NV log V) lower bound provable in the algebraic
computation tree model [24]. The first optimal algorithms solving this problem in
two dimensions are due to Shamos [154] and Shamos and Hoey [155]. In [95], Hin-
richs, Nievergelt, and Schorn present a very elegant O(N log N) time solution for the
planar case, which is based on the plane-sweep paradigm. Using a divide-and-conquer
approach, Bentley and Shamos [26] present an O(N log N) solution in R?. However,
the algorithm is rather complicated. Lenhof and Smid [123] present a rather simple
and practical algorithm which solves the problem in O(N log N) time. Their algo-
rithm uses the floor function and indirect addressing, thereby not conforming with
the algebraic model of computation. The use of the floor function can be avoided,
but it is not clear how to avoid the use of indirect addressing in their algorithm.
If the use of randomization and non-algebraic operations is allowed, the Q(NV log N)
lower bound can be beaten. Rabin [144] presents an algorithm that runs in expected
linear time when implemented using the perfect hashing scheme of Fredman, Komlés
and Szemerédi [78]. Another algorithm which takes expected linear time is proposed
in [108]. The algorithm is based on sieving out points whose closest neighbors are too
far away. Golin et al. [87] propose an algorithm which is based on the randomized
incremental construction paradigm [153]. The algorithm takes expected linear time

and O (N 2EX) time with high probability.

4.2 Geometric Spanners and Proximity Problems 43

The closest pair problem can be solved in the PRAM model using the all nearest
neighbor algorithms discussed in Section 4.2.3.

In external memory, the closest pair of a planar point set can be computed in opti-
mal O(sort(N)) I/Os using the all nearest neighbor algorithm of [90]. The optimality
of this algorithm is shown in [14]. It can also be computed in the same I/O-bound
using the Voronoi diagram construction of [51], deriving the Delaunay triangulation
from the Voronoi diagram, and then scanning the resulting set of edges. Using this

approach the I/O-bound is expected, as the algorithm in [51] is randomized.

4.2.2 K-Closest Pairs

An obvious extension of the closest pair problem is that of reporting the K closest

pairs instead of only the closest pair. For this problem, the first two algorithms,
due to Smid [159], spend O (N log N + NVK log K) time in two dimensions and
(@] <N4/3 log N + N\/?logK) time in d dimensions, d > 2. Dickerson, Drysdale,
and Sack [58] give a simple O(Nlog N + Klog K) time algorithm for the planar
case. In [59], Dickerson and Eppstein present a non-trivial extension of the result
of [58] to higher dimensions, which achieves the same running time as the algorithm
of [58]. If the distances do not need to be reported in sorted order, an improved
O(Nlog N + K) time algorithm is presented in [59]. Salowe [151] presents another
O(Nlog N + K) time algorithm for this problem, which uses the algorithm of [168]
and parametric search. Lenhof and Smid [123] give a much simpler algorithm achiev-
ing the same running time; but they use indirect addressing, thereby leaving the
algebraic model of computation. The well-separated pair decomposition introduced
by Callahan and Kosaraju [37] can also be used to compute the K closest pairs in
optimal O(N log N + K) time in d dimensions. For details, see [35].

In the PRAM model, Lenhof and Smid [123] propose a randomized algorithm
which runs in O(log? N loglog N) expected time using O(N log N loglog N+ K) work.
The suboptimality of the algorithm and the randomization stem from the use of the

best known integer sorting algorithm at that time [130], which is randomized and takes

4.2 Geometric Spanners and Proximity Problems 44

O(log N loglog N) time using O(N loglog N) work. Using a more recent result [89],
the time and work bounds can be reduced to O(log® N) and O(N log N + K), respec-
tively. Again, the bounds are expected. Even though not shown by Callahan and
Kosaraju, we believe that their K-closest pair algorithm [38] can be parallelized to

compute the K closest pairs in O(log N) time performing O(N log N + K) work.

4.2.3 All Nearest Neighbors

Another extension of the closest pair problem is that of computing the nearest neigh-
bor, for every point in the set. This problem is also known as the all nearest neighbor
problem. The algorithms of [155] can easily be extended to compute all nearest neigh-
bors in two dimensions in optimal O(N log N) time. In [96], Hinrichs, Nievergelt, and
Schorn give an extension of their closest pair algorithm, which solves the all nearest
neighbor problem in the plane in O(N log N) time. Bentley [25] shows how to extend
his closest pair algorithm for the d-dimensional case so that it can solve the all near-
est neighbor problem in O(Nlog? ' N) time. The first O(N log N) time algorithm to
solve the all nearest neighbor problem in higher dimensions is due to Clarkson [45].
The algorithm is randomized. Hence, the running time is expected. Vaidya [168]
gives the first deterministic O(N log N) time algorithm for this problem. Callahan
and Kosaraju [39] show that their well-separated pair decomposition can also be used
to compute all nearest neighbors in O(Nlog N) time. In fact, they show that the
more general problem of computing the K nearest neighbors for every point in the
point set can be solved in O(N log N + KN) time.

In the PRAM model, Cole and Goodrich [49] present an O(log N) time and linear
processor algorithm to solve the all nearest neighbor problem. Frieze, Miller, and
Teng [80] present a randomized algorithm to solve the K-nearest neighbor problem
in d dimensions in expected O(log N) time using O(N) processors, provided that d
and K are fixed. Callahan and Kosaraju [34, 39] show that the well-separated pair
decomposition can be used to solve the K-nearest neighbor problem in O(log N) time

using O(K N) processors.

4.2 Geometric Spanners and Proximity Problems 45

In external memory, the only all nearest neighbor algorithm that we are aware of

is that of [90], which solves the problem in O(sort(/N)) I/Os in two dimensions.

4.2.4 Geometric Spanners

As discussed in Section 3.2.8, a geometric spanner is a spanner graph that approx-
imates the complete Euclidean graph of a point set or the visibility graph of a set
of polygonal obstacles so that the distances between points or obstacle vertices are
preserved up to a constant factor. Besides the spanning ratio ¢, other optimization
criteria include the size, the spanner diameter, the total weight (i.e., the sum of the
lengths of all edges in the graph), and the degree of the vertices in the spanner. All
the spanners discussed here have O(NV) edges.

Even though the minimum spanning tree of a point set does not exhibit a good
spanning ratio, it is important in the context of computing spanners, as it provides
a lower bound on the weight of any spanner. The minimum spanning tree in the
plane can be computed in O(N log N) time for instance by computing the Delaunay
triangulation [141] and then applying any standard minimum spanning tree algo-
rithm [117, 142] for graphs to the Delaunay triangulation. In general, any sparse
graph which is guaranteed to contain the minimum spanning tree as a subgraph can
be used instead of the Delaunay triangulation. It has been shown by Shamos and
Hoey [155] that the minimum spanning tree of a point set is a subgraph of the Delau-
nay triangulation of the point set. In higher dimensions, finding such a sparse graph is
harder than in the plane. Yao [176] presents an O(N?7%¢) time algorithm for finding a
minimum spanning tree in higher dimensions, where ¢, is a small constant depending
on the dimension d. The next improvement has been achieved by Agarwal et al. [3],
who show that the problem can be solved in O ((N log N)4/3) time, for d = 3, and
O (N2-2/4/21T1)+€) time, for d > 3 and any € > 0. Callahan and Kosaraju [39] show
how to compute an approximate minimum spanning tree of weight at most 1+¢ times
the weight of the minimum spanning tree. Their algorithm takes O(N log N) time.

Similar results have been achieved in [150, 167].

4.2 Geometric Spanners and Proximity Problems 46

The concept of spanner graphs has been introduced by Chew [42], who shows that
the rectilinear Delaunay triangulation has spanning ratio v/10. He also shows that
the Euclidean Delaunay triangulation has spanning ratio at least 7/2 in the worst
case. Dobkin et al. [66] show that the Euclidean Delaunay triangulation has spanning
ratio at most @ ~ 5.08. Keil and Gutwin [107] prove that the spanning ratio
is in fact no more than #&/6) ~ 2.42. Unfortunately, by the result of [42], the
Delaunay triangulation cannot be used when a spanning ratio arbitrarily close to one
is desired. In fact, it is easy to show that there is no planar graph which has spanning
ratio less than v/2 in the worst case.

The first to show how to construct a ¢t-spanner in the plane, for ¢ arbitrarily close
to one, were Keil and Gutwin [107]. Independently, Clarkson [46] discovered the
same construction for d = 2 and d = 3. Ruppert and Seidel [148] generalize the result
to higher dimensions, using the construction of a f-frame due to Yao [176]. The
algorithm of [148] takes O (N log¢™' N) time. Arya, Mount, and Smid [19] combine
the f-graph of Ruppert and Seidel with skip lists [143] to obtain a ¢-spanner which
has O(N) edges and spanner diameter O(log N), with high probability. Arya et
al. [18] show how to transform any spanner with bounded out-degree into a spanner
of bounded in- and out-degree. This construction takes O(N log N) time, thus leading
toan O (N log™* N) time algorithm to construct a bounded degree spanner based on
the f-graph. Another bounded degree spanner is the greedy spanner which is obtained
by examining the edges of the complete Euclidean graph sorted by increasing length
and adding an edge to the spanner if the current graph does not contain a path
between its endpoints which is at most ¢ times their Euclidean distance. The fact
that this graph has bounded degree has been shown by Chandra et al. [41]. Results
by Das, Heffernan, and Narasimhan [53] and Das, Narasimhan, and Salowe [55] show
that the weight of the greedy spanner is proportional to that of a minimum spanning
tree of the point set. In order to reduce the construction time of the greedy spanner

from Q(N?) to O (Nlog”? N), Das and Narasimhan [54] propose an algorithm based
on graph clustering techniques. The resulting graph has weight proportional to that

4.2 Geometric Spanners and Proximity Problems 47

of a minimum spanning tree; but its degree may be large. Arya and Smid [20]
present an O (N log? N) time algorithm to compute a t-spanner of bounded degree
whose weight is bounded by O(log V) times the weight of a minimum spanning tree.
By applying the results of [54] to this spanner, one obtains an O (N log® N) time
algorithm to compute a t-spanner of bounded degree and weight within a constant
factor of that of a minimum spanning tree. Vaidya [169] and Salowe [150] were
the first to give optimal O(Nlog N) time algorithms for constructing ¢-spanners in
higher dimensions. Their algorithms use hierarchical subdivisions similar to that
induced by a fair split tree [39]. Consequently, the well-separated pair decomposition
of [39] can also be used to obtain an O(N log N) time algorithm for constructing ¢-
spanners [38]. Arya, Mount, and Smid [19] show that the spanner obtained in this way
can be constructed more carefully to guarantee that the spanner diameter is O(log N).
In [18], it is shown that the weight of this spanner is bounded by O(log N) times
the weight of a minimum spanning tree. The degree, however, is unbounded. An
important result of [18] in terms of building data structures for efficiently reporting
spanner paths is the following: They show that the WSPD-spanner can be augmented
with a linear number of edges so that the resulting graph can be decomposed into
a constant number of rooted trees with the property that for every pair of points,
there exists a spanner path between them which stays completely inside one of these
trees. Again, the spanner diameter of this spanner can be shown to be O(log N) if the
spanner is constructed carefully. By further augmenting the spanner with O(N) edges
using standard shortcutting techniques for trees [10, 29|, the diameter can be reduced
to O(a(N)).

In [46], Clarkson shows that a modification of the -graph for sets of polygonal
obstacles is a t-spanner for the visibility graph of these obstacles. Arikati et al. [16]
show how to construct a planar t-spanner among obstacles which contains only
O(N) additional vertices, called Steiner points. Both constructions [16, 46] take
O(N log N) time.

4.2 Geometric Spanners and Proximity Problems 48

Using their parallel algorithm for constructing a well-separated pair decomposi-
tion, Callahan and Kosaraju [34, 39] show that their approximate minimum spanning
tree algorithm can be made to run in O(log N) time using O (V) processors. Similarly,
their spanner construction can be parallelized to obtain the same bounds.

In external memory, the only results related to computing spanning graphs are
those of [90] and [51]. In these two papers it is shown how to compute the convex
hull of a three-dimensional point set in O(sort(/N)) I/Os worst-case and expected,
respectively. Using these algorithms, the Voronoi diagram of a two-dimensional point
set can be computed, which in turn can be used to compute the Delaunay triangula-
tion of the point set. Given the Delaunay triangulation, the minimum spanning tree
algorithm for planar graphs of [43] can be applied to obtain the Euclidean minimum
spanning tree of the point set. A randomized algorithm to compute the Voronoi dia-
gram of a point set in the same number of I/Os without using convex hulls in R? is

also presented in [51].

Part |

Graph Algorithms

49

Chapter 5

Techniques for Solving Graph

Problems

In this chapter, we develop a “toolchest” for solving graph problems I/O-efficiently.
In particular, in Sections 5.1 and 5.2, we recall a number of standard data structures
and paradigms for designing I/O-efficient graph algorithms. In Section 5.3, we define
a number of primitive operations on graphs which can be realized in O(sort(N)) I/Os.
We make extensive use of these operations in our algorithms, so that their description

is simplified if we have this set of primitives at our disposal.

5.1 Data Structures

We start our review with a discussion of I/O-efficient data structures that can be

used to design I/O-efficient graph algorithms.

5.1.1 An 1/O-Efficient Queue

A queue (e.g., see [50], Chapter 11) is a simple data structure to be used when
an algorithm produces data that it has to process at a later point, and it wants

to guarantee that the data is processed in the same order as it is produced. In

50

5.1 Data Structures 51

particular, a queue supports four operations: CREATE, ENQUEUE, DEQUEUE, and
IsEMmpTY. CREATE creates an empty queue. ENQUEUE appends its argument to
the queue. DEQUEUE removes the least recently appended item from the queue and
returns it. [SEMPTY tests whether the queue is empty.

Breadth-first search is a perfect example where a queue can be used. Initially, the
source of the search is appended to the queue. Then the algorithm keeps removing
vertices from the head of the queue. For every removed vertex v, it explores the
neighbors of v, appends all neighbors which have not been visited before to the queue,
and makes v their parent in the computed BFS-tree.

In internal memory, a linked list is sufficient to implement a queue which supports
all of the above operations in O(1) time. In order to make this implementation of
a queue I/O-efficient, the queue is maintained as a linked list of “superblocks”, each
consisting of D blocks, striped across the D disks. Before appending a superblock
to the end of the queue, the next DB data items to be appended to the queue are
inserted into an input buffer, which is held in internal memory. When the buffer
runs full, its content is written to the next superblock of the queue. Similarly, when
removing data from the queue, the first superblock is removed from the queue, and its
content is loaded into an output buffer. The next DB DEQUEUE operations read their
respective data from the output buffer rather than the queue itself. This way, one
I/O is spent per DB ENQUEUE operations, and one 1/O is spent per DB DEQUEUE

operations, so that a sequence of N such operations can be processed in O (D—]\;) I/Os.

5.1.2 An 1/O-Efficient Stack

A stack (e.g., see [50], Chapter 11) is a data structure very similar to a queue.
The only difference is that the data elements are removed from the data structure
in reverse insertion order. That is, the data element that has been inserted last is
removed first. Formally, a stack supports four operations: CREATE, PusH, Pop,

and ISEMPTY. CREATE creates an empty stack. PUSH adds a new element to the

5.1 Data Structures 52

stack. POP removes the most recently added element from the stack and returns it.
IsEmMPTY tests whether the stack is empty.

Sticking to graph exploration as the illustrating example, the BFS-algorithm de-
scribed above is easily turned into a DFS-algorithm by replacing the queue with a
stack and each ENQUEUE and DEQUEUE operation with a PusH and POP operation,
respectively.

Again, a linked list is sufficient to implement a stack which supports all of the
above operations in O(1) time. In external memory, this linked list is again maintained
at the level of “superblocks”, and the data structure is augmented with a buffer for
inserting and removing elements. This time, however, it is sufficient to have only one
buffer, acting as both input and output buffer, as data is inserted and removed at
the same end of the list. On the other hand, the buffer needs to have size 2D B, in
order to guarantee that O(1) I/Os are spent per DB stack operations. Otherwise,
a sequence of stack operations where two PUSH operations alternate with two Pop
operations could force the algorithm to perform one I/O for every other operation:
The first PusH makes the buffer run full, so that an I/O is required to empty the
buffer before the next PUSH can be performed. Then the first POP removes the
element just pushed from the buffer, and the next POP operation necessitates an
I/O-operation, in order for the next element to be read into internal memory.

With a buffer of size 2D B, only DB elements are written to disk when the buffer
runs full, and only DB elements are read from disk when the buffer becomes empty.
In both cases, the buffer contains DB data items after an I/O-operation, so that
DB PUSH operations are required to fill up the buffer, and DB PoOP operation are
required to empty the buffer. Hence, the next I/O is necessary after at least DB stack

operations.

5.1.3 The Buffer Tree—An |/O-Efficient Search Tree

The buffer tree [11] is an extension of the well-known B-tree data structure [22]

which outperforms the B-tree in applications where a large number of updates and

5.1 Data Structures 53

queries need to be performed and immediate query responses are not required. For
the sake of simplicity, we restrict our discussion of the buffer tree to the single disk
case (D = 1). As the buffer tree can be seen as a data structure which makes a
cascaded application of the distribution paradigm explicit, the same solutions that
lead to I/O-optimal DISTRIBUTIONSORT algorithms on multiple disks [138, 172] can
be used to make the buffer tree achieve optimal performance on multiple disks.

Intuitively, the buffer tree is a B-tree with increased fan-out whose nodes have
been augmented with buffers to form batches of update and query operations to be
processed w.r.t. the subtrees rooted at these nodes. That is, the buffer tree is an
(a, b)-tree [99], where a = m/4 and b = m, m = M/B. Instead of processing an
update or query operation immediately, it is appended to a buffer of size B, which is
held in internal memory. When this buffer runs full, its content is appended to the
buffer associated with the root of the buffer tree. If the root buffer contains less than
M/2 data items and the algorithm is not finished yet, this finishes the operation.
Otherwise, the root buffer is emptied by distributing its contents to the buffers of its
children. If the buffer of a child runs full, this buffer is emptied recursively. The buffer
emptying process loads the m splitter elements as well as the first M /2 operations from
the buffer into internal memory. This takes O(m) [/Os. Distributing the elements
to the buffers of the children takes O(m) I/Os for writing complete blocks to the
buffers of the children, as one block of data per child can be held in internal memory,
and O(m) I/Os for excess 1/Os, O(1) per child. Hence, distributing M /2 operations
from a node to its children costs O(m) I/Os, O(1/B) 1/Os amortized per distributed
operation. Once the first M/2 elements in the buffer have been processed, the next
M /2 elements are loaded into memory and the whole process is iterated until the
buffer is empty.

At a leaf, instead of distributing the content of its buffer to those of its (non-
existent) children, the operations in the buffer are processed in their order of appear-
ance in the buffer. An INSERT operation adds a new data element to be stored at this

leaf. A DELETE operation deletes a data item that is stored at this leaf. A SEARCH

5.1 Data Structures 54

operation tests whether the desired data item is stored at this leaf and reports it if
this is the case. If an update operation causes a leaf to store more than B data items
or less than B/4 data items, the leaf has to be split or merged with its neighbors.
This may cause a series of splits or merges along the path from the leaf toward the
root. These structural changes to the tree are handled in a manner similar to (a, b)-
trees. The analysis of the overall complexity of update operations is analogous to
that for (a,b)-trees. (See [11] for details.) In total, every update or query operation
in a sequence of N updates or queries is charged for O(1/B) I/Os per level of the tree
to account for I/Os spent on emptying buffers and rebalancing the tree. Since the
fan-out of the tree is ©(m), the height of the tree is O(log,,(N/B)), so that processing
a sequence of N updates and queries takes O (% log s/ %) = O(sort(N)) 1/Os.

5.1.4 An 1/0O-Efficient Priority Queue

In [11], a priority queue based on the buffer tree is proposed. This priority queue
can process any sequence of N INSERT, DELETE, and DELETEMIN operations in
O(sort(N)) I/Os. Unfortunately, it does not support the DECREASEKEY operation.
If the DECREASEKEY operation is needed, the I/O-efficient tournament tree of [118]
has to be used, which is less efficient than the priority queue we describe here.

The basic idea proposed in [11] is to use the buffer tree to maintain the items in
the priority queue sorted by their priorities. In a standard (a, b)-tree, it would be
guaranteed that the element with the smallest priority is stored at the leftmost leaf
of the tree. For the buffer tree, this is not true because there may be elements with
smaller priorities stored along the path from the root to the leftmost leaf. However,
before processing the first DELETEMIN operation, one can perform forced buffer-
emptying processes along the path from the root to the leftmost leaf. This takes
O (% log% %) I/Os for all buffers along the path. It may also trigger buffers of
nodes that are not on the path to be emptied. The I/Os required to empty the latter
buffers can be charged to INSERT operations in the standard fashion, so that emptying

the buffers along the leftmost path takes O (% log% %) I/Os in an amortized sense.

5.2 Paradigms and Techniques 55

Once these buffers have been emptied it is not only guaranteed that the leftmost leaf
of the tree stores the element with the smallest priority, but that the children of the
parent of the leftmost leaf store the elements with smallest priorities in the priority
queue. Since every internal node of the buffer tree has at least m/4 children, and
every leaf stores at least B/4 data items, the children of the parent of the leftmost
leaf store at least M /16 elements. These elements are loaded into internal memory, so
that at least M /16 DELETEMIN operations can be performed without performing any
I/Os. Hence, the amortized cost per DELETEMIN operation is O (% log% %) I/Os.

Once a number of smallest elements are stored in internal memory, subsequent
INSERT and DELETE operations need to examine the elements stored in internal
memory. This is to guarantee that no element is inserted which is smaller than the
elements stored in internal memory, and none of the elements in internal memory is
deleted from the priority queue before it is removed using a DELETEMIN operation.
This can be done without incurring any extra I/Os. Hence, INSERT, DELETE, and

DELETEMIN operations take O (% log% %) I/Os in an amortized sense.

5.2 Paradigms and Techniques

In this section, we recall a number of paradigms and techniques that have been
used to obtain I/O-efficient graph algorithm. The first of these paradigms, the data
structuring paradigm, makes use of the data structures discussed in the previous

section.

5.2.1 Data Structuring

As should be expected, algorithms based on the data structuring paradigm make use
of I/O-efficient data structures to solve the problem at hand. However, the meaning
of this approach in the context of the design of I/O-efficient algorithms is a little more
drastic than in the context of algorithm design in general. In particular, a number

of I/O-efficient algorithms have been obtained by taking an efficient internal memory

5.2 Paradigms and Techniques 56

algorithm and replacing the data structures in this algorithm with their I/O-efficient
counterparts. A prime example for this approach is the SSSP algorithm of Kumar
and Schwabe [118], where the only modification of the algorithm is the replacement
of the Fibonacci heap used in an efficient implementation of Dijkstra’s algorithm with

an I/O-efficient tournament tree.

5.2.2 Graph Contraction

A number of I/O-efficient graph algorithms are based on a paradigm that has been
successfully applied to obtain efficient parallel graph algorithms: graph contraction.
At a very abstract level, the paradigm is simple and elegant: Identify a number of
disjoint subgraphs of GG so that representing each such subgraph by a single vertex
reduces the size of G' by a constant factor and preserves the properties of interest. In
parallel algorithms this compression technique is applied recursively O(log N) times
until the resulting graph has constant size. Then the problem is solved in O(1) time
on the contracted graph. A solution for graph G is constructed by undoing the
contraction steps and at each step deriving a solution for the uncontracted graph from
the given solution for the contracted graph. When designing I/O-efficient algorithms,
the contraction can usually stop after O(log DB) compression levels. At that point
the resulting graph is guaranteed to have O (%) vertices, so that the algorithm can
afford to spend O(1) I/Os per vertex to solve the problem on the contracted graph.
The edges can usually be handled using I/O-efficient data structures.

A simple example for the application of this paradigm is the computation of the
connected components of a given graph. The connectivity of the given graph does
not change if an edge of the graph is contracted. More generally, the connectivity of
the graph does not change if connected subgraphs of G' are replaced by a single vertex
each. The graph connectivity algorithm of [43] uses this fact to contract connected
subgraphs of G until every connected component consists of a single vertex. This

provides a natural labelling of the connected components of GG, and the vertices of G

5.2 Paradigms and Techniques 57

can easily be labelled with their component labels when undoing the contraction
steps.

In general, graph contraction does not lead to I/O-optimal algorithms. However,
for sparse graphs under edge-contraction, a reduction of the number of vertices leads
to a proportional reduction of the number of edges. Hence, if a constant fraction of the
vertices are eliminated in each contraction step, the sizes of the graphs produced by

repeated contraction are geometrically decreasing. Thus, if a contraction step can be
realized in O(sort(|V|+|E|)) I/Os, the whole algorithm takes O(sort(|V'|+|E|)) I/Os.

5.2.3 Time-Forward Processing

Time-forward processing is a very elegant technique for solving graph problems, which
has been proposed in [43]. The boundary conditions for an I/O-efficient implementa-
tion of this technique have later been removed in [11]. The following problem can be
solved using this technique:

Let GG be a directed acyclic graph whose vertices are numbered so that every edge
in G leads from a vertex with lower number to a vertex with higher number. Let
every vertex v of G store a label ¢(v), and let f be a function to be applied in order
to compute for every vertex v, a new label ¥(v) = f(¢(v), Mu1), ..., A(ug)), where
u1, ..., U are the in-neighbors of v in G, and A(w;) is some piece of information “sent”
from w; to v after computing 1(u;). The goal is to “evaluate” G, i.e., to compute 1(v),
for all vertices v € G.

While time-forward processing does not solve the problem of computing v (v) I/O-
efficiently in the case where the input data ¢(v) and A(uy),..., A(ug) do not fit into
internal memory, it provides an elegant way to supply vertex v with this information
at the time when v(v) is computed. The idea is to process the vertices in G by
increasing numbers. This guarantees that all in-neighbors of vertex v have been
evaluated at the time when v is being evaluated. Thus, if these in-neighbors have
“sent” their outputs A(u1), ..., A(ug) to v, v has these inputs and its own label ¢(v) at

its disposal to compute 1 (v). After computing 1 (v), v sends its output A(v) “forward

5.2 Paradigms and Techniques 58

in time” to its out-neighbors, which guarantees that these out-neighbors have all their

inputs at their disposal when it is their turn to be evaluated.

Time-forward processing for general DAGs. The implementation of this technique
due to Arge [11] is simple and elegant. The “sending” of information is realized using a
priority queue Q. When a vertex v wants to send its output A\(v) to another vertex w,
it inserts A(v) into priority queue @ and gives it priority w. When vertex w is being
evaluated, it removes all entries with priority w from (). As every in-neighbor of w has
sent its output to w by queuing it with priority w, this provides w with the required
inputs. Moreover, every vertex removes its inputs from the priority queue before it is
evaluated, and all vertices with smaller numbers have been evaluated before w. Thus,
the entries in () with priority w are those with lowest priority, so that they can be
removed using a sequence of DELETEMIN operations.

Using the priority queue described in Section 5.1.4, evaluating graph G takes
O(sort(N + I)) I/Os, where N is the number of vertices in the graph, and I is the

total amount of information sent along the edges of G.

Time-forward processing for rooted trees. If the graph G to be evaluated is a
rooted tree, and its vertices are stored in preorder, an even simpler solution can be
used to evaluate G in a linear number of I/Os: Evaluate the nodes of G in preorder,
and use a stack S to simulate the sending of data along the edges of G. In order
to process G from the root toward the leaves, every vertex pushes the outputs for
its children on stack S, sorted in reverse preorder of the recipients. When a node
is evaluated it retrieves its input from the top of the stack. To process G from the
leaves toward the root, reverse this procedure.

The number of 1/O-operations performed by this algorithm is O(scan(N)) for
scanning the vertex list of G and O(scan(N + I)) for performing the stack operations
required to send O(I) data along the edges of G. In total, the algorithm performs
O(scan(N + 1)) 1/Os.

5.2 Paradigms and Techniques 59

Only few algorithms deal with problems on directed acyclic graphs. Also, the
requirement that the vertices of the DAG be numbered in a manner consistent with
a topological ordering of the graph is rather restrictive, but necessary because no
O(sort(N)) I/O algorithm for topological sorting is known for general graphs. Still
time-forward processing is an extremely powerful technique, as many abstract prob-
lems and problems on undirected graphs can be solved by transforming them into
an evaluation problem of a directed acyclic graph. During the transformation, the
numbering of the vertices is in our hands, so that a numbering of the vertices consis-
tent with a topological ordering of the graph can often be obtained in an I/O-efficient

manner.

5.2.4 List Ranking

Let L be a linked list, i.e., a collection of nodes z1,...,xx such that each node z;,
except the tail of the list, stores a pointer succ(z;) to its successor in list L, and there
are no two nodes having the same successor. Given a pointer to the head of the list
(i.e., the node which no other node in the list points to), the list ranking problem is
that of computing for every node z; of list L, its distance from the tail of L, i.e., the
number of edges on the path from z; to the tail of L.

Often we use the term “list-ranking” to denote the following generalization of the
above problem: Given a function A : {z1,...,2y} — X assigning labels to the nodes
of list L and a multiplication ® : X x X — X defined on X, compute a label ¢(z;)
for each node z; of L such that ¢(2,(1)) = A2eq)) and ¢(z43)) = O(Zoii—1)) @ MTo@)),
for 1 <4 < N, where o : [1, N] = [1, N] is the permutation so that z,(;) is the head
of L and succ(z,()) = Zo(i41), for 1 <i < N.

In internal memory, this problem can be solved by following pointers from the
head of the list to its tail, keeping a value ¢ as the running product of the labels of
the vertices visited so far, and defining for every vertex z;, ¢(x;) as the value of ¢ at
the time when vertex z; is visited. Unfortunately, this algorithm is not I/O-efficient:

As we have no control over the physical order of the nodes of list L on disk, an

5.2 Paradigms and Techniques 60

adversary can easily arrange these nodes in a manner that forces the algorithm to
perform one 1/O per followed pointer. Hence, the algorithm takes 2(N) I/Os in the
worst case, while the lower bound for list-ranking shown in [43] is only Q(perm(XV)).
Next we sketch an O(sort(N)) I/O algorithm for list ranking proposed in [43] which
closes the gap.

We make the simplifying assumption that multiplication on X is associative. If
this is not the case, we first solve the classical list-ranking problem to determine the
rank of every node, sort the nodes by their ranks and then scan the resulting list to
compute the prefix product over the labels of the nodes in the sorted list.

Given that multiplication on X is associative, the list-ranking algorithm of [43]
applies the graph contraction paradigm of Section 5.2.2: First it finds an independent
set I of size 2(N) in L. Then it removes the nodes in I from L. For every node z; € I,
a new label X (succ(z;)) = A(z;) ® A(succ(x;)) of its successor is computed. For every
node z; ¢ I, its new successor is defined as succ’(z;) = succ(z;) if succ(x;) & I,
and succ’(z;) = succ(succ(z;)) if suce(zr;) € I. For all nodes z; in the resulting
list L', ¢(z;) = ¢'(x;), where ¢'(x;) is the label assigned to z; by applying the list-
ranking algorithm to list L' and labelling X'. For every node z; € I, ¢(z;) = ¢'(z;) ®
A(z;), where z; € L' is the node such that succ(z;) = ;. Given that it takes
O(sort(N)) I/Os to find and remove the independent set I, the whole list-ranking
algorithm takes Z(N) = O(sort(N)) + Z(¢N) 1/Os, where ¢ < 1. Thus, Z(N) =
O(sort(N)). In order to find the independent set I, Chiang et al. [43] apply a 3-
coloring procedure for lists, which applies time-forward processing to “monotone”
sublists of L and takes O(sort(N)) I/Os. The largest monochromatic set is chosen to
be set I.

List ranking in itself is of very limited use. However, combined with the Euler tour
technique described in the next section, it becomes a very powerful tool for solving
graph problems that can be expressed as functions over a traversal of a spanning tree
of the graph. An important application is the rooting of a tree 7', which is the process

of establishing parent-child relationships between adjacent vertices of 7. Once these

5.2 Paradigms and Techniques 61

relationships are established, the Euler tour technique and list-ranking can be used
to compute preorder or postorder numberings of the vertices of T, or the sizes of
the subtrees of T rooted at these vertices. This information, when computed for a
spanning tree of an arbitrary graph, can be used in simple graph partitioning schemes,

or in algorithms based on the graph contraction technique described in Section 5.2.2.

5.2.5 The Euler Tour Technique

The Euler tour technique is a way to define a traversal of a tree T = (V, E) so
that every edge of the tree is traversed exactly twice, once in each direction. Such a
traversal is useful, as it produces a linear list of vertices or edges which captures the
structure of the tree. This allows the solution of problems on tree 7" which can be
expressed as functions over an Euler tour. Evaluating the latter functions is easier
than working with the tree itself, as the Euler tour has a linear structure, while tree 7’
in general does not.

Formally, the goal is to build a linked list I whose elements are the edges in the
set {(v,w), (w,v) : {v,w} € E} and so that every edge shares one endpoint with
its predecessor and the other endpoint with its successor in the list. In order to
define an Euler tour, choose a circular order of the edges incident to each vertex of 7.
Let {v,w1},...,{v,wr} be the edges incident to vertex v. Then let succ((w;,v)) =
(v, wiy1), for 1 < i < k, and succ((wg,v)) = (v,wy). The result is a circular linked
list of the edges in 7. An Euler tour that starts at some vertex r and returns to
that vertex after traversing every edge of T" exactly twice is obtained by choosing an
edge (v,r) with succ((v,r)) = (r, w), setting succ((v,r)) = null, and choosing (r, w)
as the first edge of the traversal.

Applied to a tree T rooted at a node r, this technique produces a depth-first
traversal of T'. After assigning appropriate labels to the elements of list L, the list-
ranking algorithm from the previous section can be applied to compute the prefix
sum over these labels along L. Depending on the choice of the labels, the outcome is

a labelling of the vertices of T" with their distances from r, a preorder numbering of 7',

5.3 Primitive Operations 62

a postorder numbering of T', etc. For example, by assigning a weight of 1 to every
edge (p(v),v) in L and a weight of —1 to every edge (v,p(v)), where p(v) denotes
the parent of vertex v in 7', the prefix sum over these labels along L assigns the

distance d(r,v) of vertex v from the root r in T to every edge (u,v) in L.

5.3 Primitive Operations

In this section, we define a number of simple graph labelling operations and graph
transformations that can be carried out in O(sort(IN)) I/Os. We use these operations
as the building blocks of our algorithms throughout this thesis.

Most of the operations described here require a total order on the vertex set V
and the edge set E of the graph G = (V, E). For the vertex set V, such a total order
is defined by a unique numbering of the vertices in G and the natural order defined
on these numbers. For the edge set E, we assume that an edge {v,w} is stored as
the pair (v,w), v < w. Then we define (v,w) < (z,y), for edges (v,w) and (z,y)
in F, if either v < z or v = z and w < y. We call this ordering the lexicographical
order of E. Another ordering, called the inverted lexicographical order of E, defines

(v,w) < (z,y) if either w < y or w =y and v < z.

Set difference. Even though set difference is not a graph operation as such, we often
apply it to the vertex and edge sets of a graph. To compute the difference X \ YV’
of two sets X and Y drawn from a total order, we sort X and Y and scan the two
resulting sorted lists to remove all elements in Y from X. This can be done in a single
scan, as the elements in X N'Y appear in the same order in X and Y after sorting

the two lists.

Duplicate removal. Given a list X = (xi,...,zx) with some entries potentially
occurring more than once, the DUPLICATEREMOVAL operation computes a list Y =

(Y1,...,Yq) such that {z1,..., o8} ={y1,..., Y}, Yj = Tyj, 11 < - -+ < ig, and 2y # yj,

for 1 <1 < 4;. That is, list Y contains the first occurrences of all elements in X in

5.3 Primitive Operations 63

sorted order. (Alternatively, list Y may be required to store the last occurrences of all
elements in X.) To compute Y, we scan X and replace element x; with the pair (x;, 7).
Then we sort the resulting list X' lexicographically. We scan this sorted list and
remove all elements (x,y), except the first one, for every z, from list X'. List V is
now produced by sorting the elements (x,y) in the computed sublist of X’ in inverted
lexicographical order and scanning the resulting list to replace every pair (z,y) with

the single element x.

Computing incident edges. Given the vertex and edge sets V and F of a graph G
and a subset V' C V of vertices, the INCIDENTEDGES operation computes the set E’
of edges {v,w} € FE such that v € V' and w € V' \ V'. To compute E’, we sort V'
in increasing order, and E in lexicographical order. Then we scan V and E and
mark every edge in F which has its first endpoint in V. We sort E in inverted
lexicographical order and scan V' and E again to mark every edge in E which has its
second endpoint in V. In a final scan, we extract all edges from E which have been
marked exactly once. Changing the rule so that every edge which has been marked
twice is chosen, we obtain operation INDUCEDEDGESET which computes the edge set
of graph G[V].

Copying labels from edges to vertices. Given a graph G = (V, E) and a labelling
A E — X of the edges in F, the SUMEDGELABELS operation computes a labelling
NV — X of the vertices in V, where X'(v) = @5 Ae), B, is the set of edges
incident to v, and @ is any given associative and commutative operator on X. To
compute the labeling in O(sort(/N)) I/Os, we sort V in increasing order, and F
lexicographically. Then we scan V' and E to compute labels A"(v) = €D, ¢z Ale),
where E! is the set of edges whose lower endpoint is v. Next we sort E in inverted
lexicographical order and scan V' and £ to compute labels \'(v) = A" (v) ©ED .c g Ale),

where E) is the set of edges whose higher endpoint is v.

5.3 Primitive Operations 64

Copying labels from vertices to edges. Given a graph G = (V, E) and a labelling
AV — X of the vertices in V, the COPYVERTEXLABELS operation computes a
labelling X' : E— X x X, where X' ({v,w}) = (A(v), A(w)). This operation is easily
carried out using a similar procedure as the one implementing operation SUMEDGE-

LABELS.

Making adjacency lists from an edge set. In some situations, it is necessary to
transform a representation of a graph G = (V, E) as the two sets V and FE into a
collection of adjacency lists of the vertices of G. We call this operation EDGESTOAD-
JACENCYL1sTS. To perform this operation, we scan the edge set E' and append two
entries (v, w) and (w,v) to a list A, for every edge {v,w} € E. Then we sort list .4
lexicographically. As a result, pairs (v, w;),..., (v,wy) are stored consecutively, for
every vertex v and all edges {v,w:},...,{v,w} incident to v. Thus, list A is the

concatenation of adjacency lists A(v), v € V.

Graph contraction. Even though graph contraction has been introduced as a gen-
eral paradigm in Section 5.2.2, we have not provided a general procedure to contract
subgraphs of a graph G = (V, E) I/O-efficiently. In order to perform operation CON-
TRACTGRAPH, we assume that graph G is represented as the sets V and E, and a
labelling of the vertices is given so that two vertices have the same label if and only
if they are to be contracted into the same “supervertex” of the contracted graph.
To perform the contraction, we apply procedure CoPYVERTEXLABELS to replace
every edge endpoint with the supervertex containing that endpoint. Then we apply
operation DUPLICATEREMOVAL to the vertex and edge sets of G. Alternatively, we
may wish to keep duplicate edges, in which case duplicates are removed only from V.
In some situations, the contraction information is given not as a vertex labelling,
but as a separate set of vertex-supervertex pairs. This information can be trans-
formed into a vertex labelling as follows: We sort the vertex set and the label set

lexicographically. Now a single scan of these two lists suffices to label every vertex

5.3 Primitive Operations 65

with its containing supervertex, so that we obtain the required information for the

procedure above.

Chapter 6

Greedy Algorithms

In this chapter, we describe a simple technique to obtain I/O-efficient algorithms
for certain graph problems that can be solved using greedy algorithms in internal
memory. Using this technique we obtain simple deterministic O(sort(|V |+ |E|)) I/O
algorithms for finding a maximal matching or maximal independent set of an arbitrary
graph.

Let us define precisely what we mean by “certain” graph problems. A wvertex
labelling algorithm is an algorithm A that computes a function A : V. — X. We
call A single-pass if it computes A by visiting every vertex v € V exactly once and
assigns a label A(v) to v during this visit. We call A local if A(v) can be computed
in O(sort(k)) I/Os from labels A(u1), ..., A(ug), u1,...,u € ['(v), which have been
computed before visiting v. Finally, we call A presortable if there is an algorithm
which takes O(sort(|V|+|E|)) I/Os to establish an order so that A produces a correct
result if it visits the vertices of GG in this order. We consider graph problems that can

be solved using a presortable local single-pass vertex labelling algorithm.

Theorem 6.1 Every graph problem P which is solvable by a presortable local single-
pass vertex labelling algorithm can be solved in O(sort(|V| + |E|)) 1/Os.

Proof. We use Algorithm 6.1 to solve problem P. Let A be a presortable local

single-pass vertex labelling algorithm that solves problem P. Since A is local and the

66

6 Greedy Algorithms 67

Procedure IOGREEDY

Input: A graph G = (V,E) and a labelling problem P which can be solved using a
presortable local single-pass vertex labelling algorithm A.

Output: The labelling A : V' — X of the vertices of G that would be computed by algo-
rithm A.

1: Establish an order < of the vertices of graph G = (V, E) so that algorithm A produces
a correct result if it visits the vertices in V' in this order and sort the vertices of G in
this order. Number the vertices of GG in their order of appearance.

2: Replace every edge {v,w} € E by a directed edge (v,w), v < w. Let G’ be the resulting
DAG. Sort the edges of G’ by their source vertices.

3: for all vertices v € V, in their order of appearance do

: Let I'ci(v) = {u1,...,ux}. Compute A(v) from A(u1),..., A(ug).

5: end for

Algorithm 6.1
A framework for 1/O-efficient greedy algorithms.

ordering < is chosen so that algorithm A solves problem P correctly if it processes the
vertices of G in this order, label A(v) can be computed from labels A(u1), ..., A(ug),
where {u1,...,u} = {u € Tg(v) : u < v} = T';(v), for every vertex v € V. This
establishes the correctness of Algorithm 6.1.

Line 1 of Algorithm 6.1 takes O(sort(|V| + |E|)) I/Os because algorithm A is
presortable. Line 2 can easily be carried out in O(sort(|V| + |E|)) I/Os, once every
edge {v,w} has been “informed” about the numbers v(v) and v(w) assigned to its
endpoints v and w in Line 1. To do the latter, we apply operation COPYVERTEXLA-
BELS.

Given the vertices and edges of DAG G’ in sorted order, the loop in Lines 3-5
takes O(sort(|F|)) I/Os: Assuming that every vertex v has labels A(uq),..., A(ug),
where 'z, (v) = {u1,...,u}, at its disposal, labels A(v), v € V, can be computed in
O (sort (3,cv ITe(v)])) = O(sort(|E|)) I/Os, by the locality of algorithm A. We can
use time-forward processing [11] to provide every vertex v € V with this information,
which takes O(sort(|V| + |E|)) I/Os, as only O(1) information is sent along every
edge of G'. O

6.1 Computing a Maximal Independent Set 68

Next we apply Theorem 6.1 to obtain deterministic O(sort(|V| + |E])) I/O algo-
rithms for finding a maximal independent set and a maximal matching in a graph G

and coloring a graph G of degree A with at most A 4 1 colors.

6.1 Computing a Maximal Independent Set

The following simple algorithm computes a maximal independent set S of a graph G =
(V, E) in internal memory: Process the vertices in an arbitrary order. When a ver-
tex v € V 1s visited, add it to S if none of its neighbors is in S. Translated into a
labelling problem, the algorithm computes the characteristic function ys : V' — {0,1}
of S, where xs(v) =1ifv € S, and xs(v) =0if v ¢ S. Also note that if S is initially
empty, then any neighbor w of v that is visited after v cannot be in S at the time when
v is visited, so that it is sufficient for v to inspect all its neighbors that are visited
before v to decide whether or not v should be added to S. With these modifications,
we obtain a vertex-labelling algorithm that is presortable (since the order in which
the vertices are visited is unimportant), local (since only previously visited neighbors
of v are inspected to decide whether v has to be added to S, and a single scan of
labels xs(u1), - - ., xs(ux) of v’s neighbors uy, ..., uy is sufficient to decide whether at
least one of them is in S), and single-pass. Showing the correctness of the algorithm

is straightforward. Hence, we obtain the following result.

Theorem 6.2 Given an undirected graph G = (V, E), a maximal independent set of
G can be found in O(sort(|V| + |E|)) 1/Os and linear space.

6.2 Coloring Graphs of Bounded Degree

A k-coloring of a graph G = (V, E) is a labelling ¢ : V' — {1,...,k} of the vertices
of G so that for every edge {v,w} € E, c¢(v) # c(w).
The algorithm to compute a (A + 1)-coloring of a graph G of degree A is similar

to the algorithm for computing a maximal independent set presented in the previous

6.3 Computing a Maximal Matching 69

section: Process the vertices in an arbitrary order. When a vertexr v € V is wisited,
assign a color ¢(v) € {1,...,A + 1} to vertex v which has not been assigned to any
netghbor of v. The algorithm is presortable and single-pass for the same reasons as
those that make the maximal independent set algorithm presortable and single-pass.
The algorithm is local, as the color of v can be determined as follows: Sort the colors
c(uy), ..., c(ug) of v's in-neighbors uy, . .., ug. Then scan this list and assign the first

color not in this list to v. This takes O(sort(k)) I/Os.

Lemma 6.1 Given an undirected graph G = (V, E) whose vertices have degree at
most A, a (A + 1)-coloring of G can be computed in O(sort(|V| + |E|)) I/Os and

linear space.

Proof. Since the algorithm described above is presortable, local, and single-pass, the
I/O-complexity follows from Theorem 6.1. The correctness of the algorithm is obvious
if we can guarantee that for every vertex v € V, there is a color ¢(v) € {1,...,A+1}
which has not been assigned to a neighbor of v. This, however, follows from the fact

that v has at most A neighbors. O

6.3 Computing a Maximal Matching

Finding a maximal matching is not quite as straightforward as computing a maximal
independent set, as it is an edge-labelling problem. In particular, the algorithm
is required to compute the characteristic function xu : E — {0,1} of a maximal
matching M. We can easily transform the problem of finding a maximal matching

of a graph G = (V, E) into that of finding a maximal independent set of the graph
G' = (E,{{e, €'} : edges e and €’ share an endpoint in G}).

However, graph G’ may have size Q(|V[?) even if |[E| = O(|V]). (As an example,
consider a wagon wheel, which is even planar.) Our goal is to construct a sub-

graph G" = (E, E") of G' with E" = O(|E|) and describe a vertex-labelling problem

6.3 Computing a Maximal Matching 70

of G" whose solution corresponds to a maximal matching of G. We begin with the
description of a procedure to construct such a graph G".

Given graph G = (V, E), we number the edges in F in their order of appearance
in the edge list of G. Then we define e; < ey if e; has a smaller number than e, in
this numbering. For every vertex v € V with incident edges e; < --- < ¢4, we add
edges {e;,ei11}, 1 < i < g, to E". Every vertex e € G" has at most two in-edges
and at most two out-edges, one in-edge and one out-edge per endpoint of edge e € G.
Hence, |E"| = O(]E|), as desired. The vertex set of graph G” is already given. The
computation of the edge set requires an application of procedure EDGESTOADJA-
CENCYLIsTS, sorting each of the resulting adjacency lists, and scanning these lists
to extract the edges of G”. It remains to describe a vertex-labelling problem of G”
whose solution corresponds to a maximal matching of G and which can be solved by
a presortable local single-pass algorithm.

Every vertex e € G" is contained in two paths P, and P, in G”, one per endpoint
of edge e = {v,w} € G. A subset M C E is a maximal matching of G if and only if
the characteristic function x : E — {0, 1} of M has the following two properties:

(M1) For every path P, v eV, > p xmle) <1

(M2) For every edge e = {v,w} € G, Y, cp up, Xm(e) > 1.

Property (M1) expresses the fact that M is a matching, i.e., every vertex has at most
one incident edge in M. Property (M2) expresses the maximality of M, i.e., every
edge not in M has to share an endpoint with an edge in M. We compute function y
using Algorithm 6.2. This algorithm is presortable, as it uses the ordering of the
edges in F used to construct G”, it is obviously single-pass, and it is local by the way

labels \(e) are computed. All that remains to show is that the algorithm is correct.

Theorem 6.3 Given an undirected graph G = (V, E), a maximal matching M C E
of G can be computed in O(sort(|V|+ |E])) I/Os and linear space.

Proof. In order to prove the correctness of Algorithm 6.2, we have to show that the

labelling xq(e) constructed by the algorithm has Properties (M1) and (M2). Since

6.3 Computing a Maximal Matching 71

Procedure MAXIMALMATCHING

Input: An undirected graph G = (V, E).
Output: A maximal matching M C E of G.

1: Construct graph G” = (E, E") as described in the text, and label every edge {e,e'} € E"
with the name of the endpoint shared by edges e and €’ in G.

2: Sort the vertex set F of G” by the relation “<” defined on the edges of G.

3: for every vertex e € F, in their order of appearance do

4: Compute a label A(e) = (xm(e),0(Py,e),0(Py,e)) of vertex e, where o(P,e) =
Y {xm(e) : e € Pand e <e}: Let e = {v,w}, and let e, and e, be the neighbors
of e in paths P, and P, so that e, < e and e, < e. If e, does not exist, assume that
ey is a dummy vertex with A(e,) = (0,0,0). Make the same assumptions about e,,.
Then let xm(e) = 1 if (P, ey) + 0(Py, ew) = 0, and xa(e) = 0 otherwise. Let
o(Py,e) = o(Py,ey) + xm(e) and o(Py,e) = o(Py, ew) + xm(e).

5: end for

6: Scan E and extract label xaq(e) from label A(e), for every edge e € E.

Algorithm 6.2
Computing a maximal matching.

the algorithm processes the vertices of G” sorted by the “<” relation, it is easily
verified that indeed o(P,,e) = > {xm(e') : € € P,and € < e} and o(P,,e) =
S{xm(e') : ¢ € P, and ¢ < e}. This immediately implies that labelling x4 has
Property (M2) because the algorithm sets ya((e) =1 unless o(P,, e) + o(P,,e) > 1.
In both cases, Property (M2) holds. Property (M1) holds because x(e) = 1 implies
that o(P,,€e') = 0, for all ¢’ € P, with ¢’ < e, and o(P,,¢') = 1, for all ¢ € P, with
e < €. Hence, xp(€e') =0, for all ¢ € P, \ {e}. The same argument shows that
xm(e) =0, for all ¢’ € P, \ {e}. The I/O-complexity follows from Theorem 6.1. [

Since a maximal independent set and a maximal matching of an arbitrary graph
and a (A + 1)-coloring of a graph of bounded degree can be computed in linear time

in internal memory, we obtain the following corollary, using Lemma 2.1.

Corollary 6.1 The following problems can be solved in O(perm(|V| + |E]|)) 1/Os
and linear space: Computing a maximal independent set or maximal matching of

a graph G = (V, E) and computing a (A + 1)-coloring of a graph G of degree A.

Chapter 7

Outerplanar Graphs

In this chapter, we show that a number of fundamental graph problems can be solved
in O(scan(N)) I/Os on embedded outerplanar graphs, provided that the embedding
is represented in an appropriate manner. The problems we consider are breadth-first
search, depth-first search, single source shortest paths, triangulating an embedded
outerplanar graph, and computing an e-separator of size O(1/¢). Clearly, the 1/0O-
complexities of our algorithms cannot be improved by more than a constant factor if
no preprocessing is allowed.

We also present an O(sort(N)) I/O algorithm to test whether a graph G = (V, E)
is outerplanar. The algorithm provides proof for its decision by providing an out-
erplanar embedding G of G if G is outerplanar, and by producing a subgraph of G
which is homeomorphic to Ky or Ky 3 if G is not outerplanar. Together with the above
results, we thus obtain O(sort(N)) I/O algorithms for the above problems on out-
erplanar graphs if no embedding is given. As there are linear-time internal memory
algorithms for all of these problems on outerplanar graphs, Lemma 2.1 allows us to
improve the I/O-complexities of our algorithms to O(perm(/N)). We prove matching
lower bounds for BFS, DFS, SSSP, and embedding.

In our algorithms, we represent a graph G = (V, E) as the two sets V and E.
An embedded outerplanar graph is represented as the set V' of vertices sorted clockwise

along the outer boundary of the graph. Edges are represented as adjacency lists stored

72

7.1 Quterplanarity Testing and Outerplanar Embedding 73

with the vertices. Each adjacency list is sorted counterclockwise around the vertex,
starting with the edge on the outer face of G incident to v and preceding v in the
clockwise traversal of the outer boundary of the graph. In the lower bound proof for
outerplanar embedding, we use a slightly weaker representation of an embedding. In
particular, the algorithm has to label every edge with its positions n,(e) and n,/(e)
counterclockwise around v and w, respectively. This way we guarantee that the
Q(perm(N)) I/O lower bound is not just a consequence of the requirement to arrange
the vertices of G in the right order.

In Section 7.1, we describe our algorithm for testing whether a given graph is
outerplanar and computing an outerplanar embedding. In Section 7.2, we present an
algorithm to triangulate a connected embedded outerplanar graph. In Section 7.3,
we provide an algorithm for computing separators of embedded outerplanar graphs.
In Section 7.4, we present algorithms for solving breadth-first search, depth-first
search, and the single source shortest path problem on embedded outerplanar graphs.
In Section 7.5, we prove lower bounds for embedding, DF'S, BFS and SSSP on outer-
planar graphs.

7.1 Outerplanarity Testing and Outerplanar
Embedding

We begin our exposition of outerplanar graphs with a description of an I/O-efficient
algorithm for outerplanarity testing and outerplanar embedding. The description
is divided into three parts. In Section 7.1.1, we show how to find an outerplanar
embedding of a biconnected outerplanar graph G. In Section 7.1.2, we show how to
deal with the general case. In Section 7.1.3, we augment the algorithm so that it
can test whether a given graph G is outerplanar. If G is outerplanar, the algorithm
produces an outerplanar embedding of G. Otherwise, it outputs a subgraph of G
which is homeomorphic to K, or Ky 3. Graphs are assumed to be undirected in this

section.

7.1 Quterplanarity Testing and Outerplanar Embedding 74

Procedure BICONNECTEDOUTERPLANAREMBEDDING

Input: A biconnected outerplanar graph G.
Output: An outerplanar embedding of G represented by sorted adjacency lists.

1: Compute an open ear-decomposition & = (P, ..., P) of G.

2: Compute the cycle C clockwise along the outer boundary of an outerplanar embedding G
of G.

3: Compute for each vertex v of G, its adjacency list sorted counterclockwise around v,
starting with the predecessor of v in C' and ending with the successor of v in C.

Algorithm 7.1
Embedding a biconnected outerplanar graph.

7.1.1 Outerplanar Embedding of Biconnected Graphs

We use Algorithm 7.1 to compute an outerplanar embedding G of a biconnected
outerplanar graph GG. Next we describe the three steps of this algorithm in detail and

prove the following lemma.

Lemma 7.1 Algorithm 7.1 takes O(sort(N)) I/Os and linear space to compute an

outerplanar embedding of a biconnected outerplanar graphs with N vertices.

Step 1: Computing an open ear decomposition. We apply the algorithm of [43]
to compute an open ear-decomposition of G. This takes O(sort(N)) I/Os and linear

space. By Lemma 3.1, such an ear-decomposition of G exists.

Step 2: Computing the boundary cycle. This step computes the boundary cycle C'
of an outerplanar embedding G of G, i.e., the boundary cycle of the outer face of the
embedding, which contains all vertices of G. The following lemma shows that C' is
the only simple cycle containing all vertices of G, so that C' can be computed by

computing any simple cycle with this property.

Lemma 7.2 Every biconnected outerplanar graph G contains a unique simple cycle

containing all vertices of G.

7.1 Quterplanarity Testing and Outerplanar Embedding 75

O
o

(L

Figure 7.1
Proof of the uniqueness of the boundary cycle of a biconnected outerplanar graph.

Proof. The existence of cycle C' follows from the outerplanarity and biconnectivity
of G. In particular, the boundary of the outer face of an outerplanar embedding G
of G is such a simple cycle.

So assume that there exists another simple cycle C' containing all vertices of G.
Let a and b be two vertices that are consecutive in C, but not in C' (see Figure 7.1).
Then cycle C' can be broken into two internally vertex-disjoint paths P; and P,
from a to b, both of them containing at least one internal vertex. Let ¢ and d be
two internal vertices of P, and P,, respectively. As a and b are connected by an
edge in C', there must be a subpath P; of C' between ¢ and d which contains neither
a nor b. Consider all vertices on P; that are also contained in P;. Let ¢’ be such a
vertex which is furthest away from ¢ along P3. Analogously, we define d’ to be the
vertex closest to ¢ which is shared by P; and P,. Let Pj be the subpath of P; between
¢ and d'. Let H be the subgraph of G defined as the union of cycle C’, edge {a, b},
and path P;. Cycle C', edge {a, b}, and path Pj are internally vertex-disjoint. Thus,

H is homeomorphic to K, which contradicts the outerplanarity of G. O

Let £ = (P,, ..., P;) be the open ear decomposition computed in Step 1. Denote
the endpoints of ear P;, 1 <1 < k, by «; and §;. During the construction of C, we
restrict our attention to the non-trivial ears P, P, ..., P, 0 =1y < i1 < -+ < 1,

in £, as a trivial ear does not contribute new vertices to the graph consisting of all

7.1 Quterplanarity Testing and Outerplanar Embedding 76

v
o X
Yk
(a) (b)
Figure 7.2

(a) The attachment vertices of @ are adjacent in Gi_1. (b) This implies that Gy, is a cycle.

preceding ears. For the sake of simplicity, we write Q; = P;;, 0; = a;;, and 7; = §;,
for 0 < ¢ < gq. Let Gy,...,G, be subgraphs of GG defined as follows: G; = Qy U Q.
For 1 < i < ¢, G; is obtained by removing edge {o;, 7;} from G;_; and adding @Q; to
the resulting graph.

Lemma 7.3 Graphs G4,...,G, are simple cycles.

Proof. If + = 1, G; is a simple cycle, as), is a simple path, and @ is an edge
connecting the two endpoints of ;. So assume that G; is a simple cycle for 1 <1 <
k < q. We show that G|, is a simple cycle.

The crucial observation is that the endpoints o, and 7, of Q) are adjacent in Gj_1.
Assume the contrary. Then Gy_; consists of two internally vertex-disjoint paths
P and P’ between oy, and 7, each containing at least one internal vertex (see Fig-
ure 7.2a). Let v be an internal vertex of P, 4/ be an internal vertex of P', and 7y
be an internal vertex of Q. Vertex < exists because @)y is non-trivial and k£ > 0.
Then paths Q(ok, k), Qr(Tk, %), P(ok,7), P(1k,7), P'(ok,7'), and P'(1x,7') are
internally vertex disjoint, so that the graph @y U GGx_1, which is a subgraph of G, is

homeomorphic to Ky 3. This contradicts the outerplanarity of G.

7.1 Quterplanarity Testing and Outerplanar Embedding 77

Given that vertices oy and 75, are adjacent in Gy_1, the removal of edge {o, 7%}
from Gj_; creates a simple path G’, so that G’ and @) are two internally vertex-
disjoint simple paths sharing their endpoints (see Figure 7.2b). Thus, Gy = G' U Qy

is a simple cycle. O

By Lemmas 7.2 and 7.3, G, = C. We have to show how to construct graph G,. We
obtain this graph by removing all trivial ears and all edges {0}, 7;}, 2 < i < g, from G.
Given an open-ear decomposition £ of G, we scan £ to create a list L containing all
trivial ears and edges {0;,7;}, 2 < i < g. Now we apply operation SETDIFFERENCE
to compute the edge set E \ L of C. This takes O(sort(N)) I/Os.

In order to complete this phase, the order of the vertices in C' along the outer
boundary of G has to be established. To do this, we remove an arbitrary edge from C
to obtain a simple path C'. We compute the distance of each vertex in C' from one
endpoint of C’ using the Euler tour technique and list-ranking. These distances give
the desired ordering of the vertices in C' along the outer boundary of G. As argued in

Sections 5.2.4 and 5.2.5, these two techniques take O(sort(N)) I/Os and linear space.

Step 3: Embedding the diagonals. Let C' = (vq,...,vy) be the boundary cycle
computed in Step 2. In order to compute a complete embedding of GG, the diagonals
of G have to be embedded. (Diagonals are the edges removed from G while comput-
ing C.) Assuming that the order of vertices in C' computed in the previous step is
clockwise around the outer boundary of G, such an embedding of the diagonals can
be computed by sorting the adjacency lists A(v;) of vertices v;, 1 <1i < N, counter-
clockwise around v;, starting with v;_; and ending with v;;;, where vy,; = v; and
Uy = UN.

We denote v(v;) = i as the index of vertex v;, 1 < i < N. First we apply
procedure COPYVERTEXLABELS to inform every edge about the indices of its end-
points. Then we use procedure EDGESTOADJACENCYLISTS to transform the edge
set into a set of adjacency lists for the vertices of G. The sorting step of procedure

EDGESTOADJACENCYLISTS can easily be modified to produce the adjacency lists

7.1 Quterplanarity Testing and Outerplanar Embedding 78

Wi
Wk

Uy

Figure 7.3
Proof of Lemma 7.4.

sorted by decreasing indices. Let A(v;) = (wi,...,w;) be the sorted adjacency list
of vertex v;. We scan the concatenation of lists A(vy),..., A(vy) to identify the ver-
tex w; = v;—1 in each list A(v;) and rearrange the vertices in A(v;) to produce the
list (wj,...,ws, wq,...,wj—1). The whole construction takes O(sort(N)) I/Os. Let
A(vi) = (wi, ..., w;) be the final adjacency list of vertex v;. We define v;(w;) = j.
The following lemma proves that the counterclockwise order of the vertices in A(v;)

is computed correctly by sorting A(v;) as just described.

Lemma 7.4 Let w; and wy, be two vertices in A(v;), 1 <1i < N, with v;(w;) < v;(wy).
Then v;_1, wj, wy, and v;41 appear in this order counterclockwise around v; in an

outerplanar embedding G of G.

Proof. Consider the planar subdivision D induced by C and edge {v;, w;} (see Fig-
ure 7.3). Subdivision D has three faces: the outer face, a face f; bounded by the path
from v; to w; clockwise along C and edge {v;, w,}, and a face f, bounded by the path
from v; to w; counterclockwise along C' and edge {v;,w;}. If wy appears between
v;—1 and w; in counterclockwise order around v;, then wy is on the boundary of f,,
as edge {v;, wx} and the boundary cycle of f, cannot intersect, except in vertices

v; and wg. Depending on where vertex = with v(z) = N appears along C w.r.t. v;_1,

7.1 Quterplanarity Testing and Outerplanar Embedding 79

v;, wj, and wy, one of the following is true:

v(vis1) < v(v) < v(w;) < v(wg)

v(v;) < v(wj) < v(wg) < v(vieg

)
)

<

w;) < v(wg) < v(vim) < v(v;

(
(
(
v(wg) < v(vii1) < v(v;) < v(wy))

It is easy to verify that in all four cases, v;(wy) < v;(w,), contradicting the assumption

made in the lemma. Thus, the lemma holds. O

7.1.2 Outerplanar Embedding—The General Case

If G is not connected, the connected components G, ..., G of G can be embedded
independently. An outerplanar embedding G, of any component G;, 1 < i < k, can
be obtained from outerplanar embeddings of its bicomps B, 1, ..., B;;,. In particu-
lar, the order of the vertices around every vertex v that is contained in only one
bicomp B; ; is fully determined by the embedding of B, ;. For a cutpoint v contained
in bicomps B;;,, ..., B;;,, a valid ordering of the vertices around v can be obtained
by concatenating the sorted adjacency lists A;(v),..., A4(v) of v in Bi,jl, ey Bi,jq.
Similar to the case where G is biconnected, our algorithm computes a list .4 which
is the concatenation of sorted adjacency lists A(v), v € G. List A is the concate-
nation of lists A, ..., As, one for each connected component G;, 1 < i < k, of G.
For the algorithms in Section 7.2 through 7.4 to run in O(scan(N)) I/Os, the adja-
cency lists A(v) in each list A; need to be arranged in an appropriate order. For the
biconnected case, this order is provided by the order of the vertices along the outer
boundary of GG;. In the general case, this arrangement has to be done more care-
fully. In particular, we fix a clockwise traversal of the outer boundary of G;, for every
connected component GG; of G. Then we sort every adjacency list A(v), v € G; coun-
terclockwise around v so that the first entry in A(v) is the vertex preceding the first
appearance of v in this traversal. We arrange the adjacency lists A(vy),..., A(vn,)

of the vertices in G; in the same order as the first appearances of vertices vy, ..., vn;

7.1 Quterplanarity Testing and Outerplanar Embedding 80

Procedure OUTERPLANAREMBEDDING

Input: An outerplanar graph G.
Output: An outerplanar embedding of G represented by sorted adjacency lists.

1: Compute the connected and biconnected components of G. Denote the connected com-
ponents of G by G1, ..., G. The bicomps of component G; are denoted by B; 1,...,B;;,.

2: Apply Algorithm 7.1 to all bicomps B; ; of G to compute lists A; ; representing outer-
planar embeddings of these bicomps.

3: fori=1,...,k do

4: Apply Algorithm 7.3 to compute a list C; = (v1,...,vy;) of the vertices of G;, sorted

by their first appearances in a clockwise traversal of the outer boundary of G;.

5: Apply Algorithm 7.4 to compute a list A; = A(vy) o --+ o A(vy;), where A(v;) is
the adjacency list of vertex v; sorted counterclockwise around v;, starting with the
predecessor of the first appearance of v; in a clockwise traversal of the outer boundary
of G; and ending with its successor.

end for

A+ Ajo---0 .Ak

C + Cl 0--:0 Ck;

Let C = (v1,...,vn). Then let v(vj) = j be the indezx of vertex v,.

Algorithm 7.2
Embedding an outerplanar graph.

in the chosen traversal of the boundary of G;. Algorithm 7.2 provides the details of
computing list A.

Lemma 7.5 Algorithm 7.2 takes O(sort(N)) I/Os and linear space to compute an

outerplanar embedding of an outerplanar graph with N vertices.

Proof. By Lemma 7.1, Algorithm 7.1 produces correct embeddings of all bicomps
of G. Under this condition, Lemmas 7.6 and 7.7 show that Algorithms 7.3 and 7.4
compute correct representations A, ..., A of outerplanar embeddings of the con-
nected components Gy, ..., G of G. Thus, Algorithm 7.2 correctly produces a list .A
representing an outerplanar embedding of G.

The computation of the connected and biconnected components of G in Line 1 of

the algorithm takes O(sort(IN)) I/Os using algorithms of [43]. By Lemma 7.1, Line 2

7.1 Quterplanarity Testing and Outerplanar Embedding 81

Procedure COMPUTEBOUNDARY

Input: A connected outerplanar graph G = (V,E) and lists A1,..., A, representing
outerplanar embeddings of its bicomps By, ..., B.

Output: A list C' of the vertices of G, sorted by their first appearances in a clockwise
traversal of the outer boundary of G. The first vertex in C' is not a cutpoint.

1: if G consists of a single edge {v,w} then

2. C <+ (v,w)

3: else

4: Compute a graph G’ by removing the diagonals of bicomps By,..., By from G.
5: for every cutpoint v € G do

6: Let By, ..., B, be the bicomps of G' containing v.

7: Let u; and w; be the predecessor and successor of v clockwise along the outer

boundary of bicomp B}, for 1 <i < gq.

8: Make g copies v1,...,v, of vertex v.

9: for j=1,...,9do

10: Make v; adjacent to vertices u; and w(; mod k)41

11: end for

12: end for

13: Remove an edge {z,y} from the resulting cycle C’ to transform it into a path P,
where z is not a cutpoint of G, and y precedes z in C'.

14: Compute distances distp(z, z), z € P.

15: Sort the vertices of P by their distances and remove all but the first appearance of
each vertex from P.

16: Let C = (vy,...,vn) be the resulting list.

17: end if

Algorithm 7.3
Computing the list of vertices along the boundary of a connected outerplanar graph G.

takes O(sort(|B;;|)) I/Os per bicomp B; ;, O(sort(N)) I/Os in total. By Lemmas 7.6
and 7.7, the i-th iteration of the loop in Lines 3-6 takes O(sort(|G;|)) I/Os. Hence, the
whole loop takes O(sort(/N)) I/Os. Lines 7 and 8 do not require any computation,
as lists A and C can be created on the fly while producing lists A,..., A; and
Ci,...,C% in the loop in Lines 3-6. Line 9 can be implemented in a single scan over

list C. O

7.1 Quterplanarity Testing and Outerplanar Embedding 82

Lemma 7.6 Given a connected outerplanar graph G = (V, E)) with N vertices, Algo-
rithm 7.3 takes O(sort(N)) I/Os and linear space to compute the list C' of the vertices
of G, sorted by their first appearances in a clockwise traversal of the outer boundary

of an outerplanar embedding of G.

Proof. The correctness of Algorithm 7.3 is easily verified. If graph G contains only
a single edge {v,w}, C = (v,w) is a correct representation of its outer boundary.
Otherwise, Lines 4-12 compute a cycle C' so that all vertices of G appear in the
same order in C' as visited by a clockwise traversal of an outerplanar embedding
of G, including multiplicities (see Figure 7.4). Then Lines 13-16 sort the vertices
of G according to the order of their first appearances in C' and hence along the outer
boundary of (G. Vertex x, which is chosen not to be a cutpoint, is the first vertex
in C.

If graph G consists of a single edge, Algorithm 7.3 clearly takes O(sort(NN)) I/Os.
So assume that G contains at least two edges. Line 4 of the algorithm can be realized
by scanning lists Ay, ..., Ax and removing all but the first and last entries from every
adjacency list A;(v). Let A’ be the resulting concatenation of adjacency lists. Assume
that every vertex w € A;(v) is represented as an ordered pair (v, w). We sort the
entries (v, w) € A’ by their first components using a stable sorting algorithm.! As a
result, the edges in G’ incident to every vertex are stored consecutively, sorted by the
bicomps containing them. Now a single scan of this list is sufficient to identify the
cutpoints of G and perform the loop in Line 5-12. Given that the cutpoints of G have
been identified, a single scan of the vertex list of G suffices to find a vertex x which is
not a cutpoint. A scan of the edge list of C' is sufficient to find and remove the edge
{z,y} preceding z in a clockwise traversal of the outer boundary of G. Computing the
distances of all vertices in the resulting path P from z takes O(sort(/N)) I/Os using the
Euler tour technique and list-ranking. Line 15 now requires the sorting of the vertices

of P by their distances from x and the application of operation DUPLICATEREMOVAL

! Any sorting algorithm can be made stable by including the original position of every element as
a secondary key of the sort.

7.1 Quterplanarity Testing and Outerplanar Embedding 83

Figure 7.4
Extracting the list of vertices along the outer boundary of a connected outerplanar graph.

to remove all but the first appearance of every vertex. As all operations used here
take O(sort(N)) I/Os, the whole algorithm takes O(sort(N)) I/Os. O

Lemma 7.7 Algorithm 7.4 takes O(sort(N)) I/Os to compute a list A representing

an outerplanar embedding of a connected outerplanar graph G' with N vertices.

Proof. To prove the correctness of the algorithm, it suffices to show that it computes
the adjacency lists of all vertices correctly because Line 12 computes list A from
lists C' and A(v1), ..., A(vy) according to its definition. For a vertex v which is not
a cutpoint, its adjacency list A(v) in G is the same as its adjacency list A;(v) in the
bicomp B; of G containing v. Thus, the algorithm correctly copies this adjacency
list in Line 9. If vertex v is a cutpoint, we have to show that the vertices in A(v)
are sorted counterclockwise around v, starting with the predecessor u, of the first
appearance of v in a clockwise traversal of the outer boundary of G. To do this, it
suffices to show that u; = us(1), and vertices us(1), Us(q), - - - , Uo(2) appear in this order
counterclockwise around v.

As vertex vy is not a cutpoint, the vertex u, preceding the first appearance of v in a
clockwise traversal of the outer boundary of G precedes v in C'. Let B! be the bicomp

containing u,. Then any vertex in any other bicomp B}, i # x, can only be visited

7.1 Quterplanarity Testing and Outerplanar Embedding 84

Procedure COMPUTEADJACENCYLISTS

Input: A connected outerplanar graph G = (V, E), lists A1, ..., Ay representing outer-
planar embeddings of its bicomps Bi, ..., B, and a list C = (v1,...,vn) of the
vertices of GG, sorted by their first appearances in a clockwise traversal of the
outer boundary of G. Vertex vy is not a cutpoint.

Output: A list A representing an outerplanar embedding of G.

1: for v € V do

2: if v is a cutpoint then

3: Let B, ..., B} be the bicomps containing v, and let A;(v), ..., A4(v) be the adja-
cency lists of v contained in lists A1, ..., A7
Let uy,...,uq be the first entries of adjacency lists A;(v), ..., A4(v).

5: Let o : [1,q] — [1,q] be a permutation so that vertices uy(1),---,us(q) appear in
this order in C.

6: Av) « Aa(l) (v) o Aa(q) (v) o Aa(qfl) (v)o---o AU(Q) (v)

7. else

8: Let B; be the only bicomp containing v, and let A;(v) be the adjacency list of v
contained in A;.

9: A(v) + A;(v)

10: end if

11: end for

122 A+ A(vy)o---0 A(vy)

Algorithm 7.4
Computing an outerplanar embedding of a connected outerplanar graph G.

after visiting v for the first time because v is a cutpoint. Hence, they succeed v and
thus u, in C. Since the vertices in C are stored clockwise along the outer boundary
of G, vertices u/, (1)’ u! (@) u! (2) appear in this order counterclockwise around v.
It remains to provide the details of Algorithm 7.4 and analyze its I/O-complexity.
First we apply a procedure similar to procedure COPYVERTEXLABELS to inform ev-
ery entry (v,w) in an adjacency list A;(v) about the position of vertex w in list C.
This takes O(sort(N)) I/Os. We scan the concatenation of all adjacency lists A;(v),
for all bicomps By, ..., By and all vertices v € V to label every entry (v, w) € A;(v)
with the position of the first vertex u; € A;(v) in C. Then we use a stable sort to ar-

range these adjacency lists so that for every vertex v contained in bicomps By, ..., B,

7.1 Quterplanarity Testing and Outerplanar Embedding 85

adjacency lists A} (v), ..., A (v) are stored consecutively, arranged in reverse order by
the position of their first entries in C. Now a single scan of the resulting list is suf-
ficient to bring for every cutpoint v, adjacency list A;(l)(v) to the front of adjacency
list A(v). O

We conclude this subsection with a number of definitions and two observations
which are used in the correctness proofs of algorithms presented in Sections 7.2

through 7.4.

Observation 7.1 For every adjacency list A(v) = (wy, ..., wg), v(v) > 1, there exists
an index 1 < j < k such that v(wji1) > v(wjie) > -+ > v(wg) > v(v) > v(w) >
<o >p(w;). Ifv(v) =1, then v(wy) > --- > v(wg) > v(v).

We call a path P = (vy,...,v,) monotone if v(vy) < --- < v(vy). We say that in
the computed embedding of G, a monotone path P = (s = vy,...,v,) is to the left

of another monotone path P’ = (s = vj,...,v!,) with the same source s if P and P’

»
share vertices s = wy,...,wy, l.e., wy = v;, = v}k, for some indices i; and j;, and
0 < k <t, and edges {wy, vy, 1}, {Wk, vi,11} and {wy, v} ,} appear in this order
clockwise around wy, for 0 < k < t. This definition is somewhat misleading, as
vertex v_; is not defined. But we apply results based on this definition only to mono-
tone paths starting at the vertex r, v(r) = 1, of a connected embedded outerplanar
graph G. In this case, we imagine v_; to be an additional vertex embedded in the
outer face of the given outerplanar embedding of G and connected only to r through
a single edge {v_1,7}.

A lexicographical ordering “<” of the monotone paths with the same source is
defined as follows: Let P = (vg,...,v,) and P’ = (v, ...,v,) be two such paths.
Then there exists an index j > 0 such that vy = vy, for 0 < k < j and v; # v;. We
say that P < P"if and only if v(v;) < v(v}).

Lemma 7.8

(i) Let P be a monotone path from s to some vertex v. Then there exists no

monotone path from s to a vertex w, v(w) > v(v), which is to the left of P.

7.1 Quterplanarity Testing and Outerplanar Embedding 86

Figure 7.5
Proof of Lemma 7.8.

(ii) Let P and P' be two monotone paths with source s, v(s) = 1. If P < P/,
then P' is not to the left of P.

Proof. (i) Let P = (s = vp,...,v, = v) be a monotone path from s to a vertex v,

P' = (s =uy,...,v!, =w) be a monotone path from s to a vertex w, v(w) > v(v), and

'
P
v; = v; be the last vertex shared by P and P’ (see Figure 7.5). Assume that P’ is to
the left of P. Then vertices v;_1, v;41, and ’U;- 41 appear in this order counterclockwise
around v;. As the vertices of G are numbered clockwise along the outer boundary, the
path P" from s to v clockwise along the outer boundary includes v;, but not w. Let
v, = v} be the last vertex along P’ shared by P’ and P". As P" is part of the outer
boundary of G, vertices v;',, v;,,, and v/, appear in this order counterclockwise
around v;. But this implies that paths P(v;,v) and P"(v;,v) define a collection of
closed Jordan curves one of which encloses w. This contradicts the assumption that
the orders of the edges around the vertices of G describe an outerplanar embedding
of G. Hence, P’ is not to the left of P.

(ii) Let P = (s = vo,...,vp) and P’ = (s = v,...,v},) be two monotone paths
with source s so that P < P'. Assume that P’ is to the left of P. Let ¢ be the index
so that v; = v}, for 0 < j <4, and v; # v;. Then v(v;) < v(v]) and path P'(s,v;) is
to the left of path P(s,v;). This contradicts (i). O

7.1 Quterplanarity Testing and Outerplanar Embedding 87

7.1.3 Outerplanarity Testing

In this section, we augment the embedding algorithm of the previous section so that
it decides whether a given graph G = (V, F) is outerplanar. First the algorithm tests
whether |E| < 2|V|—3. If not, G cannot be outerplanar. As a graph is outerplanar if
and only if its bicomps are outerplanar, we only have to augment Algorithm 7.1, which
deals with the bicomps of G. If this algorithm produces an outerplanar embedding
for every bicomp of GG, this is proof that GG is outerplanar. Otherwise, the algorithm
fails to produce an outerplanar embedding for at least one of the bicomps of G. Let B
be such a bicomp.

The algorithm can fail in two ways. It may not be able to compute the boundary
cycle C, or it computes the boundary cycle C' and then produces an intersection
between two edges when embedding the diagonals of B. We discuss both cases in
detail.

Given an open ear-decomposition & = (P, ..., P;) of B, the algorithm tries to
compute the boundary cycle C' by producing a sequence of cycles Gy, ..., G,, where
Gi.1 is obtained from G; by replacing edge {o;11,7::1} in G; by the non-trivial
ear ;1. If G; contains edge {0;,1, Ti11}, for all 0 < i < ¢, the algorithm successfully
computes C. The only way this construction can fail is that there is a non-trivial
ear ;41 such that G; does not contain edge {0;;1,7;+1}. As shown in the proof of
Lemma 7.3, G; U Qi1 is homeomorphic to Kj 3 in this case. Thus, the algorithm
outputs G; U ;11 as proof that G is not outerplanar.

Given the boundary cycle C, all edges of B which are not in C' are diagonals of B.
The algorithm computes list A as described in Section 7.1.1 and uses A and a stack S

to test for intersecting diagonals. The details are provided in Algorithm 7.5.

Lemma 7.9 Given cycle C' and list A as computed by Algorithm 7.1, bicomp B is
outerplanar if and only if Algorithm 7.5 confirms this.

Proof. If graph G is not outerplanar, but cycle C' exists, two diagonals must intersect.

Let {a,b} and {c,d} be two such edges. Since no two edges sharing an endpoint

7.1 Quterplanarity Testing and Outerplanar Embedding 88

Procedure TESTDIAGONALS

Input: The list A as computed for bicomp B by Algorithm 7.1.

Output: A decision whether B is outerplanar, along with a proof for the decision, either
in the form of a subgraph which is homeomorphic to K4, or in the form of an
outerplanar embedding of B.

1: Initialize stack S to be empty.
2: for each entry (v,w) € A do

3: if v(w) > v(v) then

4: PusH(S, {v,w})

5: else

6: {a,b} < Popr(S)

T if {a,b} # {v,w} then

8: Report the graph consisting of cycle C augmented with edges {a,b} and {v,w}
as proof that B is not outerplanar, and stop.

9: end if

10: end if

11: end for

12: Report the embedding B of B represented by list A as proof for the outerplanarity of B.

Algorithm 7.5
Test for intersecting diagonals.

intersect, vertices a,b,c,d are pairwise distinct. Moreover, edges {a,b} and {c,d}
cannot intersect if intervals [v(a), v(b)] and [v(c), v(d)] are disjoint or one is contained
in the other because in both cases, vertices a and b partition cycle C into two paths so
that vertices ¢ and d are contained in the same path. Hence, w.l.o.g., v(a) < v(c) <
v(b) < v(d). But then the algorithm would push edge {a,b} before edge {c,d} on
stack S and try to pop edge {a, b} from stack S before popping edge {c,d}. Thus,
it reports that graph B is not outerplanar. Note, however, that the algorithm does
not necessarily report edges {a,b} and {c,d} as proof for the non-outerplanarity
of B because it may detect another conflict before finding the intersection between
{a,b} and {c,d}. Next we show that if the algorithm reports a pair of edges as
proof for the non-outerplanarity of G, then the two reported edges are diagonals that

intersect. This proves that no matter which pair of edges the algorithm reports, the

7.1 Quterplanarity Testing and Outerplanar Embedding 89

graph defined by cycle C' and the two reported edges is homeomorphic to /. It also
shows that the algorithm does not report any conflicts if B is outerplanar because in
this case there is no pair of intersecting diagonals.

So assume that the algorithm reports an intersection. That is, it tries to pop an
edge {v, w} from the top of the stack which is not on the top of the stack. Let {a, b}
be the edge on the top of the stack. Then v(v) < v(a) < v(w) < v(b). Now observe
that all these inequalities are strict. To see this, consider the three possibilities for
equality:

If v(v) = v(a), edges {a,b} and {a,w} appear in this order counterclockwise
around a, so that edge {a, b} is pushed on the stack before edge {a,w} and hence
cannot be above edge {v,w} on S.

If v(a) = v(w), edges {a,v} and {a,b} appear in this order counterclockwise
around a, so that edge {a, v} is popped from the stack before edge {a, b} is pushed on
the stack. Hence, edge {a, b} cannot be on the top of the stack when the algorithm
tries to remove edge {a, v} from the top of the stack.

Finally, if v(w) = v(b), edges {a, b} and {v, b} appear in this order counterclock-
wise around b, so that edge {v,b} is popped from the stack after edge {a,b}. This
contradicts the assumption that edge {a, b} is on the top of the stack when the algo-
rithm tries to remove edge {v, b} from the top of the stack.

This shows that v(v) < v(a) < v(w) < v(b), so that edges {a,b} and {v,w}
together with cycle C' define a subgraph of G which is homeomorphic to Kj. O

The K 3-test during the construction of the boundary cycle can be incorporated in
the embedding algorithm without increasing the I/O-complexity of that phase. Given
list A, the test for intersecting diagonals takes O(scan(|.A|)) = O(scan(N)) I/Os.
To see this, observe that scanning A takes O(scan(N)) I/Os. Every edge {v,w},
v(v) < v(w), in G is pushed on the stack at most once, namely when the traversal
visits vertex v, and removed at most once, namely when the traversal visits vertex w.
Thus, Algorithm 7.5 performs O(N) stack operations, which takes O(scan(/N)) I/Os.

We have shown the following theorem.

7.2 Triangulation 90

Theorem 7.1 Given a graph G = (V, E), it takes O(sort(|V'| + |E|)) I/Os and linear
space to test whether G is outerplanar and to provide proof for the decision of the
algorithm by constructing an outerplanar embedding of G or extracting a subgraph

of G which is homeomorphic to Ky 3 or K.

7.2 Triangulation

Algorithms on outerplanar graphs are simplified if the given graph is triangulated.
For instance our algorithms for BF'S and SSSP presented in Section 7.4 assume that
the input graph is triangulated. Hence, computing a triangulation of an outerplanar
graph is an important algorithmic problem. In this section, we show that this problem
can be solved in a linear number of I/Os for an embedded connected outerplanar
graph. Our triangulation algorithm can easily be extended to deal with disconnected
graphs as follows: On encountering a vertex v which is the vertex with the smallest
index v(v) in its connected component, we add an edge {u, v}, v(u) = v(v) — 1 to G.
This can be done on the fly while triangulating G and transforms G into a connected
supergraph G’, whose triangulation is also a triangulation of G.

Formally, a triangulation of an outerplanar graph G is a biconnected outerpla-
nar supergraph A of G with the same vertex set as G and whose interior faces are
triangles.2 We show how to compute a list D representing the embedding A of A
from the list A representing the embedding G of G. In the rest of this section, we do
not distinguish between a graph and its embedding. All graphs are considered to be
embedded.

We need a few definitions to present our algorithm. An ordered triangulation of G
is a list T representing the dual tree T of a triangulation A of G' with the following

properties: (1) The vertices vy,..., vy, where v(v;) < v(vi1), for 1 <i < N, appear

2This definition refers to the faces of A without explicitly referring to an embedding A of A that
defines these faces. For a planar graph G, its faces are well-defined only if an embedding G of G
is given. It is easy to show, however, that the outerplanar embedding of a triangulation as defined
above is unique, except for flipping the whole graph (see Section 7.5).

7.2 Triangulation 91

in this order in a clockwise traversal of the outer boundary of A. (2) A clockwise
traversal of the boundary from v; to vy defines an Euler tour of 7', which in turn
defines a postorder numbering of the vertices in 7. List 7 stores the vertices of T
sorted according to this postorder numbering.

Let r € G be the vertex with v(r) = 1. An ordered partial triangulation of G
w.r.t. the shortest monotone path P = (r = vy,...,v, = v) from vertex r to some
vertex v is a list 7 = 7T o --- 0o 7p, where list 7; is an ordered triangulation of the
subgraph of G defined by all edges {a,b} € G, v(vi_1) < v(a),v(b) < v(v;). (Note
that list 7; is empty if v(v;_1) + 1 = v(v;).)

The fringe F(P) of a monotone path P = (v, ..., v,) in G is a list of directed edges
((vo, wo,0), - - -5 (Vo, Wog), (V1,W10), -+ -, (V1, Wi,)5+ -, (Vpy Wpo)s - - -5 (Vp, Wpyi,)), Where
for each 0 < j < p, edges {v;, w;x}, 0 < k < i;, are the edges in G incident to v; with
v(vj41) < v(w;i). For v,, we require that v(v,) < v(wpyy). The edges incident to
every vertex v; are sorted so that the path P = (v, ..., v;, w) is to the left of path
P = (vg,...,vj,wg_1), for 0 < k < ;.

Our algorithm consists of two phases. The first phase (Algorithm 7.6) produces
an ordered triangulation of G. A vertex « of T is labelled with the vertices u, v, w
of G in clockwise order along the boundary of the triangle represented by «. Hence,
we denote « as the vertex (u,v,w). The second phase (Algorithm 7.7) uses list 7 to
extract the list D representing the embedding A of A.

We say that Algorithm 7.6 wvisits vertex v when the for-loop inspects the first
edge (v,w) € A (which is the first edge in A(v)).

Lemma 7.10 When Algorithm 7.6 visits vertex v € G, the stack S represents the
fringe of the shortest monotone path P in G from r to u, where v(u) = v(v) — 1.

List T is an ordered partial triangulation of G w.r.t. P.

Proof. We prove this claim by induction on v(v). If v(v) = 1, v = r is the first vertex

to be visited, so that S is empty, and the claim of the lemma, trivially holds. In this

7.2 Triangulation

92

Procedure ORDEREDTRIANGULATION

Input: A list A representing the embedding of an outerplanar graph G.

Output: An ordered triangulation T of G.

1: Initialize stack S to be empty.
2: for each entry (v,w) € A do

3: if the previous entry in A exists and is of the form (v',w’), v' # v then

4: if v(w) < v(v) — 1 then
5:
6: repeat
7: (a,b) < Pop(S)
8: Append vertex (a,b,v) to T.
9: until g = w
10: end if
11: else
12: if v(v) < v(w) then
13: PusH(S, (v,w))
14: else
15: Pop(S)
16: repeat
17: (a,b) + Popr(S)
18: Append vertex (a,b,v) to T.
19: until ¢ = w
20: end if
21: end if
22: end for

23: Let v be the last vertex visited within the loop.

24: Popr(9)

25: while S is not empty do

26: (a,b) <+ Pop(S)

27: Append vertex (a,b,v) to 7.
28: end while

{Bridge cutpoints.}

{Triangulate the interior faces of G.}

{Bridge remaining cutpoints.}

Algorithm 7.6
Computing the dual of the triangulation.

7.2 Triangulation 93

case, v(w) > v(v), for all edges (v,w) € A(v). Thus, while inspecting A(v), each iter-
ation of the for loop executes Line 13, which pushes edge (v, w) on the stack. By Ob-
servation 7.1, v(wy) > v(we) > -+ > v(wyg), where A(v) = {((v,w1),..., (v, w)).
Thus, the claim also holds for vertex v' with v(v') = 2.

So assume that v(v) > 2 and that the claim holds for u, v(u) = v(v) — 1. By Ob-
servation 7.1, there exists an index j such that v(wji1) > -+ > v(wg) > v(u) >
v(wy) > -+ > v(w;), where A(u) = ((u,w1),..., (u, wg)). We split the iterations
inspecting A(u) into three phases. The first phase inspects edge (u,w;). The sec-
ond phase inspects edges (u,ws),...,(u,w;). And the third phase inspects edges
(u, wjg1), - .., (u, wy).

The iteration of the first phase executes Lines 4-10 of Algorithm 7.6. The iter-
ations of the second phase execute Lines 15-19. The iterations of the third phase
execute Line 13.

For the iteration of the first phase, vertex w; is a vertex on the path P whose
fringe is stored on S. To see this, observe that P is a monotone path from r to
vertex y with v(y) = v(u) — 1. If w; = y, we are done. So assume that w; # y.
In this case, v(w;) < v(y) because v(w;) < v(u). Now observe that G contains a
monotone path P’ from r to w;, which can be extended to a monotone path P” from r
to u by appending edge {w;,u}. Let x be the last vertex on P which is in P N P".
If x = wy, then w; € P. Otherwise, let P” = P(r,z) o P"(z,u). Now either P
is to the left of P"(r,w), or P" is to the left of P. In both cases, we obtain a
contradiction to Lemma 7.8(i) because paths P, P" and P"(r,w;) are monotone,
and v(wy) < v(y) < v(u).

If v(w1) = v(u) — 1, edge (wy,u) is the last edge in the fringe F(P) represented
by the current stack. Assume that this is not the case. Then let (w1, z) be the edge
succeeding (wq,u) in F(P), and let P; and P, be the paths obtained by appending
edges (w1, 2) and (wy,u) to P. Path P, is to the left of Py; but v(z) > v(u), which

contradicts Lemma 7.8(ii). Thus, S represents the fringe of a monotone path from r

7.2 Triangulation 94

to u whose edges {u,w}, v(w) > v(u) have been removed. T is an ordered partial
triangulation of G w.r.t. this path.

If v(w) < v(u) — 1, there is no edge in F(P) which is incident to a vertex
succeeding w, along P and is not part of P itself. Assume the contrary. That is,
there is an edge (ws, z) € F(P) such that wy succeeds w; along P. If wy = y, then
v(z) > v(y). But this implies that v(z) > v(u) because v(u) = v(y) + 1. Thus,
we obtain a contradiction to Lemma 7.8(i) because either P o {y, z} is to the left of
P(r,wy) o {wy,u}, or P(r,w;) o {wy,u} is to the left of P. If wy # y, there are two
cases. If v(z) > v(y), we obtain a contradiction as in the case wy = y. Otherwise,
let w3 be the successor of wy along P. Then P(r, w3) is to the left of P(r, ws) o {ws, 2}
because v(z) > v(ws). But this implies that P is to the left of P(r,ws) o {ws, 2},
thereby leading to a contradiction to Lemma 7.8(i) because v(y) > v(z).

Thus, by adding an edge from u to the vertex y with v(y) = v(u) — 1 and triangu-
lating the resulting face bounded by P(wy,y) and edges {y,u} and {wy,u}, as done
in Lines 6-9 of Algorithm 7.6, a partial triangulation of G w.r.t. the path P’ defined
as the concatenation of P(r,w;) and edge {wi,u} is obtained. The triangulation is
ordered, as the triangles are added from y toward w; along P. Stack S now represents
the fringe F(P') of P’ after removing edges {u,w}, v(w) > v(u).

For every edge (u, w) inspected in the second phase, edge (w, v) must be part of the
shortened fringe of P’ represented by S. This can be shown using the same argument
as the one showing that vertex w; in the iteration of the first phase is part of P. By
Observation 7.1, the edges inspected during the second phase are inspected according
to the order of their endpoints from w; toward r along P. Using the same arguments
as the ones showing that (wq,u) is the last edge in the fringe F(P) if v(w;) = v(u) —1,
it can be shown that there cannot be any edges {a,b}, v(w;) < v(a) and v(b) # v(u),
in the fringe of P', so that the top of stack S represents the subpath P'(w;,u) with
dangling edges (wj,u), ..., (we, u) attached. The iterations of the second phase now
triangulate the faces defined by P'(w;,u) and edges {wj,u}, ..., {ws, u}, so that at

the end of this phase, stack S represents a monotone path P” from r to u, and T

7.2 Triangulation 95

represents an ordered partial triangulation of G w.r.t. path P”. We argue as follows
that path P” is the shortest monotone path from r to v in G:

If there were a shorter monotone path () from r to u, this path would have to pass
through one of the bicomps of the partial triangulation represented by 7 or through
one of the vertices not inspected yet. The latter would result in a non-monotone path,
as for each such vertex z, v(x) > v(u). In the former case, if @) passes through the
bicomp defined by vertices z € G, where v(z) < v(z) < v(y) and {z,y} is an edge
in P", replacing the subpath Q(z,y) by edge {z,y} in @ would result in a shorter
path @’. Thus, P" is indeed the shortest monotone path from r to wu.

The iterations of the third phase finally add edges {u,w;jt1},...,{u, wx} to the
stack S, so that the representation of the fringe F(P") of P" is complete, and the

claim holds for v as well. O

After the for-loop is finished inspecting all edges in A, the stack S represents
the fringe F(P) of the shortest monotone path P in G from r to the last vertex v
with v(v) = N, and T represents an ordered partial triangulation of G w.r.t. P.
In this case, F(P) = P, as the adjacency lists of all vertices of G have been in-
spected. Vertices v and r are not necessarily adjacent, so that the interior vertices
of P are cutpoints of the partial triangulation constructed so far. To complete the
triangulation, the while-loop in Lines 24-28 makes vertex v adjacent to vertex r and
triangulates the resulting face. Thus, Algorithm 7.6 does indeed produce an ordered
triangulation of G.

The following lemma shows that Algorithm 7.7 correctly constructs an embedding
of the triangulation A which is represented by the list 7 computed by Algorithm 7.6.
For a triangle (a,b,c) € T, let 7((a,b,c)) be its position in 7. It follows from the
fact that 7 represents a postorder traversal of tree T that triangles (a,b,c) with
7((a,b,c)) > j, for some integer 1 < j < |7, represent a subgraph A; of A which
is a triangulation. Let A; be the subgraph of A induced by all triangles (a, b, c),
7((a,b,¢c)) < j. Denote the set of edges shared by A; and A; by 9A;.

7.2 Triangulation 96

Procedure EXTRACTTRIANGULATION

Input: An ordered triangulation 7 of G.
Output: A list D representing the embedding A of the triangulation A represented by 7T .

1: Initialize stack S to be empty.

2: Initialize list D to be empty.

3: for each vertex (a,b,c) € T in reverse order do
4: if (a,b,c) is the first visited vertex then

5: {Assume that v(a) < v(b) < v(c).}
6: Prepend entry (c,a) to D.
7 Prepend entry (c,b) to D.
8: PusH(S, (a,c))
9: PusH(S, (a,b))
10: PusH(S, (b,a))
11: PusH(S, (b,¢))
12: else
13: while the top of the stack S does not equal (b, a), (c,b) or (a,c) do
14: (d,e) < Por(S)
15: Prepend entry (d,e) to D.
16: end while
17: {Assume w.l.o.g. that the top of the stack is (b,a).}
18: Prepend entry (a,c) to D.

19: PusH(S, (b,¢))
20: PusH(S, (¢, b))

21: PusH(S, (¢, a))
22: end if
23: end for

24: while S is not empty do
25: (a,b) + Pop(S)

26: Prepend entry (a,b) to D.
27: end while

Algorithm 7.7
Extracting the embedding A of A from the tree T'.

7.2 Triangulation 97

Lemma 7.11 After processing triangle (a,b,c) € T with 7((a,b,c)) = j, the con-
catenation of S and D represents an embedding of A;. For every edge {z,y} € 04,
stack S stores an entry (z,y), where x and y appear clockwise around the only triangle

in A; containing both x and y.

Proof. We prove the claim by induction on j. If j = |T|, triangle (a, b, ¢) is the first
visited triangle. Thus, Lines 5-11 of Algorithm 7.7 are executed. The concatenation
of S and D is of the form ((a, ¢), (a,b), (b,a), (b,), (¢,b), (c,a)), where v(a) = 1 and
v(c) = |G|. This represents an embedding of triangle (a,b,c). Moreover, stack S
stores edges (a,b) and (b, c), and edge {a, c} cannot be shared by A; and A; because
edge {a,c} is a boundary edge of A.

So assume that the claim holds for 5 > k. We prove the claim for j = k. In this
case, Lines 13-21 are executed. By the induction hypothesis, the concatenation of
S and D represents an embedding of A1, and S stores edge (b, a), where edge {a, b}
is shared by triangle (a, b, ¢) and triangulation Ay, ;. The while-loop in Lines 13-16
transfers edges from S to D until edge (b, a) is on the top of the stack. Lines 18-21 “in-
sert” vertex c into the boundary cycle of Ay, by inserting entries (b, ¢), (¢, b), (¢, a),
and (a, c) between entries (b, a) and (a,b) in the sequence represented by S and D.
The result is an embedding of Ay.

The edges removed from the stack during the while-loop in Lines 13-16 cannot
be in 0A, as for every triangle (a',',¢') sharing one of those edges with Ay,
T((a', ¥, ")) > 7((a,b,c)). This follows from the fact that 7 is an ordered trian-
gulation. Edge {a,b} cannot be in dA, as it is already shared by Ag,; and tri-
angle (a,b,c). Thus, every edge in Ay is either shared by Ay, and A, or by
triangle (a, b, c) and A;. We have just argued that the former edges are not removed
from S, and the latter edges can only be edges {a, c} or {b,c}, whose representations

have been put on the stack. Thus, the claim holds for j = &k as well. O

Lemma 7.11 implies that after the for-loop has inspected all triangles in 7, the
concatenation of S and D represents an outerplanar embedding of A. Thus, after

prepending the entries in S to D as done in Lines 24-27 of Algorithm 7.7, list D

7.3 Computing Separators of Outerplanar Graphs 98

represents an embedding of A. This shows that Algorithms 7.6 and 7.7 correctly

compute an outerplanar embedding A of a triangulation A of G.

Theorem 7.2 Given a list A representing an embedding G of a connected outerplanar
graph G with N vertices, it takes O(scan(N)) I/Os and linear space to compute a

list D representing an outerplanar embedding A ofa triangulation A of G.

Proof. List D can be computed using Algorithms 7.6 and 7.7. The correctness of this
procedure follows from Lemmas 7.10 and 7.11.

To prove the I/O-bound of our algorithm, observe that Algorithm 7.6 scans
list A and writes list 7. In addition it performs some stack operations. Scanning
list A takes O(scan(|.A|)) = O(scan(N)) 1/Os. Writing list 7 takes O(scan(|T])) =
O(scan(N)) I/Os. The number of stack operations performed by Algorithm 7.6 is
twice the number of PUSH operations it performs. However, every entry of list A
causes at most one PUSH operation to be performed, so that Algorithm 7.6 performs
O(]A]) = O(N) stack operations, which takes O(scan(N)) I/Os.

Algorithm 7.7 scans list 7 and writes list D. As both lists have size O(N), this
takes O(scan(NN)) I/Os. The number of stack operations performed by Algorithm 7.7
is O(|T|) = O(N), as each entry in T causes at most four PUSH operations to be
performed. Thus, Algorithm 7.7 takes O(scan(N)) I/Os as well. O

7.3 Computing Separators of Outerplanar Graphs

In this section, we discuss the problem of finding a small e-separator of an outerplanar

graph. We show the following result.

Theorem 7.3 Given an embedded outerplanar graph G = (V, E) with N vertices,
represented as a list A, a weight function w : V — R{, and a constant 0 < & < 1, it
takes O(scan(N)) I/Os and linear space to compute an e-separator S of size O(1/¢)
for G.

7.3 Computing Separators of Outerplanar Graphs 99

We assume that graph G is triangulated and that the vertices of its dual tree T'
are given, sorted according to some preorder numbering of 7". This information can
be computed in O(scan(N)) I/Os using the triangulation algorithm of Section 7.2.
Every separator of a triangulation of G is also a separator of G. Given an edge e € T
whose removal partitions 7" into two trees T and 75, trees 177 and 75 represent two
subgraphs GG; and G5 of G such that G; and G5 share a pair of vertices, v and w. Let
e* = {v,w} be the edge dual to edge e € T. The connected components of G —{v, w}
are graphs G; — {v,w} and Gy — {v, w}.

We choose a degree-1 vertex r of T as the root of 7. For a vertex v € T, let A(v)
be the triangle of G represented by v. Let V, be the vertex set of A(v). Let T'(v) be
the subtree of T rooted at v, and let G(v) be the subgraph of G defined as the union
of all triangles A(w), w € T(v). That is, T'(v) is the dual tree of G(v). If v # r,
let p(v) be the parent of v in 7" and e, = {v,p(v)} be the edge connecting v to its
parent p(v). Then e} = {x,,y,} is the edge of G dual to edge e,.

Our algorithms proceeds in three phases. The first phase of the algorithm com-
putes weights w(v) for the vertices of T" so that w(7T) = w(G), and for v # r,
w(T(v)) = w(G(v) — {xy,y»})- The second phase of the algorithm computes a small
edge-separator of T" w.r.t. these vertex weights. The third phase of the algorithm com-
putes the corresponding vertex separator of G. Next we discuss these three phases in

detail.

Phase 1: Computing the weights of the dual vertices. We define weights w(v)
as follows. For the root r of T', let w(r) = w(A(r)). For every other vertex v € T, let
w() = w(zy), for z, € V, \ {xy, y»}- Note that z, is unique. Given that the vertices
of T are stored in postorder w.r.t. root r, these vertex weights can be computed in
O(scan(N)) I/Os by processing T top-down using time-forward processing, since V,,
is stored with v in 7', and {z,,y,} = V, N Vp(). To arrange the vertices in this order,
we use procedure ROOTTREE (Algorithms 7.8 and 7.9 on pages 106 and 107). The

following lemma is easy to show by induction on the size of tree T'(v).

7.3 Computing Separators of Outerplanar Graphs 100

Lemma 7.12 The weight of tree T is w(T) = w(G). For every vertex v # r,
w(T(v)) = w(G (V) = {Zv, Yo })-

Phase 2: Computing a small edge-separator of T. The next step of the algorithm
is to compute a set C' of edges of T' so that none of the connected components
Ty, Ty, ..., T, of T — C has weight exceeding ¢, except possibly Ty. Component Tj is
the one containing the root r of T. If w(Ty) > €, then Ty = ({r}, D). At this point we
have to make the assumption that no vertex in 7', except r, has weight exceeding /2.
We show how to ensure this condition when discussing Phase 3 of our algorithm.

In order to compute C, we process T" bottom-up and apply the following rules:
When visiting a leaf v of T, we define w'(v) = w(v). At an internal node v # r
of T" with children w; and w,, we proceed as follows: If one of the children, say
wo, does not exist, we define w'(wy) = 0. If w(v) + w'(wy) + W'(we) < /2, let

"(v) = w) + W(w) + W(ws). If e/2 < W) + W' (wy) + w'(wse) < €, we define
'(v) = 0 and add edge {v,p(v)} to C. If ¢ < w(v) + w'(w1) + w'(w2), we define
w'(v) = 0 and add edges {v,p(v)} and {v, w1} to C. If v = r, v has a single child w.
If w(v) + w'(w) > ¢, we add edge {v,w} to C.

w
w

This procedure takes O(scan(/N)) I/Os using time-forward processing. Instead of
producing list C explicitly, we label every edge in T' as either being contained in C'
or not. This representation simplifies Phase 3. The following two lemmas show that

C' is almost an e-edge-separator of size |2/¢| for T

Lemma 7.13 Let Ty, ..., T} be the connected components of T — C, and let r € Tj.
Then w(T;) <e¢, for 1 <i<k. Ifw(Ty) > ¢, then Ty = ({r},0).

Proof. For every vertex v € T, let T, be the component T} such that v € T;. We show
that w(T'(v) N T,) < ¢, for all vertices v # r in T. This implies that w(7;) < ¢, for
1 < i < k because for the root r; of T}, T'(r;) N T; = T;.

In order to prove this claim, we show a somewhat stronger result. In particular,
we show that w(T(v)NT,) < ¢ if v is the root of T,, and w'(v) = w(T(v)NT,) < e/2

if v is not the root of 7,,. We prove this claim by induction on the size of tree T'(v).

7.3 Computing Separators of Outerplanar Graphs 101

If [T(v)| =1, vis aleaf, and T'(v) N T, = ({v},0), so that w(T(v)NT,) = w(v) < e/2
and w'(v) = w(v).

If |T(v)| > 1, v is an internal vertex with children w; and weq. If T, = Ty, = Ty,
then neither of w; and wy is the root of 7,. By the induction hypothesis, this implies
that w'(w1) = w(T(wy) NT,) < ¢e/2 and W' (we) = w(T(we) NT,) < /2. This implies
that w(T'(v) N T,,) = w) + W'(w1) + W'(wy). If W(T(v) NT,) > €, edge {v,w:}
would have been added to C, contradicting the assumption that 7;, = T,,. Thus,
w(T(v)NT,) <e. Ifw(T(v)NT,) > e/2, our algorithm adds edge {v,p(v)} to C, so
that v is the root of T,. Otherwise, w'(v) = w(v) + W' (w1) + w'(w2) = w(T(v) N Ty).

If T, = Ty, # Ty,, we is not the root of T,. Thus, w'(ws) = w(T(we) NTy) <
/2. This immediately implies that w(T(v) N T,) = w(v) + w(T(w2) N T,) < e. If
w(T (v)NT,) > €/2, edge {v, p(v)} is added to C, so that v is the root of T,,. Otherwise,
W'(w) =w) +w(w) + w'(we) = w) + w'(we) = w(T(v) NTy).

Finally, if T, Ty,, and T, are all distinct, vertices w; and ws are the roots of
trees T, and T,,,, so that our algorithm sets w’(w;) = w'(wy) = 0. This implies that
W) =wk) =w(T(w)NT,) <e/2.

In order to show that Ty = ({r},0) if w(Ty) > &, we argue as follows: Let w
be the child of r in T. If T, = T, then vertex w is not the root of 7T, so that
W' (w) =w(T(w)NT,). If w(T;) = w(r)+w'(w) > ¢, our algorithm would have added
edge {r,w} to C. Thus, w(T;) <eif T, =T,. f T, #T,, T, = ({r},0), as w is the
only child of r. O

Lemma 7.14 |C| < |2w(T)/z].

Proof. In order to prove the lemma, we charge the edges in C' to individual subtrees 7;
of T — C or to pairs of subtrees {T;,7;} of T — C. Every subtree T; is charged at
most once, either individually or as part of a pair of subtrees. Every individual tree
that is being charged has weight at least €/2 and is being charged for one edge in C.
Every pair of trees that is being charged has weight at least ¢ and is being charged
for two edges in C. Thus, on average, we charge at most one edge per £/2 units of

weight. Hence, |C| < [2w(T")/e]. It remains to show how to distribute the charges.

7.3 Computing Separators of Outerplanar Graphs 102

Consider the way edges in C are added to C. An edge {v,p(v)} that is being
added to C' while processing v is added either alone or along with an edge {v,w;},
where w; is a child of v. In the former case, /2 < w(T,) < ¢, and we charge
edge {v,p(v)} to graph T,. If edge {v,p(v)} is added to C along with edge {v, w;},
e < w(T,) + w(Ty,). Then we charge these two edges to the pair {T,,T,,}. Every
subtree T; with root r; is charged only for edge {r;, p(r;)}. Thus, every subtree T; is
charged at most once. If edge {r, w} is being added to C' while processing the child w
of the root r, then this edge is already covered by this charging scheme. Otherwise,
edge {r, w} is being added because w(r) +w'(w) > ¢. In this case, we charge the edge
to Ty. Component 7} is never charged for any other edges because its root does not

have a parent. O

Phase 3: Computing the vertex-separator of G. In order to compute an e-
separator of G, we first have to ensure that no vertex, except possibly the root,
in the dual tree 7" has weight more than £/2. To ensure this, it is sufficient to guar-
antee that no vertex in G has weight exceeding £/2 because every vertex in 7', except
the root obtains its weight from a single vertex in G. Thus, the vertex separator is
computed as the union of two sets S; and S5. Set S; contains all vertices of weight
more than €/2 in G. Then we set w(v) = 0, for each vertex v € S; and compute
the edge separator C' of 7" w.r.t. these modified vertex weights. Every edge e € C
corresponds to an edge e* = {z,y} in G. Vertices x and y are added to S;. By
Lemma 7.14,

€] < QMET)J
WECGREC) J
. '2@(@)6_ £151) J
- |29 - s,

7.4 DFS, BFS, and Single Source Shortest Paths 103

Thus, |S2| < 4w(G)/e — 2|51/, so that |S| < |S1| + [S2| < 4w(G)/e. The computation
of Sy takes O(scan(N)) I/Os. Given C, set Sy is easily computed in O(scan(N)) I/Os

using a preorder traversal of 7. We have to show that S is an e-separator of G.

Lemma 7.15 Vertex set S is an e-separator of GG.

Proof. Let Ty, ..., T, be the connected components of T'— C. Let Gy, ..., Gy be the
subgraphs of G such that G; is the union of all triangles A(v), v € T;. We show that
every connected component of G — S is completely contained in a subgraph G; and
that w(G; —) <e.

The first claim is easy to see. Indeed, all edges e = {v,w} € T, v € T;, w & T;,
are in C, so that the endpoints of their dual edges are in S, and there is no path from
a vertex not in (G; to a vertex in (G; that does not contain a vertex in S.

In order to prove the second claim, observe that for i = 0, w(7y) = w(Gy), by the
definition of weights w(v), v € T. If w(Ty) < ¢, then w(Gy — S) < e. Otherwise,

To = ({r},0), and Gy — S contains at most one vertex, whose weight is no more

than /2.
For i > 0, let r; be the root of tree T;. Then w(7T;) = w(G;—{z;, yr,}) > w(G;=S),
as T, Yy, € S. But, w(T;) < e, by Lemma 7.13.]

7.4 DFS, BFS, and Single Source Shortest Paths

The problem of computing a DFS-tree of an embedded outerplanar graph G can
easily be solved in O(scan(N)) I/Os, provided that the choice of the root of the tree
is left to the algorithm: We choose the vertex r with v(r) = 1 as the root of the
tree. A DFS-tree with this root is already encoded in the list A representing the
embedding of G and can easily be extracted in O(scan(N)) I/Os. If the DFS-tree
has to have a particular root r, a simple stack algorithm can be used to extract the
desired DFS-tree from the embedding of G.

7.4 DFS, BFS, and Single Source Shortest Paths 104

Theorem 7.4 Given list A representing an outerplanar embedding of a connected
outerplanar graph G with N vertices, a DFS-tree T for G can be constructed in
O(scan(N)) 1/Os using linear space.

In the rest of this section, we present an algorithm to solve the single source
shortest path problem for an embedded connected outerplanar graph G in a linear
number of I/Os. Since breadth-first search is the same as the single source shortest
path problem after assigning unit weights to the edges of G, this algorithm can also be
used to compute a BFS-tree for G. We describe our algorithm assuming that graph G
is undirected. However, it is easy to verify that it generalizes in a straightforward
manner to the directed case.

The first step of the algorithm is to triangulate the given graph G. Let A be the
resulting triangulation. The additional edges in A are given infinite weight, so that
the shortest path between two vertices in A is the same as the shortest path between
these two vertices in (G. The triangulation algorithm of Section 7.2 can easily be
augmented to maintain edge weights. Recall that the triangulation algorithm first
computes a list 7 of the triangles in A sorted according to a postorder traversal of
the dual tree T" of A. This representation of A is more useful for our SSSP-algorithm
than the list D representing the embedding of A.

Let the weight of an edge e be denoted by w(e). Given a source vertex s, we
compute a shortest path tree of G rooted at s as follows: We choose a root vertex s’
of T so that the triangle A(s") has vertex s as one of its vertices. For every edge e
of T, let T, be the subtree of T" induced by all vertices v so that the path from s’ to v
in 71" contains edge e. That is, intuitively, tree T, is connected to the rest of 7" through
edge e. Let T, be the subtree T — T, of T. Let G, be the union of triangles A(v),
for all vertices v € T,. Graph G, is defined analogously for 7,. Then G = G, U G,
and G, N Ge = ({Ze,ye}, {€*}). That is, G, and G, share only the dual edge e* of e.
The endpoints z, and y, of e* form a separator of G. Any simple path P from s to
a vertex v € G, either does not contain a vertex of G, — {x., y.}, or it contains both

z. and y.. These observations suggest the following strategy:

7.4 DFS, BFS, and Single Source Shortest Paths 105

First we compute weights w’(e) for the edges of G. If there exists an edge e* € T
such that e is dual to e*, w'(e) is defined as the length of the shortest path in G-
between the endpoints z.« and ye« of e. Otherwise, w'(e) = w(e). In the second step,
let z,, be the vertex of T closest to s so that v € A(z,), for allv € G. Given that z, has
children w; and ws, we compute the distance d'(s,v) in the graph Gz, wi} N Gzyws}
w.r.t. the weights w'(e) computed in the first step. As we show below, d'(s,v) =
dg(s,v). At the end of this section, we show how to augment the algorithm to

compute a shortest path tree.

Rooting T'. In order to be able to perform the remaining steps of the algorithm in
a linear number of I/Os using time-forward processing, we have to ensure that tree T
is rooted at a vertex s’ such that the source s of the shortest path computation is
a vertex of A(s'), and that the vertices of T are sorted according to a preorder (or
postorder) traversal of T. After applying the triangulation algorithm of Section 7.2,
the vertices of T" are stored in postorder, but the current root of 7" may be different
from s'.

As the reversal of a postorder numbering of T is a preorder numbering of T', we
assume w.l.o.g. that the vertices of T are stored in preorder. The first step of our
procedure to root T at vertex s’ extracts an Euler-tour of 7. Let ey, ..., e; be the list
of edges in the Euler tour. Then the tour is represented by a list £ containing the
source vertices of edges e, ..., e, in order. List £ = (z1,..., ;) is transformed into
alist & = (x...,x,21,..., 25 1), where zx = s'. List £ represents an Euler tour
of T starting at vertex s’. The final step of the algorithm extracts the vertices of T’
in preorder. Algorithms 7.8 and 7.9 provide the details of this step.

In order to show the correctness of procedure ROOTTREE, we show that the list £
produced by Algorithm 7.8 describes an Euler tour of T starting at the current root r
of T. This implies that list £’ represents an Euler tour of T starting at s’. Using this
fact, we show that Algorithm 7.9 produces a list 7’ storing the vertices of 7', when

rooted at s, in preorder.

7.4 DFS, BFS, and Single Source Shortest Paths 106

Procedure ROOTTREE

Input: A list 7 storing the vertices of the dual tree T" of A rooted at vertex r with
v(r) =1 in preorder, and a vertex s’ € T.
Output: A list 7' storing the vertices of the dual tree T' of A rooted at vertex s’ in preorder.

1: Initialize stack S to be empty.
2: for each vertex v € T do
3: if v is the first vertex (i.e., the current root of T') then

4: PusH(S,v)
5: Append v to &.
6: else
7 while the top of stack S is not equal to p(v) do
8: Popr(S)
9: Append the top of stack S to .
10: end while
11: PusH(S,v)
12: Append v to &.
13: end if
14: end for
15: while S is not empty do
16: Por(9)
17: if S is not empty then
18: Append the top of stack S to £.
19: end if

20: end while
21: Remove the last element from £.

Algorithm 7.8
Rooting tree T' at vertex s’. (Part I: Computing an Euler tour.)

Lemma 7.16 List £, as computed by Lines 1-21 of procedure ROOTTREE (Algo-

rithm 7.8), describes an Euler tour of T, starting at vertex r.

Proof. In this proof, we refer to each vertex v € T by its preorder number. In
order to prove the lemma, we show that the for-loop of Lines 2-14 maintains the
following invariant: Stack S stores the vertices on the path from the root r to the
current vertex v. List £ represents a traversal of 1" from s to v so that for all

vertices u < v, u & S, edge {u,p(u)} is traversed twice, once in each direction, and

7.4 DFS, BFS, and Single Source Shortest Paths 107

Procedure ROOTTREE (CONTINUED)

22: Scan & to find the first index & in list £ = (z1, ..., z¢) such that zy = s’. While scanning
append elements z1,...,z;_1 to a queue @) and delete them from £. Once z; has been
found, move elements z1,...,zx_1 from @ to the end of the resulting list (zg, ..., zs).
Call the resulting list &’.

23: for each element z; € £’ do

24: if z; is the first element in £ then

25: Append the pair (z;, null) to list 7. {z; is the root of T'.}

26: else if z; is not equal to the top of stack S then

27: Append the pair (z;,z; 1) to list 7. {zi_1 is the parent of z; in
the tree T rooted at s'.}

28: if the next element z;.1 # p(z;) then

29: PusH(S, z;)

30: end if

31: else if the next element z;11 = p(z;) then

32: Popr(S)

33: end if

34: end for

Algorithm 7.9
Algorithm 7.8 continued. (Part Il: Computing the new preorder numbering.)

for every vertex u € S, u # r, edge {u,p(u)} is traversed exactly once, from p(u)
to u. This implies that after the for-loop is finished, list £ represents a tour from s’ to
the last vertex in 7" such that all edges are traversed twice, except the edges between
the vertices on stack S. These edges have to be traversed once more, from children
toward the parents. This is accomplished by the while-loop in Lines 15-20. The
root r is added to the end of £ by this while-loop, so that we have to remove it, in
order not to store vertex r one more time in the list than it is visited in the Euler
tour. It remains to show the invariant of the for-loop.

We show the invariant by induction on the preorder number of v. If v = 1, then
v = r. In this case, Lines 4 and 5 of the loop are executed. As a result, stack S stores
the path from r to r. There are no vertices v < r, and there are no edges between

vertices on S. Thus, the remainder of the invariant is trivially true.

7.4 DFS, BFS, and Single Source Shortest Paths 108

If v > 1, Lines 7-12 are executed. In Lines 7-9, vertices are removed from the
stack and their parents are appended to £ until the top of the stack stores the parent
of v. This is equivalent to traversing edge {u,p(u)}, for each removed vertex u, so
that the invariant is maintained that for each vertex u < v, u & S, edge {u, p(u)} is
being traversed twice by the tour described by £. After Line 9, stack S represents
a path from r to p(v), and the tour described by £ traverses T' from r to p(v) and
visits all edges between vertices on stack S exactly once. Lines 11 and 12 add v to S
and &, so that stack S now represents the path from r to v, and edge {p(v),v} is
being traversed by the tour described by list £.

In order to complete the proof, we need to show that for each vertex v, p(v) € S
before the iteration for vertex v is entered. In order to show that, we have to show
that p(v) is an ancestor of v — 1. If this were not true, then p(v) < v —1 < v, v is
in the subtree of T rooted at p(v), and v — 1 is not. This contradicts the fact that
a preorder numbering assigns consecutive numbers to the vertices in each subtree

rooted at some vertex z.]

Lemma 7.17 List 7', as computed by Lines 22-34 of procedure ROOTTREE (Algo-
rithm 7.9), stores the vertices of tree T', rooted at s', sorted in preorder. Every vertex

in T is labelled with its parent in T.

Proof. By definition, a preorder numbering of 7" is a numbering of the vertices in 7'
according to the order of their first appearances in an Euler tour of 7. Thus, we only
have to show that Lines 23-34 of procedure ROOTTREE extract the first appearance
of each vertex in &'. Also, the first appearance of each vertex v in an Euler tour
of T is preceded by an appearance of the parent of v. Thus, if the algorithm extracts
only the first appearance of each vertex, it also computes the parent of each vertex
correctly.

A vertex is extracted from &£’ if it is not equal to the top of the stack. This is
true for the first appearance of each vertex in &', as vertices are pushed on the stack
only when they are visited. It remains to show that every vertex of T is extracted

exactly once. In order to do that, we show that each but the first appearance of each

7.4 DFS, BFS, and Single Source Shortest Paths 109

vertex v finds v on the top of the stack, so that v is not appended to 7' again. The
proof is by induction on the size of the subtree T'(v) of T rooted at v.

If |T(v)| =1, v is a leaf, and v appears only once in any Euler tour of 7. Also,
v is never pushed on the stack S, as its successor in £’ is p(v).

If |T(v)| > 1, v is an internal node. Let wy,...,w; (k < 3) be the children of v
in T. Then, by the induction hypothesis, each but the first appearance of w; finds
w; on the top of the stack. In particular, the top of S looks like (w;,v,...) when
vertex w; is visited for the first time. Now the first appearance of v precedes wi,
while every other appearance of v immediately succeeds the last appearance of one of
v’s children w;. As each such last appearance of a child of v is succeeded by p(w;) = v,
w; is removed from S when visiting the last appearance of w;, so that before visiting
the next appearance of v, v is on the top of stack S. This proves the correctness of

procedure ROOTTREE. O

Pruning subtrees. Having changed the order of the vertices in 7" so that they are
sorted according to a preorder numbering of 7" starting at s’, we show how to compute
a weight w'(e), for every edge e = {z,y} € G, so that w'(e) = dg.. (x,y)-

For all exterior edges e of G, let w'(e) = w(e). Next we compute edge weights w'(e),
for all diagonals e of G. To do this, we process T" bottom-up. For a vertex v # &'
of T, let e = {v,p(v)}, e = {ze,ye}, and z € V, \ {ze,ye}. Then let w'(e*) =
min(w(e*), w'({ze, 2}) + w'({ve, 2}))-

This computation takes O(scan(N)) I/Os using the time-forward processing pro-
cedure for rooted trees. The following lemma shows that it produces the correct

result.

Lemma 7.18 For every edge e € T, w'(e*) = dg, (e, Ye)-

Proof. We prove this claim by induction on the size of T,. If |T,] = 1, then e =
{v,p(v)}, where v is a leaf of T'. In this case, G. = A(v), and the shortest path from z,
to ye in G, is either the edge e* = {x, y.} itself, or it is the path P = (z, 2, y.), where
z is the third vertex of A(v). Edges e; = {z., 2z} and es = {y,, 2z} are exterior edges

7.4 DFS, BFS, and Single Source Shortest Paths 110

of G, so that w'(e;) = w(e1) and w'(ez) = w(ey). Thus, w'(e*) is correctly computed
as the minimum of the weights of edge e* and path P.

If |T.] > 1, let e = {v,p(v)}, w1 and wy be the children of v in T, and let
e; and ey be the edges {v, w1} and {v,wy}. Let ef = {z,, e, } and €5 = {x¢,, Ve, },
where Te, = Zey, Yoo = Ve, and ¥y, = x.,. If vertex wy, does not exist, assume
that e, is a tree-edge connecting v to an artificial vertex in the outer face of G
and Ge, = ({Teys Yeo s {{Tegs Yey } })- Then G, = G, U G, U ({z¢,ye},€*). By the
induction hypothesis, w'({T¢,ye,}) = da., (Te; Ye,) and W' ({Tey, Ye}) = da., (Teys Ye)-
Thus, w'(e*) = min{w(e"), W' ({Ze; Ye. }) + ' ({Zess ¥e}) = da. (e, Ye)- [

Computing distances to the source. In order to compute dg(s,v), for all ver-
tices v € G, tree T is processed top-down, maintaining the property that after process-
ing vertex v € T, the distances d(s, z) have been computed for all vertices z € A(v).

At the root s" of T, s € A(s'). For the other two vertices v and w of A(s'),

dg(s,v) = min(w'({s,v}),w' ({s, w}) + w' ({w,v})) and
dg (s, w) = min(w'({s,w}), W' ({s,v}) + ' ({v,w})).

At any other vertex v € T, let e = {v, p(v)}. Then A(v) has vertices z., ye, and a third
vertex z on its boundary. After processing the parent of v, dg (s, z.) and dg(s, y.) are
known. Let dg(s,z) = min(dg(s, z.) + w'({@e, 2}), da (s, Ye) + W' ({e, 2}))-

Again, this procedure takes OQ(scan(N)) I/Os, using the time-forward processing
procedure for rooted trees. The following lemma shows that it produces the correct

result.

Lemma 7.19 The above procedure computes dg(s,v) correctly, for all v € G.

Proof. Observe that the distance dg(s,v) is computed when processing a node x,, € T
such that v € A(z,), and v € A(p(x,)). We prove that dg(s,v) is computed correctly,
by induction on dr(s', z,). If dr(s',x,) = 0, then v € A(s). If s = v, then dg(s,v) =
0 is correctly computed by our algorithm. Otherwise, let the vertex set of A(s’)

be {s,v,z}, and the edges of A(s') be e = {s,v}, 5 = {s,z}, and e} = {z,v}.

7.4 DFS, BFS, and Single Source Shortest Paths 111

By Lemma 7.18, w'(e}) = dg,, (s,v), w'(e5) = dg,,(s;z), and w'(e3) = dg,, (7, v).
Thus, dg(s,v) = min(dg,, (s,v),da., (s,7) +dq,, (z,v)) = min{w'(e]), w'(e3) +w'(€3)),
as computed by the algorithm.

If dr(s',z,) = k > 0, assume that the distances are computed correctly for
all vertices w with dyp(s',z,) < k. Let e = {z,,p(z,)}. Then the vertex set
of A(zy) is {xe, Ye, v}, and dr(s',z,,) < k and dr(s’,z,,) < k. Thus, the distances
d(s,z.) and d(s,y.) have already been computed correctly. Let ef = {x.,v}, and
ey = {ye,v}. The shortest path from s to v is either the concatenation of the
shortest path from s to z, followed by the shortest path from z. to v in G,, or
the shortest path from s to y., followed by the shortest path from y. to v in G,,.
Thus, d¢(s,v) = min(dg(s, z.) +da,, (Te, V), da (s, ¥e) +da., (Y, v)) = min(dg(s, ve) +
W'(er),da(s, ye) + w'(e})), as computed by the algorithm. O

Extracting the tree. In order to extract a shortest path tree from s to all other
vertices in GG, we augment the three steps of our algorithm. The first phase, which
roots tree T at root s, does not need to be changed. We augment the second phase
as follows:

For every tree edge e € T, let e = {v,p(v)}, and z € A(v) — {z,, ye}. Depending
on whether w’(e*) has been computed as w(e*) or w'({z., 2})+w' ({2, ¥ }), the shortest
path from z, to y. in G, is either edge e* or the concatenation of the shortest paths
from z. to z and from z to y. in G.. We store a flag with edge e to distinguish
between these two possibilities.

The third phase of the algorithm now proceeds as follows: Let dg(s,v) = dg(s, z)+
w'({z,v}), and assume that the parent of v has not been computed yet. If {z,v} is
an external edge of G, we add edge {z,v} to the shortest path tree and set p(v) = z.
Otherwise, there are two possibilities. If w'({z,v}) = w({z,v}), we add edge {z,v}
to the shortest path tree, set p(v) = z, and inform all descendants w of z, such
that v € A(w) that the parent of v has already been computed. Otherwise, we inform
the descendant w of x, such that {z,v} = {w, z,}* that v’s parent lies in G, 4,} and

still needs to be computed.

7.5 Lower Bounds 112

The correctness of this procedure is easily verified, given that the above algorithm

computes distances dg(s,v) correctly. Thus, we have shown the following theorem.

Theorem 7.5 Given a list A representing an outerplanar embedding G of an outer-
planar graph G = (V, E) and a weight function w : E — R so that G does not contain
negative cycles, it takes O(scan(N)) I/Os to compute a BES-tree for G or to solve

the single source shortest path problem for G.

Proof. The correctness of the above algorithm follows from the above discussion. All
steps of the algorithm, except the first one, process a tree T of size O(N) using
the linear-I/O time-forward processing procedure for rooted trees. Thus, they take
O(scan(N)) 1/Os. As for the first step, Lines 1-21 of procedure ROOTTREE read
list 7 and produce list £. The size of list £ is bounded by the number of stack
operations performed because at most one element per stack operation is added to £.
The number of POP operations is bounded by the number of PUSH operations, which
in turn is bounded by |7, as each element of 7 is pushed on the stack at most
once. Thus, |£| = O(N), and the algorithm performs O(N) stack operations. Hence,
Lines 1-21 take O(scan(N)) I/Os. Given that || = O(N), |€'| = O(N), and Line 22
takes O(scan(N)) I/Os. In Lines 23-34, list £ is being scanned, and list 7" is written.
Every element in £’ causes at most one element to be appended to 7" and at most one
element to be pushed on the stack. Thus, |7'| = O(N), and O(N) stack operations
are performed. Hence, Lines 23-34 also take O(scan(N)) I/Os. This shows that
the whole algorithm takes O(scan(/N)) I/Os to solve the single source shortest path

problem. In order to compute a BFS-tree, we give all edges in G unit weight. O

7.5 Lower Bounds

In this section, we address the question whether the algorithms presented in this chap-
ter are optimal. Note that all the problems in this chapter require Q(scan(N)) I/Os.
Given an outerplanar embedding, we present optimal linear-I/O algorithm for these

problems. However, if no outerplanar embedding of the graph is given, our algorithms

7.5 Lower Bounds 113

spend O(perm(N)) I/Os to solve any of the problems discussed in this chapter, as
they have to obtain an outerplanar embedding of the graph first. Now the question
is whether the embedding step can be avoided, in order to obtain true linear-I/O
algorithms for BFS, DFS, SSSP, triangulation, or outerplanar separators.

Before being able to show a lower bound for any of these problems, we have to
define exactly how the output of an algorithm solving the problem is to be represented.
For most of the problems discussed here, such a representation of the output is far
from well-defined. For instance, a graph is said to be embedded if the circular order
of the edges incident to each vertex is given. How this order is to be represented is
left to the particular algorithm. It may be represented as a numbering or sorting of
the edges clockwise around the vertex, or by having each edge store pointers to its
successors clockwise around each of its endpoints. The output of a BFS-algorithm
may be a labelling of each vertex with its distance to the root of the BFS-tree, or
just a representation of the BFS-tree by computing for each vertex, its parent in the
BFS-tree.

Even though we believe that, if no embedding of the graph is given as part of
the input, Q(perm(N)) is a lower bound on the number of I/Os required to compute
an embedding, BFS-tree, DFS-tree, or shortest path tree of an outerplanar graph G,
independent of which representation of the output is chosen, we are only able to prove
such a lower bound, if we place certain restrictions on the output representation of the
respective algorithm. These restrictions are satisfied by our algorithms. We discuss
these restrictions next.

For each vertex v € G, let A(v) be its adjacency list. Then we require that
an algorithm computing an outerplanar embedding of G either numbers the ver-
tices in A(v) from 1 to |A(v)| clockwise or counterclockwise around v, or produces a
representation that can be transformed into this representation of the embedding
in o(perm(N)) I/Os. Our algorithm produces lists A(v) sorted counterclockwise
around v. Such a representation can be transformed into a numbering of the ver-

tices in A(v) in a single scan of lists A(v), v € G.

7.5 Lower Bounds 114

I I I3 T4 Is5 TIe ZT7 g

Figure 7.6
The proof of the lower bound for outerplanar embedding.

A BFS, DFS, or SSSP-algorithm is required to label each vertex v € G with
the length of the shortest path in 7" from the root of 7" to v, or produce an output
that allows the computation of such distance labels in o(perm(N)) I/Os. Our BFS
and SSSP-algorithms compute such distance labels. The DFS-algorithm represents
the computed spanning tree T" by a list 7 storing its vertices in preorder. Distance
labels of the vertices in G' can now easily be computed in a linear number of I/Os by
processing T from the root toward the leaves.

Our lower bound proofs use a linear-I/O reduction from list-ranking to the prob-
lem whose lower bound we want to show. This implies that the problem requires
Q(perm(N)) I/Os to be solved, since list-ranking has an Q(perm(NV)) I/O lower
bound [43].

Lemma 7.20 Given a list L containing N elements, it takes O(scan(N)) I/Os to
construct an outerplanar graph Gp, of size O(N) from L and extract a ranking 6 of

L from an outerplanar embedding of G,.

Proof. We define graph G, = (Vi,, Er) as follows: The vertex set of Gy, is defined
as the set V;, = {z1,...,zn,y}. The edge set of G, is defined as Ep = {{z;, 11} :
1 <i< N}U{{y,z;} : 1 <i < N}. Graph G|, can easily be constructed from list L in
O(scan(N)) I1/Os. Figure 7.6 shows an outerplanar embedding of G. By Lemma 7.2,
this is the only possible embedding of G, except for flipping the whole graph. Thus,
an algorithm numbering the vertices in A(y) clockwise around y produces a labelling
0" : L — N such that either ¢’(x;) = (i + ¢) mod N, where ¢ € N is a constant, or
8 (z;) = (¢ — 1) mod N. Tt is straightforward to decide which of the two cases applies

7.5 Lower Bounds 115

and determine constant ¢, based on the labels ¢'(z1) and §'(zx). Then a single scan
of the vertices in L suffices to transform the labelling §’ into the desired labelling 6.

O

The following simple reduction shows that any algorithm computing a BFS, DFS,
or shortest path tree for an outerplanar graph G requires Q(perm(N)) I/Os, even if

the choice of the root vertex is left to the algorithm.

Lemma 7.21 Given a list L containing N elements, it takes O(scan(N)) I/Os to
extract a ranking 6 of L from a BFS-tree, DFS-tree, or shortest path tree of L, when

viewed as an undirected graph G7,.

Proof. We represent list L as the graph G, = (Vi, Er), Vi = {z1,...,2n}, EL =
{{zi,ziz1} : 1 <i < N}. For the SSSP problem, we assign unit weights to the edges
of G. Given that the algorithm chooses vertex xp, 1 < k£ < N, as the root of the
spanning tree it computes, the vertices of G, are labelled with their distances ¢'(z;)
from zy. In particular, 0'(z;) =k —iif 1 <i <k, and ¢'(z;) =i —kif k <i < N.
The distance label ¢’(x;) is sufficient to determine index k. Then it takes a single

scan of the vertices in L to transform the labelling ¢’ into the desired labelling §. O

Together with the Q(perm(N)) I/O lower bound for list-ranking, Lemmas 7.20
and 7.21 imply the following result.

Theorem 7.6 Given an outerplanar graph G = (V, E) with N vertices, represented
as vertex and edge lists, it takes Q(perm(N)) I/Os to compute an outerplanar em-

bedding, DFS-tree, BFS-tree, or solve the single source shortest path problem for G.

Chapter 8

Planar Separators

In this chapter, we present an I/O-efficient algorithm for computing a small e-
separator of an unweighted planar graph. The algorithm is superior to all existing
I/O-efficient algorithms for this problem, as the latter require a BFS-tree and a pla-
nar embedding of the graph to be given as part of the input, while our algorithm
does not require this extra information. In fact, we use this separator algorithm in
Chapters 9 and 10 to compute a planar embedding and a BFS-tree of a planar graph
I/O-efficiently.

In Section 8.1, we present some preliminary results that are used by our algorithm.

In Sections 8.2 through 8.5, we present the algorithm.

8.1 Preliminaries

8.1.1 Separator Theorems

In our separator algorithm, we make use of the following two results. The first result
provides us with a linear-time separator algorithm which guarantees a bound on the
total size of the separator and the size of each particular subgraph, but does not give

a guarantee on the boundary size of each particular subgraph. The second algorithm

116

8.1 Preliminaries 117

is by a log N factor slower, but guarantees that the boundary of each subgraph is
small.

We use the first result to compute an intermediate partition in an I/O-efficient
manner. The second result is then applied to each subgraph of this partition. Since
these subgraphs are small, we can apply the second result in internal memory, so that

the extra log N factor does not increase the I/O-complexity of our algorithm.

Theorem 8.1 (Aleksandrov and Djidjev [8]) Given a planar graph G = (V, E) and
a real constant 0 < € < 1, an e-separator of size O (\/N/s) can be computed in

linear time.

Theorem 8.2 (Frederickson [73]) Given a planar graph G = (V, E), a normal h-
partition P = (S,{G4,...,Gx}) of G, and a constant ¢ > 0, a c-proper h-partition
P = (5,{G},...,G}}) of G with S" D S can be computed in O(N log N) time and

linear space.

8.1.2 Bipartite Planar Graphs

We will apply the following lemma and its corollary to prove that a greedy graph
contraction procedure used in our algorithm produces a graph that is guaranteed to

be small.

Lemma 8.1 Let G = (V4, V3, E) be a simple connected bipartite planar graph such
that every vertex in V, has degree at least three. Then |V5| < 2|V4].

Proof. Consider a planar embedding G of G. As G is bipartite, every face of G has
size at least 4. Thus, |F| < |E|/2. By Euler’s formula, |V| + |F| — |E| = 2. That is,

2=|V[+|F|-|E|
< [VI-1E[/2
[E| <2[V].

8.1 Preliminaries 118

On the other hand, |E| > 3|V4], so that

3[Va| < 2|V
= 2([W[+[Va])
V2| < 2[W].

O

Corollary 8.1 Let G = (V1,V,, E) be a bipartite planar graph. Let the vertices
in V5 be partitioned into equivalence classes C4,...,C,, where two vertices v and w
are equivalent if they have degree at most two and are adjacent to the same set of

vertices in V. Then q < 6|V;].

Proof. Every vertex v € V; defines one class C, such that the vertices in C, are ad-
jacent only to v. There are at most |V;| such classes C,. Now consider a pair {v, w}
of vertices in V;. Let Cy,.) be the set of vertices in V3 adjacent only to v and w.
Then we choose one representative 7, .} € Clyw) for each such class of vertices. Let
H; be the bipartite subgraph of G induced by all edges incident to these representa-
tives 7y). As H, is a subgraph of G, H; is planar. We remove representatives 7y, .}
from H; and replace edges {v, r{yw}} and {rg, .}, w} by a single edge {v, w}, for every
class Cy,). As every representative ry,) has degree two, the resulting graph Hy is
a planar graph whose vertex set is a subset of Vi, and whose edges are in one-to-one
correspondence to classes C{y). Thus, by Euler’s formula, there can be at most 3|V} |
such classes Cy,}. Finally, let H3 be the subgraph of G induced by all edges inci-
dent to vertices of degree at least three in V5. Graph Hj is a bipartite planar graph
H; = (V],Vy, E") with V] C Vi, VJ C Vs, and E' C E. All vertices in V, have degree
at least three, so that |Vj| < 2|V/| < 2|Vj|, by Lemma 8.1. Each vertex in Vj is in its

own class, so that there are at most 6|V;| classes in total. O

8.2 Overview of the Algorithm 119

8.2 Overview of the Algorithm

We use Algorithm 8.1 to compute a proper h-partition P = (S,R) of G. The algo-
rithm takes O(sort(N)) I/Os and uses linear space, provided that M > 56hlog®(DB).

The loop in Lines 3-5 of Algorithm 8.1 constructs a hierarchy of log,(DB) graphs
G, - .., G, such that G = Gy, |G| < %|G,~|, and every vertex in G, represents a
small subgraph of GG; and thus a subgraph of G. Given this hierarchy, Line 6 computes
a small separator S, whose removal partitions GG, into relatively coarse subgraphs.
The number of vertices in G corresponding to the vertices in S, is small. Lines 7-9
undo the contraction steps used to compute graphs Gi,...,G, one by one. Every
iteration starts with a partition of the current graph (G; induced by the partition
of graph G;;; computed in the previous iteration, and then refines this partition to
obtain a suitable partition of graph G;. At the end of the last iteration, a separator
of size O (N / \/i_z) is obtained whose removal partitions GG into subgraphs of size at
most hlogQ(DB). Given such a partition, Line 10 loads each subgraph into internal
memory and partitions it into subgraphs of size at most A and boundary size at
most v/h. This can be done using Theorems 8.1 and 8.2 and introduces at most

O (N / \/E) additional separator vertices. Thus, Line 10 produces a separator of

size O (N / \/E) whose removal partitions G into subgraphs of size at most A and
boundary size at most v/. In order to ensure that the resulting partition P contains
only O(N/h) subgraphs, the connected components in the partition are grouped
appropriately before performing the computation of Line 10.

Our algorithm can be divided into two phases. The first phase (Lines 3-9) is only
concerned with generating a partition into subgraphs of size at most h log?(DB) while
keeping the total separator size small. The boundary size of each subgraph may be
large at the end of this phase. The second phase (Lines 10) partitions each subgraph
further, so that every subgraph has size at most A and boundary size at most v/A.

Next we describe these phases in detail.

8.3 The Graph Hierarchy 120

Procedure SEPARATOR
Input: A planar graph G = (V, E) and an integer h > 0.
Output: A proper h-partition P = (S, R) of G.

: Go(—G
r < [log(DB)] — 1
:fori=1,...,rdo

=W o

Compute a graph G; with the following properties from G; ;:

(i) Graph G; is planar,

(i) |G| < 32h,
(iii) Every vertex in G; represents a subgraph of constant size in G;_1, and
(iv) Every vertex in G; represents at most 2'T! vertices in G.

5: end for
6: Apply Theorem 8.1 to compute a separator S, of size O (N / (\/I_zlog(DB)) for G,

whose removal partitions G, into connected components of size at most hlog?(DB).
7. fori=r—1,...,0do
Compute a separator S; for G;. Separator S; consists of two sets S} and S/. S; is
the set of vertices in G; represented by the vertices in Sj;1. S; is the set of separator
vertices introduced in order to partition the connected components of G; — S} into
subgraphs of size at most hlog?(DB).
9: end for
10: Compute partition P = (S, R) by partitioning the connected components of G — Sy into
O(N/h) subgraphs of size at most h and boundary size at most v, and adding the
required separator vertices to Sp.

Algorithm 8.1
Computing a proper h-partition for an unweighted planar graph.

8.3 The Graph Hierarchy

The first step of our algorithm is to compute the sequence of graphs Gy, ..., G,. We
first show how to construct graph G;,; from graph Gj;, for 0 <17 < r, and then prove
a number of useful properties of graphs Gy, ..., G,.

Given a graph G; in the hierarchy, we assign a weight w(v) to every vertex v € G;.

This weight equals the number of vertices in G represented by v. That is, w(v) = 1, for

8.3 The Graph Hierarchy 121

every vertex v € Gy, as Gy = G. For every vertex v € Gj, its size o(v) is the number
of vertices in G;_, represented by v. We define a series of weight thresholds p; = 2¢*1,
for 0 <4 <r. Given Gj, we define a graph G}, = G; with o(v) = 1, for allv € G} ;.
The weight of a vertex in Gy, is the same as its weight in G;;. Now we inspect the
edges of Gj_, in an arbitrary order. As long as there is an edge {v,w} € G}, such
that w(v) + w(w) < p;1 and o(v) + o(w) < 56, we contract edge {v,w} and repeat.
Let G7,; be the resulting graph which does not allow any further edge contractions.

We call a vertex v in G, heavy if w(v) > pi1/2 or o(v) > 28, and light otherwise.
Note that for every edge {v,w} € GY,,, either w(v)+w(w) > p;41 or o(v)+o(w) > 56,
so that at least one of v and w is heavy. Thus, no two light vertices are adjacent. Now
we partition the light vertices of degree at most two in Gy, into classes C1,...,C,
such that the vertices in each class have the same set of (heavy) neighbors. Each
class C is partitioned into a minimal number of subclasses Cj 1, ..., Cj; so that the
total weight of each subclass Cj;, 1 <1 < kj, is at most p;1 and its total size is at
most 56. For 1 <[< k;, either the total weight of C;; is at least p;;1/2 or its total
size is at least 28. The last class Cj;; may have weight less than p;;;/2 and size less
than 28.

Now graph G, is defined as follows: The vertex set of G;;1 consists of all heavy
vertices of Gy, |, all light vertices of degree at least three, as well as one vertex v,,, for
each class C}; of light vertices of degree at most two. For every heavy vertex v € Gy,
the weight of v in G is the same as in G}, ;. The same is true for all light vertices of
degree at least three. For every vertex v;;, let w(v;,;) = Zvecj,, w(v). There is an edge
between two vertices v and w, where v and w are heavy or of degree at least three, if
there is an edge between v and w in G7,,. There is an edge {v,v;;} € Gi11, where v
is a heavy vertex and v;; corresponds to class Cj;, if the vertices in C}; are adjacent
to v in Gj, ;. Next we prove some properties of graphs Gy, . .., G, which are crucial to

guarantee an upper bound on the size of the separator computed by Algorithm 8.1.

Lemma 8.2 Let G be a planar graph, and let G = G,,...,G, be the graphs as
defined above. Every graph G;, 0 < i < r, has the following properties:

8.3 The Graph Hierarchy 122

(i) Graph G is planar,

(ii) w(v) < p;, for all vertices v € G,
(iii) Every vertex v € G; corresponds to at most 56 vertices in G;_1, for i > 0, and
(iv) |Gi| < 28N/p;.

Proof. To prove Property (i), we inductively show that each graph G;, 0 < i < r,
has a planar embedding G;. Fori = 0, Gy = G, so that an embedding Go of G
exists by the planarity of G. So assume that we are given an embedding Gi_1 of
graph G;_1. We show how to obtain a planar embedding G’Z of GG;. First we construct
a planar embedding of G7. Such an embedding is easily obtained from Gi_1, as GY is
constructed from G;_; using a series of edge contractions. The adjacencies between
heavy vertices and light vertices of degree at least three do not change from GY to G;.
For a class Cj, vertex v;; is adjacent to the same heavy vertices in G; as all members
of C;; in G}. We rename an arbitrary member of Cj; to v;; and remove all other
members of C;,; from G’;’ . The result is the desired embedding G; of G;.

Property (ii) is easy to show by induction. In particular, w(v) = 1 < py, for all
vertices v € Gy. Given that all vertices in G; have weight at most p;, the weight of
a vertex in G;y1 can exceed p;yq only by merging two or more vertices into a single
vertex. But two vertices are merged only if their total weight does not exceed p;;1.-
Property (iii) can be shown in a similar manner.

It remains to show Property (iv). For graph Gy, Property (iv) holds because
|Go| = |G| = N. To prove the claim for graphs G1,...,G,, let h; be the number of
heavy vertices in G;. It follows from the above construction and Corollary 8.1 that
|G| < Th;. Thus, Property (iv) follows if we can show that h; < 4N/p;.

We prove this claim by induction. The heavy vertices can be partitioned into two
categories. Heavy vertices of type I are heavy because their weight is at least p;/2.
Type-1I vertices are heavy because their size is at least 28. In general, graph G;
contains at most 2N/p; type-I vertices and at most |G; 1|/28 type-II vertices. That

io b < 2N [Gial
is h; < — + =5

8.3 The Graph Hierarchy 123

For : = 1, we obtain h; < 2p_zlv + % < ‘lp—]:’ because p; = 4. For ¢ > 1, we obtain

ON |Gi_|

h; < > + g (8.1)
ON h;
<o+ T (8:2)
<N N (8.3)
Pi Pi—1
AN
= (8.4)

Line (8.2) follows from Line (8.1) because |G;_1| < 7h;_;. Line (8.3) follows from
Line (8.2) by the induction hypothesis. Line (8.4) follows from Line (8.3) because
pi = 2pi—1. O

Next we show how to compute graphs Gy, ..., G, I/O-efficiently. Graph Gy is
already given. So assume that graphs Gy, ..., G;_1 have been computed. We call an
edge in G; 1 contractible if p(v) + p(w) < p; and o(v) + o(w) < 56. The contractible
subgraph H = (W, F) of G;_; is the graph H = G[F| induced by the set F of
contractible edges in G. Graph G; is computed using Algorithm 8.2. Line 1 of
the algorithm applies Algorithm 8.4 to contract as many contractible edges in G as
possible. This corresponds to the construction of graph G7 from graph G;_;. Line 2
applies Algorithm 8.3 to merge light vertices of degree at most two which are adjacent
to the same set of neighbors until no two such vertices remain. This corresponds to

the construction of graph G; from graph GY.

Lemma 8.3 Algorithm 8.2 performs O(sort(|G;_1|)) 1/Os and uses linear space to
compute graph G; from graph G; ;.

Proof. Algorithm 8.2 strictly follows the definition of G;. By Lemmas 8.4 and 8.5,
procedures CONTRACTEDGES and MERGELOWDEGREE perform the two phases of
the construction of G; correctly. Hence, Algorithm 8.2 constructs graph G; correctly.
Line 1 of the algorithm takes O(sort(|G;-1|)) I/Os and linear space, by Lemma 8.6.
Line 2 takes O(sort(|G;—1|)) I/Os and linear space, by Lemma 8.4. O

8.3 The Graph Hierarchy 124

Procedure COMPRESS

Input: Graph G;_; = (Vj_1, E;_1) in the graph hierarchy.
Output: Graph G; = (V;, E;) in the graph hierarchy.

1: GY <~ CONTRACTEDGES(G;—1)
2: G; < MERGELOWDEGREE(GY)

Algorithm 8.2
Computing graph G; from graph G;_;.

Lemma 8.4 Given a graph G = (V, E) whose vertices are labelled as “heavy” or
“light” so that no two light vertices are adjacent, Algorithm 8.3 computes a graph
G' = (V', E') so that no two light vertices of degree at most two in G' are adjacent
to the same set of heavy vertices. The algorithm takes O(sort(|G|)) I/Os and uses

linear space.

Proof. As the loop in Lines 2-5 merges light vertices of degree at most two until no
two such vertices with the same set of neighbors remain, Algorithm 8.3 computes
graph G’ correctly.

Line 1 can be realized by extracting all vertices of degree at most two and sort-
ing them so that vertices with the same set of neighbors are stored consecutively.
This produces a partition of the set of vertices of degree at most two into the de-
sired equivalence classes. Lines 2-5 scan the resulting list of vertices and greedily
merge consecutive vertices in the same equivalence class. Thus, Algorithm 8.3 takes
O(sort(|G])) 1/0Os. O

It remains to provide the algorithm for contracting contractible edges, and prove
that the algorithm takes O(sort(|G|)) I/Os, where G is the input graph of the algo-
rithm. We use Algorithm 8.4 to contract contractible edges. The algorithm iterates
the following two steps in Lines 5 and 6: First the edges in a maximal matching of
the contractible subgraph H of G are contracted. Every vertex v produced by such
an edge contraction represents two vertices in H. We call vertex v matched. Then all

edges incident to unmatched vertices are contracted to guarantee that no unmatched

8.3 The Graph Hierarchy 125

Procedure MERGELOWDEGREE

Input: A graph G = (V, E) and a predicate ISHEAVY(v) which returns true if vertex v is
heavy. For every edge {v,w} € E, at least one of ISHEAVY(v) and ISHEAVY(w)
is true.

Output: A graph G’ = (V', E’) that contains no two light vertices of degree at most two
which are adjacent to the same set of heavy vertices.

1: Partition the light vertices of degree at most two in GG into equivalence classes, where
two vertices are equivalent if they have the same set of neighbors.

2: while there are two equivalent vertices v and w such that ISHEAVY(v) = false and
IsHEAVY(w) = false do

3: Remove w and its incident edges from G.

4: Adjust all weights of v so that they represent the sums of the respective weights of

v and w.
5: end while
6: Let G' = (V', E') be the resulting graph.

Algorithm 8.3
Merging light vertices of low degree.

vertex has an incident edge which is contractible. This guarantees that the vertex
set, of the contractible subgraph in the next iteration contains only matched vertices.
Thus, the size of the contractible subgraph reduces by a factor of at least two from one
iteration to the next, so that the sizes of the graphs processed in Lines 4-9 are geomet-
rically decreasing. The next two lemmas show the correctness and 1/O-complexity of
Algorithm 8.4.

Lemma 8.5 The graph G' produced by Algorithm 8.4 can be obtained from the input
graph G by contracting contractible edges. No edge in G’ is contractible.

Proof. Procedures CONTRACTMATCHING and CONTRACTBIPARTITE produce their
output graphs from their input graphs using edge contractions. By Lemmas 8.7
and 8.8, they contract only contractible edges. Thus, graph G’ can be obtained from
graph G by contracting contractible edges. Graph G’ contains no contractible edges

because the loop in Lines 4-9 is repeated until no such edges remain. O

8.3 The Graph Hierarchy 126

Procedure CONTRACTEDGES

Input: A planar graph G = (V, E) and an operator ISCONTRACTIBLE(e) which returns
true if edge e € F is contractible and false otherwise.

Output: A planar graph G' = (V', E') obtained by contracting contractible edges in G
until no contractible edges remain.

1: Extract the contractible subgraph H of G.
2: F+ (V(G),0)
{Forest F represents a “contraction history”. In particular, node v is the parent of

@

node w if vertex w has been contracted into vertex v.}
while H is not empty do
(H,, F) < CONTRACTMATCHING(H, F)
(H2, F5) < CONTRACTBIPARTITE(H, F1,ISCONTRACTIBLE)
F + F2
Extract the contractible subgraph H of Hy.
end while

10: Construct G’ from G: Replace every vertex in G with the root of its tree in F' and
remove duplicates. Replace the endpoints of all edges in G with the roots of their trees
in F' and remove duplicate edges.

Algorithm 8.4
A generic graph compression algorithm.

Lemma 8.6 Algorithm 8.4 takes O(sort(|G|)) I/Os and uses linear space.

Proof. The extraction of the contractible subgraph H of G in Line 1 of Algorithm 8.4
takes O(sort(|G|)) I/Os: We scan the edge list of G and extract all contractible edges.
Then we produce a list L of the endpoints of contractible edges and apply procedure
DUPLICATEREMOVAL to obtain the vertex set of H.

Let HY, H® .. be snapshots of graph H at the beginning of each iteration in
Line 4. By Lemmas 8.7 and 8.8, the calls to procedures CONTRACTMATCHING and
CONTRACTBIPARTITE in Lines 5 and 6 take O (sort (|H(i)‘)) I/Os. By Lemma 8.9,
|[HED| < T|H®|. Thus, the total 1/O-complexity of the loop in Lines 4-9 is
O (sort (|[HM|)) = O(sort(|G|)). The root of the tree in F' containing every vertex
v € G can be found in O(sort(|G|)) I/Os by computing the connected components
of F' [43] and then applying the Euler tour technique and list-ranking to each of the

8.3 The Graph Hierarchy 127

Procedure CONTRACTMATCHING

Input: A graph H = (V, E) whose edges are contractible and a forest F' of rooted trees
whose roots are the vertices in V.

Output: The graph H' = (V', E') obtained from H by contracting the edges in a maximal
matching of H and a supergraph F’ of F' which has been augmented with edges
to reflect the performed contractions.

Label every vertex of H as “unmatched”.
Compute a maximal matching M C E of H.
for every edge e € M do

Contract e = {v, w}. Label vertex v as °

‘matched” and make v the parent of w in F.
end for
Let H' = (V',E’) and F' be the resulting graphs.

Algorithm 8.5
Contracting the edges in a maximal matching of the contractible subgraph of G.

trees of F'. Finally, we apply procedures COPYVERTEXLABELS and DUPLICATERE-
MOVAL to replace every edge endpoint v by the root of the tree containing v and re-
move duplicates from the resulting vertex and edge sets. This takes O(sort(|G|)) I/Os.

O

Algorithms 8.5, 8.6, and 8.7 provide the procedures for contracting a maximal
matching and the edges incident to unmatched vertices in Lines 5 and 6 of Algo-
rithm 8.4. The following lemmas show that these procedures take O(sort(|H]|)) I/Os,
where H is the input graph of the respective procedure. Lemma 8.9 shows that the
number of vertices in the contractible subgraph of G reduces by a factor of two in

each iteration of the loop in Lines 4-9 of Algorithm 8.4.

Lemma 8.7 Algorithm 8.5 takes O(sort(|H|)) I/Os to contract the edges in a maxi-
mal matching of H.

Proof. Line 1 of the algorithm can be realized in a single scan of the vertex set of H.
Line 2 takes O(sort(|H|)) I/Os, by Theorem 6.3. Given the set of edges in M, directed
edges of the form (w,p(w) = v) can be added to forest F' in a single scan of set M,

8.3 The Graph Hierarchy 128

Procedure CONTRACTBIPARTITE

Input: A graph H = (V, E) whose vertices are labelled as “matched” or “unmatched”,
a forest F' of rooted trees whose roots are the vertices in V, and an operator
ISCONTRACTIBLE(e) which returns true if and only if edge e € E is contractible.

Output: A graph H' = (V', E') obtained from H by contracting contractible edges incident
to unmatched vertices until no contractible edges incident to unmatched vertices
remain. A supergraph F’ of F' which has been augmented with edges to reflect
the performed contractions.

1: Let V,, be the set of unmatched vertices and V,,, be the set of matched vertices of H.
2: Number the vertices in V,, and V,, in their order of appearance.

3: for all vertices v € V,,, do

4: for all vertices w € V,, adjacent to v do

5: Let v1 <wg < --- < be the vertices adjacent to w, and let v = v;.
6: if 7 <l then

7 Store a pointer p,(w) = vj;41 with the copy of w in the adjacency list of v.
8: else

9: Mark v as the largest vertex adjacent to w.
10: end if
11: if =1 then
12: Mark v as the smallest vertex adjacent to w.
13: end if
14: end for
15: end for

Algorithm 8.6
Contracting contractible edges incident to unmatched vertices.

which takes O(scan(|H|)) I/Os. The compression of these edges in H can be achieved
using procedure CONTRACTGRAPH. This takes O(sort(|H|)) I/Os. O

Lemma 8.8 Procedure CONTRACTBIPARTITE (Algorithms 8.6 and 8.7) ensures that
there is no unmatched vertex in H which has an incident edge that is contractible.

The I/O-complexity of procedure CONTRACTBIPARTITE is O(sort(|H|)).

Proof. The numbering of the vertices in V,, and V/,, in Line 2 of the algorithm can easily
be carried out in O(scan(|H|)) I/Os. The computation of Lines 3-15 can be realized

in O(sort(|H|)) I/Os as follows: First we apply procedure COPYVERTEXLABELS and

8.3 The Graph Hierarchy 129

Procedure CONTRACTBIPARTITE (CONTINUED)

16: Create a priority queue @) which is to store directed edges sorted lexicographically.
17: for all vertices v € V,,, in increasing order do
18: for all vertices w € V,, adjacent to v, in increasing order do

19: if v is the smallest vertex adjacent to w or FINDMIN(Q) = (v, w) then
20: if FINDMIN(Q) = (v, w) then

21: DELETEMIN(Q)

22: end if

23: if ISCONTRACTIBLE({v,w}) then

24: Contract edge {v,w} and make v the parent of w in F.
25: else if v is not the largest vertex adjacent to w then

26: INSERT(Q, (py(w), w))

27: end if

28: end if

29: end for

30: end for

31: Let G' = (V', E') be the resulting graph.

Algorithm 8.7
Algorithm 8.6 continued.

scan the edge set of H to extract all edges {v,w}, v € V,,,w € V. We represent each
such edge as a directed edge (w,v). Now we sort these edges lexicographically, thereby
storing the edges incident to vertex w € V,, consecutively, sorted by their endpoints
in V,,,. We scan the resulting list and do the following for every adjacency list A(w),
w € V,: For the first entry (w,v;), we create a quadruple (v;, w, vy, “first”). For all
other entries (w, v;), except the last entry, we create a quadruple (v;, w, v;y1, nil). For
the last entry (w,vg), we create a quadruple (v, w, nil, “last”). We sort the resulting
list lexicographically. The result is a concatenation of the sorted adjacency lists of
the vertices in V,,,, where each entry stores the additional information as described in
Lines 3-15 of procedure CONTRACTBIPARTITE.

The loop in Lines 17-30 scans this concatenation of adjacency lists and performs
a number of priority queue operations. Observe that every edge in H causes at

most four priority queue operations to be performed. Since H is planar, there are

8.3 The Graph Hierarchy 130

only O(|H|) edges, so that the algorithm performs O(|H|) priority queue operations,
which take O(sort(|H|)) I/Os using the priority queue from Section 5.1.4.

It remains to show that applying procedure CONTRACTBIPARTITE to graph H
leaves no contractible edge incident to a vertex in V,. To see this, observe that the
loop in Lines 17-30 inspects all edges incident to vertices in V,,, as there are no edges
between vertices in V,,. For every inspected edge {v,w}, v € Vi, w € V,,, so that v
is the smallest vertex adjacent to w or entry (v, w) is the minimum entry in @, the
algorithm contracts edge {v, w} unless it is not contractible. Thus, we have to show
that v is the smallest vertex adjacent to w or (v,w) is the smallest entry in @, for
every edge {v, w} whose unmatched endpoint w has not been contracted into another
matched vertex at the time when edge {v, w} is inspected by the algorithm. We prove
this by induction on the number of edge {v,w} in the sequence of edges as inspected
by the algorithm. For the first edge, vertex v is the matched vertex with smallest
number, so that it is also the smallest vertex adjacent to w. For every subsequent
edge {v,w}, assume that v is not the smallest vertex adjacent to w because other-
wise the claim holds. Then let v' be the predecessor of v in the sorted sequence of
vertices adjacent to w. Observe that v' < v, so that (v, w) < (v, w). Hence, by the
induction hypothesis, either v’ is the smallest vertex adjacent to w or entry (v', w) is
the minimum entry in @) when edge {v', w} is visited. As vertex w has not been con-
tracted into a matched vertex when the algorithm inspects edge {v, w}, edge {v', w}
is not being contracted at the time when it is inspected by the algorithm. Hence, the
algorithm inserts entry (v, w) into Q). Now consider entries (v",w") < (v, w) queued
before the algorithm inspects edge {v,w}. For each such entry, edge {v", w"} is vis-
ited before edge {v, w}. Moreover, since (v", w") € @, there must be a vertex v" < v"
adjacent to w” which has queued entry (v”,w"). Thus, v" is not the smallest vertex
adjacent to w”, and edge {v",w"} finds entry (v”,w”) as the minimum entry in @,
by the induction hypothesis. Consequently, all entries (v”, w") < (v, w) are removed
from @) before edge {v,w} is inspected, so that edge {v, w} finds entry (v, w) as the

minimum entry in () when it is inspected. O

8.4 The Separator Hierarchy 131

As in the proof of Lemma 8.6, let HM H® . . be the snapshots of graph H
at the beginning of each iteration of the loop in Lines 4-9 of Algorithm 8.4. The

following lemma shows that the sizes of these graphs are geometrically decreasing.
Lemma 8.9 Forall i > 1, [H+)| < § [HO)|.

Proof. By Lemma 8.8, procedure CONTRACTBIPARTITE guarantees that no con-
tractible edge remains in H® which is incident to an unmatched vertex. Hence,
HG+1) contains only vertices that are matched in H®. In particular, each such ver-
tex is the result of contracting at least one edge in H® and hence represents at least

two vertices of H®. n

We summarize this section in the following lemma, which shows that Lines 1-5 of

Algorithm 8.1 take O(sort(N)) I/Os.

Lemma 8.10 The sequence of graphs Gy, ..., G, in the graph hierarchy can be con-
structed in O(sort(N)) 1/Os using linear space.

Proof. By Lemma 8.3, procedure COMPRESS takes O(sort(|G;-1|)) I/Os to construct
graph G; from graph G; ;. By Lemma 8.2(iv), the sizes of graphs Gy,...,G, are
geometrically decreasing. Thus, the whole sequence of graphs Gy,..., G, can be

constructed in O(sort(N)) I/Os. O

8.4 The Separator Hierarchy

Having constructed graphs Gy, ..., G,, they are used in Lines 6-9 of Algorithm 8.1 to
construct a relatively coarse separator of G. In particular, this part of the algorithm
constructs a separator S of size O (N / \/E) whose removal partitions GG into connected
components of size at most hlog®(DB).

In Line 6, we compute a partition of G, into subgraphs of size at most h log*(DB)
as follows: First we use an arbitrary linear-time algorithm to compute a planar em-

bedding of G, e.g. [31]. Then we apply Theorem 8.1 to compute the desired partition.

8.4 The Separator Hierarchy 132

Let S, = S) be the computed separator, whose size is |S,| < ¢|G,|/ (\/i_Llog(DB)>,
for some constant ¢ defined in [8].

In the loop in Lines 7-9, we iterate the following procedure until the desired
separator Sy for G is obtained: Given a separator S;; for graph G;,, we construct
the set S of vertices represented by the vertices in Sj;;. Then we apply Theorem 8.1
to each connected component of G; — S} whose size exceeds hlog?(DB). Let S7 be
the set of separator vertices introduced by partitioning the connected components

of Gj — S;- in this manner. Then S; = S]'- U S;-’.

Lemma 8.11 The separator Sy of G computed in Lines 6-9 of Algorithm 8.1 has size
(@) (N/\/i_z) The connected components of G — Sy have size at most hlog?(DB).

Proof. It follows from the above construction and Lemma 8.2 that

.
S0l <) il S|
=0

28cN
- Z "piv/hlog(DB)
B 28cN
Z < Vhlog(DB)
B 280]\7
=7

The bound on the size of the connected components of G — S is explicitly ensured

by our construction. O

Lemma 8.12 Lines 6-9 of Algorithm 8.1 take O(sort(NN)) I/Os to compute separator
So, provided that M > 56hlog’(DB).

Proof. The computation of separator S, takes O(N/(DB)) I/Os because graph G,
has size at most 28N/p, = O(N/(DB)). Since the sizes of graphs Gy,...,G, are

geometrically decreasing, it is sufficient to show that separator S; can be constructed

8.5 Computing the Final Partition 133

from separator S;;; in O(sort(|G;|)) I/Os, in order to prove that the construction
of Sy takes O(sort(|Go|)) = O(sort(N)) I/Os.

Assuming that during the construction of the graph hierarchy, every vertex v
in G; has been labelled with the vertex in G;;; representing v, separator S, can
be constructed in O(sort(|G;|)) I/Os: We sort the vertex set S;.1, and sort the
vertices in G; by their representatives in G;;1. Then we scan the two lists and mark
every vertex of G; as being in S whose representative in G,y is in S;;1. Now it
takes O(sort(|G;|)) I/Os to compute the connected components of G; — S; using the
algorithm of [43].

Since every connected component of G;,1 — S;;1 has size at most hlog?(DB), it
follows from Lemma 8.2(iii) that every connected component of G; — S; has size at
most 56k log?(DB) < M. That is, each such connected component fits into internal
memory. Thus, we can load each connected component of G; — S; whose size exceeds
hlog?(DB) into internal memory and apply Theorem 8.1 to partition it into subgraphs
of size at most hlog®(DB). As the computation of Theorem 8.1 is carried out in
internal memory, partitioning the connected components of G; — 5] into subgraphs of

size at most hlog®(DB) takes O(scan(|G;|)) I/Os. O

8.5 Computing the Final Partition

In order to obtain the final partition, the connected components of G — Sy have to
be partitioned into subgraphs of size at most h and boundary size at most v/A. This
is done in Line 10 of Algorithm 8.1. Algorithm 8.8 provides the details of this step.
Algorithm 8.8 first puts all vertices in Sy into separator S and then applies The-
orem 8.1 to augment S so that no connected component of G — S has size more
than h. This is done in Lines 2-7. Lines 19-23 apply Theorem 8.2 to the subgraphs
into which the removal of separator S partitions G, in order to guarantee that no
subgraph of G — S has boundary size exceeding v/h. However, the preconditions of

Theorem 8.2 are not necessarily satisfied by the connected components of G — S. In

8.5 Computing the Final Partition 134

Procedure FINALSEPARATOR

Input: A graph G = (V, E) and a separator Sy of size O (N/\/E) so that no connected

component of G — S has size exceeding hlog?(DB).

Output: A proper h-partition P = (S, R) of G.

9:

10:

11:
12:
13:

14:
15:
16:

17:
18:
19:
20:
21:
22:
23:

ISR A >

: S+ 5
: for every connected component () of G — Sy do
if |Q| > h then
Apply Theorem 8.1 to compute an h/|Q|-separator Sg of Q.
S+ SUSg
end if
end for
H «+ (V(H),E(H)), where

V(H) =S U{w; : Q; is a connected component of G — S}
EH) = {{v,w} € E:v,w € S}U{{v,w;} :v € S and v € 0Q;}

for allv € V(H) do
w(v) {'Qi' ifv =,

0 otherwise
end for
H, <+ MERGELOWDEGREE(H) {IsHEAVY(v) = true if w(v) > h/2 or v € S}
Hy < CONTRACTEDGES(H1) {IsCONTRACTIBLE({v,w}) = true
if w(v) + w(w) < h}
Hs <+ MERGELOWDEGREE(H>) {IsHEAVY(v) = true if w(v) > h/2}
for every vertex v € H3 do
Let Q) = Q1 U---U Qg, where wi,...,wy are the region vertices that have been
merged into v.
end for
P« (S,R), where R =0
for every subgraph Q! of G — S do
(Sq,{Q7,...,Qy}) < SEPARATEBOUNDARY(Q;,, 0Q;)
S+ SuSqy
R+ RU{QY,...,Q"}
end for

Al

gorithm 8.8

The details of computing a proper h-partition of G in Line 10 of Algorithm 8.1.

8.5 Computing the Final Partition 135

particular, there may be as many as {2(/N) connected components whose total bound-
ary size is w (N / \/E), even though the number of separator vertices is O (N / \/E)
The purpose of Lines 8-17 is to group the connected components of G — S into
O(N/h) subgraphs whose total boundary size is O (N / \/i_7,>, so that Theorem 8.2
can be applied.

Lines 8-11 construct a graph H whose vertices represent the connected components
of G — § and the vertices in S. The edges of H represent their adjacencies. In Lines
12-14, graph H is used to determine which connected components of G — S are to be
merged into a single subgraph, in order to satisfy the preconditions of Theorem 8.2.
Lines 15-17 merge connected components as determined in Lines 12-14.

In detail, Line 12 merges region vertices of degree at most two in H that are
adjacent to the same set of separator vertices. While merging these vertices, the
algorithm maintains the invariant that no vertex in H has weight exceeding h. We
show below that after Line 12, graph H is a planar graph with O (N / \/E> vertices.
Thus, merging the connected components of G — S corresponding to merged region
vertices in H produces a partition of G — .S into O (N / \/E) subgraphs. Moreover, the
total boundary size of these subgraphs is equal to the number of edges in H, which
is O (N / \/E) Thus, all that remains to be done in Lines 13 and 14 is to reduce
the number of subgraphs to O(N/h) by merging subgraphs further. The crucial
observation is that merging subgraphs cannot increase the total boundary size, so
that after Line 14, we obtain the required partition of G — S into O(N/h) subgraphs
with total boundary size O (N / \/E) . As Lines 12-14 only merge region vertices in H,
the corresponding connected components of G — S need to be merged, in order to
obtain the desired subgraphs. This is done in Lines 15-17.

Even though the partition of G — S into subgraphs now satisfies the preconditions
of Theorem 8.2, this theorem cannot be applied directly because the algorithm of [73]
needs to work with the subgraph Q = G[V(Q) U dQ)] of G, for every subgraph Q
of G — S to be partitioned. Even though |Q| < h, the size of Q may be as large
as Q2 (N / \/71) because the construction so far does not give a better bound on the

8.5 Computing the Final Partition 136

Procedure SEPARATEBOUNDARY

Input: A subgraph Q = G[V(Q) U dQ)] of G.
Output: A proper h-partition Pg = (Sg,R) of Q.

1: Assign weight 1 to every vertex in 0@ and weight 0 to every vertex in V(Q).

2: Apply procedure MERGELOWDEGREE to the bipartite subgraph H of Q induced by the
edges in Q having one endpoint in V(Q) and the other in Q. This merges all vertices
of degree at most two in 9@ that are adjacent to the same vertices in V(@) into a single
vertex. In the terminology of Algorithm 8.3, this means that a vertex is light if it is
in dQ and of degree at most two. All other vertices are heavy.

3: Apply Theorem 8.2 to the resulting graph Q to compute a 1/2-proper h-partition Py =
(S {Qu -, Qu}) of .

4: For every separator vertex v € Sg of weight more than one, add its adjacent vertices
in V(Q) to S and remove these vertices from the graph @); containing these vertices.

Algorithm 8.9
Partitioning subgraphs of size at most h into subgraphs of boundary size at most v/h.

boundary size of each particular subgraph. Thus, graph @ may not fit into internal
memory. Algorithm 8.9 shows how to apply Theorem 8.2 to graph @ in an I/0-
efficient manner. In order to do that, it replaces separator vertices of degree at most
two which are adjacent to the same vertices in () with a single separator vertex. The
weight of this vertex is the same as the number of separator vertices it represents.
This compresses 9Q so that |0Q| < 6/Q|. Hence, the resulting graph Q fits into
internal memory, and Theorem 8.2 can be applied to @ in internal memory.

Even though every subgraph K of @ in the partition produced by applying Theo-
rem 8.2 to @ has boundary size at most \/ﬁ/ 2, the corresponding subgraph of Q may
have a large boundary. This happens if at least one of the vertices on the boundary
of K has large weight. However, every vertex of large weight in @ is adjacent to at
most two vertices in (). Thus, each such vertex in the separator can be replaced with
its two adjacent vertices in (). This increases the total size of the separator by a factor
of at most two and guarantees that no subgraph in the partition of () corresponding

to the computed partition of Q has boundary size exceeding v/h.

8.5 Computing the Final Partition 137

The following two lemmas show that Algorithm 8.8 produces the desired partition,
and that it does so in O(sort(N)) I/Os.

Lemma 8.13 Given a planar graph G = (V, E) and a separator Sy C V of size
O (N / \/E) whose removal partitions GG into connected components of size at most

hlog?(DB), Algorithm 8.8 computes a proper h-partition P = (S,R) of G.

Proof. Lines 2-7 of Algorithm 8.8 apply Theorem 8.1 to every connected component ()
of G — S whose size exceeds h, in order to partition it into subgraphs of size at most h.
The vertices in the computed separator Sg of () are added to S. By Theorem 8.1, this
introduces O (|Q|/ \/B> separator vertices per connected component (), O (N / \/E)

in total. Hence, the size of separator S after Line 7 is O (N / \/ﬁ)

To make the algorithm I/O-efficient, the merging of connected components of G —
S into subgraphs @,..., Q% is split into two parts: Lines 12-14 determine which
connected components are to be merged into the same subgraph. Lines 15-17 then
merge these subgraphs. To simplify the argument, we assume that when two region
vertices in H are merged, the corresponding connected components of G — S are
merged immediately, instead of postponing the merging of connected components to
Lines 15-17.

Under this assumption, Line 12 merges connected components of weight no more
than h/2 and boundary size at most two which are adjacent to the same set of
separator vertices. That is, after Line 12, G — S is partitioned into O (N/\/E)
subgraphs: O (N/h) subgraphs of size at least h/2 and O (N / \/ﬁ) subgraphs of size
less than h/2, by Corollary 8.1.

Graph H is planar and has O (N / \/E) vertices after the computation in Line 12:
O (N / \/i_z) separator vertices and O (N / \/i_z> region vertices. A region vertex w
in H is adjacent to a separator vertex v in H if and only if v € 0@, where @ is the
subgraph of G — S represented by w. That is, the total boundary size of the subgraphs
of G — S obtained by merging the connected components in Line 12 is O (N/\/i_z),

the same as the number of edges in H.

8.5 Computing the Final Partition 138

Lines 13-14 now apply procedures CONTRACTEDGES and MERGELOWDEGREE
to guarantee that no two light vertices in H are adjacent to each other, and no two
light vertices of degree at most two are adjacent to the same set of heavy vertices,
where a vertex is light if its weight is at most h/2. It follows from the same arguments
as applied in the proof of Lemma 8.2 that the resulting compressed version of H has
size O(N/h). In particular, the corresponding partition of G — S consists of O(N/h)
subgraphs of size at most h. Merging subgraphs in this manner cannot increase the
total boundary size, so that this produces a partition of G—S into O(N/h) subgraphs
of size at most A and total boundary size O (N / \/E> Thus, the partition obtained
after Line 17 of Algorithm 8.8 satisfies the conditions of Theorem 8.2.

As procedure SEPARATEBOUNDARY produces a proper h-partition of the graph
@ to which it is applied, the final partition P = (S,{G1,...,Gx}) computed by
Algorithm 8.8 has the property that 0G; < \/E, for 1 < ¢ < k. In order to show that
P is proper, it thus suffices to show that £k = O(N/h). However, as the number of
subgraphs before Line 19 is O(N/h), the total number of subgraphs obtained at the
end of the algorithm is O(N/h), by Theorem 8.2. O

Lemma 8.14 Algorithm 8.8 takes O(sort(N)) I/Os and uses linear space, provided
that M > hlog®(DB).

Proof. The implementation of Lines 2-7 of Algorithm 8.8 takes O(sort(N)) I/Os:
Computing the connected components of G — S takes O(sort(N)) I/Os using the
algorithm of [43]. Once the connected components are identified, the partitioning
of each component can be carried out in internal memory, so that partitioning all
components takes O(scan(N)) 1/0Os.

Given that every vertex in G — S is labelled with a label identifying its connected
component, graph H can be computed by replacing every vertex and every edge
endpoint in G — S with its component label and then removing duplicates and loops
from the resulting vertex and edge sets. This takes O(sort(N)) I/Os. Lines 12-14
take O(sort(N)) I/Os, by Lemmas 8.4 and 8.6.

8.5 Computing the Final Partition 139

In order for Lines 15-17 to be able to carry out their computation, Lines 8-14
have to set up the appropriate information. In particular, Line 8 labels every vertex v
in a connected component @ of G — S with the name v(v) of the region vertex w in H
representing (). Procedures MERGELOWDEGREE and CONTRACTEDGES construct
a forest F' representing the contraction history of the vertices in H. In Lines 15-17,
we compute the root 7(v) of the tree in F' containing vertex v, for every vertex v € F,
using the following strategy: First we find the connected components of F' and use
the Euler tour technique and list-ranking to label all vertices in every subtree with the
name of the root of the tree. Then we sort the vertices in G — S by their labels v(v)
and the vertices in F' by their names. Now a single scan of these two sorted lists is
sufficient to replace every label v(v), v € G — S, with the label 7(v(v)). This assigns
the same label to all vertices in the same subgraph of G — S. Given this labelling,
the vertices and edges in G — S can be sorted by their labels so that the vertices and
edges of each graph () are stored consecutively. For each such subgraph @, we find
the edges connecting vertices in @ to vertices in S. Adding these edges to E(Q) and
their endpoints to V(Q) produces graph Q.

Computing the connected components of F' takes O(sort(N)) I/Os using the al-
gorithm of [43]. Labelling every vertex in F' with the root of its tree in F' takes
O(sort(N)) I/0s, as list-ranking takes O(sort(/N)) I/Os [43]. The remainder of the
implementation of Lines 15-17 requires the sorting and scanning of sets of size O(N),
so that the rest of the construction in Lines 15-17 takes O(sort(N)) I/Os as well.

The application of Algorithm 8.9 to a single graph @ in Line 19 of Algorithm 8.8
takes O(sort(]Q|)) I/Os: Line 1 can be implemented in a single scan of the vertex
set of Q. Line 2 takes O(sort(|Q|)) I/Os, by Lemma 8.4. Line 3 is carried out in
internal memory. Adding the vertices in V(@) adjacent to vertices in S of weight
more than one to Sg and removing them from the graphs @)1, ..., Q, are the same
operation, as containment of these vertices in Sg or graphs @)1, ..., (), is represented
by labelling every vertex appropriately. Now, in order to add these vertices to Sg, we

apply operation COPYVERTEXLABELS to label all edges that have an endpoint in Sg

8.5 Computing the Final Partition 140

whose weight is more than one. Then we scan the edge list to extract all these edges

and apply operation SUMEDGELABELS to add all endpoints of these edges to Sg.
As the total boundary size of all subgraphs @) is O (N / \/E), the total size of all

graphs @ is O(N). Hence, Lines 19-23 of Algorithm 8.8 take O(sort(N)) I/Os. O

We are now ready to state the main result of this chapter.

Theorem 8.3 Given a planar graph G and an integer h > 0, Algorithm 8.1 computes
a proper h-partition of G. The algorithm takes O(sort(N)) I/Os and linear space,
provided that M > 56hlog®(DB).

Proof. The 1/O-complexity of Algorithm 8.1 follows from Lemmas 8.10, 8.12, and
8.14. The correctness of the algorithm follows from Lemmas 8.11 and 8.13. O

Chapter 9

Planarity Testing and Planar
Embedding

Even though the separator algorithm presented in Chapter 8 does not require a planar
embedding, many algorithms for planar graphs, including the applications presented
in Chapters 10 and 11, exploit the information provided by such an embedding. In
this chapter, we provide an I/O-efficient algorithm which tests whether a given graph
is planar and if so, computes a planar embedding of the graph. The algorithm exploits
the fact that our separator algorithm does not require a planar embedding to be given
as part of the input. Hence, we can use the separator algorithm to compute a normal
(DB)?-partition P = (S,{G4,...,Gx}) of G. We compute a planar embedding of G
from planar embeddings of graphs Gy, ..., Gy and a planar embedding of a graph A
which is obtained from G by replacing graphs Gy, ..., Gy with “constraint graphs”
C1,...,Ck whose total size is O(N/(DB)).

In Section 9.1, we prove a convenient characterization of triconnected planar
graphs, which will be handy whenever we have to show that a constraint graph
we construct is triconnected and hence has a unique planar embedding. In Sec-
tions 9.2 through 9.8, we present our algorithm for planarity testing and planar em-
bedding. By Lemma 2.1, the I/O-complexity of our embedding algorithm can be

reduced to O(perm(N)). In Section 9.9, we prove a matching lower bound.

141

9.1 Triconnected Planar Graphs: A Characterization 142

9.1 Triconnected Planar Graphs: A Characterization

If a planar graph G is triconnected, the task of capturing all possible embeddings of G
is simplified considerably by the following classical result, which states that in this
case, the planar embedding of GG is unique. We exploit this fact in Section 9.4, where
our construction captures the characteristics of the embeddings of the tricomps of a

planar graph.

Theorem 9.1 (Whitney [174]) Let G, and G5 be two planar embeddings of a tri-
connected simple planar graph G. Let fi,..., fr be the faces of G, and fio- 0 f]
be the faces of Go. Then k = [, and there exists a permutation o : [1,k] — [1,k] so
that faces f; and f! (@) have the same vertices on their boundaries, for all 1 < i < k.
Moreover, either the boundary vertices of faces f; and fé(z’) appear in the same order

around both faces, for all 1 < i < k, or their orders are reversed, for all 1 <1 < k.

Given a planar embedding G of a planar graph G, we use the following lemma to

prove that graph G is triconnected.

Lemma 9.1 Let G be a simple biconnected planar graph which is not a cycle, and
let G be a planar embedding of G. Graph G is triconnected if and only if there are
no two faces f; and fs of G and two vertices v and w such that v and w are on the
boundary of both f; and f5, but edge {v,w} does not exist or is on the boundary of

at most one of f; and f.

Proof. First assume that there are two faces f; and f5 of G and two vertices v and w
such that v and w are on the boundaries of both f; and fs5, but edge {v,w} does
not exist or is on the boundary of at most one of f; and fy. Assume w.l.o.g. that
edge {v,w} is on the boundary of face f, if this edge exists (Figure 9.1a). Let P
be the path from v to w counterclockwise around f;, and P, be the path from v
to w clockwise around f;. As edge {v,w} is not on the boundary of face f;, path P
contains an internal vertex x, and path P, contains an internal vertex y. We can

connect vertices v and w by two curves o and S that are completely contained in

9.2 Overview of the Algorithm 143

Figure 9.1
Proof of Lemma 9.1.

the interiors of faces f; and fs, respectively. The union of curves o and (5 is a closed
Jordan curve v which does not intersect any edges of G and contains only vertices
v and w. Vertex z is outside 7, vertex y is inside. Thus, any path from x to y must
contain either v or w, so that {v,w} is a separation pair. Hence, graph G cannot be
triconnected.

Now assume that G is not triconnected. Then G must contain a separation
pair {v,w}. Let By,..., By be the bridges of {v,w}. At least two of the bridges
are non-trivial. Let Bi,...,B; be the planar embeddings of Bi,..., By induced
by G. Then every embedding B; has exactly one face containing all other embed-
dings Bl, .- ,Bi_l, BZ-H, .. .,Bk. Hence, embedding G looks like in Figure 9.1b. If
{v,w} & G, faces f; and f; do not share edge {v, w}, but they share vertices v and w.
If {v,w} € G, k > 3 and w.l.o.g. By = ({v,w}, {{v,w}}). Then again, faces f; and f,
do not share edge {v, w}. O

9.2 Overview of the Algorithm

In this section, we give an overview of our I/O-efficient algorithm for planarity testing
and planar embedding. The algorithm exploits the fact that the separator algorithm

of the previous section does not require a planar embedding of the graph. In fact,

9.2 Overview of the Algorithm 144

graph G does not even have to be planar as long as the following three conditions are

satisfied:
(i) Graph G, in the graph hierarchy is planar,

(i) |G| < 28¢N/p;, for all 1 < i < r and the same constants ¢ and p; as defined in
Chapter 8, and

(iii) The connected components of G; — S} are planar, for all 0 < i < r.

Given that these conditions are satisfied, the separator algorithm produces a small
separator in O(sort(XN)) I/Os. Also, the algorithm can easily be augmented to test for
violation of one of these conditions. If it finds that one of the conditions is violated,
the algorithm can abort and report that GG is non-planar, as we have shown in the
Chapter 8 that a planar graph satisfies these conditions.

Now the idea of our algorithm is quite simple: We compute a proper (DB)32-
partition P = (S, {G1,...,Gy}) of G and test whether graphs Gy, ..., G}, are planar.
If so, we replace each graph G; with a “constraint graph” C; of size O(DB) so that the
resulting “approximate graph” A is planar if and only if G is planar. The planarity
of A can be tested in O(N/(DB)) I/Os, as A has size at most O(N/(DB)). A planar
embedding of G can be obtained from a planar embedding of A by replacing the
induced embeddings of graphs C4,...,C} with “consistent” embeddings of graphs
Gi,...,Gy.

Algorithm 9.1 provides an outline of our algorithm. Sections 9.3 to 9.7 describe
the construction of constraint graphs Ci,...,C from graphs G,...,G and show
that the approximate graph A has the desired properties. Section 9.8 shows how to
derive a “consistent” planar embedding G; of G; from a planar embedding C; of C;

and how to combine these embeddings to obtain a planar embedding of G.

Theorem 9.2 Algorithm 9.1 correctly tests whether a simple graph G is planar and
if so, computes a planar embedding G of G. The algorithm takes O(sort(N)) I/Os,
provided that M > (DB)?log*(DB), and uses linear space.

9.2 Overview of the Algorithm 145

Procedure PLANAREMBEDDING

Input: A simple graph G = (V, E).
Output: A planar embedding G of G or the answer that @ is not planar.

1: if |E| > 3|V| — 6 then

2 Report that G is not planar and exit.

3: end if

4: Compute a proper (DB)2-partition P = (5,{G1,...,G}) of G.
5: if Line 4 reports an error then

6: Report that G is not planar and exit.

7: end if

8: Let G1,..., G} be the graphs defined as

Gi = (V(G) UdG;, {{v,w} € E:v € V(G;) Aw € V(G;) UIG;}).
9: Let GY,...,G) be the connected components of graphs Gi,...,Gy.
10: for j=1,...,1 do
11: if G is not planar then

12: Report that G is not planar and exit.
13: end if
14: Compute the constraint graph C; of G;-.
15: end for

16: Let A:G[S]UClLJ---UCl

17: if A is not planar then

18: Report that G is not planar and exit.

19: end if

20: Compute a planar embedding A of A.

21: for:=1,...,5 do

22: Let C'j be the restriction of embedding A to C;.
23: Replace (:‘j by a consistent embedding Gg of G
24: end for

25: Let G be the resulting embedding of G.

Algorithm 9.1
An algorithm that tests whether a given graph G = (V, E) is planar and if so, computes a planar
embedding of G.

9.2 Overview of the Algorithm 146

Proof. First we prove the correctness of Algorithm 9.1. Assume that our algorithm
reports that graph G is not planar. This can happen in Lines 2, 6, 12, or 18. If
|E| > 3|V|—6, graph G is not planar, by Euler’s formula. As argued at the beginning
of this section, G cannot be planar if Algorithm 8.1 fails to produce a small separator
of G. If one of the graphs G, ..., G] is non-planar, G cannot be planar, as these are
subgraphs of GG. Finally, if A is non-planar, G cannot be planar, by Lemma 9.15. On
the other hand, if our algorithm does not report that GG is non-planar, the output of
the algorithm is a planar embedding G of G, by Lemma 9.17.

Next we analyze the I/O-complexity of Algorithm 9.1. Lines 1-3 of the algo-
rithm take O(scan(N)) I/Os, as they only require counting the vertices and edges
in G. Given that M > (DB)?log?(DB), Theorem 8.3 ensures that Lines 4-7 take
O(sort(N)) 1/Os. The computation of graphs G4, ..., G}, in Line 8 of the algorithm
takes O(sort(IN)) I/Os: First we use procedure COPYVERTEXLABELS to label every
edge with the names of the subgraphs among G[S],Gy,..., Gy containing its end-
points. Then we sort the edge list lexicographically by these labels. This stores the
edges of each graph G; consecutively if we assume that edges with only one end-
point in G[S] are sorted primarily by their other endpoints. Now we scan this list
to produce for each set E(é,), a list of the endpoints of the edges in E(@Z) By
applying operation DUPLICATEREMOVAL to each of these vertex lists, we obtain the
vertex sets V(Gy), ...,V (Gy) of graphs Gy, ...,Gy. Line 9 takes O(scan(N)) I/Os,
as each subgraph G; has size at most (DB)? + (DB). Thus, each subgraph fits
into internal memory, and graphs G',..., G} can be computed by loading graphs
G1,...,G) into internal memory, one at a time, and partitioning each of them into
its connected components. Similarly, Lines 10-15 take O(scan(N)) I/Os, as each
subgraph G is small enough to fit into internal memory. Line 16 requires an appli-
cation of procedure DUPLICATEREMOVAL to eliminate multiple vertices and edges
with the same name in different subgraphs. Thus, this step takes O(sort(N)) I/Os.
By Lemma 9.16, graph A has size O(N/(DB)), so that Lines 17-20 of the algorithm

9.3 Computing the Constraint Graphs 147

take O(N/(DB)) I/Os using for instance the linear-time planarity algorithm of [31].
Lines 21-25 take O(sort(N)) I/Os, by Lemma 9.17. O

9.3 Computing the Constraint Graphs

The core of our algorithm is the construction of the constraint graphs C1, ..., C; from
graphs G1,...,G). The construction ensures that graph G[G’;/Cj] is planar if and
only if G is planar. A planar embedding G of G can be obtained from a planar
embedding CAJ[G;-/CJ-] of G[G}/Cj] by locally replacing the embedding of C;; induced
by G[G;/C’j] with a consistent embedding of G.

We assume henceforth that graphs G,...,G] are planar because otherwise Al-
gorithm 9.1 correctly reports that GG is non-planar, regardless of the correctness of
the rest of the algorithm. The construction of graphs Cfi,...,C; partitions each
graph G’ into its bicomps Bj1,...,Bj,, and each bicomp B;j into its tricomps
Tk -+ Tikr;,» using linear-time algorithms of [97, 163]. The constraint graph Cj
of G is now constructed in a bottom-up fashion from the constraint graphs Cr; , , of
tricomps 7; . In particular, the constraint graph Cp, , of a bicomp B, is computed
by classifying the tricomps of B, into two classes: “Essential” tricomps are replaced
by their constraint graphs. “Inessential” tricomps are either completely removed, or
groups of them are replaced by constraint graphs of constant size. The construction
of C; from constraint graphs Cp, ..., CBj,qj follows the same pattern: “Essential”
bicomps are replaced by their constraint graphs. “Inessential” bicomps are either
removed, or groups of them are replaced by constraint graphs of constant size.

The classification of subgraphs as essential or inessential is closely tied to the
concept of required vertices in such a subgraph. For any subgraph H of G, the
required vertices of H are the vertices shared by H and G—H. That is, for a graph G7,
all separator vertices in G;- are required. For a bicomp B, all separator vertices and
cutpoints in B are required. Finally, for a tricomp 7, all separator vertices, cutpoints,
and members of separation pairs are required. For any graph H, the vertex set of its

constraint graph C'y has to contain at least the required vertices of H. To see why

9.4 The Constraint Graph of a Tricomp 148

this is necessary, assume that there exists a path in H connecting two of its required
vertices. If this path is part of a subgraph of G homeomorphic to K5 or K33, and
one of the two required vertices is not present in Cy, G[H/Cy] may be planar even
though G is not.

The following sections follow the bottom-up construction of graphs C4,...,C].
Section 9.4 describes the construction of the constraint graph C7 of a tricomp 7.
Section 9.5 shows how to construct the constraint graph Cg of a bicomp B, using the
constraint graphs of the tricomps of B as building blocks. Section 9.6 describes how
to assemble the constraint graph C; of graph G; from the constraint graphs of its

bicomps.

9.4 The Constraint Graph of a Tricomp

Let T be a tricomp, and let R(7") denote its set of required vertices. For any graph H
containing virtual edges, we define the kernel H° of H as the graph obtained from H
by removing these edges. Our goal is to construct a constraint graph Cy for 7 whose
vertex set has size O(|R(T)|), which contains all virtual edges of 7, and such that G is
planar if and only if G[7°/C%] is planar. If T is a bond, the constraint graph C7 of T
is T itself. If 7 is a cycle T = (vy,...,vx), let vi,..., v} be the required vertices in T,
appearing in this order along 7. Then C7 is the cycle Cr = (v},...,v]). The rest of
this section deals with the construction of C'7 in the case when 7 is a triconnected
simple graph.

Since 7 is a triconnected simple graph, the planar embedding T of T is unique.
The face-on-vertex graph Gg of 7 is defined as follows (Figure 9.2a): G contains
all vertices of 7 as well as one vertex f* per face f in 7. There is an edge between
a face vertex f* and a vertex w € 7T if and only if w appears on the boundary of
face f. Graph G is planar. A planar embedding Gr of Gr is obtained by ordering
edges {f*,wi},...,{f*, wx} around f* in the same order as vertices w; ..., w; along

the boundary of face f in 7.

9.4 The Constraint Graph of a Tricomp 149

(a) (b)

Figure 9.2

(a) A triconnected simple graph 7 with its face-on-vertex graph Gp. Required vertices are
white discs. Vertices that are not required are black discs. Face vertices are squares. Edges
of T are solid. Edges of G are dashed. (b) The reduced face-on-vertex graph G’ of T.

Our goal is to construct C'; so that the order of required vertices around the
faces of T is preserved in any embedding of Cr. First we remove all vertices in
V(T)\R(T) from Gr. Then we remove face vertices adjacent to at most one required
vertex from G, but ensure that the degree of any required vertex in Gy remains at
least two. We call the resulting graph G’ the reduced face-on-verter graph of T (see
Figure 9.2b).

Lemma 9.2 The reduced face-on-vertex graph G' of a tricomp T is planar and has

at most 10| R(T)| vertices.

Proof. As G'; is a subgraph of G, the planarity of G’ is obvious. In fact, we use
the embedding G, of G%, induced by the embedding G of G in the remainder of
this section. In order to count the number of vertices in G, we partition the vertices
in R(T) into two groups. The vertices in the first group, R;, are adjacent only to
face vertices of degree one. The vertices in the second group, R, have at least one
neighbor of degree at least two.

The total number of face vertices adjacent to vertices in R; is 2|R;|. Every vertex

in R, has at most one adjacent face vertex of degree one. In order to count the

9.4 The Constraint Graph of a Tricomp 150

Figure 9.3
Proof of Lemma 9.2.

face vertices of degree two in G, we consider the subgraph H of G’ induced by all
vertices in Ry and all face vertices of degree two in G%.. We construct a graph H’
containing all vertices in Ry. There is an edge {v,w} € H' if there exists a face vertex
in H which is adjacent to v and w. As H is a subgraph of G, H is planar. A planar
embedding of H' can easily be derived from a planar embedding of H. Hence, H' has
at most 3| Ry| edges. We associate a face vertex z of degree two with edge {v,w} € H'
if = is adjacent to v and w in H. We show that there are at most two face vertices
associated with each edge in H', so that there are at most 6| Ry | face vertices of degree
two in G.

Assume that there are two vertices v and w so that edge {v,w} in H' has three face
vertices ff, f3, and f3 associated with it (see Figure 9.3). Then R?\ (vUwU f1U foU f3)
consists of three disjoint regions R;, Ry, and R3. Only one of these regions can be
degenerate, i.e., consist only of the embedding of edge {v,w}. W.l.o.g., assume that
Ry is this region. Then R; contains some vertex x, and R3 contains some vertex .
Any path from x to y must pass through either v or w, as there are no edges crossing

faces f1, fo, and f3. Thus, {v, w} is a separation pair, contradicting the triconnectivity

of T.

9.4 The Constraint Graph of a Tricomp 151

(a) (b) ()

Figure 9.4

(a) The reduced face-on-vertex graph G’ of tricomp 7 shown in Figure 9.2a, augmented with
dummy vertices. (b) The graph H whose face-on-vertex graph has the augmented face-on-vertex
graph G’z as a subgraph. (c) The constraint graph C7 of T.

The subgraph H” of G, induced by all vertices in R, and all face vertices of degree
at least three is planar and bipartite, where V; = R, and V5 contains all face vertices
of degree at least three. Hence, by Lemma 8.1, |V3| < 2|V;| = 2|Ry|. Thus, G’ has
at most (|Ry|+ 2|Ry|) + (|Rz| + |Rz| + 6| Ra| + 2|Ry|) < 10|R(T)| vertices. O

Next we use graph G’ to construct the constraint graph C7 of 7. In order to
construct C'7, we augment G so that every face vertex in G has degree at least
three. For each face vertex f* in G of degree at most two, we add one or two dummy
vertices to G and make them adjacent to f*. If f* has degree two, let x and y be
the two required vertices adjacent to f* in G%. If there is an edge between x and y
in 7, assume that z, edge {z,y}, and y appear in this order clockwise along the
boundary of face f. Then we add dummy vertex z incident to f* between y and x in
the clockwise order of vertices around vertex f*. This construction is illustrated in
Figure 9.4a for the tricomp 7 shown in Figure 9.2a.

Next we construct a graph H whose face-on-vertex graph has G as a subgraph.
Graph H has the required and dummy vertices of G’ as vertices. It contains an
edge {x,y} if there exists a face-vertex f* in G% such that edges {f*,z} and {f*, y}
appear consecutively in the clockwise order around f*. This construction is shown

in Figure 9.4b. The embedding H of graph H has a number of faces which are not

9.4 The Constraint Graph of a Tricomp 152

represented by face vertices in G%. (In Figure 9.4b, the only such face is the outer
face.) In order to construct C'r, we augment graph H so that the resulting graph C'r
is triconnected and has the property that every face in the unique planar embedding
of Cr which does not correspond to a face vertex in G’ has at most one required
vertex on its boundary. Thus, there exists a natural bijection between the faces of T
and C’T with at least two required vertices on their boundaries.

The augmentation of H proceeds in three phases: First we iterate over all faces
of H which do not correspond to face vertices in G'». For every boundary cycle of
such a face f, let v1,..., v be the required vertices in that cycle. (Note that this
cycle is not necessarily simple, and some required vertices may appear more than once
along the cycle.) For each vertex v;, we split the two edges preceding and succeeding
v; in the cycle by adding two dummy vertices u; and w; on these two edges. We
connect vertices u; and w; by an edge {u;, w;}. This partitions face f into a number
of triangles (u;, v;, w;) and a face f' which does not have any required vertex on its
boundary. If H is disconnected, the graph obtained after this augmentation is also
disconnected. This is equivalent to some face f' having more than one boundary
cycle. As long as there is such a face f’, we choose two of its boundary cycles and two
pairs of consecutive vertices {z,y} and {u,v} on these two cycles. Assume that z,y
and wu,v appear in this order clockwise along these two cycles. Then we add edges
{z,v},{z,u}, {y,u} to H, thereby concatenating the two boundary cycles. Once this
procedure is finished, every face of H has a single boundary cycle. Now we triangulate
each face f' not corresponding to a vertex in G’ by adding a dummy vertex in the
center of f' and connecting this vertex to every vertex on the boundary of f’. The

resulting graph is the constraint graph C7 of T (see Figure 9.4c).

Lemma 9.3 The constraint graph Cr of a triconnected component T is a planar
graph with O(|R(T)|) vertices.

Proof. For bonds and cycles the claim trivially holds, as all vertices in C's are required.
If 7 is a triconnected simple graph, we show the lemma as follows: By Lemma 9.2,

graph G, contains at most 2|R(7T)| face vertices of degree one and at most 6|R(7T)|

9.4 The Constraint Graph of a Tricomp 153

face vertices of degree two. Thus, at most 10|R(7")| dummy vertices are added to G’
in order to increase the degree of each face vertex to at least three. Hence, graph H is
a planar graph with at most 11|R(7)| vertices. The construction of Cy from H adds
at most one vertex per edge of H and at most one vertex per face of H, 55| R(T)|
vertices in total. Thus, C7 has at most 66|R(7)| vertices. The planarity of Cr is

explicitly guaranteed by the above construction. 0

Lemma 9.4 The constraint graph C'; of a triconnected simple graph T is a tricon-

nected simple graph.

Proof. Tt is easily verified that every edge is added at most once to C'y. Hence,
C7 is simple. To show that C7 is triconnected, let C’T be the planar embedding
of C'r derived from the planar embedding T of T using the above construction.
By Lemma 9.1, it is sufficient to show that for all faces f; and f, sharing two vertices
v and w, edge {v,w} is on the boundary of both f; and fs.

To prove this, we partition the faces of C’T into two categories: Required faces are
those that correspond to face vertices in G%. All other faces are auziliary faces.

If fi and f; are both required faces, then v and w are required vertices. This is
true because dummy vertices are created separately for each face vertex of G'%, so
that no two required faces share a dummy vertex. Faces f; and f; correspond to two
faces f| and f} of T sharing vertices v and w. Thus, by Lemma 9.1, edge {v, w} must
be on the boundary of both f{ and fi. Edges between required vertices are preserved
in C7r.

It is easy to verify that all auxiliary faces of C’T are triangles. Thus, if f; and fs
are both auxiliary faces, edge {v, w} is on the boundary of both f; and f.

If f; and f, are of different types, assume w.l.o.g. that f; is required and f5 is an
auxiliary face. As f, is a triangle, edge {v, w} is on the boundary of face fy. Thus, it
remains to show that edge {v, w} is on the boundary of face f;.

Let f be the face of H containing face f,. Face f is split into two types of faces:
triangles produced by bridging required vertices on the boundary of f and triangles

produced by triangulating the resulting face f’. If f5 is of the former type, f; and f,

9.4 The Constraint Graph of a Tricomp 154

can only share vertices u; and v; or vertices v; and w; because vertices u; and w; are
on the boundaries of different required faces. Assume w.l.o.g. that f; and fy share
vertices u; and v;. Vertex u; has been inserted on an edge {z,v;} on the boundary of
a required face fy, so that u;, v;, and edge {u;,v;} are on the boundary of face f;. As
required faces are not partitioned by our algorithm, and fy is the only required face
having vertex u; on its boundary, f; = fy. Hence, edge {u;, v;} is on the boundary of
face fi.

If f5 is of the latter type, the two vertices shared by f; and f, are the endpoints
of an edge on the boundary of face f’. The edges on the boundary of face f’ can
be partitioned into two classes: edges {uq, w1}, ..., {ug, wy} introduced by bridging
required vertices vy, ...,v; on the boundary of face f, and edges on the boundaries
of required faces. Since no required face can have both endpoints of an edge {u;, w;}
on its boundary, the vertices shared by f; and f, must be the endpoints v and w of
an edge of the latter type. Both v and w are dummy vertices because no vertex of
face f’ is required. Hence, there is only one required face which has both vertices
on its boundary. As the face which has edge {v,w} on its boundary must also have
vertices v and w on its boundary, it follows that edge {v,w} is on the boundary of

face fi. O

Lemma 9.5 Let 7 be a planar embedding of T, and Cy be a planar embedding
of Cy. Let fi,..., f, be the faces of T with at least two required vertices on their
boundaries, and fi,..., f| be the faces of Cr with at least two required vertices on
their boundaries. Then k = [, and there exists a bijection o : [1,k] — [1, k] such that
faces f; and fé(i) have the same required vertices on their boundaries, in the same

order.

Proof. The lemma holds trivially for bonds and simple cycles. If 7 is a triconnected
simple graph, C7 is triconnected, by Lemma 9.4. Hence, embeddings T and Cy are
unique. In particular, (:’7— is the embedding of C';- derived from T by our construction

above. Faces fi,..., fr in T correspond to face vertices fy,..., fi in G’%, which in

9.4 The Constraint Graph of a Tricomp 155

turn correspond to faces fi,..., fi in C’T. It is easy to verify that our construction
preserves the order of required vertices around these faces.

Thus, in order to prove the lemma, we have to show that each auxiliary face has at
most one required vertex on its boundary. Each such face is the result of partitioning
a face f of graph H in the above construction which does not correspond to a vertex
in G';. Face f is partitioned into triangles (u;, v;, w;), for each required vertex v; on
the boundary of f, and a face f’ which does not have any required vertices on its
boundary. Vertices u; and w; on the boundary of a triangle (u;, v;, w;) are dummy
vertices. Face f' is partitioned into triangles none of which has a required vertex
on its boundary. Thus, no auxiliary face has more than one required vertex on its

boundary. O

Let 71,...,7, be the tricomps of graphs G!,...,G}. Then we define a sequence
of graphs G{",..., G{" such that G§ = G and G = GY,[T°/C5.], for 1 < i < q.
Graph GO is defined as GO = GIV.

Lemma 9.6 Graph Gz(l) is planar if and only ingl_)l is planar, for 1 < i < q. A planar
embedding of Ggl_)l can be obtained by locally replacing the embedding of C7. induced
by a planar embedding @El) of Gz(l) with a consistent embedding of T;°.

Proof. Consider an embedding éﬁ)l of Gl(l_)l. If 7; is a bond, then C7, = 7;. Hence,
Ggi)l = Ggl). If 7; is a cycle, then it is easy to verify that both 7,° and é’% have
either one or two faces, and that the required vertices on the boundaries of these
faces appear in the same order along these boundaries. Hence, any subgraph of 7T.°
embedded inside a face of 7A;° can be embedded without change in the corresponding
face of C‘%

Now consider the case when 7; is a triconnected simple graph. Let '7; be the unique
planar embedding of 7;, and 7? be the planar embedding of 7,° obtained from T by
removing all virtual edges in 7;. Let éﬂ- be the unique planar embedding of C7,
and C’% be the planar embedding of C7. obtained from 07; by removing all virtual

edges in C7;.

9.5 The Constraint Graph of a Bicomp 156

We partition 7,° into maximal subgraphs each of which is embedded inside a face f
of ’7?’. Each such graph K is incident only to required vertices on the boundary of f.
If f is the result of merging a number of faces of 7; by removing virtual edges, each
constituent face of f in 7: has at least two required vertices on its boundary. Thus,
these constituent faces are preserved in éﬁ, by Lemma 9.5. Moreover, they share the
same virtual edges in éfn as in 7;. Thus, face f has a corresponding face f’ in C’%
with the same required vertices on its boundary, in the same order. If f is a face of ’7A;°
consisting of a single face of 7; with at least two required vertices on its boundary,
this face is preserved in CA'Ti and thus in C’%, by Lemma 9.5. In both cases, K can
be embedded inside f’ without changing the embedding of K. If face f has only one
required vertex on its boundary, K can be embedded inside an arbitrary face of C’%
with this vertex on its boundary. Embedding all subgraphs K in this manner results
in a planar embedding of Ggl). The proof that G§1_)1 is planar if Ggl) is planar is

similar. O

Corollary 9.1 Graph G is planar if and only if graph G is planar. A planar embed-
ding of G' can be obtained from an embedding GO of G by locally replacing the
embeddings of graphs C7., .. ., C’%} with consistent embeddings of graphs T;°, ..., T, .

9.5 The Constraint Graph of a Bicomp

Given graph G obtained by replacing each tricomp of graphs G}, ..., G} with its
constraint graph, we show in this section how to construct the constraint graph of a
bicomp B. In order to do this, we use a two-step procedure to classify the tricomps
of B as essential or inessential. For an essential tricomp 7 of B, the constraint
graph Cy of T in GU is left unchanged. An inessential tricomp is either completely
removed from GV, or it is grouped together with other inessential tricomps. Each
such group is then replaced with a constraint graph of constant size.

Let R(B) be the set of required vertices of B, and Ti,...,7, be its tricomps.
Let T = Ti(B) be the tricomp tree of B (see Figure 9.5). Tree T has ¢ vertices

9.5 The Constraint Graph of a Bicomp 157

Figure 9.5
A biconnected planar graph G, its tricomps, and its tricomp tree. Tricomps are labelled with
capital letters. Virtual edges in the tricomps are dashed.

9.5 The Constraint Graph of a Bicomp 158

Ti,...,T, one per tricomp 7;. For each vertex v € R(B), we choose a tricomp 7T (v)
such that v € T(v). We call a tricomp 7; essential if there is a vertex v € R(DB)
such that 7; = T (v). A tricomp 7; is potentially essential if there are two essential
tricomps 7; and 7Ty such that vertex 7; is on the path from 7; to 7, in 7. All other
tricomps are inessential. In the next section, we show that removing all inessential
tricomps from G does not alter its (non-)planarity. Then we finish the classification
of the tricomps by deciding which of the potentially essential tricomps are essential or
inessential. In Section 9.5.2, all tricomps classified as inessential in this second round
of classification are replaced by a small number of constraint graphs of constant size.
Section 9.5.3 puts the pieces together and shows that the final constraint graph Cp
of B has size O(|R(B))).

9.5.1 Discarding Inessential Tricomps

Let 7" be the tree obtained by removing all vertices 7; corresponding to inessential
tricomps 7; from T. Let B’ be the subgraph of B obtained by merging all tricomps
corresponding to vertices in 7. The nodes 7; € T corresponding to inessential tri-
comps 7; induce a set of maximal subtrees T1,...,T; of T. Each such subtree Tj is
connected to 7" through a single edge. Let K; be the subgraph of B obtained by
merging all tricomps corresponding to the nodes in tree T;. As T; and T" share only a
single edge, K; and B’ share exactly one virtual edge (v;, w;,i;). Let B” be the graph
obtained by replacing graphs K7, ..., K{ with edges (v1,w1,%1), ..., (vs, ws, i5) in B.
Alternatively, B” is obtained by making all virtual edges in B’ non-virtual.

Let B,..., B, be the bicomps of graphs G, ...,G}. Then we define a sequence
of graphs G, ..., G, where G{) = GO and G = G\, [B;/B]. Graph G® is
defined as G® = G.

Lemma 9.7 Graph Gz@) is planar if and only if graph GEZ_)I is planar, for 1 <1 < q.
A planar embedding of Gg)l can be obtained by locally replacing edges in an embed-
ding of GEQ) with embeddings of inessential tricomps of B;.

9.5 The Constraint Graph of a Bicomp 159

Proof. Let B = B;, and let trees T, T', and Ty, ...,T, and graphs B’ and K,..., K,
be defined as above. Let é@l be a planar embedding of graph Ggg)l. For each
subgraph Kj; of B, there is a path from v; to w; in Kj. Thus, replacing K; by
edge (vj,wj, ;) in éz@l corresponds to removing the whole graph K except that
path from Gz@l, and then replacing this path by a single edge. As all tricomps in K
are inessential, v; and w; are the only vertices shared by K7 and I_(]‘?. Hence, two
paths from v; to w; in graph K7 and from vy to wy in another graph K} are internally
vertex disjoint, so that replacing both paths by a single edge does not introduce an
intersection in the planar embedding of G§2_)1. Applying this argument to graphs
K?,..., K in turn shows that GZ(-Z) is planar if Gg)l is planar.

To see that Ggl is planar if GZ(?) is planar, recall that each graph K7 shares only
vertices v; and w; with K. Hence, an embedding of Gz(-z_)1 can be obtained from an
embedding of GZ(Q) by replacing each edge (v, w;,%;) in GEZ) with an embedding of
graph K7 which has vertices v; and w; on its outer face. The existence of such an
embedding follows immediately from the planarity of the tricomps of a biconnected

planar graph. O

Corollary 9.2 Graph G® is planar if and only if graph GW is planar. A planar
embedding of G can be obtained by locally replacing edges in an embedding of G(?)

with embeddings of inessential tricomps.

Having disposed of the first set of inessential tricomps, we now classify the po-
tentially essential tricomps of B” as essential or inessential. A potentially essential
tricomp is essential if its corresponding vertex in 7" has degree at least three. Oth-
erwise, it is inessential. Note that all vertices in 7" whose corresponding tricomps
are inessential as a result of this second classification have degree two. This is true
because all leaves correspond to essential tricomps, and all tricomps corrsponding to
internal nodes of degree at least three have been declared essential. We partition the
set of nodes corresponding to inessential tricomps into maximal paths in 7.

Let P = (7y,...,7s) be such a path, and let 7y and 74,1 be the two other neighbors

of 7 and 7y, respectively. Tricomps 7o and 7,41 are essential. Let (v, w;,4;) be

9.5 The Constraint Graph of a Bicomp 160

the virtual edge shared by tricomps 7; and 714, for 0 < j < s. Let Hp be the
graph obtained by merging tricomps 71,...,7,;. Then Hp contains two virtual edges:
(v, wo, 59) and (vs, ws, i5). Also, as all tricomps in Hp are inessential, graph Hy, shares
only vertices vy, wy, vs, and wy with E[I"p. Next we construct a constraint graph Cp

of constant size for each such graph Hp and replace H} with C}.

9.5.2 Compressing Chains of Inessential Tricomps

To construct the constraint graph Cp for a graph Hp, we partition the tricomps
Ti,...,Ts of Hp into five (possibly empty) groups, and replace each such group by
its own constraint graph of constant size. These five groups are defined as follows:

Let jo be the maximal index such that {vj,, w;,} N {vo, wo} # 0. Then the fan of
tricomp 7y is the union of tricomps 71, ..., 7;,. The fan of 7, is empty if jo = 0.

The fan of tricomp 7, is defined analogously: Let j; be the minimal index such
that {v;,,w;,} N {vs, ws} # 0. Then the fan of tricomp T, is the union of tricomps
Tjs+15---5 Ts. The fan of T;,; is empty if j; = s.

If jo < js, let Tj,+1 be the separating tricomp for Ty. If jo < js — 1, let T}, be the
separating tricomp for 7;11. If jo < js — 2, let the union of tricomps Tj 1o, ..., Tj,—1
be the core of graph Hp. Figure 9.6 illustrates these definitions. Each non-empty
fan, separating tricomp, or core is replaced by its own constraint graph of constant
size. For a separating tricomp 7, we keep the constraint graph C7 constructed in

Section 9.4. The constraint graphs of fans and cores are described next.

9.5.2.1 The Constraint Graph of a Fan

Let F be a fan of some graph Hp with virtual edges (a,b,7) and (a,c,). For a non-
empty fan F, we distinguish two cases. If b = ¢, the fan consists of a single bond. In
this case, the constraint graph of F is the constraint graph of the bond, which is the
bond itself. Otherwise, the constraint graph has to capture the possible embeddings
of vertices a, b, and ¢ and virtual edges (a, b,7) and (a, ¢, j). In particular, we have to

distinguish the following cases (see Figure 9.7):

9.5 The Constraint Graph of a Bicomp 161

NSN3

Left fan Core Right fan

Separamng trlcomps

Figure 9.6
Tricomps 71, ..., 7 and the five graphs into which the merge of these tricomps is being decom-
posed.

(a)

(b)

(f)

Fan F has a planar embedding F such that there are two faces which have edges

(a,b,1) and (a,c,j) on their boundaries.

Fan F has a planar embedding F such that there is one face which has edges
(a,b,7) and (a,c,j) on its boundary, and another face with edge (a,b,7) and
vertex ¢ on its boundary. (There is a symmetric case where the second face has

edge (a,c, j) and vertex b on its boundary.)

Fan F has a planar embedding F such that there is one face which has edges
(a,b,7) and (a, c,7) on its boundary, and another face with vertices a, b, and ¢ on

its boundary.

Fan F has a planar embedding F such that there is one face which has edges
(a,b,i) and (a,c,j) on its boundary.

Fan F has a planar embedding F such that there is at least one face which has

vertices b and c on its boundary.

For every face of any embedding F of F, the required vertices on its boundary

are either in {a, b} or in {a, c}.

It is easy to verify that if fan F satisfies one of the above conditions, then its constraint

graph Cr shown in Figure 9.7 satisfies the same condition, and vice versa.

9.5 The Constraint Graph of a Bicomp 162

d

<

TR

® lﬂ A
T/

.
B

Figure 9.7
Fans illustrating the different possible constellations of virtual edges (a,b,%) and (a,c,j). The
left graph in each figure is a fan F. The right graph is its constraint graph C'r.

9.5 The Constraint Graph of a Bicomp 163

Observe that there is always a face with vertices a and b on its boundary, and a
face with vertices a and ¢ on its boundary, as F contains edges (a, b,7) and (a,c, j).
Thus, the distinction is whether there is a face with vertices b and ¢ on its boundary.
In Cases (a)—(e), such a face exists. In Case (f), such a face does not exist. Cases
(a)—(e) further distinguish whether there are faces that have all three vertices on
their boundaries. In Cases (a)—(d), such a face exists. In Case (e), it does not. Now
observe that if there is a face with vertices a, b, and ¢ on its boundary, it can be
ensured that it has edges (a,b,7) and (a,c,j) on its boundary, by embedding these
two edges inside that face. Thus, the only difference between Cases (a)—(d) is whether
there is a second face with all three vertices on its boundary and whether this second
face has none, one, or both of the virtual edges on its boundary. Hence, Cases (a)—(f)
are the only possibilities for the structure of fan F.

It is easy to test which of the six cases applies: To test for Case (a), add two
extra vertices x and y on the two virtual edges and connect each of the vertices a, b,
¢, z, and y to two vertices z; and zo representing the two faces in Case (a). Case (a)
applies if and only if the resulting graph is planar. To test for Case (b), we remove
edge {y, 2o} and test for planarity again. (In order to test for the symmetric case,
remove edge {z, 22} instead of edge {y, z2}.) To test for Case (c), we remove both
edges {z, 22} and {y, z2}. To test for Case (d), we remove vertex z» and all incident
edges. To test for Case (e), we remove edges {a, 21}, {2, 21}, and {y, z1}. If none of
these graphs is planar, Case (f) applies.

Let Fi,...,F, be the fans of all graphs Hp in G®. Then we define a sequence
of graphs Gé‘q'), ...,G¥ where 083) = G® and G§3) = Ggi)l[fi"/C}i], for 1 <i<gq.
Graph G® is defined as G® = G.

Lemma 9.8 Graph G§3) is planar if and only if Gz@l is planar, for 1 < i < q. A
planar embedding of GZ(-?:)I can be obtained from a planar embedding of GZ(?’) by locally
replacing the embedding of C%. with a consistent embedding of F;.

Proof. Consider a planar embedding @2@1 of graph Gg?i)l. Let 7 be the planar
embedding of F; induced by Gz(i)l We partition F; into maximal subgraphs so that

9.5 The Constraint Graph of a Bicomp 164

each such subgraph K is embedded inside a face of F?. We denote the two virtual
edges in F; by (a,b,j) and (a,c, k).

If F; has at least one face with vertices a, b, and ¢ on its boundary, one of Cases
(a)—(d) applies. Tt is easy to verify that in all three cases, the embeddings F? and Ojﬂ
as shown in Figure 9.7 have the same faces with all three vertices on their boundaries.
Thus, a graph K embedded inside a face of .7A-—Z-° with all three vertices a, b, and ¢ on
its boundary can be embedded in the corresponding face of CA’}Z

It is easy to verify that in all six cases, for every face f in .7:'i° with two required
vertices v and w on its boundary, there exists a face f' in éjﬂ so that vertices v and w
appear consecutively! on the boundary of face f’. Hence, any graph K embedded in
such a face f can be embedded inside the corresponding face f’ without intersecting
any of the other graphs possibly embedded inside face f'.

Any graph K embedded in a face f of .7:"{’ which has only one required vertex on
its boundary can be embedded inside any face of CA’}Z which has the same required
vertex on its boundary, without creating any conflicts.

Thus, by embedding all subgraphs K of F7 in this manner, a planar embed-
ding CAT'Z(?’) of graph Ggs) is obtained from the given embedding C:'gi)l of graph Ggl.

Now assume that a planar embedding é§3) of GZ(-3) is given. Let Cz, be the em-
bedding of C% induced by é§3), and let é%; be the restriction of C, to C%. Itis
easy to verify that in each of the above cases, there exists an embedding F; of F; such
that for every face of é}z, there exists a corresponding face in the restriction]A-"f of F;
to F; with the same required vertices on its boundary. Moreover, if there are two
faces in CA’}Z with three required vertices on their boundaries, then there are two such
faces in .7:';. Using the same arguments as above, this implies that GZ@I is planar if

G§3) is planar. O

!Here, two required vertices are said to be consecutive if there exists no required vertex between
them on the boundary of the face. There may be other vertices between them.

9.5 The Constraint Graph of a Bicomp 165

Corollary 9.3 Graph G® is planar if and only if G\? is planar. A planar embedding
of G® can be obtained from a planar embedding of G® by locally replacing the

embeddings of graphs C% , ..., C% with consistent embeddings of graphs F7, ..., F;.

9.5.2.2 The Constraint Graph of a Core

For the core C of a graph Hp, its constraint graph has to capture the different em-
beddings of its two virtual edges (a, b,7) and (¢, d, j). If {a,b} = {c,d}, C consists of
a single bond, and we define C¢ = C. So assume that {a, b} # {c,d}. Then there are
three possibilities (see Figure 9.8):

(a) There exists an embedding of C which has two faces with edges (a, b, 7) and (¢, d, j)

on their boundaries.

(b) There exists an embedding of C which has one face with edges (a, b,7) and (c, d, j)

on its boundary.

(c) There exists no embedding of C such that edges (a,b,7) and (c,d,j) appear on

the same face.

It is easy to verify that if core C satisfies one of the above conditions, then its constraint
graph C¢ shown in Figure 9.8 satisfies the same condition, and vice versa. Moreover,
these are the only possibilities for the structure of core C, as there cannot be three
faces with edges (a,b,j) and (c,d, k) on their boundaries.

These three possibilities can be tested in a way similar to the processing of a
fan: We split edge (a, b, 7) into two edges {a,z} and {z, b} and edge (c,d,j) into two
edges {c,y} and {y, d}, add two vertices z; and 2, to C, and connect both of them to
vertices a, b, ¢, d, x, and y. The first case applies if and only if the resulting graph is
planar. To test for the second case, we remove vertex z, and its incident edges from
the graph and test for planarity again. If both tests fail, the third case applies.

Let Cy,...,C, be the cores of all graphs Hp in G®). Then we define a sequence
of graphs G(()4), .., G where G(()4) = G® and G§4) = Ggf)l[Cf/C’gi], for 1 <i<g.
Graph G® is defined as G® = G((I4).

9.5 The Constraint Graph of a Bicomp 166

b
a .~ Qe ---9h
(a)
d cd---4d
Cc
(b)
(c)

Figure 9.8

Three examples of cores illustrating the different possible constellations of virtual edges
(a,b,7) and (c,d, k). The left graph in each figure is a core C. The right graph is its con-
straint graph C¢.

Lemma 9.9 Graph G§4) is planar if and only if graph Ggf)l is planar, for 1 <1 <.
A planar embedding of Ggf)l can be obtained from a planar embedding of G§4) by
replacing the embedding of C¢, induced by the embedding of GZ(~4) with a consistent
embedding of C;.

Proof. Let @@1 be a planar embedding of G, and let (ff be the embedding of C;

1—1

induced by Ggf)l. Splits s(a, b, j) and s(c, d, k) partition B into three graphs C;, K,

9.5 The Constraint Graph of a Bicomp 167

and K,. Graph K, shares virtual edge (a, b, j) with C;. Graph K, shares virtual edge
(¢,d, k) with C;. By the construction of core C;, none of the vertices in C; is required
in the bicomp B containing C;. Hence, no edge in B can be incident to any vertex in
C;. That is, all components of B are adjacent to either K; or K,. In particular, C7
can be split into at most two subgraphs (G; and G, embedded inside the faces of éf
containing edges (a, b, j) and (c, d, k).

It is easy to verify that in all three cases depicted in Figure 9.8, the order of
required vertices along a face f of C; containing one of the graphs G; or G5 is preserved
in the corresponding face f’ of CA'ci. Hence, this graph can be embedded in f’ without
changing its embedding, and we obtain a planar embedding of G§4).

In order to show that Gz(-f)l is planar if GZ(-4) is planar, we reverse the above ar-
gument. The only case that deserves closer attention is Case (c¢) in Figure 9.8. In
this case, égi contains two faces (a,c,b,d); but the corresponding faces of éf have
only vertices @ and b or ¢ and d on their boundaries. Given a planar embedding (3'24)
of GZ@, we have to show that every subgraph of Cf embedded completely inside one of
the faces of égl contains only vertices a and b or ¢ and d. Let K be such a subgraph
embedded inside a face f of égi, and assume for the sake of contradiction that K
contains vertices a, b, and c. Since no vertex in C; is required, graph K contains both
graphs K; and K, defined above. However, graphs K; and K5 contain two disjoint
paths from a to b and from ¢ to d. Since vertices, a,c, b, d appear in this order along
the boundary of face f, these two paths intersect, contradicting the fact that @54) is
a planar embedding of G§4). O

Corollary 9.4 Graph G® is planar if and only if graph G® is planar. A planar
embedding of G® can be obtained from a planar embedding of G by replacing the
embeddings of graphs C¢ , ... ,(ng with consistent embeddings of graphs C7,...,C;.

9.5.3 The Constraint Graph of the Bicomp

The above construction replaces every bicomp B in G' with a multigraph Cj. In

order to finish the construction, we remove all multiple edges from G®*. Let G©®

9.5 The Constraint Graph of a Bicomp 168

be the resulting graph. The construction of G® is equivalent to the following two-
step procedure: First we replace every bicomp B with a graph Cg, which is obtained
from Cj by removing multiple edges. Then we remove remaining multiple edges
from the union of graphs Cp,,...,Cs,, where Bi,..., B, are the bicomps of graphs

/

1,...,G}. Graph Cpg is the constraint graph of bicomp B. The following lemma is

obvious.

Lemma 9.10 Graph G® is planar if and only if G® is planar. A planar embedding
of G® can be obtained from a planar embedding G® of GO by duplicating edges
in GO,

The next lemma shows that the constraint graph Cz of a bicomp B is small.

Lemma 9.11 The constraint graph Cg of a bicomp B is a simple planar graph with
O(|R(B)|) vertices.

Proof. The planarity of Cp follows immediately from the above construction. We
show that there are at most 2| R(B)| essential tricomps in B. There are two types of
essential tricomps. Type-I tricomps are tricomps 7 (v), v € R(B). Type-II tricomps
are tricomps whose corresponding vertices in 7" have degree at least three, where T" is
the tree constructed from the tricomp tree T' = Ty,;(B) in Section 9.5.1. Clearly, there
are at most |R(B)| tricomps of type 1. Let 7" be the tree obtained from 7" by replacing
every maximal path whose internal vertices correspond to inessential tricomps with
a single edge. Tree T" contains all vertices of T" corresponding to essential tricomps.
All leaves of T" correspond to type-I tricomps, so that there are at most | R(B)| leaves
in T". The vertices corresponding to type-II tricomps are a subset of the vertices of
degree at least three in 7”. There can be at most |R(B)| —2 such vertices, as there are
at most |R(B)| leaves in T”. Thus, there are at most 2|R(B)| — 2 essential tricomps
in B.

Every edge in T" represents a (possibly empty) path of vertices of degree two
in T, which correspond to inessential tricomps. For each such path P, the graph Hp

obtained by merging the tricomps corresponding to the vertices in P has been replaced

9.6 The Constraint Graph of a Connected Component 169

by a constraint graph Cp of constant size. This implies that the total size of all
constraint graphs not corresponding to essential tricomps is O(|R(B)[). An essential
tricomp contains at most twice as many vertices belonging to separation pairs as
there are edges incident to the corresponding vertex in 7. Thus, the total number of
required vertices in all essential tricomps is O(|R(B)|). By Lemma 9.3, this implies
that the constraint graphs of these tricomps have total size O(|R(B)|). As merging
all constraint graphs can only reduce the number of vertices in the resulting graph,
graph Cg has O(|R(B)|) vertices. Graph Cp is obtained from Cj by removing edges.

]

9.6 The Constraint Graph of a Connected Component

So far every bicomp B of graphs G, ..., G] has been replaced by a small constraint
graph Cp. In order to obtain constraint graphs Ci,...,C;, we now remove some
inessential bicomps altogether. The remaining chains of inessential bicomps are re-
placed by constraint graphs of constant size. The construction is similar to the con-
struction of the constraint graph Cp of a bicomp B from the constraint graphs of its
tricomps. That is, first the bicomps of a graph G are classified as essential, poten-
tially essential, or inessential. Inessential bicomps are removed. Then we finish the
classification of potentially essential bicomps based on the degree of their correspond-
ing vertices in the bicomp-cutpoint-tree of G’. The remaining inessential bicomps
form chains in G sharing only two vertices with the rest of G. Each such chain is

replaced with a constraint graph of constant size. Next we describe this construction

in detail.

Let G’; be one of the graphs G,..., G}, let S; be the set of separator vertices
in G’, and let By, ..., B, be the bicomps of G’. Let T = Ti;.(G}) be the bicomp-
cutpoint-tree of G;-. Tree T contains all cutpoints vy, ..., v, of G;- and one bicomp

node (3; per bicomp B; of G. For every vertex v € S;, we choose a bicomp B(v) such
that v € B(v). As T contains bicomp nodes as well as cutpoints, we classify the nodes

of T rather than the bicomps of G’; as essential, potentially essential, or inessential.

9.6 The Constraint Graph of a Connected Component 170

A node f; in T is essential if there exists a vertex v € S; such that B(v) = B,.
A node v is potentially essential if there are two essential nodes u and w in T such
that v is on the path from u to w in T'. All other nodes of T" are inessential.

In the next section, we show that removing all bicomps corresponding to inessential
nodes in T from G® preserves the (non-)planarity of G®. Then we classify the
potentially essential nodes as either essential or inessential. In Section 9.6.2, we define
constraint graphs for the maximal chains of bicomps corresponding to inessential
nodes, and show that replacing these chains by their constraint graphs preserves the
(non-)planarity of the graph. In Section 9.6.3, we show that the resulting constraint
graph C; of G has size O(]Sj])-

9.6.1 Discarding Inessential Bicomps

Let C} be the graph obtained from G by replacing every bicomp B of G’ with its
constraint graph Cg. Let T be the tree obtained by removing all inessential nodes
from 7', and let C’;-’ be the subgraph of C]’- obtained by removing all constraint graphs
Cp, which correspond to bicomp nodes 3; that were removed from 7.

We define a sequence of graphs G(()s),...,Gl(s), where G(()G) = G® and GZ@ =
GO [c!/C), for 1 < i < 1. Graph G© is defined as G©® = G,

Lemma 9.12 Graph Gz(-ﬁ) is planar if and only if graph GZ(-()'_)1 is planar, for 1 < j <.
A planar embedding of Ggg)l can be obtained from a planar embedding C;*,@ of GEG)
by locally replacing the embedding (:’J” of C} induced by @1(6) with a consistent planar
embedding of Cj.

Proof. Graph GZ(G) is obtained from Gz@l by removing vertices and edges from Gl(-g)l.
Thus, if G’Z(ﬁ_)1 is planar, GEG) is planar.

To show that Gz@l is planar if GEG) is planar, we partition the graph C} — C7
into its connected components. Each such component K is composed of inessential
bicomps of C} and shares only one cutpoint v with C}. Hence, graph K shares only

vertex v with K and can be embedded inside any face of G’gﬁ) which has vertex v on

9.6 The Constraint Graph of a Connected Component 171

its boundary. As this is true for all components of C’]’- — Cj’-' , graph GZ@I is planar if

graph GZ@ is planar. O

Corollary 9.5 Graph G© is planar if and only if graph G® is planar. A planar
embedding of G® can be obtained from a planar embedding G® of G® by replacing
n

the embeddings of graphs CY,...,C]' in G® with consistent embeddings of graphs
ci,...,C.

Having disposed of the first set of bicomps corresponding to inessential nodes in 7',
we now classify the potentially essential nodes of 7" as either essential or inessential.
A potentially essential node is essential if it has degree at least three in T7". Otherwise,
it is inessential. Note that all inessential nodes have degree two, since all leaves of 1"
and all internal nodes of degree at least three are essential. Thus, the set of inessential
nodes in 7" can be partitioned into maximal paths. For each such path P containing
at least one bicomp node 3;, let Hp = B; U---U B; , where §3;,...,0; are the
bicomp nodes in P. Next we replace each such graph Hp with a constraint graph Cp

of constant size.

9.6.2 Compressing Chains of Inessential Bicomps

Let Hp be a graph corresponding to a path P of inessential nodes in 7”. As all bicomps
in Hp are inessential, and every node in P has degree two, graph Hp shares exactly
two vertices a and b with Hp. If Hp has an embedding such that vertices a and b are on
the boundary of the same face, graph Cp consists of the single edge {a, b}. Otherwise,
Hp is replaced by the graph C'p shown in Figure 9.9. Graph Cp is triconnected and
has the property that vertices a and b are not on the boundary of the same face in
the unique embedding Cp of Cp. The test which of the two cases applies can be
carried out in linear time: If the graph (V(Hp), E(Hp) U {{a,b}}) is planar, there
exists a planar embedding of Hp such that vertices a and b appear on the same face.

Otherwise, no such embedding exists.

9.6 The Constraint Graph of a Connected Component 172

47NN
N\

Figure 9.9
The constraint graph of a “twisted” chain of bicomps.

Let T7,...,T] be the trees obtained from trees Tiic(GY}), ..., Thic(G]) using the
construction in Section 9.6.1. Let Pi,...,F, be the maximal paths of inessential
vertices in trees 77,...,7], and let Hp,, ..., Hp, be the subgraphs of G©® induced by
these paths. We define a sequence of graphs G(()7), een, G((;) as follows: Géﬂ =GO.
For1 <1 <y, sz = GZ@I [Hp,/Cp]. The approximate graph A of G is defined as
A=aGP.

Lemma 9.13 Graph sz is planar if and only if graph Gz@l is planar, for 1 <1 <q.
A planar embedding of Gz@l can be obtained from a planar embedding of sz by
locally replacing the embedding CA'pi of graph Cp, with a consistent embedding of
graph Hp..

Proof. First assume that GZ(-Z)I is planar. Let C:Ql be a planar embedding of Gg?l,
and let H p, be the planar embedding of Hp, induced by ég?l. We partition Hp,
into maximal subgraphs such that each of these subgraphs is embedded in a different
face of H p,- As all bicomps in Hp, are inessential, such a subgraph can contain
only cutpoints a; and b;. If there are subgraphs of H p, containing both a; and b;,
Hp, has a face with both vertices a; and b; on its boundary. Hence, Cp, consists of
edge {a;, b;}, and all subgraphs of H p, containing a,; and b; can be embedded without
intersections in the only face of épi. The subgraphs of Hp, containing only one of
vertices a; and b; can be embedded inside any face of épi which has the respective

vertex on its boundary.

9.6 The Constraint Graph of a Connected Component 173

If Cp, is the graph shown in Figure 9.9, then Hp, does not have a planar embedding
with both vertices a; and b; on the boundary of the same face. Hence, all subgraphs
of H p, share at most one vertex v with Hp,. Each such subgraph can be embedded
inside any face of C'p, which has vertex v on its boundary. Hence, in both cases,
sz is planar if Gz@1 is planar.

Now assume that sz is planar. Let CAT'ZU) be a planar embedding of Gz(?). If Cp
consists of a single edge, then Hp, has an embedding H p, with vertices a; and b; on the
same face. A simple transformation guarantees that the outer face of Hp, has vertices
a; and b; on its boundary. Then we replace edge {a;, b;} in @57) with embedding H P,-
(7)

71—

This produces a planar embedding of G
by Hpi and }_Ipi.
If Cp, is the graph shown in Figure 9.9, every component of Hp, embedded inside

1, as a; and b; are the only vertices shared

a face of C'pi contains only one of a; and b;. Hence, it can be embedded inside any
face of an embedding H p, of Hp, which has the respective vertex on its boundary.

Thus, graph ng)l is planar if graph sz is planar. O

Corollary 9.6 Graph A is planar if and only if graph G'® is planar. A planar em-
bedding of G'®) can be obtained from a planar embedding AofA by locally replacing
the embeddings Chp,, . .., é’pq of graphs Cp,,...,Cp, with consistent embeddings of
graphs Hp,,...,Hp,.

q

9.6.3 The Constraint Graph of the Component

The construction of the previous sections replaces each graph G’ with its constraint

graph Cj. In this section, we show that C; is small.

Lemma 9.14 The constraint graph C; of graph G;- is a simple planar graph with
O(|S;|) vertices, for 1 < j <.

Proof. The planarity of C; follows immediately from the above construction. In order
to show that C; has O(|S;]) vertices, let T = Ti;.(G’;) be the bicomp-cutpoint-tree
of G%. Let T' be the tree constructed from 7" in Section 9.6.1. We partition the

9.7 The Approximate Graph 174

essential nodes of T" into two classes: Type-I nodes are bicomp nodes (3; such that
B; = B(v), for some vertex v € S;. Type-II nodes have degree at least three in 7.
There are at most |S;| type-I nodes. As in the proof of Lemma 9.11, the number of
type-II nodes can be bounded by the number of leaves in 7", which is at most |S}]
because all leaves of 7" are of type I. Thus, there are less than 2|S;| essential nodes
in T".

Let T" be the tree obtained from 7" by replacing every maximal path whose
internal nodes are inessential by a single edge. Then the nodes of T" are the essential
nodes in 7", so that 7" has less than 2|S;| nodes and less than 2|S;| — 1 edges. Every
edge in T" corresponds to a path P in 7", which in turn corresponds to a possibly
empty graph Hp in CJ’-. Each such graph Hp is replaced by a constraint graph Cp of
constant size. Every essential bicomp in Cj contains at most as many cutpoints as
edges incident to its corresponding node in 7". Thus, the total number of required
vertices in all essential bicomps is less than 5|S;|. By Lemma 9.11, each such bicomp
is replaced by a planar constraint graph whose size is linear in the number of its

required vertices. Thus, C; has O(|S;|) vertices. O

9.7 The Approximate Graph

The approximate graph A of GG is the graph obtained after applying the replacement
procedures of Sections 9.4 through 9.6 to G. The following two lemmas show that
graph A has the desired properties.

Lemma 9.15 Graph A is planar if and only if graph G is planar.

Proof. This follows from Corollaries 9.1, 9.2, 9.3, and 9.4, Lemma 9.10, and Corol-
laries 9.5 and 9.6. O

Lemma 9.16 Graph A has size O(N/(DB)).

Proof. In Step 4 of Algorithm 9.1, graph G is partitioned into O (N/(DB)?) graphs
G1, ..., Gy such that |0G;| < DB, for 1 < i < k. In particular, the total boundary

9.8 Constructing the Final Embedding 175

size of all graphs Gy,...,G is Zle |0G;| = O(N/(DB)). Since graphs GY,...,G]
are the connected components of graphs G, ..., Gy, this implies that 23:1 |S;| =
S¥ . |0G;| = O(N/(DB)). By Lemma 9.14, |C;| = O(|S;]), for 1 < j < I, so that
Zé-:l IC;| = O (Z;’:l |Sj|> = O(N/(DB)). Graph A consists of graphs C1,...,C,
and the subgraph G[S] of G induced by the separator vertices in S. Graph G[S] has
O(N/(DB)) vertices. Thus, |A| < Z;Zl |C;| + |G[S]| = O(N/(DB)). O

9.8 Constructing the Final Embedding

Given a planar embedding of A, Lemma 9.15 implies that G is planar. In this section,
we discuss how to derive a planar embedding G of G from a planar embedding A of the
approximate graph A. Conceptually, the construction is fairly simple: We replace the
embeddings of graphs C1, . .., C; induced by A one by one with consistent embeddings
of graphs G',...,G}. This intuitively simple procedure presents a few technicalities
that have to be dealt with in order to obtain a valid embedding of G.

In Section 9.8.2, we define formally what we mean by an embedding of G; which
is “consistent” with an embedding of C; and show how to derive such an embedding.
The “replacement” of embedding C’j with the computed embedding G’; is done as
follows: First we partition C; into maximal subgraphs such that each of them is
embedded inside a different face of C’j. Then we place each such subgraph inside an
appropriate face of G‘;, without changing its embedding.

An important constraint on the replacement of graphs Ci,...,C; with graphs
GY,...,G] is given by the fact that it would take too many I/Os to extract the em-
bedding of graph C; immediately before the replacement of C; with G takes place.
Thus, we extract all embeddings C’l, .. .,C’l of graphs C1,...,C} induced by A be-
fore starting to replace them with graphs G',...,G}. However, the construction of
embedding C;’; depends on the embedding é’j of C; at the time when C} is replaced
with G’. Thus, we have to ensure that replacing embeddings Ci,..., C'j_l with em-
beddings é’l, e, CA?;;l in A does not change the embedding C’j of C; induced by A.

The construction in Section 9.8.2 takes this into account.

9.8 Constructing the Final Embedding 176

Before we describe the construction of G from A in detail, we explain how the
planar embedding A of A and the final embedding G of G are to be represented, and
how to extract graphs C1,...,C} and their embeddings é’l, cen, G I/O-efficiently.

9.8.1 Extracting the Embeddings of Constraint Graphs

Given the partition of G into graphs G, ..., G} and G[S], every edge in G belongs to
exactly one of these graphs. The separator algorithm of Chapter 8 can be augmented
so that it labels every edge in G with the name of the subgraph containing it. Simi-
larly, every edge in A belongs to one of the graphs C, ..., C; and G[S]. Edges in G[S]
are in both G and A. The edges in C4, ..., C; can easily be labelled as belonging to
one of these graphs while constructing graphs C4, ..., C; from graphs G}, ..., G].

We represent embedding A of A as a collection of interlaced edge cycles. That is,
every edge e = {v,w} € A stores four pointers: two pointers succ’(e) and pred?(e)
to its two neighbors clockwise and counterclockwise around v, respectively, and two
pointers succY(e) and pred(e) to its two neighbors around w. It is easy to ver-
ify that a representation of a planar embedding using interlaced edge cycles can
be transformed into any other standard representation of the planar embedding in
O(sort(N)) I/Os.

Our goal is to modify the pointers representing the embedding of A to obtain
interlaced edge cycles representing a planar embedding G of G. In order to be able to
extract the embedding of only a subset of the edges incident to any vertex in A, it is
convenient to have the edges incident to each vertex v numbered clockwise around v.
That is, in addition to pointers pred’(e), succy(e), pred4(e), and succ¥(e), every
edge e = {v,w} in A should store two labels v,(e) and v,(e) representing the num-
bers of edge e in the clockwise orders of the edges around vertices v and w, respec-
tively. Such a labelling of the edges can be derived from the interlaced edge cycles
representing A as follows:

We represent each edge e = {v, w} in graph A by two triples (v, e, succy(e)) and

(w, e,succy(e)) and sort the resulting set of triples by their first components. The

9.8 Constructing the Final Embedding 177

result is a concatenation of lists, each representing a circular linked list of edges
clockwise around a vertex of A. By replacing one of the triples (v,e,succy(e)) in
each list by the triple (v, e, null), we obtain a collection of regular linked lists. Now
we apply the list-ranking procedure of [43] to all of these lists simultaneously. The
result is an assignment of a label v,(e) to each triple (v, e, -), where v,(e) is the num-
ber of edge e in the order of edges clockwise around vertex v. Now it is sufficient
to sort these triples by their second components and scan the resulting list to com-
pute triples (e, v,(e), vy(e)), for all edges e = {v,w} in A. This procedure takes
O(sort(N/(DB))) 1/0s.

Graphs C,...,C; and their embeddings C’l, ey C, are now easily extracted: In
order to extract graphs Ci,...,C), we sort the edges in A by their component la-
bels. This produces a partition of E(A) into sets E(G[S]), E(C4),...,E(C;). Given
graph C;, a representation of its embedding as interlaced edge cycles can be ex-
tracted by reversing the construction of the previous paragraph. In particular, we
create two triples (v, v,(e), e) and (w,vy,(e),e), for each edge e = {v,w} in C;, and
sort the resulting list lexicographically. As a result, all edges incident to a vertex
v € C; are stored consecutively, sorted clockwise around v. In a single scan, we
replace every triple (v,v,(e),e) with a triple (e, pred (e), succg, (€)). Now we sort
these triples by their first components and scan the resulting list to compute a list
of quintuples (e, pred¢, (e), succg, (e), predg, (e), succg, (€)), for each edge e = {v, w}
in C;. The whole construction takes O(sort(N/(DB))) 1/Os, for all graphs C1, ..., C.

In order to facilitate the replacement of embedding C’j with an embedding é;
of G%, we augment graph C; with edges pred’ (e), succ(e), pred’i(e), and succ}(e),
for each edge e = {v,w} € C;. Let D; be the graph obtained by augmenting C; in
this manner, and let f)j be its planar embedding induced by A. Observe that for
every (copy of a) required vertex v on the boundary of a face f of C'j, graph D;
contains the first and last edges, e’ and €”, in clockwise order around v which are
embedded inside f. If K is the subgraph of C; embedded inside f, all edges in K

that are incident to v appear between two such edges e’ and e” in the clockwise

9.8 Constructing the Final Embedding 178

order around v. As embedding C'j is replaced with an embedding @; of G without
changing the embedding of K, the edges in E(D;) \ E(C;) are the only edges in K
whose neighbors in the embedding change as a consequence of the replacement, and
all edges in G; have their neighbors either in G; or in E(D;)\ E(C}). Thus, graph D;
and its embedding Dj provide sufficient information to perform the replacement of C'j
with G’; Moreover, as every edge in C; has at most four neighbors in A, D; contains
at most five times as many edges as C;, so that D; fits into internal memory, and the

total size of graphs Dy, ..., Dy is O (Zézl \Cj\) = O(N/(DB)).

9.8.2 Replacing the Embedding of a Constraint Graph

Given graphs Dy, ..., D, and their embeddings lA)l, ey ﬁl, they can be used to replace
the embeddings C’l, cee C, of graphs (', ..., C} with consistent embeddings of graphs
G',...,G]. This replacement is performed one graph at a time. In this section,
we are concerned with deriving the embedding G‘; of G; from C; and replacing C;
with é; In Section 9.8.5, we show how to exchange the necessary information about
updates of the interlaced edge cycles resulting from these replacements between graphs
Dy, ..., D; so that subsequent replacements can be performed correctly.

Given an embedding é’j of Cj, the goal of the construction in this section is to
construct an embedding G; of G; so that the subgraphs of C; embedded in the faces
of C’j can be embedded inside appropriate faces of C;’; This goal is achieved by undoing
the compression steps of Sections 9.4 through 9.6, one by one, and maintaining a
planar embedding of the current graph as well as a mapping of the subgraphs of C_'j
to the faces of the embedding. We call the current embedding and the mapping of
subgraphs of C; to the faces of the embedding consistent with C’j if the following

invariant holds:

(I1) Let Ki,..., K, be the maximal subgraphs of C; so that each of them is em-
bedded inside a different face of C’j. Then each of the graphs Ki,..., K, is
embedded completely inside one face of the current embedding. Let ey,..., ¢,

be the edges in E(K;) U ---U E(K,) incident to a vertex v € Cj. If edges

9.8 Constructing the Final Embedding 179

€1,...,€eq appear in this order clockwise around v in A, then edges ey, ..., ¢,

appear in the same order clockwise around v in the current embedding.

This invariant ensures that the embeddings of graphs Cj.4,...,C; are not changed
by the replacement of C; with G’. Given that the embeddings of graphs K, ..., K,
are not modified when replacing C’j with é’;, the following invariant is equivalent to

Invariant (I1):

(I2) Let Ey, ..., E,s be the maximal subsets of E(D,) \ E(C;) such that the edges in
each subset are embedded inside a different face of C'j. Then the edges in each
of these subsets are embedded inside the same face of the current embedding.
Let ey, ..., e, be the edges in E(D;)\ E(C};) incident to a vertex v € C;. If edges
e1,---,€eq appear in this order clockwise around v in Dj, then edges eq,..., e,

appear in the same order clockwise around v in the current embedding.

In the next section, we provide the details of the reconstruction of GQ- from C; along
with an embedding C?; of G5. In Section 9.8.4, we discuss the changes to the interlaced
edge cycles representing A that need to be made in order to obtain interlaced edge
cycles representing the embedding A[C, /G%] of graph A[C;/G"] which is obtained
when replacing C'j with the constructed embedding é;

9.8.3 Constructing Local Embeddings

In this section, a planar embedding G‘; of graph G is obtained by undoing the com-
pression steps used to construct the constraint graph C; from Gg- and at all times

maintaining a planar embedding of the current graph.

Introducing parallel edges. Recall that the construction of the constraint graphs of
bicomps removes all parallel edges that may have been introduced by the removal of
inessential tricomps. These edges need to be re-introduced, so that they can later be
replaced by the (group of) tricomps they represent. For every group of parallel edges

with endpoints v and w, the required additional copies of edge {v,w} are embedded

9.8 Constructing the Final Embedding 180

parallel to the only edge {v,w} in C; so that the (degenerate) faces bounded by
these edges do not contain any vertices. As this changes neither the order of edges
in E(D;) \ E(C;) around their endpoints nor places edges that were in the same face

into different faces, Invariant (I12) is preserved.

Replacing the embedding of a triconnected component. The next step is to re-

place the embeddings C’% yees CA'ﬁ’rq of the kernels of the constraint graphs Cr;,...,Cr.

q

A

of essential or separating tricomps 7i,...,7, in G} with embeddings 7?, ceey Tg of
the kernels of these tricomps.

The treatment of tricomp 7 depends on its type. If 7 is a bond, then C'y = T,
so that nothing needs to be done. If 7 is a cycle, every path in 7 whose internal
vertices are not required is represented by a single edge in Cr. Now we reverse this
operation, replacing each such edge by its corresponding path. This replacement can
easily be done in a manner that preserves Invariant (I12). The process of replacing the
embedding éﬁ’r of C7 with an embedding T° of T° is only slightly more complicated
in the case when 7 is a triconnected simple graph.

First recall that in this case, 7 and C'7 both have a unique planar embedding.
The construction of C'y from 7 in Section 9.4 preserves the order of faces with at least
two required vertices on their boundaries around the required vertices of 7°. Hence,
every subgraph of C embedded inside such a face of C% can be embedded inside the
corresponding face of 7°. This preserves the order of edges in these graphs incident
to a required vertex of 7° clockwise around that vertex. Any graph embedded inside
a face of C’fr with only one required vertex v on its boundary shares only vertex v
with C7. Hence, it can be embedded inside any face of 7° which has vertex v on
its boundary. This gives us enough freedom to embed these subgraphs in a way that
preserves the order of all edges in (jf’r around the required vertices in C7. Thus,

Invariant (I2) is preserved.

Replacing the embedding of a core. The next step is the replacement of the

embeddings of the constraint graphs of cores with embeddings of the cores. Let C

9.8 Constructing the Final Embedding 181

be a core. We treat the three different cases depicted in Figure 9.8 separately. In
Case (a), two edges in the current embedding need to be replaced by the embeddings
of two graphs, each sharing two vertices with the rest of the graph. This is easily
done in a manner preserving Invariant (I2). In Case (b), the whole graph C¢ is
embedded in the outer face of Cz. Thus, we choose an embedding of C such that
virtual edges (a,b,7) and (c,d,j) are on its outer boundary and then embed C¢ in
the outer face of C°. In Case (c), finally, graph C¢ consists of two subgraphs, one of
which is embedded in the interior face of C2; the other is embedded in the exterior
face of C;. Since these two subgraphs do not share any vertices, embedding each of
them in the corresponding face of ¢ maintains Invariant (I2). Thus, in all three cases,

C¢ can be replaced with an embedding of C in a manner that preserves Invariant (12).

Replacing the embedding of a fan. Next the embeddings of the constraint graphs
of fans are replaced with embeddings of the respective fans. As we did for cores, we
distinguish the different possible configurations shown in Figure 9.7. In Cases (a)—(c),
edges in the constraint graphs on the right have to be replaced with the corresponding
subgraphs on the left. Each of these subgraphs shares only the two endpoints of the
corresponding edge with the rest of D;. Thus, this replacement can easily be done
in a way that preserves Invariant (I2). In Cases (d)—(f), the faces with at least two
required vertices on their boundaries appear in the same order around these required
vertices in the embedding of the fan and the embedding of its constraint graph. Thus,
embedding all graphs embedded in faces of Cr with at least two required vertices on
their boundaries inside the corresponding faces of F preserves Invariant (I2). As in the
case of a triconnected component, a graph embedded inside a face of Cr with at most
one required vertex on its boundary can be embedded inside any face of F with that
vertex on its boundary. Hence, these graphs can be arranged so that Invariant (I2)

is not violated.

Introducing inessential tricomps. Inessential tricomps that have been removed

from G in Section 9.5.1 have been grouped into maximal groups corresponding to

9.8 Constructing the Final Embedding 182

complete subtrees in the tricomp tree of the bicomp containing them. The sub-
graph K obtained by merging the tricomps in such a group shares exactly one virtual
edge (a, b, 1) with the rest of G, and has consequently been replaced by a non-virtual
edge (a,b,7). In order to re-introduce this subgraph into the embedding, edge (a, b, 7)
has to be replaced with an embedding of K° that has vertices a and b on the outer
face. Such an embedding exists, by the planarity of K. Replacing edge (a, b,) with

such an embedding preserves Invariant (I2).

Replacing the embedding of a chain of inessential bicomps. Having dealt with
the embeddings of essential and inessential tricomps, all inessential bicomps that
have been removed from G have to be re-introduced. The first group of inessential
bicomps are those that have been replaced by constraint graphs of constant size in
Section 9.6.2. The second group are those that have been completely removed from G
in Section 9.6.1. The bicomps in the first group form chains such that each chain K
shares exactly two vertices, a and b, with the rest of G. Depending on whether a and b
can appear on the same face of an embedding of K, K has been replaced by a single
edge {a,b} or by a constraint graph of constant size which does not allow a and b to
appear on the boundary of the same face. In the former case, edge {a,b} has to be
replaced with an embedding of K with vertices a and b on the outer face. As before,
this replacement preserves Invariant (I2). In the latter case, no subgraph of K can
contain both a and b. We choose any embedding K of K and embed the subgraphs
of K incident to vertices a and b in the faces of K incident to these vertices in a

manner that preserves their order around these vertices.

Introducing inessential bicomps. Finally, all bicomps that have been removed com-
pletely from Gg- have been grouped into maximal connected subgraphs such that each
such subgraph shares only one vertex with the rest of G. Each such subgraph K
sharing a vertex v with K can be embedded inside any face of the current embedding

which has vertex v on its boundary, without violating Invariant (I2).

9.8 Constructing the Final Embedding 183

9.8.4 Updating the Interlaced Edge Cycles

After finishing the replacement steps described above, we obtain an embedding é;
of G and an embedding of the edges in E(D;) \ E(C;) inside the faces of CA?; It
remains to integrate this information with the embedding A of A, in order to obtain
an embedding A[C}-/G;] of A[C;/GY]. In fl[C’j/G;], every edge e in G’ has both its
neighbors around both its endpoints in E(G%) U (E(D;) \ E(C;)). Thus, if G' is the
graph induced by the edges in E(G}) U (E(D;) \ E(Cj)), and G’ is the embedding
of G' derived by the above construction, then the pointers to be stored with e in the
interlaced edge cycles representing A[C;/ G'] are the same as the ones stored with e
in the interlaced edge cycles representing G'. Similarly, as our construction ensures
that the embeddings of subgraphs of C; embedded inside different faces of C'j are
not changed, all edges in E(C;) \ E(D;) have the same neighbors in fl[Cj/G;-] as
in A. Finally, let e = {v,w} be an edge in E(D,) \ E(C,). We discuss the necessary
updates for edge e, using its pointer succy(e) to its successor clockwise around v as
an example. The other three pointers are updated in a similar fashion.

Observe that since e € E(D,) \ E(C}), either succ(e) € C; or predy(e) € Cj,
or both. Let K be the subgraph of C; containing edge e and let A" = A[C;/GY].
If succy(e) € Cj, then succy,(e) = succl,(e). Otherwise, succy(e) € K. As the
embedding of graph K is not modified by the replacement of C'j with C;’;, succy, (e) =

succY (e) in this case.

9.8.5 Iterative Replacement of Subgraphs

In the previous section, we have shown how to derive a planar embedding A[C;/ G| of
graph A[C;/G"] from an embedding A of graph A by locally modifying the predecessor
and successor pointers of edges in D; and G’;. Now we use the procedure described
in the previous section to produce a sequence of graphs Ag,..., A; and embeddings
Ag,...,A; of these graphs, where Ay = A and 4; = A; 4[C;/GY], for 1 < i < L.
Embedding Ay is the embedding A of graph Ay = A. The embedding A; of graph A;
is computed from the embedding A;_q of graph A;_; by applying the procedure of

9.8 Constructing the Final Embedding 184

the previous section. The final graph A; is graph G, so that G = A, is the desired
embedding of graph G.

There are two issues that need to be addressed, in order to make this iterative
replacement of graphs C1, ..., C; with graphs G, ..., G| work: (1) When replacing C;
with G‘;, the neighbors of the edges in C; clockwise and counterclockwise around their
endpoints are not necessarily the same in A;_; as in A. Hence, graph D; needs to
be updated, in order to correctly represent this neighborhood information, before it
can be used to construct G; from C;. (2) Let py, Sy, Pw, Sw be the four neighbors of
an edge e € (G in the embedding A; obtained after replacing C; with C;*; If one of
these neighbors, say p,, is contained in a graph Cj, j > ¢, then p, will be replaced
by another edge p! when graph Cj; is replaced with graph G;-. Thus, immediately
after replacing C; and G}, the counterclockwise neighbor of edge e around vertex v
in the final embedding G is not known. Hence, we need a criterion to decide when
the neighborhood relationship between two edges cannot be broken as a result of
subsequent replacements, so that pointers between these two edges can be added to

the final embedding. We address these two problems next.

9.8.5.1 Updating the Augmented Constraint Graph

In order to update graph D; so that it contains the correct neighbors of the edges
in C; in the current embedding A; , of A,;_1, we use a priority queue @ to collect
information about the necessary updates of D;. Before replacing C; with G}, we
retrieve this information from @) and update D; appropriately.

Recall that every edge in A is labelled as belonging to one of the graphs C', ...,
or G[S]. If there is an edge e = {v,w} € E(D,) \ E(C;) such that e € E(C;), for
i > j, and pred’(e) changes as a result of replacing C; with G, we put a quintuple
(e, v, “pred”, j, pred’(e)) into @ and give it priority i. For a successor change, the
quintuple is of the form (e, v, “succ”, j,succ’(e)). When replacing graph C; with
graph G, we retrieve all quintuples with priority ¢ from (). As graphs C4,...,C;_;

have already been replaced with graphs G',...,G;_; when this happens, all entries

9.8 Constructing the Final Embedding 185

with lower priority have already been retrieved from (). Hence, retrieving all entries
with priority ¢ from () amounts to repeated application of DELETEMIN operations
until the first entry with priority greater than ¢ is retrieved. This entry is then put
back into Q).

Next we use the quintuples retrieved from @) to update graph D;: We sort the list of
retrieved quintuples lexicographically, so that for each edge e = {v, w}, all quintuples
(e,v, “pred”,-,-) and all quintuples (e,v, “succ”,-,-) are stored consecutively. We
sort these quintuples by their fourth component, which can be interpreted as the
time when this quintuple was queued. Hence, the quintuple with the largest fourth
component is the most recent update of the predecessor (or successor) of edge e in
the clockwise order around vertex v, so that its fifth component represents the correct
predecessor (or successor) of e around v in A;_1. We scan the sorted list and discard
all quintuples (e, v, “pred”,-,-) and (e, v, “succ”,-,-), except the last one, for each
pair (e,v). The result is a list L; containing quintuples (e, v, “pred”, -, pred’. (e)) and
(e,v, “succ”, -,succy._ (e)), for all edges whose neighbors around their endpoints are
different in A and A; ;. The size of this list is at most the size of D;. Hence, graphs G,
D;, and list L; fit into internal memory. We use list L; to update graph D;, and then
proceed to the construction of embedding é‘; from C’,-, as described in Section 9.8.2.

The total number of I/Os spent on queuing and dequeuing quintuples in @, as well
as sorting the retrieved entries before replacing graph C; with graph G%, is O(sort(T')),
for all graphs GY,..., G}, where T is the total number of quintuples produced by
changing the neighbors of edges in sets E(D;) \ E(C;), 1 < i < [. This number, how-
ever, is proportional to the total number of edges in sets E(D;)\ E(C;), 1 <i <, as
the replacement of graph C; with graph G} can change at most all four neighbors of an
edge in E(D;)\ E(C;). Hence, T = O(N/(DB)), and it takes O(sort(N/(DB))) 1/Os
to maintain graphs Dy, ..., D; and their embeddings, which provide the required in-

formation to replace embeddings C1, ..., C; with embeddings é’l, A @;

9.8 Constructing the Final Embedding 186

9.8.5.2 Adding Pointers to the Final Edge Lists

It remains to address the problem of producing the interlaced edge cycles representing
the final embedding G of graph G. The problem is that the successor of an edge e € G,
is changed after replacing C; with graph Gj if this successor is an edge e’ € Cj, j > 1.
This change of successor happens when graph Cj; is replaced with graph G;-. Thus,
when graph C; is replaced with graph G, the successor of edge e cannot be written
to disk yet. The following simple criterion guarantees that the neighbor pointers for
every edge e are written only when they do not change any more: If an edge e € G|
has its successor in a graph Cj, j > 1, this successor will change. Thus, the successor
is not written to disk at this point. If on the other hand, edge e has its successor in a
graph G}, j <i,orin G [S], then this neighborhood relation cannot change any more
as a result of replacing graphs Cji,...,C; with graphs Gj,,,...,G;. This is true
because edge e and its successor are embedded inside the same faces of embeddings
C’i+1, .. .,C’l, and the embeddings of the maximal subgraphs embedded inside the
faces of embedding C'j do not change when replacing C; with G’. Thus, the successor
pointer of e and the predecessor pointer of its successor can be written to disk as
representing the neighborhood relationship in the final embedding G of G.

Once all constraint graphs C1, ..., C; have been replaced with graphs G, ..., G],
the algorithm has produced a list of 4|E| quadruples (e, v, “pred”, predg(e)) and
(e, v, “succ”,succy(e)), four quadruples per edge. We sort these quadruples lexi-
cographically, so that the quadruples representing the four neighbors of an edge e
are stored consecutively. Now a scan of this sorted list suffices to produce the in-
terlaced edge cycles containing quintuples (e, predg(e), succk(e), predé(e), succi(e))
which represent the final embedding G of G. We summarize this section in the fol-

lowing lemma, which concludes the proof of Theorem 9.2.

Lemma 9.17 Given a planar embedding A of the approximate graph A, the local
replacement of embeddings C4, .. .,C, with consistent embeddings G"l, e, G; can be
performed in O(sort(N)) I/Os using linear space. The result is a planar embedding G
of graph G.

9.9 A Lower Bound for Planar Embedding 187

9.9 A Lower Bound for Planar Embedding

By Lemma 2.1, the I/O-complexity of our planar embedding algorithm can be reduced
to O(perm(N)). In this section, we prove a matching lower bound. The proof of
the lower bound uses a reduction from the problem of permuting a list of N items
Z1,-..,xn. In particular, we show that if a representation of a planar embedding of a
planar graph G as interlaced edge cycles can be computed in o(perm(N)) I/Os, then
the desired permutation of items zy,...,zy can be computed in o(perm(N)) I/Os.
Since it is shown in [172] that permuting N data items takes Q(perm(N)) I/Os, this
implies that planar embedding requires Q(perm(NV)) I/Os.

Lemma 9.18 If there is an algorithm A that computes a planar embedding of a
planar graph with N vertices in O(Z(N)) I/Os, then there exists an algorithm A’
that permutes a list of N data items in O(Z(N)) I/Os.

Proof. We assume that the input to algorithm A’ is given as follows: Let zq,...,zx
be N data items to be arranged in the order z,(1),...,Zs (), for some permutation
o :[1,N] = [1, N]. Algorithm A’ is provided with two lists L1 = {((1,z1), ..., (N, zn))
and Ly = ((0(1),y1),...,(0(N),yn)). The goal of algorithm A’ is to compute a list
L = ((z501),%1),---» (To(nv),yn))- In order to achieve this, algorithm A’ computes a
graph GG whose planar embedding is unique, and such that list L can be extracted from
the interlaced edge cycles representing the planar embedding G of G in O(Z(N)) 1/Os.
The construction of graph G takes O(scan(N)) I/Os, so that list L can be computed
in O(Z(N)) 1/Os by constructing G, computing interlaced edge cycles representing G,
and extracting L from G.

The vertex set V' of graph G consists of four sets V4, Vi, Vo, V3: Set V4 contains
a special central vertex z. Set V) contains all elements of L;. Set V5, contains all
elements of Ly. Set V3 contains 2NN vertices numbered 1 through 2N. The edge
set E of G contains edges {v,z}, for all v € V; U V3, edges {2i — 1, (4,2;)}, for
1 <4 < N, edges {20(3),(0(i),y:)}, for 1 < ¢ < N, and edges {1,2},{2,3},...,
{2N —1,2N},{2N,1}. Graph G is shown in Figure 9.10.

9.9 A Lower Bound for Planar Embedding 188

Figure 9.10
The graph G constructed in the proof of Lemma 9.18.

The vertex set of G can be constructed in O(scan(V)) I/Os by appending vertex z
and vertices 1,...,2N to the concatenation of lists L; and L,. In order to represent
the edge set of GG, algorithm A’ computes the adjacency lists of all vertices in G.
The adjacency list of every vertex (i,z;) € V; contains vertices 2i — 1 and z. These
lists can easily be constructed in a single scan over list L;. The adjacency list of
every vertex (o(7),y;) € Vo contains vertices 20(7) and z. It takes a single scan over
list Ly to construct these lists. The adjacency list of vertex z is the concatenation
of lists Ly and Lo, which can be produced in O(scan(N)) I/Os. The adjacency list
of a vertex 2i — 1, 1 < ¢ < N, contains vertices 2i — 2, 2i, and (i, ;). These lists
can be produced in a single scan over list L;. The adjacency list of a vertex 20(i),
1 <4 < N, contains vertices 20(i) — 1, 20(i) + 1, and (o(4),y;). These lists can
be produced in a single scan over list Ls. Thus, graph G can be constructed in
O(scan(N)) I/Os. Moreover, the embedding of graph G shown in Figure 9.10 is
unique. Hence, after computing G, succ*({z, (i, z;)}) = {2, (4, Yo-1(:)) }- Algorithm A’
scans the interlaced edge cycles representing G and discards all quintuples except

those belonging to edges {z,v}, v € V;. Each remaining quintuple is transformed

9.9 A Lower Bound for Planar Embedding 189

into the pair (z;,y,-1(;)). The resulting list is a permutation of the desired list L.
In order to compute list L, algorithm A’ reverses the I/O-operations that have been
performed to arrange items yi,...,yx in the current order. This reversal performs
the same number of I/O-operations as the construction of G, i.e., O(Z(N)) 1/Os.
Hence, list L can be extracted from G in O(scan(N) +Z(N)) = O(Z(N)) I/Os. [

Corollary 9.7 It takes Q(perm(N)) I/Os to compute an embedding of a planar graph

with N vertices, if this embedding is to be represented as interlaced edge cycles.

Remark. During the thesis defense, Roberto Tamassia brought previous work on
dynamic planarity testing to our attention. In [68], a hierarchical separator decom-
position is used to obtain a data structure that can be maintained under edge inser-
tions and deletions in O (\/N) amortized time and can be used to decide within the
same time bound whether the current graph is planar. The construction of the data
structure is based on compressed certificates for planarity (see [68, 82] for a definition
of certificates for graph properties). The constraint graph C; we construct for each
subgraph G} in our algorithm is such a certificate. The construction of constraint
graph C; presented here has previously been proposed in [82], where it is used to
obtain a data structure for dynamic planarity testing which supports updates and
queries in @O(N?%3) time. The algorithm of [68] uses the certificates produced by
the construction of [82] and improves the separator decomposition to obtain a better

update and query bound.

Chapter 10

Applications of Planar Separators

In this chapter, we apply Theorems 8.3 and 9.2 and existing results of [9, 12] to obtain
O(sort(N)) I/O algorithms for the single source shortest path problem on planar
graphs with non-negative edge weights, BFS in planar graphs, computing e-vertex
separators of low cost for planar graphs whose vertices have non-negative costs and

non-negative weights, and computing c-edge separators of weighted planar graphs.

10.1 Breadth-First Search and Single Source Shortest
Paths

In this section, we discuss our solution to the single-source shortest path problem.
Breadth-first search can be solved using the same algorithm after giving every edge

in the graph the same weight. Our SSSP-algorithm is based on the following result.

Theorem 10.1 (Arge et al. [12]) Given a regular proper (DB)32-partition of a di-
rected planar graph G = (V, E) with non-negative edge weights and bounded degree,
the single-source shortest path problem on G can be solved in O(sort(N)) I/Os and

linear space.

In order to be able to apply this result to solve SSSP on arbitrary planar graphs, we

have to show how to satisfy the two conditions of the lemma: (1) We have to transform

190

10.1 Breadth-First Search and Single Source Shortest Paths 191

W3 W3
Wy Wy
Wo V4 U3 Wo
> g
v Vs 2
U1
w w
5 w1 5 w1y

Figure 10.1
Transforming a vertex of high degree into a cycle of degree-3 vertices.

any planar graph into a planar graph of bounded degree so that the distances between
vertices are essentially preserved. (2) We have to modify our separator algorithm of

Chapter 8 so that the produced partition is regular.

Constructing an equivalent planar graph of bounded degree. To solve the first
problem, we apply the following transformation: First we compute a planar embed-
ding of G using Algorithm 9.1. Given the computed embedding G of G, we replace
every vertex v of degree d > 3 in G with a cycle C, = (v1,...,v4) and connect every
neighbor w;, 1 <1 < d, of v to a distinct vertex in the cycle so that the neighbors of
vertices wy, ..., wy appear in the same order along C, as edges {v,w:},...,{v, wg}
clockwise around v (Figure 10.1). Denote the resulting graph by G’. If every edge in
the created cycles is assigned weight zero, it is easy to show that the distance between
any two vertices in GG is the same as the distance between any two vertices in the
corresponding cycles in G'. The total number of vertices in G' is bounded by twice
the number of edges in G. Hence, G’ has O(N) vertices. Given a representation
of G using interlaced edge cycles, the construction of graph G’ from graph G can be

carried out in O(sort(N)) I/Os. The details are straightforward.

Computing a regular partition. Given a planar graph G’ of degree three, we
modify Algorithm 8.1 as follows so that it computes a regular proper h-partition
P = (5,{G1,...,Gk}) of G'. Separator S is computed as before. Only the grouping

of connected components to produce subgraphs G, ..., Gy is changed.

10.1 Breadth-First Search and Single Source Shortest Paths 192

Let Q1,...,Q, be the connected components of G' — S. Then we construct a
graph H containing one vertex v; per connected component (); and an edge between
two vertices v; and v; if 9Q; N AQ; # (. Since the vertices in G’ have degree at most
three, graph H is planar, and) _;_, [0Q;| = O(|S|) = O (N/\/E) We assign weights
w(v;) = |Qy| and y(v;) = |0Q;| to every vertex v;, 1 < i < r, and contract edges
in H until no two adjacent vertices v and w remain such that w(v) + w(w) < h and
v(v) + v(w) < vVh. Let H' be the graph obtained when no more edge contractions
are possible. We call a vertex w € H' heavy if w(w) > h/2 and y(w) > vh/2, and
light otherwise. We merge pairs of light vertices of degree two which are adjacent
to the same two heavy neighbors until no two such vertices v and w remain. Let
H" be the graph obtained when no more light vertices can be merged. Every vertex
w; € H" corresponds to a subgraph G; of G' — S which consists of the connected
components (), . .., Q;, represented by the vertices v;,, ..., v;, that have been merged
to produce w;. Let P = (S, {G1,...,G}), where k = |V(H")|. We claim that
k = O(N/h) and that P is proper and regular.

To show the first claim, we argue as follows: We have already observed that
Y0 =0 (N/ﬂ) This implies that Y., y(v;) = O (N/\/E) Furthermore,
> w(v;)) < N. Hence, graph H" contains O(N/h) heavy vertices. Graph H” is
planar, as H is planar and the above transformations preserve planarity. Hence, by
Corollary 8.1, graph H" contains O(N/h) light vertices. Every vertex in H” gives
rise to one subgraph G; in P, so that k = O(N/h). The properness of P now follows
because our construction explicitly ensures that no graph G; has size exceeding h or
boundary size more than Vh

In order to prove that P is regular, we analyze the two stages of the computation
of H" from H. The construction of H' from H merges adjacent vertices. Two
vertices in H are adjacent only if their corresponding connected components share
a boundary vertex. Hence, for every subgraphs @)’ corresponding to a vertex in H’,
graph R’ = G[V(Q')U0Q'] is connected. Since the construction of H” from H' merges

only light vertices, the subgraphs R’ corresponding to heavy vertices in H” remain

10.2 Separators of Low Cost and Edge Separators 193

connected. The subgraphs corresponding to light vertices in H' are also connected.
Thus, disconnected subgraphs can be produced only by merging light vertices that are
adjacent to the same set of at most two heavy neighbors. Hence, each of the subgraphs
resulting from merging light vertices during the construction of H” from H' shares
separator vertices with at most two other subgraphs Ry and Ry, which correspond to
heavy vertices in H” and are thus connected.

The construction of graph H from graph G’ and separator S as well as the ex-
traction of subgraphs Gy, ..., G} corresponding to the vertices in H” can be carried
out in O(sort(N)) I/Os, as described in the proof of Lemma 8.14. Once graph H is
given, graph H' can be constructed from graph H using procedure CONTRACTEDGES
(Algorithm 8.4), which takes O(sort(N)) I/Os, by Lemma 8.6. The construction of
graph H" from graph H' can be carried out using procedure MERGELOWDEGREE
(Algorithm 8.3), which takes O(sort(/N)) I/Os, by Lemma 8.4.

As both conditions of Theorem 10.1 can be satisfied in O(sort(N)) I/Os, we obtain

the following result.

Theorem 10.2 The single-source shortest path problem on a directed planar graph
with N vertices and non-negative edge weights can be solved in O(sort(N)) I/Os
using linear space, provided that M > (DB)?log’(DB).

Corollary 10.1 A BFS-tree of a directed planar graph with N vertices can be com-
puted in O(sort(N)) I1/Os using linear space, provided that M > (DB)?log?(DB).

10.2 Separators of Low Cost and Edge Separators

In this section, we present an algorithm to compute an e-separator of low cost for a
planar graph whose vertices have been assigned non-negative costs and weights. In
particular, we make use of the following result and show that the algorithm which
computes the separator in the theorem can be carried out in O(sort(NN)) I/Os, using

results from Chapter 9, Section 10.1, and [177].

10.2 Separators of Low Cost and Edge Separators 194

Theorem 10.3 (Aleksandrov et al. [9]) Given a planar graph G = (V, E), a cost
function v : V. — R", a weight function w : V' — R", and a real number 0 < & < 1,
there exists an e-separator S of cost v(S) < 44/20(G)/e for G, where o(G) =

Y ey (7(v))%. Such a separator can be computed in linear time.

10.2.1 Outline of the Algorithm

Before describing an 1/O-efficient algorithm for computing a separator as in Theo-
rem 10.3, we recall the internal memory algorithm of [9], as the I/O-efficient algorithm
is based on it: The algorithm first computes a planar embedding G of G and trian-
gulates the faces of G. Then a vertex p of weight and cost zero is introduced into
one of the faces of G. The algorithm connects this vertex to every vertex on the
boundary of that face. From now on we use G to refer to the resulting triangulation,
since a separator of the triangulation is also a separator of the given graph G. Now
G is transformed into a directed graph by replacing every undirected edge in G with
its two corresponding directed edges. The weight of an edge is the cost of its target
vertex. Given this weight function ' : E — R{, the algorithm computes a shortest
path tree T of G rooted at vertex p. Using tree T, separator S is now computed in
two phases.

The first phase cuts 7" into shallow layers. In particular, it computes a separator
S1 = L(x1) U---U L(xy), where the vertices in a set L(z;) are at approximately
the same distance from p. The vertices in a set L(x;) separate all vertices in G
that are closer to p than the vertices in L(x;) from those that are further away. Thus,
graph G'— 5 can be partitioned into subgraphs G, ..., G,, so that graph G, contains
all vertices above L(xz;) in T, graph G, contains all vertices below L(xz,) in T, and
graph G, 0 < i < p, contains all vertices between L(z;) and L(z;41).

The second phase partitions each graph G; whose weight exceeds ew(G) into sub-
graphs of weight at most ew(G). The separator used to obtain this partition consists
of a collection of fundamental cycles of a shortest path tree 7; of G;. Since the layers

of T' computed in the previous phase are shallow, tree 7T; has a small radius if rooted

10.2 Separators of Low Cost and Edge Separators 195

at an appropriate vertex. This guarantees that the computed separator of G; is of
low cost. Let S, be the set of separator vertices computed in this second phase. Then
S =51 US5, is an e-separator of G. Next we discuss the two phases of the algorithm

in detail.

Cutting T into layers. For every vertex v € G, let d(v) = distr(p,v). Let r(T) =
max{d(v) : v € V'}. We call r(T') the radius of T. For every real number z € [0, (7],
let L(z) ={w:e= (v,w) € T and d(v) < x < d(w)}. We denote the vertices of G
by p = vg,v1,...,vy so that 0 = d(vy) < d(v1) < d(v2) < --- < d(vy) = r(T). Then
L(z) = L(y), for all z,y € (d(v;_1),d(v;)]. Thus, there are only N different sets L(z).
Every set L(z) is a separator of G which partitions the vertex set V into two sets
Vi(z)={veV:dv)<z}and VT(z) ={v €V :d(v) >z and v & L(z)} so that
no vertex in V'~ (z) is adjacent to a vertex in V1 (x).

Now let h = \/eo(G)/8, p = |r(T)/h|, and y; = ih, for 0 <i < p. For 1 <i < p,
let V; be the set of vertices v € V such that d(v) € (y;_1,v:]- Let w; € V; be the vertex
so that y(L(d(w;))) is minimized, and let z; = d(w;). Separator S; is defined as the
set S; = L(z1) U---U L(zx,). It is shown in [9] that v(S1) < o(G)/h = 24/20(G) /.
The removal of the vertices in S; partitions G into subgraphs Go,...,G,, where

Gi = GIVF(2i-1) NV (2ig1)]-

Partitioning the layers. A subgraph G; whose weight exceeds cw(G) is partitioned
into subgraphs of weight at most ew(G) as follows: If i = 0, graph Gy is triangu-
lated. Let py = p. Otherwise, a new vertex p; of zero cost and weight is introduced
and connected to all vertices in (; which are adjacent to vertices in L(z;). Then
the algorithm triangulates the resulting graph and computes a shortest path tree 7;
of G; rooted at vertex p;. A fundamental cycle of a non-tree edge e is defined as the
graph C(e) containing edge e as well as the unique path in 7; between the endpoints

of edge e. From the choice of levels L(z1), ..., L(x,) it follows that 7(7;) < 2h, so that

every fundamental cycle of 7T} has cost at most 4h. On the other hand, {iz((céf))J fun-

damental cycles are sufficient to partition G; into subgraphs of weight at most ew(G),

10.2 Separators of Low Cost and Edge Separators 196

2w(G,-)
ew(Q)

so that the separator used to partition G; has cost at most 4h [J Summing

over all graphs Gy, ..., G)p, the cost of the set Sy of separator vertices introduced in
this second phase is y(S2) < 8h/e = 24/20(G)/e. Hence, the weight of separator

S =51USsis v(S) < 44/20(G)/e. Tt remains to discuss the computation of B‘:((%"))J

fundamental cycles which partition G; into subgraphs of weight at most ew(G). In
order to compute these fundamental cycles, the idea of a separation tree is used, which
has been introduced in [8]. The separation tree @Q); of G; w.r.t. T; is defined as follows:
Let G be the dual of G;. Then @); is obtained from G} by removing all edges which
are dual to edges in 7;. An edge-separator X = {ej,...,ex} of @Q; defines a set of
fundamental cycles C(X) = {C(e7),...,C(e})}. Next we present an assignment of
weights to the edges of graph @);, as proposed in [8], so that the set of fundamental
cycles corresponding to an e-edge separator of @); is an e-separator of G;.

For every vertex v € V, we define two sets of edges: The set Ey(v) contains all
non-tree edges incident to v. The set E;(v) contains all non-tree edges both of whose
endpoints are adjacent to v. It is shown in [8] that Ei(v) # 0, for all v € V. Initially,
let w*(e) = 0, for every edge e € Q;. For every vertex v € V with Ey(v) # 0,
weight w*(e) is increased by w(v), where e* is an arbitrary edge in Ey(v). For every
vertex v € V with Eg(v) = (), let e* € E;(v). Then weight w*(e) is increased by w(v).
It is shown in [8] that the set C(X) of fundamental cycles defined by an e-edge

separator X of (); is an e-separator of G;.

QM(Gi)
ew(Q@)

In order to compute a set X of size at most { J, the algorithm of [8] chooses

some vertex of (); as the root and then processes (); bottom-up. If an edge e has
2'5:’((&)), it is added to the separator X. Otherwise, the weight of its
parent edge in @); is increased by w*(e).

weight exceeding

10.2.2 An 1/O-Efficient Algorithm

Given the above algorithm for computing an e-separator of low cost, we have to show

that each of its steps can be carried out in an I/O-efficient manner.

10.2 Separators of Low Cost and Edge Separators 197

Computing T. A planar embedding G of G' can be computed in O(sort(N)) I/Os
using Theorem 9.2. In [177], it is shown how to triangulate an embedded planar graph
in O(sort(N)) I/Os. A representation of the faces of the resulting triangulation as lists
of vertices on the boundary of each face can be computed in O(sort(N)) I/Os [177].
Given this representation, we scan one such list and make the new vertex p adjacent
to all vertices in this list. We use procedure COPYVERTEXLABELS to inform every
edge of G about the cost of its endpoints. Then a single scan of the edge set of G
is sufficient to replace every edge of G' with its two corresponding directed edges and
assign weights as defined above to these edges. The shortest path tree 7' can now be
computed in O(sort(N)) I/Os using Theorem 10.2. Hence, tree T' can be computed
in O(sort(NN)) I/Os, given only graph G and an assignment of costs and weights to

1ts vertices.

Cutting T into layers. Given the distances of the vertices of T from p, we compute
values z1,...,z, as defined in Section 10.2.1 as follows: We inform the edges of T’
about the costs and distances of their endpoints from the root p of T using proce-
dure COPYVERTEXLABELS and sort them by the distances of their source vertices
from p. Now we scan the sorted edge list to simulate a sweep from z = —oo to
x = +00. During the sweep, we maintain the current weight of set L(z), the mini-
mum weight Ymin (i) found in interval (y;_1,¥;], and the value z; € (y;_1,y;] so that
Y(L(2;)) = Ymin(?). When z = d(v;), for some vertex v;, we perform the following op-
erations: If d(v;41) > v;, we report x; and increase i by one. Then we decrease y(L(z))
by v(v;) and increase y(L(z)) by the total cost of the target vertices of all edges hav-
ing v; as a source vertex. This produces y(L(d(v;41))). If Y(L(d(vj1+1))) < Ymin(2),
let Yain(#) = 7(L(d(v5+1))) and 7; = d(vg:1):

Given values z; < - -+ < x, and the edge set of T as sorted above, we extract the set
S1 = L(z1)U---UL(xp) as follows: We scan the list of values z1, ..., z, and the edge
set of T', again to simulate a sweep from z = —o0 to x = +00. When the sweep passes
the left endpoint of an edge e, we append edge e to a list L of edges which contains

all edges spanning the current sweep value z, but may contain more edges. When the

10.2 Separators of Low Cost and Edge Separators 198

sweep passes a value x;, we scan list L to add all target vertices of edges (v, w) € L,
d(v) < z; < d(w), to S;. After reporting these edges, we set L = (). The reason for
resetting L is that endpoints of edges that span two values z; and ;41 should not
be reported more than once, and edges whose endpoints that have not been reported
for x; cannot be reported for x;, 1, as for each such edge (v, w), d(w) < z; < z;11. As
this phase requires on application of procedure COPYVERTEXLABELS, sorting the

edge set of G, and a constant number of scans, its I/O-complexity is O(sort(V)).

Partitioning the layers. This phase of the algorithm extracts graphs Gy, ..., G),
computes shortest path trees T, ...,T,, and partitions each graph G;, 0 < i < p,
using fundamental cycles of T;.

We compute graphs G, ..., G, as follows: We apply procedure SETDIFFERENCE
to compute the set V' — S;. Then we sort the vertices in V' — S} by their distances
from p. Now a single scan of set V —S; and the list of values 0 = zg, z1,...,Zp, Tpp1 =
r(T) is sufficient to partition V' — Sy into sets Vg, ..., V,, where z; < d(v) < 41,
for every vertex v € V;. We use procedure COPYVERTEXLABELS to inform every
edge about the sets V; and V; containing its endpoints. Now we sort the edges of G
to obtain a partition of E into sets Ey,...,Ey,, Ei,...,E,, and E”. For all edges
(v,w) € E;, v,w € V;. Set E! contains all edges (v,w), d(v) < d(w), v € S;, and
w € V;. Set E” contains all edges which are not in any other set. We initialize
graph G; as G; = (V;, E;), for all 0 < i < p. Graph G already contains vertex py = p.
Thus, it only has to be triangulated, using the algorithm of [177]. To prepare each
graph G;, 1 < i < p, we add a new vertex p; to V;, add edges (p;,v) and (v, p;)
to E;, for every edge (u,v) € Ej, and triangulate the resulting graph. This procedure
requires the application of operations SETDIFFERENCE and COPYVERTEXLABEL
and sorting and scanning sets of size O(N) a constant number of times. Hence, the
extraction of graphs Gy, ..., G, takes O(sort(NN)) I/Os.

To partition graph G;, we proceed as follows: We apply Theorem 10.2 to compute
a shortest path tree T; of G; rooted at p;. Then we compute the dual G of G,
using an algorithm of [177]. We scan the edge list of 7; and generate a list D of

10.2 Separators of Low Cost and Edge Separators 199

edges e € G, e* € T;, to be removed from G in order to produce the separation
tree ();. The removal of the edges in D from E can now be carried out using
procedure SETDIFFERENCE. In total, the computation of trees 7; and @); takes
O(sort(|G;])) 1/Os.

We compute weights w*(e), e € Q;, as follows: For every non-tree edge e =
{v,w} € G;, we create two triples (v, w,e*) and (w,v,e*). We sort the list of these
triples lexicographically, and sort the vertex set of G;. Now a scan of these two
lists suffices to find for every vertex v € G; with Ey(v) # 0, an edge e € Q; to be
charged for w(v). We store this information in a list X containing pairs (e, w(v)).
During this scan, we copy all vertices which have no incident non-tree edge to a new
list V. For each such vertex with neighbors wy, ..., w; in T}, we create a list of pairs
(w1,v),..., (wg,v). We sort the resulting list lexicographically. Now a single scan
of this list and the sorted list of non-tree edges is sufficient to find for every vertex
in V', the set F;(v) of edges e € @); that can be charged for w(v). In particular, this
scan produces a set of pairs (v, e), where e € E;(v). We sort this set so that the pairs
representing each set Fj(v) are stored consecutively and scan it to choose the first
edge e from each set E(v). For each such edge e, we add a pair (e, w(v)) to list X. Now
we sort and scan list X to compute for every edge e € Q);, its weight w*(e) = Z?:l wj,
where (e,w1), ..., (e,wg) are the entries in X corresponding to edge e. This procedure
involves sorting and scanning sets of size O(|G;|) a constant number of times, so that
the computation of weights w*(e), e € @; takes O(sort(|G;|)) I/Os.

To obtain an edge separator of);, we apply the Euler tour technique and list-
ranking to tree (); to root it at an arbitrary vertex, compute a preorder numbering
of @);, and direct all edges in (); from children to parents. Then we apply time-
forward processing to carry out the procedure of [8] for partitioning @); into sub-
graphs of weight at most . Given the edge separator X of (); produced by this
procedure, we apply procedure SUMEDGELABELS to mark the endpoints of all dual
edges e* € G;, e € X, in T;. We process T; bottom-up to find all vertices that
belong to the fundamental cycles defined by X and add these vertices to Ss. As

10.2 Separators of Low Cost and Edge Separators 200

applying the Euler-tour technique, list-ranking, and time-forward processing to Q;
take O(sort(|Q;])) = O(sort(|G;|)) I/O0s, the computation of the edge separator X
takes O(sort(|G;])) I/Os. The application of procedure SUMEDGELABELS to the set
of edges dual to the edges in X and the vertex set of G; takes O(sort(|G;|)) I/Os.
The final application of time-forward processing to extract the vertex set of the fun-
damental cycles in C(X) takes O(sort(|G;|)) I/Os.

We have shown that the partition of graph G into graphs Go,..., G, can be
computed in O(sort(N)) I/Os and that the partition of each graph G;, 0 < i < p,
into subgraphs of weight at most ew(G) using fundamental cycles can be computed in
O(sort(]G;])) I/Os. Thus, the whole algorithm takes O (sort(N) + > "7 sort(|G;])) =
O(sort(N)) I/0s, and we obtain the following result.

Theorem 10.4 Given a planar graph G = (V, E), a cost function v : V — R", and a
weight function w : V — R a separator S as in Theorem 10.3 can be computed in

O(sort(N)) I/Os and linear space, provided that M > (DB)?log*(DB).

It is shown in [9] that Theorem 10.3 can also be used to compute optimal weighted
edge-separators of planar graphs: We let the cost of a vertex be equal to its degree.
Then we compute a vertex-separator S of low cost. For every vertex v € S, we add all
edges incident to v to the edge-separator X. It is easy to verify that the computation
of the vertex costs and the extraction of set X from set S can be carried out in

O(sort(N)) I/Os. Hence, we obtain the following corollary.

Corollary 10.2 Let G = (V, E) be a planar graph, 0 < £ < 1 be a real number, and
w:V — R* be a weight function so that w(v) < ew(Q), for allv € V. Then there

exists a set X of at most 4\/2 (X ,cy deg?(v)) /e edges so that no connected compo-
nent of graph (V, E'\ X) has weight exceeding ew(G). Such an edge-separator X can
be found in O(sort(N)) I/Os and linear space, provided that M > (DB)*log’(DB).

Chapter 11
Depth-First Search in Planar Graphs

In this chapter, we apply the embedding algorithm of Chapter 9 and the BFS algo-
rithm of Section 10.1 to obtain an O(sort(N)) I/O algorithm for computing a DFS-
tree of a connected planar graph. The algorithm is similar to that of Hagerup [92];
but the details differ. In particular, our algorithm appears to be simpler.

Since a DFS-tree of an arbitrary connected graph can easily be obtained from
DFS-trees of its biconnected components, the difficult part of the algorithm is the
computation of a DFS-tree of a biconnected planar graph. Given a planar embedding
G of a biconnected planar graph G, we use BFS to partition the faces of G into levels
around a source face s which has the root r of the DFS-tree on its boundary. We
grow the DFS-tree level by level around face s. In Section 11.1, we formally define
the levels into which the faces of G are partitioned, and we show how to obtain this
partition in an I/O-efficient manner. We also show that this partition of the faces of G
into levels induces a partition of GG into subgraphs Hy, ..., H; of a sufficiently simple
structure that allows us to perform DFS in these subgraphs I/O-efficiently. These
subgraphs have the additional property that a DFS-tree of G can be obtained by
combining appropriate DFS-forests of graphs Hi, ..., Hx. In Section 11.2, we study
the structure of graphs Hi,..., H; and show how to perform DFS in these graphs
I/O-efficiently. In Sections 11.3 and 11.4, we show how to combine DFS-forests of

201

11.1 A Partition of the Graph into Layers 202

graphs Hy,..., H; to obtain a DFS-tree of G and how to obtain a DFS-tree of a

connected planar graph from DFS-trees of its bicomps.

11.1 A Partition of the Graph into Layers

The goal of this section is to obtain a partition of a biconnected planar graph G into
layers Hy, ..., H,. Each such layer H; is induced by the faces of a planar embedding
G of G that belong to level ¢ according to the following partition of the faces of G
into levels:

Let s be a face of G which has the root vertex r of the DFS-tree on its boundary.
Face s is the only face at level 0. The levels of all other faces are defined inductively.
A face f is at level ¢ if it shares a vertex with a face at level i — 1, but not with a face
at level less than i — 1 (see Figure 11.1a).

In order to obtain this partition of the faces of G into levels around a source face,
we apply BFS to the face-on-vertex graph G of G (see Figure 11.1b). In particular,
the level £(f) of a face f € G is computed as £(f) = dg, (s*, f*)/2, where dg, (s*, f*)
denotes the depth of vertex f* in a BFS-tree of G rooted at s*.

Given the above partition of the faces of G' around face s, let G; be the subgraph
of GG defined as the union of the boundaries of faces at level at most 7, and let
H! = G; — G;_4, for i > 0. Let A; be the set of edges in H] that have exactly one
endpoint in G;_;. We call A; the set of attachment edges of graph H; = H] — A;. For
i =0, we define Hy = Gy. We call graph H; the i-th layer of G. (See Figure 11.1c.)
The vertices and edges of H; are said to be at level ©. The edge sets of G;_; and H;
together with the set A; of attachment edges of H; form a partition of the edge set
of G;. Algorithm 11.1 computes layers Hy,..., Hy as well as all sets Ay,..., A; of
attachment edges. The following lemma shows that this algorithm is correct and

takes O(sort(N)) I/Os to obtain this partition of graph G.

11.1 A Partition of the Graph into Layers 203

(a) (b)
P PRRS Y '\
N
* P ' \
\
o .
. \
0 o
> 7
| SR * o«
N [S— o
N
N
()

Figure 11.1
(a) A planar embedding G of a planar graph G with its faces colored according to their levels.

The level-0 face s is white. Level-1 faces are light gray. Level-2 faces are dark gray. (b) The face-
on-vertex graph G of G. Vertices are labelled with their distances from the source vertex s*.
(c) The layers of G. Layer 0 is solid. Layer 1 is dotted. Layer 2 is dashed.

11.1 A Partition of the Graph into Layers 204

Procedure COMPUTELAYERS

Input: A biconnected planar graph G = (V, E) and a vertex r € V.
Output: A partition of G into layers Hy, ..., H and sets A1, ..., Ay of attachment edges
of layers Hy,..., H.

1: Compute a planar embedding G of G.

2: Identify the faces of (@ and represent each such face f as a list V(f) of vertices clockwise

along the boundary of face f.

Compute the face-on-vertex graph G of G.

Choose a face s so that r € V (s).

Apply BFS in G to compute £(f), for all faces f € G.

for every edge e = {v,w} € E(G) do
Let f1 and fo be the two faces of G so that {v,w} C V(f1) NV (fa).
t(e) < min(£(f1),£(f2))

end for

10: for every vertex v € V(G) do

11: £(v) < min{l({v,w}) : {v,w} € E(G)}

12: end for

13: k < max{{(e) : e € E(G)}

14: for i =0,...,k do

15: A « {{v,w} € E(G) : £(v) =i and £(w) < i}

16: V(H;) « {v € V(Q) : £(v) =i}

17: E(H;) «+ {{v,w} € E(G) : £(v) = £(w) = i}

18: end for

Algorithm 11.1
Computing the layers of a biconnected planar graph G around a source face s.

Lemma 11.1 Algorithm 11.1 takes O(sort(N)) I/Os and uses linear space to compute
layers Hy, ..., Hy of graph G together with the sets Ay,..., Ay of attachment edges
of]ayers Hl, ey Hk.

Proof. The correctness of the algorithm is obvious. We show that Algorithm 11.1
takes O(sort(N)) I/Os. Computing a planar embedding of G in Line 1 of the algo-
rithm takes O(sort(N)) I/Os, by Theorem 9.2. It is shown in [177, page 110] how
to compute a representation of the faces of G as vertex lists V(f), sorted clockwise

around each face f. The procedure of [177] takes O(sort(/NV)) I/Os.

11.2 Depth-First Search in a Layer 205

Given this information, the face-on-vertex graph Gy of embedding G can be
computed in O(scan(N)) I/Os: We start with the graph (V,(). Then we scan the
lists V(f), for all faces f € G. For every face f € G, we add a vertex f* to V(Gp).
For every vertex v € V(f), we add an edge {f*,v} to F(GFp).

Line 4 takes a single scan over lists V(f) and can in fact be incorporated in the
computation of Line 3. The computation of levels in Line 5 takes O(sort(V)) I/Os,
by Corollary 10.1. In order to carry out Lines 6-9, we generate triples (v, w, £(f)),
for all pairs of consecutive vertices in all lists V' (f). This takes O(scan(N)) I/Os.
Then we sort this list so that for every edge {v, w}, the two entries (v, w, £(f1)) and
(v, w,£(fy)) are stored consecutively, where f; and f, are the two faces containing
edge e = {v,w}. Now a single scan of this list is sufficient to compute a list of
triples (v, w, £(e) = min(4(f1),£4(f2))). Lines 10-12 can be carried out using procedure
SUMEDGELABELS. Line 13 is present only to clarify the description of the algorithm,
as Lines 14-18 can be realized by sorting the vertex set of G’ and sorting the edge set

of G lexicographically. O

11.2 Depth-First Search in a Layer

In this section, we show how to compute a DFS-forest F; for a single layer H; of G.
Our procedure for constructing a DFS-tree of GG, which we describe in Section 11.3,
requires every vertex v € H; to be labelled with its DFS-depth in forest F;. This is the
distance dp,(r; ,v) in F;, where 7; ; is the root of the DFS-tree T; ; in F; containing v.

If i = 0, H; consists only of the boundary of face s. Hence, a DFS-tree Fy of H
rooted at vertex ro = r can be computed by removing one of the edges of Hj incident
to rg from H,. Given this information, the Euler tour technique and list-ranking can
be used to compute for every vertex v € Hy, its DFS-depth dg,(ro,v), as Fy is a
simple path.

Before we describe our algorithm for computing a DFS-tree for a layer H;, ¢ > 0,
we prove that these layers have a very simple structure. This is the key to obtaining

an I/O-efficient DFS-algorithm for these graphs.

11.2 Depth-First Search in a Layer 206

Figure 11.2
Proof of Lemma 11.2. Shaded faces are at level 3.

Lemma 11.2 The non-trivial bicomps of H; are the boundary cycles of G;.

Proof. Consider a cycle C'in H;. All faces incident to C' are at level ¢ or greater. Thus,
since the subgraph of G corresponding to the interior faces of GG;_; is connected, all
its faces are either inside or outside C'. Assume w.l.0.g. that G;_; is inside C'. Then
none of the faces outside C shares a vertex with a level-(i — 1) face. That is, all faces
outside C' must be at level at least ¢ + 1, which means that C' is a boundary cycle
of G;.

Every bicomp that is not a cycle contains at least three internally vertex-disjoint
paths P, P, and P; with the same endpoints v and w (see Figure 11.2). As we
have just shown, the graph C; = P, U P; is a boundary cycle of G;, as is the graph
Cy = Py U Py. Let {v,z} be the first edge of P, and {y,w} be the last edge of P.
Since (' is a boundary cycle of G;, G; is either completely inside or completely
outside C';. Since (' is a subgraph of H;, all faces incident to C; that are on the same
side of C; as G; are at level 1 because all faces on the other side of C; are at level at
least 7 + 1. Hence, if P; is on the same side of C as G; (Figure 11.2a), the four faces
incident to edges {v, x} and {y, w} are at level 4, which contradicts the fact that Cy
is a boundary cycle of G;. If P, is on the other side of C; (Figure 11.2b), the four

11.2 Depth-First Search in a Layer 207

faces incident to edges {v,z} and {y,w} are at level at least 7 + 1, which contradicts
the fact that edges {v,z} and {y, w} are at level . Thus, every bicomp of H; consists

of a single boundary cycle. O

Lemma 11.2 suggests the following strategy to compute a DFS-tree T;; of a
connected component H;; of a layer H;: First we compute the bicomp-cutpoint-
tree B; ; = Thic(H; ;) of H;j. Recall that this tree contains all cutpoints vy, ..., v,
as well as one vertex f), per bicomp B, of H; ;. There is an edge {vy, Or} in B if
vy € By. We choose a bicomp node 3, as the root of B;; so that r; ; € B,, where
ri; is the root of tree T; ;. Then the parent cutpoint of a bicomp B, # B, is the
cutpoint p(f), where p(3),) denotes the parent of node 3, in B; ;. For B, we define
p(Bz) = rij. By Lemma 11.2, every bicomp B}, of H; ; consists either of a single edge
or is a cycle. In the former case, we add By to T;;. In the latter case, we add all
edges of B, to T; ;, except one of the edges incident to p(8y).

Before we show how to compute a DFS-forest F; as defined above in an I/O-
efficient manner, we show that graph 7;; as defined above is indeed a DFS-tree
of H; ;.

Lemma 11.3 Graph T, ; is a DFS-tree of graph H; ;.

Proof. In order to prove the lemma, we have to show that 7; ; is connected, contains a
unique path between any two vertices v and w, and for every edge {v,w} € H; ; —T; ;,
w.l.o.g. v is an ancestor of w.

The connectivity of T; ; can be shown as follows: Graph H,; is connected. Now
let v and w be two arbitrary vertices in H;;, and let P = (v = ug,...,u, = w)
be a path from v to w in H; ;. If all edges in P are in T;;, then P is also a path
from v to w in T; ;. Otherwise, let {uy, us+1} be an edge that is not in 7; ;. Then
edge {ug, ug+1} is part of a cycle By, = (uy = 21,...,%5 = Ug+1). Since at most one
edge is removed from every bicomp By, edge {uy, ug+1} € P can be replaced by the
path (uqy = 21,..., 25 = ugq1) in T; ;. By replacing all edges in P—T; ; in this manner,

we obtain a (not necessarily simple) path P’ from v to w in T ;.

11.2 Depth-First Search in a Layer 208

Now let v and w be two vertices of H; ;, and assume that 7; ; contains two paths
P, and P, from v to w. Then P; and P, contain two internally vertex-disjoint subpaths
P/ and Pj with the same endpoints z and y. The graph C = P{ U P, is a cycle and
hence, by Lemma 11.2, a non-trivial bicomp of H; ;. But one edge is removed from
every non-trivial bicomp of H; ; during the construction T; ;. Hence, C' Z T; ;, which
contradicts the assumption that P, U P, C T; ;.

To see that for every edge {v,w} € H;; — T;;, v is an ancestor of w, let B, be
the bicomp of H;; containing edge {v,w}. Then w.l.o.g. v = p(f), and every path
from 7; ; to w contains v. Hence, the path from r;; to w in T;; contains v, and v is

an ancestor of w in T; ;. O

The following corollary is an immediate consequence of Lemma 11.2 and the proof

of Lemma 11.3.

Corollary 11.1 For every boundary cycle C = (vq,...,v;) of graph G;, there is an
index 1 < ¢ < x such that

(i) (Viy...,Vz,V1,...,0;_1) IS & path in F;,
(ii) For 1 < j < i, vertex v; is an ancestor in F; of vertices v;41,...,v;_1, and
(iii) Fori < j < z, vertex v; is an ancestor in F; of vertices vj 1, ..., Vg, V1, ..., Vi_1.

We use Algorithm 11.2 to compute a DFS-forest F; of H;. The following lemma
shows that Algorithm 11.2 is I/O-efficient.

Lemma 11.4 Algorithm 11.2 takes O(sort(|H;|)) I/Os and uses linear space to com-
pute a DFS-forest F; of layer H;.

Proof. The correctness of Algorithm 11.2 follows from Lemma 11.3 and the fact that
the algorithm computes graph F; as defined in the text above. If we can show that the
Jj-th iteration of the loop in Lines 1-12 takes O(sort(|H;;|)) I/Os, the whole algorithm
takes O(sort(|H;1|) + -« -+ sort(|H;4|)) = O(sort(|H;|)) I/Os, as desired.

11.2 Depth-First Search in a Layer 209

Procedure LAYERDFS

Input: A layer H; of G with connected components H; i,...,H;;, and a set r;1,...,7;¢
of vertices such that r; ; € H; j, forall 1 < j <+¢.

Output: A DFS-forest F; of H; consisting of DFS-trees T;1,...,T;; for the connected
components of H;. Tree T; ; is rooted at vertex r; ;, for 1 < j <.

1: forj=1,...,¢t do

2 T;; < H;

3: Compute the bicomps By,...,B, of H; ;.

4: Build the bicomp cutpoint tree B; ; of H; ;.

5: Choose a root vertex 3, of B;; and determine the parent cutpoint p(3), for every
biCOmp Bh of Hi,j-

6: forh=1,...,pdo

T if B, contains more than one edge then

8: Remove an edge in By, incident to p(8y) from T; ;.
9: end if
10: end for

11: Compute the DFS-depth dr; ; (i ;,v), for every vertex v € H; ;.
12: end for
13: F; (—TZ’JU"'UTi,t

Algorithm 11.2
Computing a DFS-forest for a layer H; of G.

Computing the bicomps of H;; in Line 3 takes O(sort(|H;;|)) I/Os using an
algorithm of [43]. Given that every edge is labelled as belonging to a particular
bicomp, we sort the edges of H;; by their bicomp labels and scan the resulting list
to create one vertex 3, per bicomp. In order to identify the cutpoints, we generate
pairs (v, 8) and (w, B1), for every edge {v,w} € B,. Then we sort the resulting list
lexicographically. Now a single scan of this list suffices to determine for all vertices
v € H;;, whether the edges incident to v are in more than one bicomp. If this
is the case, v is a cutpoint. We add v to V(B;;) in this case. Also, for every
cutpoint v, we keep one copy of every distinct entry (v, §;,) as representing the edge
{v,Br} € B;,. Hence, Line 4 takes O(sort(|H; |)) I/Os as well. In order to find

a bicomp B, containing 7;;, we scan the edge list of H;; until we find an edge

11.3 Depth-First Search in a Biconnected Component 210

e ={ri;,v}. Then we choose B, as the bicomp corresponding to the label of edge e.
This computation can be incorporated in the computation of B; ;. Rooting B;; at
vertex [, and computing the parent cutpoints p(f), for all bicomps By, of H,j,
now takes O(sort(|H; |)) I/Os using the Euler tour technique and list-ranking [43].
Finally, to implement Lines 6-10, we sort the set of parent cutpoints p(53;) by their
corresponding bicomps By,. We sort the edges of H; ; by their bicomp labels. Now a
single scan of the two sorted lists of parent cutpoints and edges is sufficient to decide
for every bicomp B, whether it is non-trivial, and if so, remove an edge incident
to p(B) from the edge list. This finishes the computation of 7; ;. Given T;; and 7,
the DFS-depths of all vertices in H;; can now be computed in O(sort(|H;;|)) I/Os
using the Euler tour technique and list-ranking again [43]. O

11.3 Depth-First Search in a Biconnected Component

In order to compute a DFS-tree T of a biconnected planar graph G, we partition G
into its layers. Then we compute an appropriate DFS-forest for each of the layers.
Now we construct tree T incrementally, starting with the DFS-tree Ty = Fy computed
for layer Hy = Gy. Given a DFS-tree T;_; of GG;_1, we obtain a DFS-tree of GG; by
attaching the trees in the DFS-forest of layer H; to T;_1 using appropriate attachment
edges of layer H;. Algorithm 11.3 shows the details of this computation. Figure 11.3
illustrates the computation of Algorithm 11.3. Next we show that the algorithm
produces a DFS-tree T of G and that it does so I/O-efficiently.

Lemma 11.5 The graph T computed by Algorithm 11.3 for a biconnected planar
graph G = (V, E) is a DFS-tree of G.

Proof. First we show that T is a tree. In order to see that graph T is connected,
we argue inductively. After Line 3, T" is a spanning tree of Go = H,. Hence, at
the beginning of the i-th iteration of the loop in Lines 4-14, graph T is a spanning
graph for graph G;_;. The i-th iteration of this loop computes spanning trees for the

11.3 Depth-First Search in a Biconnected Component 211

Procedure BICONNECTEDDFS

Input: A biconnected planar graph G = (V, E) and a vertex r € V.
Output: A DFS-tree T of G rooted at vertex 7.

1: Apply procedure COMPUTELAYERS to partition G into its layers Hy,..., Hy and sets
Ay, ..., Ay of attachment edges of layers Hy, ..., H.

2: Apply procedure LAYERDF'S to compute a DFS-tree Fj of layer Hy rooted at vertex r.

3. T+ Fy

4: fori=1,...,k do

5: Compute the connected components H; 1,...,H;; of H;.

for j=1,...,tdo
Let A; ; be the set of attachment edges in A; that have an endpoint in H; ;.
Let e;; = {v,w}, v € H;i_1,w € H;, be the edge in A; so that the DFS-depth of v
in F;_1 is maximized.

9: T+ TU{e;}
10: Choose r; j = w as the root of the DFS-tree T; ; to be computed for H; ;.
11: end for

12: Apply procedure LAYERDFS to compute a DFS-forest F; for layer H;.
132 T+ TUF,
14: end for

Algorithm 11.3
A DFS-algorithm for biconnected planar graphs.

connected components of H; and attaches each of them to 7" using an attachment
edge. Thus, at the end of the ¢-th iteration, graph T is a spanning graph of Gj;.

To see that graph T is a tree, we have to show that graph 7" contains N —1 edges.
After Line 3, T contains |G| — 1 edges. Hence, at the beginning of the i-th iteration
of the loop in Lines 4-14, graph T contains |G;_i| — 1 edges. For every connected
component H;; of H;, we add |H, ;| edges to T: |H;;| — 1 edges in the spanning

tree T; ; of H; j, and one attachment edge. Hence, at the end of the ¢-th iteration of

5j’
the loop, graph T contains |G;| — 1 edges.

To finish the proof, we have to show that for every edge {v,w} € E(G) — E(T),
w.l.o.g. v is an ancestor of w in 7. If vertices v and w are in the same layer, then

v is an ancestor of w, by Lemma 11.3. Otherwise, v € H; ; and w € H;. Let C

11.3 Depth-First Search in a Biconnected Component 212

(a) (b)

Figure 11.3

(a) DFS-forests of the layers of graph G are shown in bold. Thin solid edges are the attachment
edges used to join the DFS-forests of layers Hy, H1, and Ho in order to obtain a DFS-tree of G.
Dotted edges are non-tree edges. The vertices in every layer are labelled with their DFS-depths.
(b) The final DFS-tree of G.

be the boundary cycle of G; 1 enclosing w. Then v € C. Let H,; be the connected
component of H; containing w, and let {r;;,u} be the attachment edge of H;; in T
Then u € C. Vertex w is a descendant of r; ; and hence of u, and by the choice of

edge {r; ;,u} and Corollary 11.1, v is an ancestor of u. O

Lemma 11.6 Algorithm 11.3 takes O(sort(N)) I/Os and uses linear space when ap-
plied to a biconnected planar graph G = (V, E) with N vertices.

Proof. By Lemma 11.1, Line 1 of Algorithm 11.3 takes O(sort(N)) I/Os. Line 2
takes O(sort(|Hp|)) I/Os, by Lemma 11.4. We show that the i-th iteration of the
loop in Lines 4-14 takes O(sort(|H;—1| + |H;|)) 1/Os, which implies that the total
I/O-complexity of Lines 2-14 is O (Zle sort(|H;—1| + |HZ|)) = O(sort(N)).
Computing the connected components of H; in Line 5 takes O(sort(|H;|)) 1/Os
using an algorithm of [43]. To find the root vertices r;1, ..., 7, and attachment edges

€i1,---,¢€izt, for all connected components H;,...,H;; of H;, we apply procedure

11.4 Depth-First Search in a Connected Planar Graph 213

CoPYVERTEXLABELS to inform every edge in A; about the DFS-depth of its endpoint
in H;_; and the connected component H;; of H; containing its other endpoint. This
takes O(sort(|H;_1| + |H;|)) 1/Os, as |A;| = O(|H;_1| + |H;|). Now we sort the edges
in A; so that the edges in each set A;; of attachment edges of connected component
H; ; are stored consecutively. Then a single scan of A; is sufficient to find for every
connected component H; ;, the attachment edge e; ; = {r; ;, v} so that the DFS-depth
of v is maximized. Again, this takes O(sort(|H;—1| + |H;|)) I/Os. O

11.4 Depth-First Search in a Connected Planar Graph

In order to compute a DFS-tree of a connected planar graph GG, we can use Algo-
rithm 11.2. Only Lines 7-9 have to be replaced with a call to procedure BICON-
NECTEDDFS, which computes a DFS-tree of bicomp B; rooted at vertex p(f;). The

following theorem now follows from Lemmas 11.4 and 11.6.

Theorem 11.1 Given an undirected planar graph G = (V, E), a DFS-tree of G can be
computed in O(sort(N)) I/Os and linear space, provided that M > (DB)?log*(DB).

Part |I

Geometric Spanners and Proximity

Problems

214

Chapter 12

The Well-Separated Pair

Decomposition and Applications

In this chapter, we present an I/O-efficient algorithm for computing a well-separated
pair decomposition of a point set in d-dimensional space. Roughly speaking, this is
a partition of the point set into pairs of sets so that the two sets in each pair are
far apart from each other compared to the sizes of their bounding rectangles. This
partition can be used to obtain efficient solutions to a number of proximity and related
problems.

An important and the most difficult step of the algorithm is the computation of
a fair split tree of the point set. This tree and the subdivision it induces are used
in Chapter 14 to obtain a planar Steiner spanner of a point set or set of polygonal
obstacles in the plane.

In Section 12.1, we introduce the terminology used throughout Chapters 12-14.
In Section 12.2, we introduce the topology buffer tree as an I/O-efficient data structure
to answer search queries on static binary trees. This structure is used in Sections
12.3 and 13.3 to answer queries on the fair split tree of a point set. In Section 12.3,
we present an [/O-efficient algorithm for constructing a fair split tree of a point set.
In Section 12.4, we show how to derive a well-separated pair decomposition of a

point set from its fair split tree. Finally, in Section 12.5, we present applications of

215

12.1 Definitions 216

this data structure. In particular, we use it to develop I/O-efficient algorithms for
computing a t-spanner of linear size and spanner diameter O(log N) for a point set
in d-dimensional space, and for solving the K-closest pair and K-nearest neighbor
problems in d dimensions. The dumbbell spanner discussed in Chapter 13 is based
on the spanner presented in Section 12.5, so that the spanner presented here can be
seen as a fundamental step for constructing a spanner which allows spanner paths to

be reported I/O-efficiently.

12.1 Definitions

We use the following terminology throughout the remainder of this thesis. Most of
these definitions are taken from [35], even though we have changed the definitions of
concepts related to the fair split tree of a point set to suit our needs. For a given point
set S C R?, the bounding rectangle R(S) is the smallest rectangle containing all points
in S, where a rectangle R is the Cartesian product [x1,)] X [T2, 25| X « -+ X [24, 2}]
of a set of closed intervals. The length of R in dimension i is ¢;(R) = z; — x;. The
maximum and minimum lengths of R are £, (R) = max{{;(R) : 1 < i < d} and
Luin(R) = min{4;(R) : 1 < i < d}. We call R a bozx if fpax(R) < 3lmin(R). If all
lengths of R are equal, R is a cube. We denote its side length by £(R) = fmax(R) =
Lin(R). Let imax(R) be a dimension so that £; . (z)(R) = fmax(R) and iy (R) be
a dimension so that 4; ;. (r)(R) = ¢min(R). For a point set S, let £;(S) = £;(R(S)),
lmex(S) = Lmax(R(S)), fmin(S) = Lmin(R(S)), imax(S) = imax(R(S)), and imin(S) =
imax(R(S5)).

Given a separation constant s > 0, we say that two point sets A and B are well-
separated if R(A) and R(B) can be enclosed in two balls of radius r such that the
distance between the two balls is at least sr, where a ball of radius r centered at
point ¢ is the point set B = {p € R? : disty(c, p) < 7} (see Figure 12.1).

We define the interaction product of two point sets A and B as A® B = {{a, b} :
a € ANb € BAa #b}. A realization R of A® B is a set {{A1, B1},...,{Ax, Bx}}

with the following properties:

12.1 Definitions 217

Figure 12.1
Two well-separated point sets A (black dots) and B (white dots).

(R1) A; C Aand B; C B, for 1 < <k,

(R2) A;NnB; =0, for1 <i <k,

(R3) (4i®B)N(A;®Bj)=0,for1 <i<j<k,and
(R4) A B=J", 4,9 B,

Intuitively, this means that for every pair {a, b} of distinct points a € A and b € B,
there is a unique pair {A;, B;} such that a € A; and b € B;. A realization is well-
separated if it has the following additional property:

(R5) Sets A; and B; are well-separated, for 1 < ¢ < k.

A binary tree over the points in S defines a recursive partition of S into subsets
in a natural manner. In particular, such a tree 7" has one leaf per point in S. An
internal node v of T represents the set of points in S corresponding to the leaves
of T that are descendants of v. We refer to a node representing a subset A C S
as node A. A leaf representing point a € S is referred to as leaf a or node {a},
depending on the context. We define the size of a node A € T as the cardinality of
set A. A realization of A ® B uses a tree T if all sets A; and B; in the realization
are nodes in T. A well-separated pair decomposition (WSPD) D = (T, R) of a point
set S consists of a binary tree T over S and a well-separated realization R of S ® S
which uses 7.

Two concepts which are useful when computing well-separated pair decomposi-

tions of point sets are those of fair splits and split trees. A split of a point set S is

12.1 Definitions 218

|
B30 il U S 8 91011 17 18 19
o6 9 [16017 |19 6 7 121315 16

Figure 12.2
A partition of a given point set using fair splits and the corresponding fair split tree.

a partition of S into two non-empty point sets lying on either side of a hyperplane
perpendicular to one of the coordinate axes and not intersecting any points in S.
A split tree T of S is a binary tree over S defined as follows: If S = {z}, T con-
tains a single node {z}. Otherwise, perform a split to partition S into two subsets
S1 and S,. Tree T is now constructed from two split trees for point sets S; and S,
whose roots are the children of the root node S of 7. For a node A in 7', the outer
rectangle R(A) is defined as follows: For the root S, let R(S) be a cube with side
length £(R(S)) = £max(S), centered at the center of R(S). For all other nodes A, the
hyperplane used for the split of p(A) divides R(p(A)) into two open boxes. Let R(A)
be the one that contains A. A fair split of A is a split of A where the hyperplane
splitting A is at distance at least £pax(A)/3 from each of the two sides of R(A) parallel
to it. A split tree formed using only fair splits is called a fair split tree (Figure 12.2).
A partial fair split tree T is a subtree of a fair split tree 7" containing the root of 7”.
That is, the leaves of T" may represent subsets of S instead of single points.

The following are alternative, more restrictive, definitions of outer rectangles and
fair splits which in particular ensure that all outer rectangles are boxes. This will
be useful in Chapters 13 and 14. The algorithm for constructing a fair split tree
makes sure that the splits satisfy these more restrictive conditions. For the root S
of T, the outer rectangle R(S) is defined as above. Given the outer rectangle R(A)
of a node, a split is fair if it splits ﬁ(A) perpendicular to its longest side, and the
splitting hyperplane has distance at least %EmaX(R(A)) from the two sides of R(A)

12.2 Searching a Hierarchy of Rectangles 219

parallel to it. Let R(A;) and R(A;) be the two rectangles produced by this split. We
call R(A;) and R(Aj) the split rectangles of A, and A,, respectively. For i € {1,2},
let R = R(A;). The following procedure defines R(A;): If R! can be split fairly,
let]A%(AZ) = R]. Otherwise, split R perpendicular to its longest side so that the
splitting hyperplane has distance at least 3/max(R}) from the two sides of R; parallel
to it. Omnly one of the two resulting rectangles is non-empty. Repeat the process,

replacing R} with this non-empty rectangle.

12.2 Searching a Hierarchy of Rectangles

Before describing our algorithm to compute a well-separated pair decomposition of
a point set, we describe an algorithm to preprocess an arbitrary binary tree so that
certain search queries on the tree can be answered I/O-efficiently. We apply this
solution to answer two types of search queries on a hierarchy of nested rectangles
represented by a binary tree. These queries arise in Sections 12.3.2 and 13.3.2 as
part of our algorithms for constructing a fair split tree and the dumbbell spanner of
a point set.

The algorithm combines the ideas of the topology B-tree [36] with those of the
buffer tree [11] to achieve its goal. Because of this, we call the data structure con-
structed by the algorithm the topology buffer tree, even though it is not an I/O-efficient
equivalent of Frederickson’s topology tree [77]. In particular, the constructed data
structure is static and needs to be rebuilt if the binary tree it represents changes.

In Section 12.2.1, we review the topology tree [77] and characterize the kind
of search queries that can be answered efficiently on binary trees using this data
structure. In Section 12.2.2, we describe the topology buffer tree, show that it can
be constructed in O(sort(N)) I/Os and that a batch of K search queries can be
answered in O(sort(N + K)) I/Os, provided that they meet the conditions defined in
Section 12.2.1. Finally, in Section 12.2.3, we apply the topology buffer tree to answer

queries on a hierarchy of nested rectangles.

12.2 Searching a Hierarchy of Rectangles 220

12.2.1 The Topology Tree—A Review

The topology tree, introduced by Frederickson [77], is a data structure to represent
dynamically changing, possibly unbalanced binary trees so that updates and queries
of the tree can be performed in O(log N) time. Frederickson proposed this data
structure as an alternative implementation of link-cut trees, which were introduced
by Sleator and Tarjan [157, 158]. Callahan et al. [36] argue that the topology tree
supports INSERT and DELETE operations at the same complexity as LINK and CuT
operations. The topology tree T of a rooted binary tree T is defined as follows:

A cluster C in T is the vertex set of a subtree 7" of T'. The root of cluster C
is the same as the root of tree 7". Two disjoint clusters C; and C, are adjacent if
there exist two vertices v € C; and w € Cy which are adjacent in 7. A cluster C;
is the child of a cluster C5 if the parent of the root r; of cluster C; is a node of Cl.
A restricted cluster partition of T is a partition of the vertex set of 7" into disjoint

clusters so that the following conditions hold:
(i) No cluster contains more than two vertices,
(ii) A cluster containing two vertices has at most one child, and
(iii) No two adjacent clusters can be combined without violating Condition (i) or (ii).

Given a binary tree, a multilevel cluster partition of a tree T is defined as a sequence
T =1T,,Ti,...,T, of binary trees. Tree T; is obtained from tree 7;_; by contracting
every cluster in a restricted cluster partition of 7; ; into a single vertex. Tree T} has
a single vertex. Now a topology tree T of tree T is obtained as follows: The vertex
set of 7 is the disjoint union of the vertex sets of trees T,...,T,.. The vertices of
tree T; are at level ¢ in 7, where level 0 is the level of the leaves of T and level r is
the level of the root of 7. A vertex v € T; is the parent of a vertex w € T;_; in T if
the cluster in the cluster partition of 7T;_; represented by v contains vertex w. Since

no cluster has size more than two, tree 7 is binary.

Lemma 12.1 (Frederickson [77]) For all1 <i <r, |T;| < 3|T; 4|.

12.2 Searching a Hierarchy of Rectangles 221

2047

1 7 12 14

Figure 12.3
In the left tree, the answer to the query “Does tree T store element 77" is stored in tree T'(v).
In the right tree, the answer is not stored in T'(v).

Lemma 12.1 implies that 7 = O(log N) and |T| = O(N). Next we characterize
the kind of search queries that can be answered efficiently on a binary tree 7" using its
topology tree 7. We call query g oblivious w.r.t. T if the information stored at every
node v € T is sufficient to decide whether the subtree T'(v) of T rooted at v stores an
answer to query ¢q. (Note that “There is no element stored in tree T matching query ¢”
is also a valid answer to query ¢.) That is, if we think about answering query ¢ by
traversing a search path in tree 7" which contains node v, then the decision made at
vertex v does not depend on decisions made higher up in the tree. In particular, given
an ancestor u of v in T so that T'(u) contains an answer to query ¢, the information
stored at node v is sufficient to decide whether to search T'(v) or T'(u) \ T'(v) for an
answer to query q. A regular binary search query is not oblivious w.r.t. a standard
binary search tree: Consider the two search trees shown in Figure 12.3. Then in both
cases, the answer to the query “Does tree T store element 77” is stored in tree T'(u).
However, the decision whether the answer to this query is stored in 7'(v) depends
on the values stored at v and the parent p(v) of v in T. The information stored in
the tree can be augmented to make the query oblivious. In particular, every node
can be labelled with the possible range of values stored in its subtree, as shown in

Figure 12.4.

12.2 Searching a Hierarchy of Rectangles 222

(Foete0)] 59

/ 12\]_4
[2,10) | [[10,13)

Figure 12.4
The trees from Figure 12.3 augmented so that standard binary search queries are oblivious w.r.t.
these trees.

The next lemma shows that oblivious queries can be answered using a topology

tree.

Lemma 12.2 Given a topology tree T for a binary tree T, an oblivious query on T

can be answered in O(log N) time.

Proof. Consider a node v € 7. We define the set Descy(v) as the set of vertices in Tj
which are descendants of v in 7. Let T, be the subtree of T induced by the vertices
in Desco(v), and let r, be the root of T,. Let every node v € T be augmented with
the information stored at node r, € T.

Now let v € T; and assume that an answer to query ¢ is stored in tree 7,. This
is true for the root r of 7, as T, = T'. If v has one child w in 7, then T, = T}, and
obviously an answer to query ¢ is stored in tree T, so that the search proceeds to
node w. Otherwise, let v and w be the two children of v. As u and w are in the
cluster represented by v, they are adjacent. W.l.o.g., let u be the parent of w. As
query ¢ is oblivious, the information stored with w is sufficient to decide whether
the subtree T'(r,) rooted at 7, stores an answer to query ¢. If this is the case,
the search continues to node w. Otherwise, it proceeds to u. This procedure takes

O(log N) time, as it visits only one node per level of 7. We have to show that it

12.2 Searching a Hierarchy of Rectangles 223

is correct. To do this, we show that this search maintains the following invariant:
If the search wvisits node v, then the nodes in T(r,) \ T, do not store an answer to
query q. The invariant immediately implies the correctness of the search procedure:
If tree T'(ry) does not contain an answer to query g, tree T, cannot contain such
an answer, so that an answer to query ¢ must be stored in tree 7,. Otherwise, the
invariant implies that no node in T'(r,,) \ T, stores an answer to query g because the
search visits node w. Hence, the answer to query ¢ stored in 7'(r,) must be stored
in T,,. We have to show the invariant.

The invariant holds for the root r of T, as T, = T, and T(r) \ T, = (. Now
assume that the invariant holds for a node v. If v has only one child w, the invariant
holds for w, as T,, = T, and T'(r,) = T'(ry,). Otherwise, let u and w be the children
of v as defined above. Then T'(r) C T(r,) and T, = T(ry) N1y, so that no node in
T(rw)\Ty = T(ry)\T, stores an answer to query ¢g. Hence, if the search visits node w,
the invariant is maintained. On the other hand, T'(r,) = T'(r,) and T(r,) \ T, =
(T(ry) \T,) UTy = (T(ry) \ T,) UT(ry). If the search visits node u, tree T'(r,)
does not contain an answer to query ¢ and no node in 7'(r,) \ 7, stores an answer to

query g. Hence, no node in T'(r,) \ T, stores an answer to query q. O

12.2.2 The Topology Buffer Tree

By Lemma 12.2, the topology tree is a useful tool to answer oblivious search queries
on a binary tree T efficiently. Next we show how to derive a modified version of
the topology tree which can be used to answer a batch of oblivious search queries
I/O-efficiently. Intuitively, we build a topology tree 7 for T and cut it into layers of
height £ log(M/B). The topology buffer tree B of T is obtained by contracting every
subtree in such a layer into a single node. Tree B can be used to simulate searching 7:
Filter all queries in the given set () of queries through B, from the root toward the
leaves. For every node v € B, load the subtree 7, of T represented by v into internal
memory and filter the queries in the set @), of queries assigned to v through 7, to

determine for every query, the child of v to which this query is assigned next. Since

12.2 Searching a Hierarchy of Rectangles 224

tree 7, is guaranteed to have size at most %/W and no more than \/W children,
we can use the distribution algorithm of [138] to implement the filtering of queries
through tree B. However, in order to bound the height of B by O(log,,/5(N/B)) and
the overhead I/Os incurred by the algorithm of [138] when distributing the queries
of one node to its children, we would like to guarantee that tree B has size O(N/M).
This is not easily achieved once tree 7 has been constructed, so that we choose a
different approach, which builds a two-level data structure. The first level of the data
structure is used to identify a small subtree of T' containing the answer to query q.
The second level of the data structure represents these small subtrees and can be used
to compute the final answer to each query ¢ € Q.

First we develop a modified procedure for answering oblivious queries on 7" using
a topology tree for a compressed version of 7" and then finishing the search in a small
subtree of T'. Given a binary tree T', we define a compressed tree T as follows: First
we reduce the number of leaves of T to O(N/M). Let L be the set of nodes in T so
that for every node v € L, |T'(v)| < M, and |T(p(v))| > M. Observe that no node
in L has another node in L as an ancestor. For every node v € L, let T, = T'(v). We
remove all proper descendants of v from 7. Let T" be the resulting tree. The leaves
of T" are the nodes in L. Now let Pi, ..., P, be the maximal paths in 7" whose nodes
have exactly one child in 7”. We partition each such path P; into a minimum number
of subpaths P; 1, ..., P, so that no path P, ; has size more than M. For a path P, ;,
let v be the topmost node of F;; and w be the bottommost node of F;;. Then we
define T, = P, ;, make the child of w the child of v, and remove all nodes in P; ; — {v}
from T". Let T be the tree obtained after performing this operation for all paths P;.
Finally let T, = ({v}, #), for all internal nodes of T with two children.

Lemma 12.3 Tree T has size O(N/M).

Proof. The number of leaves in T is the same as the number of leaves in T". The
number of internal nodes with two children as well as the number of paths P, ..., P is
at most twice the number of leaves in tree 7’. The total number of internal nodes with

one child in 7" is bounded by the number of paths P; ; into which paths Py, ..., P are

12.2 Searching a Hierarchy of Rectangles 225

partitioned. This number can be bounded by Y>F_[|P|/M] < k+ (Zle |H|) /M <
k+N/M. Since k < 2|L|, the total number of nodes in T is O(|L|)+ N/M. To bound
the number of leaves, we observe that for each such leaf v, the tree T'(p(v)) in T has
size more than M. Hence, there are less than N/M such parents in 7. Since every
node in 7 has at most two children, the number of leaves is thus bounded by 2N/M,
and the size of T is O(N/M). O

Now let 7 be a topology tree for T. Then trees 7 and T, v € T, can be used to
answer an oblivious search query on 7. To answer such a query ¢, we search tree T
to identify the leaf v € T so that tree T, stores the answer to query ¢. This can be
done using Lemma 12.2. Given leaf v, we search tree T, to find the answer to query gq.

A topology buffer tree B = (l’;’, (Tv)uef) for T consists of two parts: A list of
trees T, v € T, and a tree B constructed from 7 as follows: We cut 7 into layers
so that the i-th layer contains the subtrees of 7 induced by the vertices on levels
ih,...,(i + 1)h, where h = Llog(M/B) is the height of a layer. Note that two
successive layers overlap. Let 7y,...,7, be the subtrees of all layers. Tree B contains
one node v; per tree 7;. For every node v;, we define 7,, = 7;. Node v; is a child of

another node v; if the root of tree 7; is a leaf of 7.

Observation 12.1 Tree B has height O(logy p(N/B)) and O(N/M) nodes. Every
node v € B has degree O (\/M/B). Tree T, has size O (\/M/B), for allv € B.

To use the topology buffer tree B for answering oblivious search queries on T,
we represent it on disk as follows: We number the nodes of B level by level, from
left to right. Then we store their corresponding subtrees 7y,...,7, of T sorted in
this order, striped across all D disks. Trees T}, v € T, are stored striped across all
D disks, sorted according to some total order defined on the nodes of 7. The next
lemma shows that such a representation of B can be constructed in O(sort(N)) I/Os.
Theorem 12.1 shows that B can be used to answer a batch of K oblivious search

queries on T in O(sort(N + K)) 1/Os.

12.2 Searching a Hierarchy of Rectangles 226

Procedure BUILDTOPOLOGYBUFFERTREE

Input: A binary tree T' with N nodes.

Output: A topology buffer tree B = (B, (Ty),c+) of T.

Part 1—Construct tree T and trees T,, v € T:

1: For all nodes v € T', compute the size |T'(v)| of the subtree T'(v) of T rooted at v.

2: For all nodes v € T with |T'(v)| < M < |T'(p(v))|, mark all descendants of v as belonging
to T, = T'(v). Append them to a list X representing trees 7T, and remove all proper
descendants of v from 7.

3: Process the resulting tree 7" from the root toward the leaves:

At every node v which has one child and whose parent does not exist or has two
children, start a new path P; ; and send the identity of v and the size of path P; ; to
the child of v.

At every node v which has one child and whose parent has one child, let P;; be
the path containing p(v), and let u be the first node on this path. If |P; ;| < M,
increase |P; ;| by one and pass u and |P; ;| to the child of v, thereby adding v to P, ;.
If |P; ;| = M, start a new path at v and set p(v) = u.

At every node v which has zero or two children and whose parent has one child, let u
be the first vertex on the path P; ; containing p(v). Then set p(v) = u.

4: Scan the vertex set of T” to append all internal nodes of T” to list X, labelled with the
paths containing them. (Every node with two children is assumed to form a path of its
own.)

5: Process tree T" from the leaves toward the root and update the pointers of all nodes
in T to their children in 7. Discard all nodes whose parent is contained in the same
path P’i,j-

6: Sort the nodes in list X by the labels of the trees T} containing them.

Algorithm 12.1
Building a topology buffer tree.

Lemma 12.4 A topology buffer tree B representing a binary tree T of size N can be
constructed in O(sort(N)) 1/Os and linear space.

Proof. Procedure BUILDTOPOLOGYBUFFERTREE presented in Algorithms 12.1 and
12.2 constructs B. It is easy to verify that this procedure is correct. We analyze its
I/O-complexity.

Step 1 of the first part of the algorithm can be realized by processing the nodes

of T from the leaves toward the root using time-forward processing. Step 2 applies

12.2 Searching a Hierarchy of Rectangles 227

Procedure BUILDTOPOLOGYBUFFERTREE (CONTINUED)

Part 2—Construct 7

1: Ty + T

2: 10

3: while |T;| > 1 do

4: Process tree T; from the leaves toward the root, making a node of 7; form a cluster
with one of its children if the resulting cluster satisfies the conditions of a cluster
partition and this child is not part of a cluster yet.

5: Replace every cluster of T; with a single vertex v, using procedure CONTRACTGRAPH,
and label every such vertex v with the at most two nodes in its cluster, thereby making
them children of v in 7. Call the resulting graph T}, ;.

6: 1+ 1+1

7: end while

Part 3—Construct B:
1: Apply the Euler tour technique and list ranking to compute a preorder numbering v
of 7 and label every node v of T with its distance d(v) from the root.
2: Scan the vertex set of 7 to label every node T with the distance d’(v) = |d(v)/h]. For
every node v so that d(v) is a multiple of h, create an additional copy of v whose label
is d'(v) = |d(v)/h] + 1.
3: Sort the nodes of 7 lexicographically by their label pairs (d' (v), v(v)).

Algorithm 12.2
Algorithm 12.1 continued.

time-forward processing to process the nodes of 7" from the root toward the leaves.
Steps 3 and 5 apply time-forward processing to tree T’. Step 4 scans the vertex set
of T'. Finally, Step 6 sorts the vertex list X, which has size N. Hence, the first part
of the algorithm takes O(sort(NNV)) I/0Os.

Every iteration of the loop in Lines 3-7 of the second part of the algorithm
takes O(sort(|T;])) 1/Os, using time-forward processing to realize the computation
of Line 4 and procedure CONTRACTGRAPH to realize the computation of Line 5. By
Lemma 12.1, the sizes of trees T, 17, ... are geometrically decreasing, so that Part 2
takes O(sort(N)) I/Os.

12.2 Searching a Hierarchy of Rectangles 228

Line 1 of the third part of the algorithm takes O(sort(N/M)) I/Os [43]. Lines
2 and 3 take O(sort(N/M)) I/Os, since they scan and sort the vertex set of 7 once,
and this set has size O(N/M). Hence, the third part takes O(sort(N/M)) 1/Os,

which proves the lemma. O

Given a topology buffer tree B for a binary tree T', we use Algorithm 12.3 to answer
a batch @ of K oblivious search queries on 7. In this algorithm, we denote the set
of queries to pass through a node v € B by @Q,. Next we show that Algorithm 12.3
takes O(sort(N + K)) I/0Os.

Theorem 12.1 A batch of K oblivious search queries on a binary tree T of size N
can be answered in O(sort(N + K)) 1/Os using O((N + K)/B) blocks of external

memory.

Proof. The correctness of Algorithm 12.3 follows from Lemma 12.2. In particular,
this lemma implies that the first part of the algorithm (Lines 1-12) identifies the
correct node v of T for every query ¢ so that tree T, stores the answer to query q.
Then the second part of the algorithm (Lines 13-18) finishes answering query ¢ by
searching tree 7;,.

In order to apply Algorithm 12.3, the topology buffer tree B has to be constructed.
By Lemma 12.4, this takes O(sort(/N)) I/Os. Next we analyze the I/O-complexity of
Algorithm 12.3.

Reading subtrees 7, and 7, into internal memory in Lines 7 and 15 of the algo-
rithm takes O(scan(N)) I/Os in total, as the total size of these trees is O(N), and
these trees are stored striped across all D disks. Filtering the queries through trees
7T, and T, in Lines 9 and 17 does not incur any I/Os except for reading the queries
and writing the results because trees 7, and 7, fit into main memory. Since every
node in B has O (\/W) children, the distribution procedure of [138] performs
O(scan(|Qy|) + k) I/Os per node v € B to distribute the queries in Q, to its children
w1, ..., w, in a manner that allows every set @, to be read in O(scan(|Q.,|)) I/Os,

once the first block on each disk is known. The O(k) overhead I/Os are caused by

12.2 Searching a Hierarchy of Rectangles 229

Procedure BATCHEDOBLIVIOUSSEARCH

Input: A topology buffer tree B = (B, (T,) o) Tepresenting a binary tree 7' and a batch
Q = {qi,-..,qk} of oblivious search queries on 7.

Output: The set A = {ay,...,ax} of answers to the queries in Q.

1: Scan list () to augment every disk block storing queries from () with a pointer to the
next such block on the same disk.

2: Let S be the list of D pointers to the first block of queries on each disk.

3: Let h be the height of tree B.

4: fori=1,...,h do

5: Sz'_|_1 — 0

6: for every node v at level 4, from left to right do

7 Load tree 7T, into internal memory.

8: Load the next D items in S; into internal memory to find the start of set @, on
each disk.

9: Filter the queries in @, through 7, and use the distribution algorithm of [138] to
create sets Quy,,- . -, Quy, where wi, ..., wy are the children of v in B, sorted from
left to right.

10: The distribution algorithm generates a list S,,, of D pointers to the first block on

each disk storing queries in @Q,. Append lists Sy, ..., Sw, t0 Sit1, in this order.
11: end for
12: end for
13: Reorder the sublists S,, v € T, of Sp+1 in the same order as trees T,.
14: for every node v € T' do
15: Load tree T, into internal memory.
16: Load the next D items from Sp; into internal memory to find the start of set @, on
each disk.
17: Filter the queries in @), through T, and write the answer to every query to disk.
18: end for

Algorithm 12.3
Answering oblivious search queries using a topology buffer tree.

12.2 Searching a Hierarchy of Rectangles 230

reading set S, and writing sets S, . .., Sy,. Also, the last I/O spent on writing sets
Quys - - - Qu,, may write less than DB queries, so that this I/O cannot be charged
to a sufficient number of queries in @,. The O(k) additional 1/Os can be charged
to children w, ..., wy, thereby charging no node of B for more than O(1) overhead
I/Os. The overhead I/Os for generating list Sy;1 can be charged to the nodes of T,
again charging a node in 7 for O(1) I/Os. By Lemma 12.3 and Observation 12.1,
trees B and T have size O(N/M), so that the total number of overhead I/Os can be
bounded by O(N/M) = O(scan(N)). The total number of non-overhead I/Os per-
formed in Phase 1 is O (scan (}°,.5/@.])). However, 3" :|Q,| = O (K logar %)
because every query is contained in O (10g M %) sets (),. Hence, the first part of the
algorithm takes O(sort(N + K)) I/Os.

The second part of the algorithm takes O(scan(N + K)) I/Os because reading
subtrees T, takes O(scan(N)) I/Os, as argued above, all query sets can be read in
O(scan(K) 4 |T|) = O(scan(N) + scan(K)) 1/Os, and writing all answers to queries
q1,---,qx to disk takes O(scan(K)) I/Os, as they are written in the order in which
the queries are read, which can be done in a striped manner.

Summing the complexities of constructing tree B and the two parts of Algo-

rithm 12.3, we obtain the theorem. O

12.2.3 Querying a Hierarchy of Rectangles

Next we show how to use the topology buffer tree introduced in Section 12.2.2 to
answer two types of queries on a tree T' and a point set S which arise as part of
the algorithms for constructing a fair split tree and the dumbbell spanner of a point
set in Sections 12.3.2 and 13.3.2. For the first type of query, tree 7" represents a
hierarchy of nested rectangles. For the second type of query, T is a fair split tree,

hence representing a hierarchy of nested rectangles with additional properties.

12.2.3.1 Deepest Containment Queries

Let S C R? be a point set and T be a tree with the following three properties:

12.2 Searching a Hierarchy of Rectangles 231

(i) Every node v € T has an associated rectangle R(v),
(ii) For the root r of T, R(r) contains all points in S,
(iii) For every node v # r in T, R(v) C R(p(v)), and
(iv) If R(v) N R(w) # (, then w.l.o.g. R(v) C R(w) and w is an ancestor of v.

A deepest containment query on T is the following: Given a point p € S, find the
node v € T so that p € R(v) and there is no descendant of v satisfying this condition.

We show how to answer these queries for all points in S I/O-efficiently.

Lemma 12.5 Given a set S C R? of N points and a tree T with Properties (i)—(iv)

above, deepest containment queries on 1" for all points p € S can be answered in

O(sort(N + |T'|)) I/Os and linear space.

Proof. We can apply Theorem 12.1 to solve this problem in O(sort(N + |T])) 1/Os
and linear space if we can show that a deepest containment query is oblivious w.r.t.
tree T. To see the latter, let p € S be a query point and v be the answer to a deepest
containment query on 7" with point p. Then p € R(w) if and only if w is a node on
the path from v to r in 7. Hence, tree T(w) contains the answer to the query if and
only if p € R(w). The latter condition can be tested by comparing the coordinates
of p with the coordinates of the hyperplanes defining rectangle R(w). Hence, deepest

containment queries are oblivious w.r.t. 7. O

12.2.3.2 Restricted Containment Queries

Let T be a fair split tree of some point set S C R?. A restricted containment query
on T is the following: Given a point p € R and two real numbers x and y, report all
nodes v € T so that p € R(A), Lmax(A) < z and Lo (R(A)) > .

To develop an I/O-efficient solution to this problem, we need to show a few
technical lemmas. For a node A € T, we denote its k-th ancestor by p*)(A). In
particular, p®(4) = A, p+)(A) = p(p@(A)) if p®)(A) is not the root of T, and
pi+Y(A) = pi(A) if p®)(A) is the root of T.

12.2 Searching a Hierarchy of Rectangles 232

Lemma 12.6 Let A be a node in a fair split tree T whose distance to the root of T
is at least d, and Iet A’ = p@(A). Then lpa(R(A)) < 3lmax(A").

Proof. Let A’ = Ay, Ay,...,Aq = A be the nodes on the path from A’ to A in T.
For j = 0,...,d, let i; be the dimension so that rectangle R(Aj) is split using a
hyperplane H; perpendicular to dimension ¢;. Because there are d + 1 dimensions
%0, - - -, 14, there have to be two indices 0 < z < y < d, so that i, = ¢,. Since
Lax(Az) < lrax(A’), and at least one point of A, has to lie on either side of hyper-
plane H,, no point in A,;; has distance more than £,,,(A’) from hyperplane H,.
Since A, C A4, and at least one point of A, has to lie on either side of hyper-
plane H,, hyperplane H, has distance at most fp,x(A") from H,. Rectangle R(Ay)
lies completely to one side of H,, namely on the same side as hyperplane H,. On
the other hand, at least one third of R(Ay) has to lie on either side of H, because
the split is fair. Hence, at least one third of R(A,) lies between H, and H,, so that
l;, (R(A,)) < 3lmax(A"). Since the outer rectangles of nodes in the split tree are al-
ways split perpendicular to their longest side, £max(R(A,)) = 4, (R(A,)). In order to
see that £max(R(A)) < 3lmax(R(A")), it remains to observe that R(4) C R(4,), so
that Lmax(R(A)) < Luax(R(Ay)). O
Lemma 12.7 Let A be a node in a fair split tree T whose distance from the root

of T is at least d, and let A" = p‘D(A). Then lp,(R(A)) < %Zmax(R(A’)).

Proof. We distinguish two cases. If every dimension is split exactly once along the
path from A’ to A, then £y, (R(A)) < %EmaX(R(A’)) because £;(R(A")) < lmax(R(A)),
for 1 <14 < d, and every dimension is split fairly. If there is a dimension which is not
split along this path, then there has to be a dimension ¢ which is split twice. Let A”
be the node where the second split in dimension 7 occurs. As dimension i has been
split before, £;(R(A")) < %EmaX(R(A'))- On the other hand, every outer box is split

perpendicular to its longest dimension, so that £y, (R(A”)) = £;(R(A”)). The lemma
now follows because R(A) C R(A") and hence lmax(R(A)) < Lmax(R(A")). O

12.2 Searching a Hierarchy of Rectangles 233

Using Lemmas 12.6 and 12.7, we can bound the number of nodes in 7" reported

for a restricted containment query.

Lemma 12.8 Let T be a fair split tree, let p be a point in R¢, and let = and y be
two real numbers. Then there are O(dlog(z/y)) nodes in T matching a restricted

containment query for point p with parameters x and y.

Proof. Assume w.l.0.g. that p € R(S), where S is the root of tree T because otherwise
no node of T matches the query. Then all nodes matching the query appear along a
root-to-leaf path in 7" because the nodes at any level in 7" are disjoint. Let A be a
node in 7" which matches the query and so that no ancestor of A matches the query.
Let B be a node in T" which matches the query and so that no descendant of B
matches the query. It suffices to show that A = p¥)(B), for some k = O(dlog(z/y)).
Assume w.l.o.g. that £ > d because otherwise, the lemma holds.

Since node A matches the query, £pna(A) < z. Let A’ be the node on the path
from A to B so that A = p@(A"). Since k > d, node A’ exists. By Lemma 12.6,
Umax(R(A")) < 3lmax(A).

Since node B matches the query, fmin(R(B)) > y and hence lma(R(p(B)) > y.
Since k > d, A’ is an ancestor of p(B). Since fmax(R(A")) < 3z and max(R(p(B)) > v,
it follows from Lemma 12.7 that A’ = p{(p(B)), where | < dlogs»(37/y). Hence,

k <1+d(1+logs;s(3z/y)) = O(dlog(z/y)). O

We are now ready to present our algorithm for answering a batch @ of restricted
containment queries on a fair split tree 7. We use a topology buffer tree B representing
tree T to answer the queries in). However, we cannot apply Theorem 12.1 directly
because the algorithm is required to report all nodes of T' satisfying the query. We
modify the search algorithm of Lemma 12.2 so that it reports all nodes matching a
query ¢, given a topology tree T representing 7'. Below we argue that this procedure
leads to an I/O-efficient algorithm, using a topology buffer tree B of T instead of
tree T.

12.2 Searching a Hierarchy of Rectangles 234

So let T be a topology tree representing the fair split tree 7', and let ¢ = (pg, Z4, Yq)
be a query with point p, € R? and parameters x, and y,. Then we filter query g
through tree 7, starting at the root. For every node v € 7T reached by query ¢
during the query procedure, we apply the following rules: If v is a leaf and node r,
matches the query, we report r, as the pair (¢,7,). If v is an internal node with one
child w, we forward query ¢ to node w. If v is an internal node with two children
u and w, assume w.l.o.g. that tree 7T}, contains the parent of the root r, of tree 7).
In this case, we call u the master and w the slave of node v. If query point p, is
not contained in R(rw), we send query ¢ to node u. Otherwise, we distinguish three
cases: If Lin(R(r)) < yg, We continue the search at u only. If fay(ry) > T4, We
continue the search at w only. Otherwise, we make another copy of query ¢ and send
one copy to each of the two children v and w of v. The following lemma shows that

this procedure is correct and I/O-efficient.

Lemma 12.9 Given a fair split tree T of a set S of N points in R? and a set Q
of K restricted containment queries, the queries in set () can be answered on T in

O(sort(N+ K+ P)) I/0s using O((N + K + P)/B) blocks of external memory, where
P=0 (d quQ log xq/yq> is the number of nodes reported for all queries in Q).

Proof. In order to make the above search procedure I/O-efficient, we use a topology
buffer tree B instead of the topology tree 7 representing 7. We filter the queries
in @ through B using Algorithm 12.3. Once all queries have been processed, we sort
the reported pairs (g,7,) lexicographically, thereby storing all answers to query ¢
consecutively. By Theorem 12.1, the I/O-complexity of this solution is bounded by
(@) (sort (N + e a(q))), where a(g) is the number of copies of query ¢ created by
the procedure. Below we show that a(q) = 1+O(F,), where P, is the number of nodes
reported for query ¢. By Lemma 12.8, P, = O(dlog(z,/y,)), so that the I/O and
space bounds as claimed in the lemma follow. Before showing that a(q) =1+ O(F,),
for all ¢ € (), we prove that the procedure above reports all nodes matching query gq.

It is obvious that the procedure deals with leaves of 7 and nodes with one child

correctly, as there are no choices to be made. So let v be a node with master u

12.3 Constructing a Fair Split Tree 235

and slave w. If the search does not continue to w, there are two possibilities: either
P & R(rw), or Lunin(R(ry)) < y,- Since R(A) C R(r,), for all nodes A € T,,, no node
in T, matches query ¢ in either of the two cases. If the search does not continue
t0 U, pg € R(ry) and lax(r) > 4. Since p, € R(r,), every node A € T, matching
the query is an ancestor of 7, so that fmax(A) > lmax(rw) > z,. Hence, no node
in T,, matches the query in this case. We have shown that the procedure visits a node
v € T unless it has proof that no node in 7, is an answer to the query. Hence, it is
guaranteed to find all nodes matching the query.

It remains to show that a(q) = 1+ O(PF,), for every query ¢ € Q). To see this,
observe that when query ¢ is duplicated at a node v with slave w, node r,, matches
the query because in this case, p; € R(7w), lmax(Tw) < g, and Luin(R(ry)) > -
Thus, the claim follows if we can show that there are no two slaves w # w' with
Tw = Ty'-

So assume for the sake of contradiction that there are two such slaves w # w’ € T.
Let w be the slave of a node v, and let w’ be the slave of a node v'. Observe that all
nodes z € T so that r,, € T, appear on a path from a leaf of 7 to the root. Hence,
w.l.o.g., w is an ancestor of w' and T,y C T,. Let u' be the master of v'. Then
p(rw) € Ty € Ty C T, because w is an ancestor of v'. However, since w is itself a
slave, p(ry) € Ty, where u is the master of node v. Hence, p(ry,) & T, which leads

to the desired contradiction. O

12.3 Constructing a Fair Split Tree

Our algorithm for computing a WSPD of a point set S is based on the algorithm
of [40]. As this algorithm uses the information provided by a fair split tree of S to
derive the desired WSPD of S, we first present an I/O-efficient algorithm to compute
a fair split tree of a point set. The algorithm follows the framework of the parallel
algorithm of [34]; but we do not simulate the PRAM algorithm as this would lead
to a higher I/O-complexity. We first outline the algorithm and then show that each

of its steps can be carried out I/O-efficiently. As we follow the framework of [34],

12.3 Constructing a Fair Split Tree 236

Procedure FAIRSPLITTREE

Input: A point set S C R? and a box Ry containing all points in S.
Output: A fair split tree T of S.

1: if |S| < M then

2: Load point set S into internal memory and apply the algorithm of [40] to compute 7.

3: else

4: Apply procedure PARTIALFAIRSPLITTREE to compute a partial fair split tree 7" of S.
The leaves of T" have size at most N.

5: Let Sq,...,S) be the leaves of T".

6: fori=1,...,kdo

T Apply procedure FAIRSPLITTREE recursively to point set S; and the outer rectan-
gle R(SZ) of S; in T' to compute a fair split tree T; of S;.

8: end for

9: T=TUThHU---UTy.

10: end if

Algorithm 12.4
Computing a fair split tree of a point set.

the correctness of our algorithm follows from [34], provided that the presented I/O-
efficient versions of the different steps of the framework are correct.

To compute a fair split tree T of a point set S, we use Algorithm 12.4, providing
it with set S and a cube Ry containing S as input. The side length of Ry is ¢(Ry) =
lmax(S). The centers of Ry and R(S) coincide. The algorithm computes the split
tree T recursively. First it computes a partial fair split tree 7" of S. Then it recursively
computes fair split trees for the leaves of 7”. In the rest of this section, we show that
T' can be computed in O(sort(N)) I/Os. As we show in the next lemma, the leaves
of T" are small enough to ensure that the total I/O-complexity of Algorithm 12.4 is
O(sort(N)).

Lemma 12.10 Given a set S of N points in R?, Algorithm 12.4 computes a fair split
tree T of S in O(sort(N)) I/Os and linear space.

12.3 Constructing a Fair Split Tree 237

Procedure PARTIALFAIRSPLITTREE

Input: A point set S C R? and a box Ry containing all points in S.
Output: A partial fair split tree 7" of S whose leaves have size at most |S|®.

1: Compute a compressed pseudo split tree T, of S so that none of the leaves of T, has
size more than |S|*.

2: Expand tree T, to obtain a pseudo split tree 7" of S whose leaves have size at most |S|*.

3: Remove all nodes of 7" not representing any point in S. Compress resulting paths of
degree-2 vertices into a single edge. The resulting tree is T".

Algorithm 12.5
Computing a partial fair split tree of a point set S.

Proof. By Lemma 12.11, procedure PARTIALFAIRSPLITTREE correctly computes a
partial fair split tree 7" of S. This implies that Algorithm 12.4 computes a fair split
tree of S, as it recursively augments 7" with fair split trees of its leaves.

By Lemma 12.11, Line 4 of Algorithm 12.4 takes O(sort(N)) I/Os. Thus, we

obtain the following recurrence for the I/O-complexity of Algorithm 12.4:

Z(N) < c-sort(N) + ZI(NZ')’

i=1
where c is an appropriate constant so that Algorithm 12.5 takes at most ¢-sort(N) I/Os
and N; is the size of set S;. Since N; < N, this can be expanded to

Z(N) < c¢-sort(N) Z o,
i=0

whose solution is Z(N) < —“sort(N) = O(sort(NN)). Hence, Algorithm 12.4 takes

l—a

O(sort(N)) I/Os. Since Algorithm 12.5 uses linear space, Algorithm 12.4 uses linear

space. U

In the rest of this section, we present the details of procedure PARTIALFAIRSPLIT-

TREE (Algorithm 12.5) and prove the following lemma.

Lemma 12.11 Given aset S of N points in R¢, Algorithm 12.5 takes O(sort(N)) I/Os
and linear space to compute a partial fair split tree T' of S each of whose leaves

represents a subset of at most N® points of S, where oz = 1 — .
2d

12.3 Constructing a Fair Split Tree 238

Algorithm 12.5 computes the desired partial fair split tree 7" in three phases. The
first two phases produce a tree T" which is almost a partial fair split tree, except that
some of its leaves may represent boxes that are empty. We call 7" a pseudo split tree.
The third phase removes these empty leaves and contracts 7" to obtain T".

To construct T”, the first phase constructs a tree T, which is a compressed version
of T". In particular, some leaves of 7" are missing in 7, and some edges of 7, have to
be expanded to a tree that can be obtained by a sequence of fair splits. As we will see,
attaching the missing leaves is easy, and the compressed edges represent a particularly
nice sequence of fair splits, so that these edges can be expanded I/O-efficiently. Next
we provide the details of the three phases of Algorithm 12.5.

12.3.1 Constructing T,

To construct tree T,, we partition each dimension of rectangle R, into slabs so that
each slab contains at most N® points. We ensure that every leaf of 7T, is contained in
a single slab in at least one dimension. This guarantees that every leaf of T, contains
at most N points. The construction of these slabs is the only place where the
construction of 7, depends on the point set S. Once the slabs are given, we consider
the nodes of T, as rectangles produced from rectangle Ry using fair splits.! The slabs
are bounded by [N'~®] + 1 axes-parallel hyperplanes. We use these slab boundaries
to guide the splits in the construction of 7,, thus limiting the number of rectangles
that can appear as nodes of 7.. This is important for the following reason: Even
though we introduce the concepts of the construction of 7, as if we constructed T,
by recursively splitting smaller and smaller rectangles, we cannot afford to apply this
sequential approach, as it is not I/O-efficient. Instead, we generate all rectangles

that might be nodes of T, and construct a graph which has 7, as a subgraph. Then

L The splits are not fair in the exact sense of the definition because it is not guaranteed that there
is at least one point on each side of the splitting hyperplane. All other conditions of a fair split are
satisfied.

12.3 Constructing a Fair Split Tree 239

we extract T, from this graph. The bounded number of nodes guarantees that the
constructed graph has linear size, so that we can extract 7, efficiently.

Now consider a node R € T, which is to be split. Let R’ denote the largest
rectangle contained in R whose sides lie on slab boundaries. We maintain the following

invariants for all rectangles R generated by the algorithm:
(i) In each dimension, at least one side of R lies on a slab boundary,
(ii) For all i € [1,d], either 4;(R') = £;(R) or {;(R') < 24;(R), and
(ili) min(R) > 3lmax(R) (ie., R is a box).

Invariants (i) and (ii) hold for rectangle Ry by definition. Invariant (iii) also holds
for Ry because Ry is either a cube or a rectangle computed by a previous invocation
of the algorithm. Given that rectangle R satisfies Invariants (i)-(iii), we split it
into two rectangles using a hyperplane perpendicular to dimension iy, (R), applying
one of the following cases. Each of these cases is said to “produce” one or two
rectangles, which are the children of R in 7, and are subject to recursive splitting if
necessary. To ensure that these recursive splits can be carried out, we make sure that
the rectangles produced by all three cases satisfy Invariants (i)—(iii). A rectangle R is
called constructible if it can be produced by applying one of these cases to a rectangle

which satisfies Invariants (i)—(iii).

Case 1. /yax(R) = 4;,,.(r)(R'). That is both sides of R in dimension ipa(R) lie
on slab boundaries (Figure 12.5). We find the slab boundary in this dimension that
comes closest to splitting R into equal halves. If this boundary is at distance at
least 3lmax(R) from either side of R in dimension imax(R), Case la, we split rectan-
gle R along this slab boundary (Figure 12.5a). Otherwise, Case 1b, we split rectan-
gle R into two equal halves in dimension im,(R) (Figure 12.5b). This case produces
the two rectangles on both sides of the split.

If rectangle R does not satisfy Case 1, 4;,,, (r)(R') < %Emax(R). That is, only one
side of R in dimension im.x(R) lies on a slab boundary. We call this slab boundary H.

12.3 Constructing a Fair Split Tree 240

Figure 12.5
The two subcases of Case 1 of the rectangle splitting rule.

Case 2. /lnax(R') > 5:lmax(R). If 4; .\ (r)(R') > 3lmax(R), Case 2a, we split rect-
angle R along the hyperplane containing the side of R' furthest away from H (Fig-
ure 12.6a). Otherwise, Case 2b, we split rectangle R along a hyperplane at dis-

tance y = 2 (2)? fnax(R') from H, where j is the unique integer so that lmax(R) <

2 (2) lmax(R') < 2lmax(R) (Figure 12.6b). Note that 0 < j < —|log —/log%]. So
there are only O(1) choices for j. This case produces only the rectangle containing R’'.
We reattach the other rectangle as a leaf when constructing 7" from 7,. The reason
for not including this second rectangle as a node of T, is that it violates Invariant (i)
in Case 2b. However, the second rectangle contains at most N* points, as it is con-

tained in a single slab of rectangle R,. Hence, we can attach it as a leaf of 7" without

violating the constraint that no leaf of 7" contains more than N* points.

Case 3. /max(R') < 5-fmax(R). Then R’ shares a unique corner with R. We con-
struct a cube C containing R’ that shares the same corner with R and R’ and has
side length £(C) = 3/ (R') (Figure 12.7). This case produces the rectangle C. The
edge between R and C is a compressed edge which has to be expanded to obtain a
sequence of fair splits that produce C from R. Again, the reason for introducing this
compressed edge is that the rectangles produced by this sequence of fair splits would
violate Invariant (i).

It is shown in [34] that each of the rectangles produced by these three cases

satisfies Invariants (i)—(iii). It is also shown in [34] that in all three cases, each of

12.3 Constructing a Fair Split Tree 241

Figure 12.6
The two subcases of Case 2 of the rectangle splitting rule.

the produced rectangles can be uniquely described using two slab boundaries and
a constant amount of information in each dimension. As each dimension contains

O(N'~%) slab boundaries, the following lemma holds.

Lemma 12.12 (Callahan [34]) There are O (N*1~®)) constructible rectangles.

We apply the above splitting rules to obtain tree T, as follows: The root of tree T,
is rectangle Ry. This node has two children, as rectangle R, always satisfies Case 1.
For each of the children, we recursively construct a compressed pseudo split tree until
all rectangles have been split into rectangles that are not intersected by any slab
boundary in at least one dimension. These rectangles are the leaves of 7T,. Since a
rectangle completely contained in a slab contains at most N points, it is guaranteed
that no leaf in 7. has size more than N¢.

As mentioned above, constructing tree 7, using repeated fair splits does not lead
to an I/O-efficient algorithm for constructing 7,.. Hence, we extract tree T, from a
graph G whose nodes are all the constructible rectangles and which contains 7, as
a subgraph. Graph G is defined as follows: There is a directed edge (R1, Rs) in G,
where R; and R, are two constructible rectangles, if rectangle Ry is produced from
rectangle R; by applying the above rectangle splitting rules. This implies that T is
the subgraph of G' containing all nodes R so that there exists a directed path from R
to R in G.

12.3 Constructing a Fair Split Tree 242

[N

[N
L
r
|
|
|
|
|
|
I
|

Figure 12.7
Case 3 of the rectangle splitting rule.

It is not hard to see that graph G is a DAG, having Ry as one of its sources.

Every vertex in G has out-degree at most two, which guarantees that the total size

1
2d”

Lemma 12.12 ensures that G has size O(N). In order to be able to extract T, from G

of graph G is linear in the number of constructible rectangles. Choosing o =1 —

using the time-forward processing technique, we need an I/O-efficient procedure to
topologically sort G. This is less trivial than it seems, as there exists no generally I/O-
efficient algorithm for topologically sorting sparse graphs. The solution we propose

is based on the following observation.

Observation 12.2 Let R, and R, be the two rectangles produced by splitting a rect-
angle R. Then fori € {1,2}, Y°7_, ¢;(R;) < Y_0_, 4;(R).

Since graph G contains an edge (Ry, R») only if rectangle R, is one of the rectangles
produced by a split of R; or it is contained in one of the rectangles produced by a
split of R, Observation 12.2 implies that G can be topologically sorted by sorting its
vertices by the sums of their side lengths, in decreasing order. We are now ready to
present the algorithm for computing 7,. The algorithm consists of three steps: Step 1
computes the slabs into which rectangle Ry is partitioned. Step 2 constructs graph G

from these slab boundaries. Step 3 extracts tree 7.

Step 1—Constructing the slabs. To compute the slabs, we iterate over all d di-
mensions. For each dimension, we sort the points in S by their coordinates in this

dimension. We scan the sorted list of points and place a slab boundary between the

12.3 Constructing a Fair Split Tree 243

(jN®)-th and (jN® + 1)-st point, for 1 < j < |[N'7®|. In addition, we place slab
boundaries which coincide with the sides of Ry perpendicular to the current dimen-

sion. As we scan and sort set S once per dimension, the construction of the slabs in
all dimensions takes O(d - sort(N)) = O(sort(N)) I/Os.

Step 2—Constructing graph G. As mentioned before, every constructible rectan-
gle can be encoded using two slab boundaries plus a constant amount of information
per dimension. For instance, the i-th dimension of a rectangle which is produced by
a type-1b split can be fully represented by the two slab boundaries of the original
rectangle plus two flags saying that the rectangle is the result of a type-1b split and
which of the two produced rectangles this is. Given that rectangles can be represented
this way, we construct the vertex set of graph G using d scans, one per list of slab
boundaries. The i-th scan scans the list of slab boundaries in dimension ¢ and the
vertex set of G' and fills in the characteristic of each vertex in dimension i.

Every node of G now stores a complete representation of the rectangle R it repre-
sents. Before constructing the edge set of G, we augment every node with a complete
description of the largest rectangle R’ contained in R. To do this, we iterate over all
dimensions and compute the boundaries of all rectangles R’ in this dimension. To do
the latter, we build a buffer tree over the slab boundaries in this dimension. Finding
the boundaries of rectangle R' contained in rectangle R now amounts to answering
standard search queries on the constructed tree. As there are O (N'~%) slab bound-
aries and O(N) rectangles R, these queries can be answered in O(sort(N)) I/Os per
dimension. As we assume that d is constant, the construction of rectangles R’ takes
O(d - sort(N)) = O(sort(N)) I/Os in total.

To construct the edge set of G, we need to find at most two out-edges, for each
rectangle R. As the dimensions of rectangles R and R’ are stored locally with R, we
can distinguish between Cases 1, 2, and 3 based only on the information stored with
node R. The information is also sufficient to distinguish between Cases 2a and 2b,
so that in Cases 2 and 3, we can construct the out-edge of rectangle R only from the

information stored with R. To distinguish between Cases 1a and 1b, we need to find

12.3 Constructing a Fair Split Tree 244

the slab boundary which comes closest to splitting R in half in dimension im,y(R). To
do this, we apply the same approach as for computing rectangles R'. In particular,
we build a buffer tree over the slab boundaries for each dimension. Then we query
this buffer tree with the position of the hyperplane H' splitting rectangle R in half.
This query produces the position of the two slab boundaries on each side of the
hyperplane, so that it is easy to select the one which is closer to H'. Again, this
requires O(N) queries on buffer trees of size O (N'™%) to be answered. Hence, the
edge set of G can be constructed in O(sort(N)) I/Os.

Instead of adding edges as separate records it is more convenient to represent the
edges implicitly by storing all vertices as triples (R, Ry, Ry), where R; and R, are
the two rectangles produced by the split of R. If the split of R produces only one
rectangle Ry, we represent R by the triple (R, Ry, null). If R is a leaf, we represent R
by the triple (R, null, null).

Step 3—Extracting T.. Given graph G as constructed in Step 2 of the algorithm,
the extraction of T, is now rather straightforward. In particular, graph G can be
topologically sorted in O(sort(N)) I/Os, using Observation 12.2. Then we label
every node except R, as inactive. Node R, is labelled as active. We apply time-
forward processing to relabel the nodes of G. In particular, every active node remains
active and sends “activate” messages to its out-neighbors. An inactive node receiving
an “activate” message along one of its in-edges becomes active and forwards the
“activate” message along its out-edges. As graph G has size O(N), this application
of time-forward processing takes O(sort(/N)) I/Os. Once the algorithm finishes, every
node reachable from R is active, while all other nodes are inactive. However, we have
observed above that a node is in T if and only if it is reachable from R, in G. Hence,
a final scan of the vertex set of GG suffices to extract the vertices of tree T,.. This takes
another O(scan(N)) I/Os.

We have shown that each of the three steps of the construction of 7, can be carried

out in O(sort(N)) I/Os. Hence, we obtain the following lemma.

12.3 Constructing a Fair Split Tree 245

Lemma 12.13 Given a point set S C R* and a rectangle R, enclosing S, a compressed
pseudo split tree of S with root Ry can be constructed in O(sort(N)) 1/Os and linear

space.

12.3.2 Constructing T

The goal of the second phase of Algorithm 12.5 is to construct a pseudo split tree 7"
of S from the compressed pseudo split tree T, constructed in Phase 1. That is, tree 7"
may have some leaves that do not correspond to any point in S. Apart from that it is
a partial fair split tree whose leaves represent point sets of size at most N®. In order

to obtain 7" from T,, the following things need to be done:

(1) The leaves that are discarded in Case 2 because they violate Invariant (i) need
to be reattached. It is easy to see that each such leaf is completely contained in
a slab. Hence, it contains at most N® points, and just attaching it is sufficient.

No splits are required.

(2) Every compressed edge (R, C) of T, produced by an application of Case 3 needs
to be replaced by a sequence of fair splits producing the shrunk cube C from

rectangle R. Note that such a sequence of fair splits exists because £(C) =

%EmaX(R’) < %Emax(R) S %Emin(R)-

(3) The points of S need to be distributed to the leaves of 7" containing them. This
is required to recognize and discard empty leaves in Phase 3 of Algorithm 12.5.
Also, the recursive construction of fair split trees for the leaves of the partial fair
split tree obtained at the end of Phase 3 requires the point set contained in each

leaf.
Next we show how to carry out these tasks in an I/O-efficient manner.
Step 1—Reattaching missing leaves. Recall that every node R in T stores a full

description of rectangles R and R'. As we argued in Section 12.3.1, this is sufficient

to distinguish between Cases 1, 2, and 3, and to compute the rectangle produced

12.3 Constructing a Fair Split Tree 246

by a type-2 split. Given a type-2 rectangle R and the rectangle R; the type-2 split
produces, the discarded rectangle is rectangle Ry = R\ R;.

Given that the information stored with every node R of T, is sufficient to decide
whether it is of type 2 and to compute the rectangle that has been discarded after
splitting R, a single scan of the vertex set of 7, suffices to produce all discarded
nodes. In particular, for every type-2 node R represented by the triple (R, Ry, null),
we change its triple to (R, Ry, R2) and add node R; to the vertex set of T,. This takes
O(scan(|T|)) = O(scan(N)) I/Os. We call the resulting tree T.'.

Step 2—Distributing the points of S and expanding compressed edges. As a
result of the previous step, every point in S is contained either in some box which is
a leaf of tree T, or it is contained in a region R \ C, where (R, C) is a compressed
edge produced by Case 3. Before expanding all compressed edges, we need to deter-
mine the region containing each of the points in S. This is equivalent to answering
deepest containment queries on 7.7, for all points in S. By Lemma 12.5, this takes
O(sort(N)) I/0Os.

To replace every compressed edge (R,C) produced by Case 3, we simulate one
phase of the internal memory algorithm of [40] for constructing a fair split tree. This
produces a tree T'(R, C) whose leaves form a partition of R into boxes. One of these
leaves is C. All internal nodes of T'(R,C) are ancestors of C. That is, intuitively,
tree T(R, C) is a path from R to C' with an extra leaf attached to every node on this
path except C. Note that every leaf R’ # C of T'(R, C) contains at most N points,
as it is completely contained between two slab boundaries in dimension iy, (p(R'))-
Hence, replacing every edge (R, C') in 7" with its corresponding tree T'(R, C') produces
a pseudo split tree 7" of S. It remains to show how to construct tree T'(R, C) I/O-
efficiently.

We apply the following process recursively, starting with R’ = R, until R’ =
C: If Lyax(R') > 3¢(C), we apply a split in dimension iy, (R') to produce two
rectangles R; and R, of equal size. Otherwise, observe that R’ and C share one

side perpendicular to dimension iy, (R’). Let H be the hyperplane containing the

12.3 Constructing a Fair Split Tree 247

other side of C perpendicular to dimension i, (R'), and let R; and Ry be the two
rectangles produced by splitting R’ along hyperplane H. In both cases, let R; be the
rectangle containing C. It is not hard to verify that both R; and R, are boxes and that
either ¢;(R;) = £(C) or £;(Ry) > 34(C), for every dimension 1 < i < d. The latter
condition guarantees that the procedure can be applied recursively to rectangle R;.
If rectangle R, contains at least one point, we distribute the points in R'\ C to
rectangles R; and Ry, make rectangles R; and Ry children of rectangle R’, and repeat
the process with R’ = R;. Otherwise, we simply replace rectangle R’ with Ry,
essentially shrinking rectangle R', and repeat. This guarantees that only O(N) splits
are performed for all compressed edges (R,C) in T,

To carry out this procedure, we use d sorted lists Ly, ..., Ly, where list L; stores
the points in R\ C sorted by their i-th coordinates. When splitting rectangle R’

in dimension fmax = imax(R'), we scan list L;_ . from the appropriate end until the

Tmax

first point in R; is found. If this is the first point in L we perform a shrink

z.max Y

operation, as rectangle Ry is empty. Otherwise, we remove the scanned points from

list L;

Tmax

and add them to the point set of leaf Ry. Now, in order to invoke the
algorithm recursively, the points in Ry have to be removed from all lists L;, 7 # imax-
Unfortunately, this may be expensive, as there is no guarantee that these points are
stored consecutively in these lists. Hence, we do not modify lists L;, i # iy, at this
point. Instead, when using such a list L; to perform a subsequent split, we augment
the scan as follows: For every scanned point, we test whether it is contained in R,.
If this is the case, we append it to the point set of leaf Ry as above. Otherwise, we
remove it from L; without any further action, as it is contained in R\ R’ and hence
has been written to the point set of some leaf of T'(R,C) produced before. In total,
every list is scanned at most once, so that O(scan(|SN(R\C)|)) I/Os are sufficient to
compute tree T'(R, C). Hence, the replacement of all edges (R, C') with trees T'(R, C)
takes O(sort(N)) I/Os.

Observe that the resulting tree 7" has size O(N): Tree T, has size O(N). In

the first step of the construction of 7" from T,, every node of T, gains at most one

12.3 Constructing a Fair Split Tree 248

child, which is a leaf. The second step adds two nodes per performed split in the
construction of a tree T'(R, C'). As argued above, only O(N) splits are performed, so

that the claim follows. We have shown the following lemma.

Lemma 12.14 Given a compressed pseudo split tree T, of a set S of N points in R?
as computed in Phase 1 of Algorithm 12.5, Phase 2 takes O(sort(N)) I/Os and linear
space to compute a pseudo split tree T" of S so that every leaf of T" represents at

most N* points in S.

12.3.3 Constructing T"

Given the pseudo split tree 7" computed in Phase 2 of the algorithm, we obtain a
partial fair split tree 7" from 7" by removing all nodes R from 7" so that RN S =0
and compressing all paths of degree-2 nodes in the resulting tree. Given the list
of pairs (p,R), R € T" and p € SN R, produced by the previous two phases, we
sort the pairs in this list by their second components. We sort the vertex set of T7".
Now a single scan of these two sorted lists suffices to mark every leaf R of 7" such
that RN S = @ as “remove” and all remaining leaves as “keep”. We apply time-
forward processing to process T” from the leaves toward the root to mark every
internal node as “keep”, “contract”, or “remove”, depending on whether none, one,
or both of its children are marked as “remove”’. In addition to these marks, we
label every node R with its closest descendant K (R) which is labelled “keep”. In
particular, K(R) = R if R is itself labelled “keep”, and K(R) = K(R') if R is
labelled “contract”, where R’ is the child of R not labelled “remove”. Finally, for
every node labelled “keep”, we replace both of its children R; and Ry with their
corresponding descendants K (R;) and K (Rz). The tree induced by all nodes marked
as “keep” is tree T". We scan the vertex set of 7" one more time to remove all nodes
marked as either “remove” or “contract”. All the techniques used in this procedure
take O(sort(N)) I/Os and linear space. Hence, this third phase of Algorithm 12.5
takes O(sort(N)) I/Os and linear space, so that we obtain the following lemma.

12.4 Constructing a WSPD 249

Lemma 12.15 Given a pseudo split tree T" of a set S C R? of N points, as computed
in Phase 2 of Algorithm 12.5, Phase 3 takes O(sort(NN)) I/Os and linear space to
compute a partial fair split tree T' of S so that every leaf in T' represents at most

N¢ points in S.

12.4 Constructing a WSPD

In this section, we describe an I/O-efficient algorithm to extract a WSPD of a point
set S from a fair split tree 7" of S as constructed by Algorithm 12.4. We assume that
every leaf p of T is labelled with the coordinates of point p. Every internal node A
is labelled with its bounding rectangle R(A). Every pair {A4;, B;} in the computed
WSPD is represented as the pair of nodes in 7" rather than using a full representation
of both sets because otherwise the output may have size Q(N?).

Our algorithm simulates the internal memory algorithm of [40], using the fair
split tree to drive the generation of pairs. We show that this computation can be
translated into a traversal of a DAG G of size O(N). This traversal can be realized
using the time-forward processing technique. The difficulty is that we are not able to
generate G beforehand because the presence of edges in G is decided only while the
algorithm runs. We could generate a supergraph of GG containing all edges that could
possibly be in G; but there are Q(N?) such edges in the worst case, so that this does
not lead to an efficient algorithm. Next we define DAG G and show that it can be
generated efficiently while it is being traversed.

In order to define DAG G, we need to consider the internal memory algorithm
of [40] for computing a well-separated realization of a point set S from its fair split tree.
We call this procedure COMPUTEW SR. Its pseudo-code is shown in Algorithm 12.6.
In this algorithm we define A < B if either £p,x(A) < lmax(B) 0r lax(A) = lax(B)
and v(A) < v(B), for some postorder numbering v of 7.

It is not hard to see that the set R constructed in Line 1 of procedure Cowm-
PUTEWSR is a realization of S ® S. However, this realization may not be well-

separated. Now the algorithm iterates over all pairs in R and tests whether they

12.4 Constructing a WSPD 250

Procedure COMPUTEWSR

Input: A point set S C R and a fair split tree T of S.
Output: A well-separated realization R = {{41,B1},...,{Ak, Bx}} of S® S consisting of
k= O(|S|) pairs.

: For every internal node of T with children A and B, add a pair {4, B} to a set R.
R+ 0
: for every pair {A,B} € R do
Remove pair {4, B} from R.
R < RUFINDPAIRS({A4, B}, T)
end for

Procedure FINDPAIRS

Input: A fair-split tree T and a pair {A, B} of siblings in 7T'.
Output: A well-separated realization R' of A ® B.

1: R+ {{A,B}}

2: RN«

3: while R’ is not empty do

4: Remove a pair {4, B} from R'.

5: {Assume w.l.o.g. that B < A.}

6: if A and B are well-separated then

7 Add pair {4, B} to R'.

8: else

9 Let A; and A5 be the two children of A in T'.
10: Add pairs {A;, B} and {4, B} to R'.
11: end if

12: end while

Algorithm 12.6
Computing a well-separated realization from a fair split tree.

12.4 Constructing a WSPD 251

are well-separated. If a pair {A, B} is well-separated, it is added to realization R.
Otherwise, it is replaced by a well-separated realization of A ® B. This way, the
algorithm maintains the invariant that R U R is a realization of S ® S and all pairs
in R are well-separated. As set R is empty when the algorithm terminates, the final
set R is a well-separated realization of S ® S. Using packing arguments, Callahan
and Kosaraju [40] show that the computed realization has size O(|S|). To show that
the algorithm takes O(|S|) time to produce realization R, they introduce the concept
of a computation tree. Such a tree represents the recursive invocations of procedure
FINDPAIRS triggered by an invocation of procedure FINDPAIRS in Line 5 of procedure
CoMPUTEWSR.

Formally, a computation tree is defined as follows: Let {A, B}, B < A, be a
pair of nodes in 7. If A and B are well-separated, the computation tree T'({A, B})
has a single node (A, B). Otherwise, tree T'({A, B}) consists of two computation
trees T'({A1, B}) and T({As, B}) whose roots are the children of the root (A, B)
of T({A, B}), where A; and A, are the children of A in 7. The size of a computation
tree is proportional to the number of its leaves. Each of these leaves corresponds
to a pair in the computed well-separated realization, so that the total size of all
computation trees T'({A, B}), {4, B} € R, is O(|5]).

We are now ready to describe the DAG G so that the computation of procedure
CoMPUTEWSR can be simulated using a traversal of G. The vertex set of G is
the same as that of the given fair split tree 7. There is an edge from a node A;
to a node Ay in G if there are two nodes (A1, By) and (Ag, By) in a computation
tree T({A, B}), {A, B} € R, so that (A;, By) is the parent of (As, By). Next we show
that G is indeed a DAG and that the computation of procedure COMPUTEW SR

corresponds to some traversal of graph G.

Lemma 12.16 Graph G is a DAG.

Proof. We show that for every edge (A;, As) in G, Ay < A;. Moreover, it is easy to
verify that “<” is a total order. This implies that G is acyclic. To see that A, < Aq,
observe that edge (A1, Ay) is in G only because there is an edge ((A1, B1), (As, B))

12.4 Constructing a WSPD 252

in a computation tree. This, however, implies that either Ay = B; or A, is a child
of Ay in T. In the former case, Ay < A;, by definition. In the latter case, £iax(As) <
lmax(A1) and v(Az) < v(A1), so that again As < A;. O

The computation of procedure COMPUTEW SR can be simulated by a traversal
of G as follows: Initially, we store every pair {A, B} € R, B < A, with node A € G.
Then we process the nodes of G in topologically sorted order. For every node A € G,
we process the pairs stored with node A one by one. For every pair {A, B}, B < A, we
check whether A and B are well-separated. If so, we add the pair to the well-separated
realization. Otherwise, let (A’, B') and (A", B") be the children of node (A, B) in the
computation tree containing node (A, B). We “send” pair {A’, B'} along edge (A, A’)
and pair {A”, B"} along edge (A, A”) to add these pairs to the sets of pairs stored
with these two nodes. By the definition of G, edges (A, A’) and (A, A") exist because
edges ((A, B), (A", B")) and ((A, B), (A", B")) exist in the computation tree.

Next we argue that the edge set of graph G' does not have to be known in advance
in order to perform the above traversal of G' using time-forward processing. To prepare
graph G, we compute a postorder numbering of the nodes of 7. We sort the nodes of T’
by the relation “<” defined by this postorder numbering and assign a number 7(A)
to every node A € T, which represents the position of node A in the sorted sequence
of nodes. We store with every node A of T the labels n(A;) and n(A4s) of its two
children A; and A, in 7. Finally, we sort the nodes of T by decreasing numbers 7(A).
This preprocessing can be carried out in O(sort(|S])) I/Os, as computing a postorder
numbering and copying the label 7(A) of each node to its parent can be realized using
time-forward processing. Besides that, we sort the vertex set of 1" twice.

To initiate the processing of GG, we scan the list of nodes. For every internal node
of T with children B < A, we insert the pair (A, B) into a priority queue) and give
it priority n(A). Now we process the nodes of G in their order of appearance. For
each node A, we retrieve all pairs (A, B) from @, one by one. For every pair (4, B),
we test whether A and B are well-separated. If so, we add pair {A, B} to the real-
ization. Otherwise, let A; and Ay be the two children of A. (Recall that numbers

12.5 Applications of the WSPD 253

n(A;) and n(As) are stored with node A.) If n(A4;) > n(B), we insert pair (A;, B)
into priority queue @ and give it priority n(A;). Otherwise, we insert pair (B, A;)
into priority queue @ and give it priority n(B). The same is done for child Ay. This
is equivalent to sending pairs {A;, B} and {A,, B} along the corresponding edges of
DAG G. Then we proceed to the next pair.

The procedure just described is the same as standard time-forward processing
with the exception that every node constructs its out-neighborhood depending on
the data it receives from its in-neighbors. The crucial fact is that the constructed
out-neighborhood of a node A contains only nodes B, n(B) < n(A), so that every
node sending a pair to node B does so before node B is being processed by the above
procedure.

All that remains to be done is bound the number of priority queue operations
performed. Note that every pair (A, B) corresponding to a node in a computa-
tion tree is queued and dequeued exactly once. Hence, the total number of prior-
ity queue operations is at most twice the total size of all computation trees, which
is O(|S]). Hence, simulating procedure COMPUTEW SR using a traversal of graph G
takes O(sort(|S])) I/Os. By Lemma 12.10, a fair split tree of a point set S can be
computed in O(sort(/N)) I/Os, so that we obtain the following result.

Theorem 12.2 Given a set S of N points in R¢, a well-separated pair decomposition

of S consisting of O(N) pairs can be computed in O(sort(NN)) I/Os using linear space.

12.5 Applications of the WSPD

Using Theorem 12.2, we obtain I/O-efficient solutions to a number of proximity prob-
lems in d-dimensions. In particular, we show that a t-spanner of a point set S can be
computed in O(sort(N)) I/Os and that the K-nearest neighbor and K-closest pair
problems for S can be solved in O(sort(K N)) and O(sort(N + K)) 1/Os, respectively.

The solutions are relatively simple adaptations of the results presented in [35].

12.5 Applications of the WSPD 254

12.5.1 Computing a t-Spanner

In [40], it is shown that the following graph G = (S, E) is a t-spanner of linear size for
a point set S C R?: Given a WSPD D = (T, R) of S with separation s = 4% and
consisting of O(|S|) pairs, choose a representative r(A) € A, for every point A € T.
For every pair {A;, B;} in the WSPD, add an edge {r(4;),7(B;)} to E.

To choose representatives for all nodes A € T, we apply time-forward process-
ing in 7" from the leaves toward the root. Every leaf has itself as a representative.
Every internal node chooses one of the representatives of its two children as a rep-
resentative. Hence, the representatives for all nodes A € T can be computed in
O(sort(]|S])) I/Os. In order to create the edge set of spanner GG, we consider every
pair {A, B} in the WSPD as an edge between nodes A and B. Now we apply oper-
ation COPYVERTEXLABELS to replace every pair {A, B} by the edge {r(A),r(B)}.
This takes O(sort(|S])) I/Os.

Theorem 12.3 Given a set S of N points in R¢, a t-spanner of linear size for S can

be computed in O(sort(N)) I/Os and linear space.

In [19], it is shown that one can construct a spanner of diameter at most 2 log N
by choosing representatives r(A) above more carefully. In particular, given the repre-
sentatives r(A;) and r(Ay) for the children A; and A, of A, we choose 7(A) to be the
representative r(A;) of the heavier subtree T(A;), where the weight of a tree is the
number of leaves in the tree. This modified rule for choosing representatives can easily
be incorporated in the time-forward processing step used to compute representatives.

Hence, we obtain the following result.

Theorem 12.4 Given a set S of N points in R?, a t-spanner of linear size and spanner

diameter at most 2log N for S can be computed in O(sort(N)) I/Os and linear space.

Finally, the following result shows that Theorems 12.3 and 12.4 are optimal.

Theorem 12.5 It takes Q(sort(NN)) I/Os to compute a t-spanner of linear size for a
set S of N points in R?.

12.5 Applications of the WSPD 255

Proof. Given aset S = {pi,...,pn} of points in R¢, a t-spanner G of S has to contain
an edge {p;,p;}, for every pair of points p, = p;, i # j. Hence, a single scan of the
edge set of G is sufficient to decide whether all points in S are distinct. If G has linear
size, this takes O(scan(N)) I/Os. Thus, if G can be constructed in o(sort(N)) I/Os,
the element uniqueness problem can be solved in o(sort(NN)) I/Os, which contradicts

the Q(sort(NV)) I/O lower bound shown for this problem in [14]. 0

12.5.2 K-Nearest Neighbors

In this section, we show how to compute the K nearest neighbors for every point p
of a point set S C RY, i.e., the K points in S\ {p} which are closest to p. The

construction follows the internal memory algorithm of [40] for this problem.

Lemma 12.17 (Callahan/Kosaraju [40]) Let {A, B} be a pair in a well-separated
realization of S ® S with separation s > 2. If there is a point b € B that is among

the K nearest neighbors of a point a € A, then |A| < K.

Given a set B, let Op be the center of its bounding rectangle R(B). Then di-
vide the space around B into a constant number of cones with apex Opg such that

for any two points a and @' in the same cone, the angle ZaOpga' between segments

Opga and Opga' is less than a = 3%1 The existence of such a set of cones has been

shown by Yao [176], who calls such a set of cones an a-frame.

Lemma 12.18 (Callahan/Kosaraju [40]) Let X and B be point sets such that for
every point x € X, the pair {{x}, B} is well-separated. Let C' be a cone with apex Op
such that for any two points a and o' in C, ZaOpa' < ;35. Let X NC = (X1, ..., 1)
be the set of points in X that lie in C, sorted by their distances from Opg. Fori > K,

no point in B can be among the K nearest neighbors of x;.

Based on Lemma 12.17, the algorithm of [40] first extracts all pairs {4;, B;}
with [4;] < K. For a node B in T, let {4}, B},..., {4, B} be the set of pairs
in the WSPD that contain B and such that [A}| < K. Note that sets Aj,..., A}

12.5 Applications of the WSPD 256

are pairwise disjoint. The algorithm constructs a candidate set X (B) = [Ji_, 4},
for every node B € T. Now the nodes of T are processed from the root toward
the leaves. For every node B € T, the algorithm creates an a-frame C around Og,
partitions the points in X (B) into sets X¢ = X(B) N C, C € C, and extracts the
set X¢ of the K points in X¢ closest to Op. Let N(B) = |Jgee X¢- From the two
lemmas above it follows that N(B) contains all points p € S which have one of their
K nearest neighbors in B. Now the candidate sets X (B;) and X (B;) of the two
children B; and B, of B in T are augmented with the points in N(B). Then the
algorithm proceeds to the next node. Eventually, the procedure produces sets N(b),
b € S, so that the points having b as one of their K nearest neighbors are contained
in N(b). The algorithm produces sets N'(a), a € S, so that b € N'(a) if and only
ifa € N(b). Finally, the K nearest neighbors of every point a are extracted from N'(a)
using K-selection.

The crucial observation used in [40] to show that this algorithm takes O(K N) time
is the following: Initially, the candidate sets X (B), B € T, have total size O(KN)
because there are only O(N) pairs in the given WSPD, and every pair contributes
at most K points to some set X (B). When processing 7' top-down, each of the
O(N) sets X (B) is augmented with the O(K) points in N(p(B)), which adds an-
other O(K N) points to the total size of all candidate sets X (B). Hence, during the
construction of sets N (b), K-selection is applied to candidate sets of total size O(K N),
which takes O(K N) time. In internal memory, sets N'(a) are readily constructed in
time O (Y yeq IN(b)|) = O(KN) time, and the final application of K-selection to
these sets takes O(KN) time again.

Once the initial candidate sets X (B), B € T, have been computed, the rest of
the algorithm can easily be carried out in O(sort(KN)) I/Os. In particular, we
realize the augmentation of every set X (B) with the points in N(p(B)) using time-
forward processing, sending the content of set N(p(B)) from p(B) to B. When
processing node B, we append the received points to X (B) and apply an I/O-efficient

12.5 Applications of the WSPD 257

K-selection algorithm to X (B), which takes O(scan(| X (B)|)) I/Os?. Hence, the total
number of I/Os spent on constructing sets N (b), for all leaves b of T', is O(sort (K N)):
O(sort(KN)) I/Os to send sets N(p(B)) along the edges of T' using time-forward
processing, and O(scan(K N)) I/Os for all applications of K-selection.

Given that every set N (b) is represented as a collection of pairs {(a,b) : a € N(b)},
where b is a leaf of T, sets N'(a), a € S, can be constructed by sorting the union of
these sets lexicographically. Then we apply K-selection to each of these sets N'(a) to
extract the K nearest neighbors of point a. This takes another O(sort(KN)) I/Os.
It remains to show how to construct the initial candidate sets X (B), B € T, 1/O-
efficiently.

First we compute a postorder numbering v of the nodes of T and a labelling
of every node A € T with the number A(A) of leaves that are descendants of A
in T. We apply procedure COPYVERTEXLABELS to inform every pair {4, B} in
the WSPD about the postorder numbers v(A) and v(B) of its endpoints. Then we
create two copies of every pair {A, B} in the given WSPD, representing one as the
ordered pair (A4, B) and the other as the ordered pair (B, A). We sort the nodes of T
according to the above postorder numbering and the ordered pairs (4, B) and (B, A)
by the postorder numbers of their first components. We scan the sorted list of nodes
and create a list L containing all leaves of T, sorted by increasing postorder numbers.
Now we scan the list of nodes of T, the list of pairs in the WSPD, and the list of
leaves of T. The scans of the latter two lists are driven by the information found in
the node list as follows: For every node A € T, we continue the scan of list L until a
leaf a with v(a) > v(A) is found. If A(A) > K, we skip over all pairs (A4, B) in the
list of pairs. If A\(A) < K, we repeat the following for every pair (A, B) in the list of
pairs: We scan backward from the current position in L to read the last A = A(A)

leaves vy, ..., vy in L and append pairs (v(B), v1), ..., (¥(B),vy) to alist X. Once all

2Tt is easy to verify that the standard K-selection algorithm of [50] takes O(scan(NN)) I/Os when
applied to a set of size .

12.5 Applications of the WSPD 258

nodes of 7" have been processed, we sort the pairs in list X’ by their first components,
thereby transforming list X’ into a concatenation of lists X (B), B € T.

The computation of labels v(A) and A(A), for all nodes A € T, can be carried
out in O(sort(N)) I/Os, using time-forward processing. The application of procedure
CopPYVERTEXLABELS takes O(sort(N)) I/Os. Next the algorithm sorts three lists
of size O(N), which takes O(sort(N)) I/Os. The scans used to produce list X’ scan
a total of O(K N) data items, so that this takes O(scan(K N)) I/Os. The final sort
of list X takes O(sort(KN)) I/Os because list X" has size O(KN). Hence, we obtain

the following result.

Theorem 12.6 Given a set S of N points in R?, the K nearest neighbors of every
point in S can be computed in O(sort(KN)) 1/Os using O(K N/B) blocks of external

memory.

12.5.3 K-Closest Pairs

In this section, we show how to enumerate the K smallest interpoint distances in a
point set S C R?. In [38], the following approach has been proposed to solve this
problem: Given a WSPD D of S, let ({4, Bi},...,{A4, By}) be the list of pairs
in D, sorted by increasing distances dists(R(A4;), R(B;)). Find the smallest index 4 so
that 23:1 |A;||Bj| > K and retrieve all pairs {A, B} such that disto(R(A), R(B)) <
(1+4/s)r, where r = disty(R(A;), R(B;)). Then generate the set C of all pairs {a, b}
such that a € A and b € B, for some pair {A, B} with disto(R(A), R(B)) < (1+4/s)r.
Now apply K-selection to find the set X of K pairs so that disty(a,b) < disty(a’, V'),
for any {a,b} € X and {d',b0'} € C'\ X.

The correctness of this solution has been shown in [38]. It is also shown in [38]
that set C has size O(N + K). Thus, once set C' has been produced, the application
of K-selection to C takes O(scan(N + K)) I/Os. We show that set C' can be produced
in O(sort(N + K)) I/0s.

12.5 Applications of the WSPD 259

First we use time-forward processing to process T’ from the leaves toward the root,
computing for every node A € T, the size |A| of point set A. We use procedure COPY-
VERTEXLABELS to inform pairs {A, B} about the cardinalities and bounding rectan-
gles of sets A and B. Now we sort these pairs by their distances disto(R(A), R(B)).
We scan the list of pairs by increasing distances and sum the cardinalities |A||B| of
the scanned pairs {A, B}. We stop as soon as this sum is at least K. Let {4;, B;}
be the pair where the scan stopped. Now we continue the scan until we find the first
pair {A, B} with disty(R(A), R(B)) > (14 4/s)diste(R(A;), R(B;)). We discard this
pair as well as all remaining pairs in the list.

Now we make two copies of each remaining pair {A, B}, representing one as the
ordered pair (A, B) and the other as the ordered pair (B, A). We sort these ordered
pairs by their first components, thereby producing for every node A € T, the list of
pairs (A4, By), ..., (A, Bya)) among the remaining pairs. We use a similar procedure
as the one described in Section 12.5.2 to extract for every node A with p(A) > 0,
the list of points in set A. For every pair (4, B;), we make a copy of point set A,
representing every point a € A as the triple ({4, B;}, A, a). We sort the resulting list
of triples lexicographically. As a result, for every pair {A, B}, point sets A and B
are stored consecutively. A nested scan of these two sets is sufficient to create set
{{a,b} :a € A and b € B}.

The extraction of all relevant pairs takes O(sort(/N)) I/Os, as it involves the ap-
plication of time-forward processing and procedure COPYVERTEXLABELS to graphs
of size O(N), and the sorting and scanning of a list of O(N) pairs. Given the
extracted pairs, producing lists (A, By),..., (A, By)), for all nodes A € T, takes
O(sort(N)) I/Os, as there are only O(N) pairs to be sorted. Using the same argu-
ments as in Section 12.5.2, the I/O-complexity of the extraction of pairs of sets { A, B}
can be bounded by O(sort(N + K)) because the cardinality of all extracted sets
is O(N + K). Finally, the scan to produce the candidate set of point pairs takes
O(scan(N + K)) 1/Os, as O(N + K) is a bound on the cardinality of the produced

set. Hence, we obtain the following result.

12.5 Applications of the WSPD 260

Theorem 12.7 Given a set S of N points in RY, the K closest pairs in S can be
found in O(sort(N + K)) 1/Os using O((N + K)/B) blocks of external memory.

Chapter 13

The Dumbbell Spanner

In the previous chapter, we have shown that a well-separated pair decomposition
of a point set S can be computed I/O-efficiently. We have presented 1/O-efficient
algorithms which use the computed WSPD to solve classical proximity problems and
construct a t-spanner with spanner diameter O(log N) for point set S. However,
in general, spanners are useful only if spanner paths between two query points can
be reported efficiently. For the WSPD-spanner, no I/O-efficient query procedure is
known.

In this chapter, we show that the dumbbell spanner of [18] can be constructed
I/O-efficiently. This spanner is a supergraph of the WSPD-spanner with the desirable
property that it can be decomposed into a constant number of trees so that for any
two points p,q € S, there is a spanner path between p and ¢ which is contained in
one of these trees. Thus, existing solutions for reporting paths in trees [100, 177] can
be used to report spanner paths I/O-efficiently.

In Section 13.1, we discuss the concept of dumbbell trees as introduced in [18].
To motivate this construction, we show in Section 13.2 that a spanner for a point set
S C R? can be computed I/O-efficiently from the set of dumbbell trees defined by a
WSPD of §. We show that the dumbbell trees can be used to report spanner paths
in the constructed spanner in an I/O-efficient manner. In Section 13.3, we show how

to compute dumbbell trees for a given WSPD I/O-efficiently.

261

13.1 Dumbbell Trees 262

13.1 Dumbbell Trees

Let S be a set of points in R and let D = (T, R) be a WSPD of S. Let C be the outer
rectangle of the root of 7', which is a cube. For a well-separated pair {A, B} € R, we
refer to the set R(A) U R(B) as the dumbbell D(A, B). Rectangles R(A) and R(B)
are the heads of dumbbell D(A, B). The length ¢(D(A, B)) of D(A, B) is defined as
the length of the line segment connecting the two centers of R(A) and R(B). Also, we
refer to C' as a head (which does not belong to any dumbbell). The set of dumbbell
trees is computed from a partition of the set of dumbbells into a constant number of
sets Gi, ..., Gy such that the dumbbells in each set have the following three properties,

where 0 < § < 1/2 and ¢ > 0 are constants:

Length grouping property: The lengths of two dumbbells in the same group are

either within a factor of two from each other or differ by a factor of at least 1/6.

Empty region property: Let D; and D, be two dumbbells in the same group so
that ¢(D;) < ¢(Ds) < 2¢(D;). Then the heads of D; and D, have distance at
least c¢f(D;) from each other.

Nesting property: Two dumbbells in the same group are either completely disjoint,
or at least one head of the smaller dumbbell is completely contained in one head

of the larger dumbbell.!

A dumbbell tree Tj, for each such group Gs, 1 < h < ¢, of dumbbells is defined as
follows. The nodes of T, are of three different types:

Leaves: There is one leaf in Ty, for every point p € S.

Dumbbell nodes: There is one dumbbell node in Ty, for every dumbbell in Gj,.

! Although the definition of the nesting property in [18] is slightly different, it is equivalent to our
definition, given that all dumbbells in a group have the length grouping and empty region properties.

13.1 Dumbbell Trees 263

Head nodes: For every dumbbell D(A, B) € G, there are two head nodes Rp(A)
and R4(B) in Tg, which represent the two heads R(A) and R(B) of D(A, B).

There is a head node representing the special head C.

Similar to the description of the fair split tree in Section 12.3, we do not distinguish
between the nodes of T, and the geometric objects they represent. Hence, it makes
sense to talk for instance about containment of a leaf of Tg, , which is a point, in a
head node, which is a rectangle. Using this convention, the edge set of 7§, is defined
as follows: Partition group G, into its subgroups Gy 1, . . ., Gp¢ so that the dumbbells in
each group Gy, ; differ by a factor of at most two in length. Sort groups Gy 1,...,Gn by
the lengths of their dumbbells. Let G, ;11 be another group which contains a dummy
dumbbell one of whose heads is C.

For every leaf p of T', let i be the smallest index so that there is a dumbbell
D(A, B) € Gy ; containing point p. Then node p is the child of head node Rp(A) or
R4(B), whichever contains point p. Similarly, for every dumbbell D(A, B) € G,
1 <i<t,leti > ibe the smallest index so that there is a dumbbell D(A’, B') € G, i
containing one of the heads Rg(A) or R4(B) of D(A, B). Assume w.l.o.g. that
head Rp (A’) contains head Rp(A). Then dumbbell node D(A, B) is the child of
head node Rp/(A’). Finally, for every dumbbell D(A,B) € Gp;, 1 < i < t, head
nodes Rg(A) and R(B) are the children of dumbbell node D(A, B). Following this
construction, every node in Ty, except C has a well-defined parent, so that C' is the
root of Tg, .

In order to motivate this construction, we show in the next section that a t-
spanner G with spanner diameter O(log N) can be constructed in an I/O-efficient
manner from the set Tg,, ..., Tg, of dumbbell trees. We also show that spanner paths
in G can be computed I/O-efficiently. In Section 13.3, we show how to construct a

set of O(1) dumbbell trees for a given WSPD.

13.2 The Dumbbell Spanner 264

13.2 The Dumbbell Spanner

Given a set of dumbbell trees for a point set S C R¢, as defined in Section 13.1,
it is shown in [18] how to derive a t-spanner for S from this set of dumbbell trees.
We recall this construction in Section 13.2.1 and show that spanner paths in the
resulting spanner can be constructed I/O-efficiently. In Section 13.2.2, we discuss a
more clever construction of the spanner, also proposed in [18], which guarantees that
the spanner has spanner diameter O(log N). Given the fact that there exist short
spanner paths in the constructed spanner, we show that a simplified version of the
algorithm for reporting spanner paths outperforms the algorithm of Section 13.2.1,

at least asymptotically.

13.2.1 From Tree Paths to Spanner Paths

Let Tg,,...,Tg, be the dumbbell trees defined in the previous section. Then the
construction of [18] derives spanning trees Gi,...,G, of S from Tg,..., Ty, and
constructs a ¢-spanner G of S which is the union of graphs G1,...,G,.

Given dumbbell tree Tg,, 1 < h < g, the spanning tree G}, of S is obtained as
follows: For every node v € Tg,, we choose a representative point r(v) € S. For a
leaf v, 7(v) = v. For an internal node, r(v) € {r(w1),...,r(wg)}, where wy, ..., wy
are the children of v in T, . For every edge {v,w} € Ty, with r(v) # r(w), graph G,
contains an edge {r(v),r(w)}.

Let D = (T, R) be the WSPD used to construct trees 1g,,...,Tg,. Let p,p' € S
be two points, and let {A, B} € R be the unique pair such that p € A and p' € B.
Let Tg, be the dumbbell tree containing the dumbbell node D(A, B). Then there is a
unique path P = (p = v, vy, ..., = p') from p to p' in Ty, . According to the above
construction, this path corresponds to a path P = (p = r(vg),7(v1),...,7(vx) = p)
in GGj,. The following lemma shows that path P is a t-spanner path.

Lemma 13.1 (Arya et al. [18, 161]) Choosing § < 1/(3s) and ¢ > 0 in the con-
struction of dumbbell trees Tg,,...,Tg,, where s = O(d/(t — 1)) is the separation

13.2 The Dumbbell Spanner 265

constant of the WSPD used to construct trees Iy, ,...,Tg,, the path P has Euclidean
length ¢(P) < t - disty(p, p').

By Lemma 13.1, graph G is a t-spanner. Moreover, once tree Ty, has been identi-
fied such that G}, contains the spanner path P as constructed above, path P can easily
be reported by traversing the paths from p and p’ to their lowest common ancestor
in 7g,. Now this is not entirely true because path P may be much longer than P, as
many nodes along P may have the same representatives. Hence, the edges between
these nodes do not contribute new edges to P. Observe, however, that all nodes in Tg,
with the same representative r(v) form a path from the leaf p with p = r(v) to some
ancestor of p in Ty, . Let T} be the tree obtained from 7, by compressing all non-leaf
nodes on each such path into a single node. Then the path P’ in T} corresponding
to a path P containing & edges contains at most k + 2 edges. Hence, tree T} can be
used to report a t-spanner path between p and p'.

In order to find tree 7}, we have to find the well-separated pair {A, B} such that
p € A and p' € B. Tree Ty, is the tree containing the dumbbell node D(A4, B).
Tree T} is the compressed version of Tg,. To find pair {A, B}, we use the following
procedure: First we find the lowest common ancestor A’ of p and p’ in the fair split
tree T. Then let T,y be the computation tree whose root is the node (A", B"), where
A" and B" are the two children of A" in T. (Refer to Section 12.4 on page 251 for
a definition of computation trees.) Dumbbell D(A, B) corresponds to a node in T
and can be found using oblivious search in 7'4. Hence, we propose the following data

structure for reporting spanner paths in G. The data structure consists of four parts:

1. A collection of data structures representing trees 77, ..., T;. The data structure
representing tree 7, allows the path in 7} between any two query points p and p’
to be reported in O(L/(DB)) I/Os, where L is the number of edges in the
reported path.

2. A collection of topology B-trees representing the computation trees defined by
the given WSPD D = (T, R). In particular, there is one topology B-tree T4 for

13.2 The Dumbbell Spanner 266

every internal node A’ of T. Topology B-tree T represents the computation
tree T4. Every leaf in Ty representing a leaf (A, B) of Ty is labelled with the
index h of tree Tg, containing dumbbell node D(A, B).

3. A topology B-tree T representing the fair split tree 7. Every leaf in 7 repre-
senting an internal node A’ of T is labelled with a pointer to the root of topology
B-tree T4. Every node A of T is labelled with its number in a preorder num-

bering of T and the size of subtree T'(A) of T. Every node v of T is labelled

with the information associated with the root r, of T,.

4. A table P of pointers to the leaves of trees T7,...,T,. In particular, table P is
a ¢ X N matrix storing for every pair (h,p), 1 < h < ¢, p € S, a pointer to the

disk block containing the leaf of tree 7} which represents point p.

Building the data structure. First we show that the size of the above data structure
is O(N). It is shown in [100] that there exists a data structure for reporting paths
between two leaves of a rooted tree in the number of I/Os stated above. The data
structure uses linear space. As there are O(1) trees T7,...,T;, the data structures
for all trees 17,...,T, use O(N) space. In [36], it is shown that a topology B-tree
representing a tree of size K uses O(K/B) disk blocks. As the total size of all
computation trees Ty and fair split tree 7" is O(V), the topology trees in the data
structure use O(N) space. Finally, the size of table P is O(¢N) = O(N).

Next we show that this data structure can be constructed I/O-efficiently. We com-
pute trees 77, . .. ,Té from trees Tg,, ..., Tg, as follows: First we process each tree Tg,
from the root toward the leaves to find for every point p € S, the highest internal
node v(p) having p as a representative. We apply procedure COPYVERTEXLABELS
to replace every edge {v,w} in Ty, with the edge {v(r(v)),v(r(w))}. A single scan
of the resulting edge set is sufficient to remove all loops, which produces the edge set
of T}. This procedure takes O(sort(N)) I/Os per tree, as it involves one application

of time-forward processing and procedure COPYVERTEXLABELS and a scan of the

13.2 The Dumbbell Spanner 267

edge set of Tg,. As there are only O(1) trees Tg,,...,Tg,, trees T7,...,T; can be
constructed in O(sort(N)) I/Os.

In [177], it is shown that the data structures representing trees 77, ...,7; can be
computed in O(sort(N)) I/Os. During this construction, the pointers in table P can
be generated, but not necessarily in the same order as they are to be stored in P.
Hence, we represent every pointer by a triple (p, h, B), where B is the block containing
the node of tree 7} representing point p € S. Sorting these triples lexicographically
takes O(sort(¢N)) = O(sort(NN)) I/Os and produces the final list P. The topology
B-trees representing the fair split tree and the computation trees can be computed
in O(sort(NN)) I/Os using a procedure similar to the one presented in Section 12.2.2.
(In fact, the procedure is simpler, as no compression of the binary tree is required.)

Hence, all parts of the data structure can be constructed in O(sort(N)) I/Os.

Answering spanner path queries. To report a spanner path between two query
points p,p’ € S, we find the lowest common ancestor A’ of p and p’ in T. Then we
follow the pointer from A’ to the root of the topology tree T4 representing compu-
tation tree T4,. We find the leaf (A, B) of tree Ty so that p € A and p’ € B. This
leaf of T4 stores the index h of the tree 7; which contains dumbbell D(A, B). Now
we query table P to find the two leaves in T} representing points p and p'. Finally,
we use the data structure representing 7} to report the path in 7} and hence in G,
from p to p'.

Finding the lowest common ancestor A’ of p and p’ is an oblivious search query
in T, which can be answered in O(logg N) I/Os using the topology B-tree 7. To
see that this query is oblivious, observe that a subtree T'(v) of T contains the LCA
of p and p’ if and only if v(v) < v(p),v(p') < v(v) + |T(v)|, where v(v) denotes the
preorder number of v.

Given that every node (X,Y) of computation tree T4 stores rectangles R(X)
and R(Y), locating node (A, B) is an oblivious search query on T4 because sub-
tree T((X,Y)) contains node (A, B) if and only if p € X and p’ € Y. Hence,
node (A, B) can be found in O(logz N) I/Os using topology B-tree Tyr.

13.2 The Dumbbell Spanner 268

Querying table P takes two 1/Os, one per point, and reporting the path in 77
from p to p’ takes O(L/(DB)) 1/Os. Hence, a spanner path query can be answered
in O(logg N + L/(DB)) 1/Os.

By Theorem 13.3, the set Tg,,...,Tg, of dumbbell trees can be constructed in
O(sort(N)) I/Os. Hence, the above discussion leads to the following result.

Theorem 13.1 Let S be a set of N points in R¢. There exists a t-spanner G of linear
size for S which can be represented by a data structure of linear size that allows
spanner paths between two query points p,p' € S to be reported in O(logg N +
L/(DB)) 1/Os, where L is the length of the reported path. The spanner and the data

structure can be constructed in O(sort(N)) I/Os and linear space.

13.2.2 A Spanner of Logarithmic Diameter

By choosing representatives of the nodes in each tree T, more carefully in the con-
struction presented in the previous section, a spanner of spanner diameter O(log N)
can be obtained: For every node v € Tg,, let w(v) be the number of leaves that
are descendants of v in Tg,. As before, if v is a leaf, then r(v) = v. If v is an
internal node with children wy, ..., wg, let r(v) = r(v') where v' € {wy,...,w;} and

w(v') = max{w(w;) : 1 < j < k}.

Lemma 13.2 Let Ty, be any of the dumbbell trees, p and p' be two query points.
Then the path P from p to p' in G), corresponding to the path P from p to p in Tg,
contains O(log N) edges.

Proof. To prove the lemma it is sufficient to show that along any leaf-to-root path P
in T' = Tg,, there are at most log N different representatives. So consider a node v
so that r(v) # r(p(v)). Then w(p(v)) > 2w(v) because r(p(v)) = r(v'), for some
sibling v' of v with w(v') > w(v), and w(p(v)) = w(v) + w(v'). Hence, if there were
k > log N nodes vy, ...,vr on path P so that r(v;) # r(p(v;)), we would obtain by
induction that w(p(vg)) > N, which leads to a contradiction. O

13.3 Constructing the Dumbbell Trees 269

Lemma 13.2 and Theorem 13.1 together imply that a spanner path in G can be
reported in O(logg N + log, N/(DB)) 1/Os. However, there are only O(1) dumb-
bell trees 77, ...,T;. Hence, the following alternative procedure finds a spanner path
in O(log, N/(DB)) 1/Os: We find the paths P, ..., P, between p and p’ in graphs
G1,...,Gq by querying all trees T7, ..., T, without knowing which of these trees con-
tains dumbbell D(A, B). Then we report the shortest of paths P, ..., P,.

Theorem 13.2 Let S be a set of N points in R*. There exists a t-spanner G of
linear size and spanner diameter O(log N) for S which can be represented by a data
structure of linear size that allows a spanner path between two query points p,p’ € S
to be reported in O(log N/(DB)) I/Os. The spanner and the data structure can be
constructed in O(sort(N)) I/Os and linear space.

13.3 Constructing the Dumbbell Trees

Motivated by the fact that dumbbell trees can be used to derive t-spanners which
allow spanner paths to be reported I/O-efficiently, we show in the rest of this chapter
how to compute such a collection of O(1) dumbbell trees Tg,, ..., Ty, 1/O-efficiently.

In Sections 13.3.1 through 13.3.3, we show how to partition the set of dumbbells
defined by a WSPD D = (T, R) into O(1) groups Gi, . .., G, with the length grouping,
empty region, and nesting properties. In Section 13.3.4, we present an algorithm to

compute dumbbell trees Tg,, ..., Tg, from these groups.

13.3.1 The Length Grouping Property

The idea of the length grouping algorithm can be described as follows [161]: Let 5 =
d/2. Then the dumbbells are partitioned into an infinite number of groups Gy, G1, . . .
so that the lengths of the dumbbells in group G! lie in the interval (8" L, 8*L], where
L is the length of the longest dumbbell induced by R. Observe that only a finite
number of these groups are non-empty. Each group G; is further divided into groups

Gi;» 0 < j < [=logf], where the lengths of the dumbbells in group G, ; lie in the

13.3 Constructing the Dumbbell Trees 270

Procedure LENGTHGROUPING

Input: A point set S C R? and a WSPD D = (T, R) of S.
Output: A partition of the dumbbells induced by R into groups G, ..., G, r = [—log 8],
so that each group G has the length grouping property.

Sort the set of dumbbells by their lengths.
I < the length of the longest dumbbell in D.
{The following while-loop scans the sorted list of dumbbells.}
while not all dumbbells have been read do
Partition interval (S1,!] into subintervals (8I,2p1], (261,481,
while ¢(D(A, B)) > pl for the next dumbbell D(A, B) to be read do
Read dumbbell D(A, B)
Assign a label v(D(A, B)) = (4,1) to dumbbell D(A, B), where
{(D(A, B)) € (271,27 +11].
9: end while
10: Let [be the length of the next dumbbell to be read.
11: end while
12: Sort the set of dumbbells lexicographically by their labels y(D (A, B)).

Algorithm 13.1
Partitioning the dumbbells induced by a WSPD into groups having the length grouping property.

interval (277 L, min{2/*!" 'L, B'L}]. Now let G/ = J*(G} . If two dumbbells
in G; come from the same group G; ;, their lengths differ by a factor of at most two.
Otherwise, their lengths differ by a factor of at least 1/(28) = 1/, as required.

We apply Algorithm 13.1 to compute groups Gj,...,G/, r = [—logf]. The
algorithm may produce groups that differ from the partition defined above because
it may choose empty intervals in the list of dumbbell lengths to span more than an
interval (3"t'L, 8°L]; but the length grouping property is preserved. The dumbbells
in each group are stored consecutively, and each group Gj is partitioned into its
constituent subgroups G; ;- While the latter partition is not required at this point, it
will be used by Algorithm 13.2, which ensures the empty region property.

Procedure LENGTHGROUPING takes O(sort(/N)) I/Os: Lines 1 and 12 sort lists

of size O(N). The loop in Lines 4-11 can be realized in a single scan of the sorted

13.3 Constructing the Dumbbell Trees 271

list of dumbbells. We have to show that the groups produced by this procedure have
the length-grouping property.

Consider two dumbbells in group Gj. If their lengths fall into the same inter-
val (1,1], their lengths differ by a factor of at most two. Otherwise, the length of
the shorter dumbbell lies in an interval (2730',27t11'] and the length of the longer
dumbbell lies in an interval (27431,2/7!], where I' < Bl. Hence, the lengths of these
two dumbbells differ by a factor of at least 1/(25) = 1/4.

Lemma 13.3 Algorithm 13.1 takes O(sort(NN)) I/Os and linear space to compute a
partition of the dumbbells induced by a WSPD of a set S of N points in R? into
O(1) groups so that each group has the length grouping property.

13.3.2 The Empty Region Property

Given the partition of the set of dumbbells induced by D into O(1) groups G, ..., G/,
as computed by Algorithm 13.1, Algorithm 13.2 partitions each group G into a con-

stant number of subgroups G, .. ., GJ ;, each having the empty region property. Each
group G7, also has the length grouping property because G; has this property. Since

there are O(1) groups G{, ..., G/ and each of them is partitioned into O(1) subgroups

1"
VI

.., G, the set of dumbbells induced by D is partitioned into O(1) groups, each
having the length grouping and empty region properties.

Assuming that graph P, ; can be colored with O(1) colors as attempted in Line 4
of Algorithm 13.2, the correctness of the algorithm is easy to see. In particular, no
two nodes in P;; with the same color are adjacent, so that it follows from the defini-
tion of P;; that the dumbbells in each group gg,jjk have the empty region property.
1
3L

This implies that groups ., Gj, have the empty region property because two
dumbbells in the same group GJ, come either from the same group G; ;, or differ by
more than two in length.

In the remainder of this subsection, we show that graph P; ; has bounded degree
(Lemma 13.8) and can be constructed in O(sort(N)) I/Os (Lemma 13.9). Thus, we

obtain the following lemma.

13.3 Constructing the Dumbbell Trees 272

Procedure EMPTYREGION

Input: A group of dumbbells G having the length grouping property.
Output: A partition of G7 into subgroups G, ,..., G/ having the empty region property.

1: Let g{,j, ..
in length by a factor of at most two.

:for1 <i<tdo

3: Construct a proximity graph F; ; of group ng,j:

.Gy j be the subgroups of G so that the dumbbells in each such group differ

[\]

The nodes of F; ; represent the dumbbells in ng’j.
There is an edge between two nodes D(A,B) and D(A’,B’) in graph P,; if
disto(D(A, B), D(A', B")) < ¢- min(¢(D(A, B)),4(D(A’, B"))).

Color graph P; ; with s = O(1) colors.

5. For 1 <k <s,let ng,j’k be the set of dumbbells whose corresponding nodes in F; ;

=

have color k.
: end for
. n " n o _ 1t !
: Form groups gj,l, cee gj,s as gj’k = Ui:l gi’j,k.

~N O

Algorithm 13.2
Partitioning a set of dumbbells into groups having the empty region property.

Lemma 13.4 Given a group G} of dumbbells having the length grouping property,
Algorithm 13.2 takes O(sort(N)) I/Os to partition group Gj into O(1) subgroups
GY1,---,Gjs, each having the length grouping and empty region properties.

» J4,8)

Proof. The correctness of procedure EMPTYREGION follows from the above discus-
sion and Lemma 13.8. Line 1 of the algorithm does not require any computation,
as the final sorting step of Algorithm 13.1 leaves the dumbbells in G partitioned
into groups G ;,...,G; ;. By Lemma 13.9, proximity graphs P, j,..., P;; can be con-
structed in O(sort(/N)) I/Os. Each proximity graph P, ; has bounded degree and size
O(|G; ;1), by Lemma 13.8. Hence, by Lemma 6.1, it can be colored with O(1) colors
in O(sort(|G;;|)) 1/Os. Since, r_, G ;| = O(N), coloring all graphs P, j,..., P
takes O(sort(N)) I/Os. Once every dumbbell has been assigned a color, the con-
struction of groups G7 |, ..., G/ can be achieved by sorting the dumbbells in G lexi-

cographically by labels v'(D(A, B)) = (j, k,1), where v(D(A, B)) = (j,1) is the label

13.3 Constructing the Dumbbell Trees 273

assigned to dumbbell D(A, B) by Algorithm 13.1, and £ is the color assigned to dumb-
bell D(A, B). This takes O(sort(|Gj|)) = O(sort(N)) I/Os. Hence, Algorithm 13.2
takes O(sort(N)) I/0Os. O

Note that Algorithm 13.2 leaves the dumbbells in each group G, partitioned into
groups G; ; ¢, ---, Gy jx- This partition is used by Algorithm 13.3, which constructs a
dumbbell tree for each group Gj;.

To complete the proof of Lemma 13.4, we have to show that graph F; ; has bounded
degree, for every group G, ;, and that it can be computed in O(sort(|G; ;|)) I/Os.

13.3.2.1 Bounding the Degree of the Proximity Graph

The bound on the degree of graph P, ; is obtained using packing arguments: We prove
that for any dumbbell D(A, B) € G, there are only O(1) nodes in the fair split
tree whose bounding rectangles can be heads of dumbbells in G; ; that are too close
to D(A, B). To prove this fact, we show that the number of such rectangles of minimal
size is constant and that each such minimal rectangle has only O(1) ancestors which
may be heads of dumbbells in G; ;. Given this bound on the number of dumbbell heads
that are too close to D(A, B), it is now sufficient to bound the number of dumbbells
D(A',B') € G, ;, for any given node A’ € T, by a constant. We show these two facts
in Lemma 13.8. We use the next three lemmas to bound the number of nodes on a

root-to-leaf path in T" whose bounding rectangles can be heads of dumbbells in G; ;.

Lemma 13.5 Let D(A, B) be a dumbbell whose length is . Then lp.x(p(A)) >

; 2l
TV and liax(p(B)) > (s+4)Vd’

Proof. Let A" = p(A) and B’ = p(B), and assume w.l.o.g. that B < A’. Then the
parent of node (A, B) in the computation tree containing node (A, B) is node (A, B’).
Let (A, B") be the lowest ancestor of node (A, B) in the computation tree so that
the well-separated pair {A’, B"} does not contain set A. We show the lemma for A’.

The argument for B’ is similar.

13.3 Constructing the Dumbbell Trees 274

Since node (A’, B"”) has a child (A, B”) in the computation tree, fm.(A") >
Lmax(B") and sets A" and B" are not well-separated. The former implies that both
rectangles R(A’) and R(B") can be enclosed in two balls of radius r = @Zm“(A’).
The latter implies that any two such balls enclosing R(A’) and R(B") have distance
less than sr. Since R(A) and R(B) are contained in R(A’) and R(B"), respectively,

this implies that [< (s + 4)r, so that £ya(A4') = % > (Sél)\/a. O

Lemma 13.6 Let D(A, B) be a dumbbell whose length is I. Then fy,(R(A)) >

21 2
Gor19vi and lmin(R(B)) > GV

Proof. We prove the lemma for rectangle R(A). The proof for rectangle R(B) is
similar. By Lemma 13.5, £yax(p(A)) > —2-— which implies that fma(R(p(A))) >

(s+4)Vd’
(sél)\/a. If imin(RA(A)) = imax(R(p(A))), then ﬁmijl(R(A)) > (3f+21l2)\/3 because the
split of rectangle R(p(A)) is fair. Otherwise, £pin(R(A)) = lmin(R(p(4))) > —2

(3s+12)Vd
because rectangle R(p(A)) is a box. 0

Next we show that only a constant number of nodes along any root-to-leaf path

in T can be heads of dumbbells whose lengths lie in an interval (I, 21].

Lemma 13.7 Let D(A, B) and D(A’, B') be two dumbbells whose lengths lie in the
interval (,2l] and so that A’ is an ancestor of A in the fair split tree. Then A' =
p*)(A), where k = O(dlogd).

Proof. Assume that & > d because otherwise the lemma holds. By Lemma 13.5,

A

lnax(R(p(A))) > (sj)\/a' By Lemma 12.6, £ (R(A")) < 51%, where A" is the

descendant of A’ so that A" = p®(A"). Since k > d, node A" exists and is an

ancestor of p(A). By Lemma 12.7, A” = p*)(p(A)), where k' < dlogs s % <

dlogs (12\/8), so that k < 1+d (1 +logy s (12\/5)) — O(dlogd). 0

We are now ready to prove that the proximity graph P of a group G, ; has constant
degree. In the following lemma, c is the constant used in the definition of the empty

region property on page 262.

13.3 Constructing the Dumbbell Trees 275

Lemma 13.8 The degree of the proximity graph P;; of a group G; ; is bounded by
2d
O ((s +1)y/(c+ 1)d>

Proof. Let D(A, B) be a dumbbell in group §G; ;, and let all dumbbells in G; ; have
lengths in the interval (I,2[]. Then the lemma follows from the following two claims,

which we prove below:

d
(i) There are O ((c—l— 1)(s + 1)\/8) nodes A" in T so that there is a dumbbell
D(A', B') € G; ; and disty(R(A), D(A, B)) < 2cl.

d
(i) For any node A € T, there are O ((8 + 1)\/8) dumbbells in G; ; which have
rectangle R(A) as a head.

(i) Let R be a rectangle of minimum size around D(A, B) so that for all p ¢ R,
dista(p, D(A, B)) > 2cl. Since D(A, B) € G} ;, £{(D(A, B)) < 2, £max(A) < 4l/s, and
lmax(B) < 41/s. Hence, lay(R) < 21 +4l/5 + 4cl = 21(1 + 2¢ + 2/5).

It follows from the definition of rectangle R that every dumbbell head R(A’) so that
disty(R(A"), D(A, B)) < 2cl must intersect R. Since R(A’) C R(A’), this implies that

R(A)NR # 0. As we are interested only in heads R(A’) of dumbbells D(A4’, B') € Gi s

Lemma 13.6 implies that £, (R(A")) > m because dumbbell D(A’, B') has

length at least .

Now let Aq,..., A; be the nodes in T so that the bounding box R(A;) of each
node A;, 1 < z <t is a head of a dumbbell in G ;, disto(R(Az), D(4, B)) < 2,
and none of the descendants of A, has this property. Then the split rectangles

R(Ay),...,R(A,) are disjoint, £min(R(Ag)) > (35+21l2)\/a, and R(A,) N R # 0, for all
1 <z <t. This implies that

linax(R) ‘
‘= (Lminlgzgt(fmin(R(Am)))J " 1)
< ((1 +2c+2/5)(35 + 12)Vd + 1)d

=0 ((c+ 1)(s + 1)\/&)d.

13.3 Constructing the Dumbbell Trees 276

Now it remains to observe that every head R(A’) of a dumbbell D(A’, B') € G,
with disto(R(A"), D(A, B)) < 2¢l is an ancestor of some node A, in T, 1 < z < .
By Lemma 13.7, the number of these ancestors of node A, is bounded by O(dlogd).
Hence, the total number of dumbbell heads R(A’) with disto(R(A"), D(A, B)) < 2cl
and D(A',B') € G} ; is O ((c—|— 1)(s+ 1)\/3)'1 -O(dlogd) = O ((c +1)(s + 1)\/c_i>d.

(ii) To prove the second claim, we fix some dumbbell head R(A). Let By,..., B,
be the nodes in T so that for all 1 < z < ¢, there is a dumbbell D(A, B;) € G, ;.
Then the split rectangles R(B;), ..., R(B;) are disjoint, have minimum side length

loin(R(By)) > W, and intersect a cube R with the same center as R(A) and

d d
side length 4. Hence, t < ((68 + 24)V/d + 1) =0 ((s + 1)\/3) . O

For fixed parameters c, s, and d, Lemma 13.8 shows that the degree of the prox-
imity graph P;; of any group G;; is constant, which establishes the correctness of

Algorithm 13.2.

13.3.2.2 Computing the Proximity Graph

In the remainder of this section, we describe an algorithm for constructing proximity
graphs Py ;,..., P, ; in O(sort(NN)) I/Os. Instead of constructing each graph sepa-
rately, we construct a graph P; = P, jU---UP, ;. This is necessary because otherwise
we would need an algorithm that constructs each graph P, ; in o(sort(N)) I/Os or a
bound of ¢ = O(1) on the number of groups G ;,...,G;;, in order to obtain a total
I/O-complexity of O(sort(/N)) for the construction of proximity graphs P, j,..., P,;.
We do not know how to achieve either.

The vertex set of P; is easily constructed in O(scan(|Gy|)) 1/Os, as P; contains
one vertex per dumbbell in G7. To construct the edge set of P;, we create a set
Q(A, B) of restricted containment queries on the fair split tree 7', for every dumb-
bell D(A, B) € GJ. Let D(A, B) € G; ;. Then the construction of set Q(A, B) ensures
that for a dumbbell D(A’, B') € G; ; which has distance at most 2¢/ from D(A, B), the
set H(A, B) of answers to the queries in Q(A, B) contains at least one of the nodes A’
or B'. Below we show that for every dumbbell D(A, B) € G, |Q(A, B)| = O(1) and

13.3 Constructing the Dumbbell Trees 277

|H(A, B)| = O(1). This allows us to show the following lemma, which establishes the
I/O-bound of Algorithm 13.2.

Lemma 13.9 Given the set of dumbbells in group Gj, the proximity graph P; of
group Gj can be constructed in O(sort(Gy)) 1/Os.

Proof. As argued above, the vertex set of P; can be constructed in O(scan(|G}|)) I/Os.
By Lemma 13.11 below, sets Q(A, B) and H(A, B) have constant size, for every
dumbbell D(A, B) € G7. Hence, the restricted containment queries in all sets Q(A, B)
can be answered in O(sort(|Gj|)) I/Os, by Lemma 12.9.

Given the sets H(A, B) of answers to containment queries in sets Q(A, B), we

'
i\j?
H(A, B), for all dumbbells D(A, B) € G;;, and create a list L; containing a triple
(A', D(A, B)), for every dumbbell D(A, B) € G; ; and every head A" € H(A, B). We
sort list L; lexicographically and the dumbbells in G; ; by their first heads. Then we
scan the sorted list G; ; and list L; to add for every triple (4’, D(A, B)) € L; and every
dumbbell D(A', B') € G; ; whose first head is A" an edge (D (A, B), D(A’, B')) to P;.
We sort the dumbbells in G; ; by their second heads and repeat the scan to generate an
edge (D(A, B), D(A', B")) for every triple (B', D(A, B)) and every dumbbell D(A’, B')
whose second head is B'. This procedure may generate every edge in P; more than
once because for a pair of dumbbells D(A, B) and D(A’, B'), both nodes A and B may
be in H(A’, B') and both nodes A’ and B’ may be in H(A, B). Also, the same head

construct the edge set of P; as follows: For each group G; ;, we scan the answer sets

may be reported for a number of query points in Q(A, B) and Q(A’, B'). We apply
procedure DUPLICATEREMOVAL to the edge set of P; to obtain the final graph P;.
By Lemma 13.11, the total size of all answer sets H(A, B), D(A, B) € G, , is
O(|G; ;). Hence, list L; has size O(|G;|), so that the above procedure sorts and
scans lists of size O(|G; ;|) and applies procedure DUPLICATEREMOVAL to a list of
this size. Hence, the construction of the edge set of P; takes O(sort(|G; ;|)) I/Os per
subgroup G, ; of G, O(sort(|G7[)) I/Os in total. O

13.3 Constructing the Dumbbell Trees 278

It remains to define the query set Q(A, B), for every dumbbell D(A, B) € §G; ;,
and bound its size. Let the dumbbells in G, have lengths in the interval (I, 2l].
Then let R(A, B) be a rectangle of minimum size around D(A, B) so that for every
point p ¢ R(A, B), diste(p, D(A, B)) > 2cl + . We partition R(A, B) into a

regular grid whose cells have side length

(+12

W For every grid point p, we add a

query (p, 4 f) to Q(A, B). The following lemma shows that every dumbbell

D(A’, B') € G; ; which is too close to D(A, B) has at least one head matching a query
in set Q(A, B).

Lemma 13.10 Let D(A, B) and D(A', B') be two dumbbells in group G; ; so that
dista(D(A, B), D(A’, B")) < 2cl. Then there exists a query (p, = (3s+21l2)\/3) in set
Q(A, B) which reports node A’ or B'.

Proof. Assume w.l.o.g. that disto(R(A"), D(A4, B)) < 2¢l. Since R(A') C R(A'), this
implies that disty(R(A’), D(A, B)) < 2¢l, so that rectangle R’ = R(A,B) N R(A')

has minimal side length £, (R') > Hence, rectangle R’ C R(A’) contains

3 +12)\f
at least one grid point p. Moreover, £ (A’) < 4 and Emin(R(A’)) > (35+2112) 73 by
Lemma 13.6. Hence, node A’ is reported for query (p, - (38+12)) €Q(A,B). O

The next lemma bounds the size of sets Q(A, B) and H (A, B), for any dumbbell
D(A, B) € G}, and thereby completes the proof of Lemma 13.9.

Lemma 13.11 For fixed parameters, c, s, and d, |Q(A, B)| = O(1) and |H(A, B)| =
O(1).

Proof. The maximal side length £y, (R(A, B)) of rectangle R(A,B) is at most

21 (1 +2c+2+ < 2l(2¢+5). Since every grid cell has side length

(3s +12)\/E) (3s +12)\f
there are at most ((20 +5)(3s + 12)\/3) =0 ((c +1)(s+ 1)\/8) grid cells. Since

d
every grid cell has 2¢ vertices, the number of grid points is O ((c +1)(s+ 1)\/E> =
O(1). Every grid point gives rise to one query in Q(A, B). Hence, |Q(A, B)| = O(1

).
B),

By Lemma 12.8, the number of answers for every query (p, =, (38+12)\[) € Q(A,

13.3 Constructing the Dumbbell Trees 279

is O (dlog (2(35+ 12)\/21/5)) = O(1), so that [H(A, B)| = O(|Q(A, B)|) = O(1).
O

13.3.3 The Nesting Property

The groups of dumbbells constructed in the previous two sections have the length
grouping and empty region properties; but it is not obvious that they should have the
nesting property. It is easy to see that for two dumbbells D(A, B) and D(A’, B'), their
heads are either completely disjoint, or w.l.o.g. R(A) C R(A’) because the dumbbell
heads are nodes of the fair split tree 7. However, there is no reason to believe that
D(A’, B') is necessarily the longer of the two dumbbells. The following lemma shows
that this property can be guaranteed if parameter ¢ in the length grouping property

is chosen small enough.

Lemma 13.12 Let D(A, B) and D(A’, B') be two dumbbells in the same group G, so

that £(D(A, B)) < §¢(D(A', B')), and let § < ﬁ. Then either D(A, B) and D(A’, B')
are disjoint, or w.l.o.g. node A is a descendant of node A'.

U(D(A',B' o(D(A,
Proof. By Lemma 13.5, Emax(p(Al)) > W Moreover, gmax(A) < “2{1_723)) <
28¢(D(A',B)

o) because the pair {A, B} is well-separated. Hence, erfz:‘(’;((‘j‘?)) < 5(5:3‘/8 <

20v/d < 1. That is, lpax(A) < luax(p(A’)). This implies that either R(A) and
R(p(A')) are disjoint or A is a proper descendant of p(A’). The latter implies that

A is a descendant of A’. O

13.3.4 Constructing the Dumbbell Trees

By Lemmas 13.3, 13.4, and 13.12, a partition of the set of dumbbells induced by a
WSPD D of a point set S into O(1) groups, each having the length grouping, empty
region, and nesting properties can be obtained in O(sort(/N)) I/Os. In this section,
we provide an algorithm to construct a dumbbell tree Tg;/,k, for each such group G7.

Algorithm 13.3 provides the details.

13.3 Constructing the Dumbbell Trees 280

Procedure BUILDDUMBBELLTREE

Input: A fair split tree T' and a set G, of dumbbells having the length grouping, empty

region, and nesting properties. Every head of a dumbbell in g;’ i 18 the bounding
rectangle of a node in T'.

Output: A dumbbell tree Tg;_:k of g;{k.

1:

© % N> o

10:
11:

12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:

Let G} y:---,G; ;5 be the constituent subgroups of G7,. Then assign a label
A(D(4, B)) = i to every dumbbell D(4,B) € G; ..

: Scan the list of dumbbells in G7,, and add every dumbbell D(4, B) € Gj; as a node

to Tgl/ .
For eif,gry node A € T, let D(A) be the set of dumbbells D(A, By),...,D(A, B;) which
have R(A) as one of their heads, sorted by their labels A(D(A4, B1)),...,A(D(4, By)).
Process tree T from the root toward the leaves to compute for every node A € T, the
lowest proper ancestor A’ so that D(A') # 0, and set k(A) = (A(D(4', By), Rp (4')),
where D(A’, B}) is the first entry in D(A4’).
for every internal node A € T do
Let D(A) = {D(A, B1),...,D(A, B;)}.
Create heads Rp, (A),...,Rp,(A) with parents D(A, B1),...,D(A, B), respectively.
for:=1,...,x —1do
Append a triple (D (A, B;), \(D(A, Bi+1)), Rp
for all dumbbells.
end for
Append a triple (D(4, By), A(D(4', BY)), Rp; (A")) to the list P of potential parents,
where 1(A4) = (\(D(4', By)), Rp; (A")).
end for
Sort list P lexicographically, thereby storing triples (D(A4, B), A\1(4, B), R1(A4, B)) and
(D(A, B),\2(A4, B), R2(A, B)) consecutively, for every dumbbell D(A, B).
Scan list P and set p(D(A4, B)) = R;(A, B), where \;(4, B) = min(\ (4, B), A\2(4, B)).
for every leaf g of T' do
Add a node ¢ to Tg;/)k.
if D(q) # 0 then
p(q) + Rp,(q), where D(q, By) is the first entry in D(q).
else
plg) + Ry (A'), where k(q) = (\(D(A', B))), Ry, (A1),
end if
end for

.+1(A)) to alist P of potential parents

Algorithm 13.3
Computing a dumbbell tree of a group of dumbbells having the length grouping, empty region,

and nesting properties.

13.3 Constructing the Dumbbell Trees 281

Lemma 13.13 Algorithm 13.3 computes a dumbbell tree Tg;/k of GJ ., provided that

1
6<m.

Proof. 1t is easily verified that there is one node per dumbbell, dumbbell head, or
leaf of 7" in the constructed tree Tg;/’k. Every dumbbell head is the child of its cor-
responding dumbbell. We have to show that the parent of every leaf and dumbbell
node is computed correctly.

For a leaf p, the lowest ancestor A is found so that D(A) # (. Ancestor A
exists because D(S) # 0, for the root S of T. The dumbbells in D(A) are sorted by
increasing length groups. By the empty region property, there are no two dumbbells
D(A, By) and D(A, By) with head R(A) in the same length group of GJ,. Hence, the
first dumbbell D(A, B) € D(A) is the shortest dumbbell with head R(A). For any
ancestor A’ of A and any dumbbell D(A', B') € D(A4'), A(D(A4, B)) < A(D(4', B')),
by the empty region property and Lemma 13.12. Thus, D(A, B) is the shortest
dumbbell containing point p, and head Rp(A), as computed by the algorithm, is the
correct parent of point p.

For a dumbbell D(A, B), the argument is similar. In particular, we show that
the potential parents p'(Rg(A)) and p'(R4(B)) of dumbbell D(A, B) are chosen cor-
rectly from among the bounding rectangles of the ancestors of nodes A and B in T.
Since p(D(A, B)) is chosen from p'(Rp(A)) and p'(R4(B)) so that the dumbbell hav-
ing p(D(A, B)) as a head is in the lower length group, this implies that p(D(A, B)),
as computed by the algorithm, is the correct parent of dumbbell node D(A, B).

So consider head Rg(A). The proof for head R4(B) is similar. Let p'(Rg(A)) =
Rp (A"). If A= A’, then D(A’, B') is the immediate successor of D(A, B) in D(A).
By the empty region property, there are no two dumbbells with the same head in
the same length group of G, so that A\(D(A", B")) < A(D(4, B)), for every dumb-
bell D(A", B") preceding D(A, B) in D(A), and A(D(A", B")) > A(D(4', B")), for
every dumbbell D(A”, B") succeeding D(A', B') in D(A). For every ancestor A”
of A and every dumbbell D(A", B") € D(A"), A(D(A", B")) > A(D(A’, B")), by the
empty region property and Lemma 13.12. Hence, A(D(A’, B")) = min{\(D(A", B")) :

13.3 Constructing the Dumbbell Trees 282

Rp(A) C Rpn(A") and A(D(A",B")) > A(D(A, B))}. That is, Rg/(A’) is the proper
potential parent of D(A, B) w.r.t. Rg(A) in Tgr,-

If A+# A', D(A, B) is the last dumbbell in D(A), A’ is the lowest ancestor of A
in T so that D(A") # 0, and D(A’, B') is the first dumbbell in D(A’). By the empty
region property, A(D(A, B")) < A(D(A, B)), for every dumbbell D(A, B") # D(A, B)
with head R(A), and \(D(A', B")) < A(D(A’, B")), for every dumbbell D(A’, B") #
D(A',B') with head R(A'). By the empty region property and Lemma 13.12,
AMD(A',B") < AD(A",B")), for every ancestor A” of node A’ and every dumb-
bell D(A", B") € D(A"). Since there is no node A” with D(A") # () which is a
proper ancestor of A and a proper descendant of A’, this shows that A(D(A’, B")) =
min{\(D(A",B")) : Rg(A) C Rpgn(A") and \(D(A",B")) > A(D(A, B))}, so that
Ry (A') is the proper potential parent of D(A, B) w.r.t. Rg(A) in this case as well.

U

Lemma 13.14 Algorithm 13.3 takes O(sort(N)) I/Os and uses linear space.

Proof. As a result of the sorting step at the end of Algorithm 13.2, the dumbbells
in G/, are already sorted according to their membership in groups G ,,---,G; ;-
Moreover, every dumbbell D(A, B) bears a label v(D(A, B)) = (j,k,1), where [
identifies the length group containing dumbbell D(A, B). Hence, labels \(D(A4, B)),
D(A, B) € GJ; can be produced in a single scan of the list of dumbbells in Gj,. We
construct sets D(A), A € T, as follows: We scan the list of dumbbells D(4, B) € GJ,
and generate two triples (4, \(D(A, B)), D(A, B)) and (B, A\(D(A, B)), D(A, B)), for
every dumbbell D(A, B) € G7,. Then we sort this list lexicographically, thereby stor-
ing all dumbbells having head R(A) consecutively, sorted according to their length
group labels A\(D(A, B)). Lines 4-12 and Lines 15-22 can be carried out in a single
pass of time-forward processing from the root toward the leaves in 7. Line 13 sorts
the list P of triples representing potential parents of the dumbbells in g;' x- Line 14

scans this list. 0

The following result now follows from Lemmas 13.3, 13.4, 13.13, and 13.14.

13.3 Constructing the Dumbbell Trees 283

Theorem 13.3 Given a set S of N points in R* and a WSPD D = (T,R) of S, it
takes O(sort(N)) I/Os and linear space to partition the set of dumbbells induced by
realization R into O(1) groups, each having the length grouping, empty region, and
nesting properties. Each of these groups can be represented by a dumbbell tree. The
construction of all dumbbell trees takes O(sort(N)) I/Os.

Chapter 14

A Planar Steiner Spanner

The dumbbell spanner discussed in the previous chapter allows spanner paths to be
reported efficiently, and the WSPD spanner provides the underlying structure for the
dumbbell spanner. Unfortunately it seems that neither of the two spanners can be
constructed in constrained situations where only a subset of the edges of the complete
graph are allowed to be in the spanner. An important special case is the construction
of a spanner for a set of polygonal obstacles, where such a spanner can be used to
compute (1 + ¢)-shortest paths among these obstacles. In [125], we show that the
f-graph can be constructed I/O-efficiently for sets of polygonal obstacles in the plane;
but we were not able to design a data structure that allows spanner path queries to
be answered quickly.

In this chapter, we show that the planar Steiner spanner of [16] can be constructed
I/O-efficiently for a set of polygonal obstacles in the plane. The graph has the desir-
able property to be planar, so that we can use Theorem 10.2 to find shortest paths
in the spanner. We can also combine the results of Chapters 8 and 10 with exist-
ing results [2, 100, 177] to preprocess the graph in O(sort(/N)) I/Os so that shortest
path queries can be answered and paths in the graph can be traversed, both in an
I/O-efficient manner.

Since it is easy to show that in general there is no planar spanner with spanning

ratio t < v/2 for a point set in the plane, the spanner construction of [16] adds Steiner

284

14.1 A Planar L;-Steiner Spanner for Point Sets 285

points to the point set. These are points which are not in the given point set and
whose locations are chosen so that the resulting point set has a planar ¢-spanner.

The solution presented here follows the framework of the algorithm proposed
in [16]. However, the details differ. In particular, the data structure used to maintain
the sweep-line status of the algorithm in Section 14.2 differs considerably from the
one used in [16] and also leads to a simplified internal memory algorithm. Since no
journal version of [16] has appeared and according to one of the authors is unlikely
to appear because a number of co-authors have left academia, we present detailed
proofs for lemmas that are stated, but not proved in [16].

In Section 14.1, we show how to construct a planar L;-Steiner spanner for a
point set. In Section 14.2, we present an algorithm for constructing a planar L;-
Steiner spanner of a set of polygonal obstacles. Both constructions follow the same
framework: First we construct an appropriate planar subdivision. Then we add edges
and Steiner points inside every region of the subdivision to obtain a graph with L;-
spanning ratio 1 + . While the subdivision used to construct a planar L-Steiner
spanner for a point set can be obtained quite easily, considerable effort is required to
compute the subdivision for a set of obstacles efficiently.

In Section 14.3, we use the fact that planar L;-Steiner spanners can be computed
I/O-efficiently in order to derive a planar Lo-Steiner spanner as the superimposition

of a constant number of L;-Steiner spanners.

14.1 A Planar L.-Steiner Spanner for Point Sets

As explained above, to construct a planar L;-Steiner spanner for a point set S, we
first compute an appropriate planar subdivision defined by S and then introduce
additional vertices and edges inside every region of this subdivision.

In Section 14.1.1, we define this subdivision and show that it is easily derived from
a fair split tree of point set S. In Section 14.1.2, we use the subdivision to construct

the spanner.

14.1 A Planar L;-Steiner Spanner for Point Sets 286

14.1.1 A Planar Subdivision

Let S be the given point set. The subdivision D’ we use in the spanner construction
is a subdivision of a minimal square C' containing all points of S into O(N) regions
of two types: bozx cells and donut cells. A box cell is a box and contains exactly one
point in S. A donut cell is the set-theoretic difference of two boxes R and R’ which
does not contain any points in S. Box R’ is contained in box R. The distance of each
side €’ of R' from the corresponding side of R is either zero or at least ||€'||;/3.

Such a subdivision D' = D'(T) can be obtained quite naturally from a fair split
tree T of S: For every leaf p of T', we add the split rectangle R(p) as a cell to D'(T).
For every internal node A of T with R(A) # R(A), we add the region R(A) \ R(A)
as a cell to D'(T).

Lemma 14.1 The collection D'(T) of regions defines a subdivision of C' whose regions

are either box or donut cells.

Proof. The fact that D'(T) is a subdivision of C' is easily shown by induction. In
particular, the rectangle R(p) is a trivial subdivision of rectangle R(p), for every
leaf p of T. Now let A be an internal node with children A; and A,. By the induction
hypothesis, the cells introduced by descendants of A; and A, define subdivisions of
rectangles R(A;) and R(Ay). Hence, their union is a subdivision of R(A) because
R(A) = R(A;) U R(A,) and R(A;) N R(A;) = 0. If A is the root of T, we thus
obtain the desired subdivision of square C' = R(A). Otherwise, if R(4) = R(A),
node A does not contribute any cell to D'(T). If R(A) # R(A), node A contributes
cell R(A)\ R(A) to D'(T). In both cases, the cells introduced by descendants of A
form a subdivision of rectangle R(A), thereby completing the inductive step.

Now observe that all rectangles R(A) and R(A) are boxes. Hence, all cells R(p),
where p is a leaf of T', are box cells, as they contain exactly one point, namely point p.
Also, every cell R(A)\ R(A) is the set-theoretic difference of two boxes. Each cell
R(A)\ R(A) is empty because R(A) is constructed from R(A) by splitting off empty

14.1 A Planar L;-Steiner Spanner for Point Sets 287

rectangles. It remains to show that every side ¢’ of R(A) is either contained in the
corresponding side e of R(A) or has distance at least ||¢/||;/3 from e.

Let R(A) = Ry, Ry,..., Ry = R(A) be the sequence of rectangles produced by the
procedure constructing R(A) from R(A). For a side €’ of R(A) that is not contained
in the corresponding side e of R(A), let R; be the first rectangle in the above sequence
so that the side e; of R; corresponding to e is not contained in e. Then R; is one
of the rectangles produced by splitting rectangle R;_; fairly, perpendicular to its
longest side. Let e;_; be the side of rectangle R; ; corresponding to side e;, and let
imax = Imax(Ri_1). Then the distance between e; and e; ; is at least %émaX(Ri,l).
Moreover, lmax(R(A)) < lmax(Ri—1) and R(A) C R; C R,_1 C R(A), so that the
distance between e and €’ is at least %KmaX(R(A)) > |l€'|l1/3. O

The construction of subdivision D'(T’) requires computing a fair split tree 7" of S
and scanning the vertex set of T' to extract the cells of D'(T"). By Lemma 12.10, a fair
split tree of size O(N) for S can be computed in O(sort(N)) I/Os. The extraction of
the cells takes O(scan(/N)) I/Os. Every node of 7" adds at most one cell to D'(T), so

that we obtain the following lemma.

Lemma 14.2 Subdivision D'(T) can be computed in O(sort(N)) I/Os and linear
space. Its size is O(N).

14.1.2 The Spanner

Given a subdivision D' as defined in Section 14.1.1, a planar L,-spanner for point set S
can be constructed as follows: Let INTERVAL(e,) be a procedure which partitions
segment e into a minimum number of subsegments of length at most r by adding
equally spaced Steiner points on edge e. We perform INTERVAL(e,7y||e]|1), for every
boundary edge e of a cell in the subdivision, where v is an appropriately chosen
constant to be defined later. For every cell R and every boundary edge e of R, we
shoot rays orthogonal to e from the endpoints of e and the Steiner points on e toward

the interior of R until they hit another boundary edge of R. For every box cell R

14.1 A Planar L;-Steiner Spanner for Point Sets 288

containing a point p € S, we also shoot rays from p in all four axis-parallel directions
until they hit the boundary of R. We add these rays as edges to D’. To preserve
the planarity of the resulting graph, we introduce all intersection points between
perpendicular rays as Steiner points. We call the resulting graph D”. The following

two lemmas show that D" is the desired spanner.

Lemma 14.3 (Arikati et al. [16]) Graph D" has size O(N/~?).

Proof. Subdivision D’ has size O(N), and each cell of D' is bounded by at most eight
edges, four horizontal and four vertical ones. Each edge e is partitioned into at most
[1/~] smaller edges. That is, at most 4/v + 8 vertical rays and 4/~ + 8 horizontal
rays are shot into the cell. This creates at most (4/7 + 8)2 = O(1/+?) intersection
points per cell which are added as Steiner points to D”. As graph D" is planar, the
number of edges and faces is linear in the number of vertices, and the lemma follows.

O

Lemma 14.4 (Arikati et al. [16]) The L,-spanning ratio of graph D" is at most
1+ 39.

Proof. Consider two points a,b € S. Then segment (a, b) is the shortest path from a
to b in any metric. Replace (a, b) by a path (a, ¢, b) by moving first vertically from a
until a point ¢ with the same y-coordinate as b is reached and then horizontally
to b. Path (a,c,b) has the same length as edge (a,b) in the L;-metric. Hence, it is
sufficient to construct a path in D" which is of length at most (1 + 3%)||(a, ¢, b)||:,
where ||(a, c,b)||1 = ||(a,c)||1 +]|(c,b)]|1 is the length of path (a, ¢, b) in the Li-metric.
Let p1,...,pr be the intersection points between path (a,c,b) and edges of D' that
are not contained in the same lines as segments (a,c) and (c,b). Then ||(a,c,b)||; =
(@, p)ll + S 1 pin) s + 1l (x, B) 1.

First observe that segments (a,p;) and (pg, b) coincide with edges of D" incident
to points a and b. To show the existence of (1+37)-approximations of edges (p;, pi+1),
1 <14 < k—1, we prove the following claim: Let p and ¢ be two points on the boundary
of a cell R of D' so that there is an Li-path from p to ¢ which intersects the boundary

14.1 A Planar L;-Steiner Spanner for Point Sets 289

of R only in p and ¢ and has at most one bend. Then there exists a path from p to ¢
in D" whose length is at most (1+ 37)||(p, ¢)|[:- This implies that there exists a path
from a to b in D' whose length is at most ||(a,p1)|[1 + (1 +37) 25 |(ps, pisa) |1 +
(P, 0)|]1 < (1 + 37)][(a, ¢, b)||1 because every subpath of path (a,b, c) between two
consecutive points p; and p;;; has at most one bend. There are three possible cases

(see Figure 14.1):

(a) R is a box cell and points p and ¢ are on two perpendicular sides of R, or R is
a donut cell and points p and ¢ are on two perpendicular sides of the outer box
of R,

(b) R is a donut cell, p is on the outer box of R, and ¢ is on the perpendicular side

of the inner box of R which is closer to p, or

(c) Points p and g can be connected by a horizontal or vertical line segment which

stays completely inside R.

In Cases (a) and (b), the paths from p to ¢ shown in Figure 14.1 have length ||(p, ¢) |1
and consist of edges in D”. In Case (c), let e be the edge of D' containing point p and
e’ be the edge containing point g, where w.l.o.g. ||€'||; < ||e||;- Then a spanner path
from p to ¢ is obtained by walking along edge e to the closest vertex v of D" on edge e,
continuing perpendicular to edge e toward the vertex w on edge e’ which is closest to ¢
and then walking from w to ¢ along edge €’. Since the vertices on edge e’ have distance
at most 7||€/||1, the distance between point ¢ and vertex w is at most 7||€'||;/2. The
same is true for point p and vertex v because dist;(p,v) = disti(g, w). Hence, the
constructed path has length at most ||(v, w)||1 +7||€[l1 = ||(p, @)||1 +7]|€'||:. However,
the distance between edges €' and e is at least ||e’||1/3, so that ||€'||; < 3||(p,)|}
This implies that path (p,v, w, ¢) has length at most (1 + 3v)||(p, 9)||1- O

Lemma 14.5 Graph D" can be constructed in O(sort(N/~?)) I/Os using O(N/(+*B))

blocks of external memory.

14.1 A Planar L;-Steiner Spanner for Point Sets 290

- = = -

(a)

o) el (©)

Figure 14.1

Spanner paths between points on the boundaries of cells of subdivision D’. The spanner paths
are shown as fat solid lines. Li-paths between the endpoints of these spanner paths are shown
as fat dashed lines. Thin dotted lines are the rays used to partition the cells.

Proof. By Lemma 14.2, subdivision D' can be computed in O(sort(N)) I/Os and
linear space. Given the cells of D', we scan the set of cells to partition each of them as
described above and add the segments in the resulting partition to the edge set of D"
and their endpoints to the vertex set. Since each cell has a constant size description,
we can load it into internal memory and generate the set of vertices and edges in this
cell in a linear number of I/Os. By Lemma 14.3, the total number of vertices and
edges is O(N/~?), so that generating them takes O(scan(N/?)) I/Os. Since each cell
is partitioned separately, the resulting vertex set may contain duplicates, and the edge
set may contain edges that overlap (see Figure 14.2a). The duplicates in the vertex
set can be removed in O(sort(N/7?)) I/Os using procedure DUPLICATEREMOVAL.

To construct the final edge set of D", we have to replace overlapping edges as

follows: Let v1 = uq,...,ur = vy be the sequence of endpoints of the first chain of
edges, and let v; = wy,...,w; = vy be the endpoints of edges in the second chain.
Our goal is to construct a chain of edges with endpoints vy = z1,..., 24 = v9 so that

for all 1 <4 < g, there is a vertex u; or wy such that z; = u; or x; = wy, for all
1 < j <k, there is a vertex z; such that u; = z;, and for all 1 < j' <[, there is a

vertex z; such that wy = ;.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 291

lor Jwp Jwy | | |
) To - T4 E Z
[[U |w | s %]
(a) (b)
Figure 14.2

Superimposing overlapping edges.

We obtain this superimposition of overlapping edges as follows: We consider only
horizontal edges. Vertical edges can be handled analogously. We sort the horizontal

edges by their y-coordinates and the z-coordinates of their left endpoints. Then a sin-

gle scan of this sorted edge list is sufficient to generate edges {z1, z2}, ..., {z4-1, 2.} as
defined above. Hence, the final edge set of D" can be obtained in O(sort(N/~?%)) I/Os.
U

If we choose v = ¢/3, Lemmas 14.3, 14.4, and 14.5 lead to the following result.

Theorem 14.1 Given a point set S in the plane and a constant ¢ > 0, a planar

Steiner spanner of size O(N/e*) and with L,-spanning ratio 1 + ¢ can be computed

in O(sort(N/e?)) 1/Os using O(N/(2B)) blocks of external memory.

14.2 A Planar L.-Steiner Spanner for Sets of
Polygonal Obstacles

In this section, we adapt the construction of the previous section to construct a planar
Li-spanner for a set P of polygonal obstacles in the plane. That is, we construct a
planar subdivision similar to the one described in Section 14.1.1 and then derive a
spanner from the subdivision in a manner similar to the construction in Section 14.1.2.
But now the subdivision is constrained by the set of obstacle edges, which makes it
more difficult to compute. In order to compute the subdivision, we again follow

the framework of an algorithm of [16], which employs a plane-sweep to carry out its

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 292

task. However, our representation of the sweep-line status uses only a single buffer
tree instead of two balanced search trees. This simplification is the key to obtaining
an I/O-efficient algorithm because the approach of [16] requires immediate query
responses on the two trees; but no I/O-optimal batched search structure exists which
answers queries immediately.

In Section 14.2.1, we define the subdivision used to obtain the spanner. In Sec-
tion 14.2.2, we show that the subdivision defined in Section 14.2.1 can be used to
derive a planar L;-Steiner spanner for obstacle set P in a manner similar to the con-
struction in Section 14.1.2. In Sections 14.2.3 and 14.2.4, we present an I/O-efficient

algorithm for computing the subdivision defined in Section 14.2.1.

14.2.1 A Modified Planar Subdivision

First we compute a modified planar subdivision so that we can obtain an L;-spanner
of P by partitioning the cells of this subdivision as in Section 14.1.2 and removing
all edges that are inside obstacles. It is not hard to see that the following subdivi-
sion D; has this property: Let D be the planar subdivision induced by the obstacles
in P, and let D’ be the subdivision obtained from the set of obstacle vertices using
the construction in Section 14.1.1. Then D, is the superimposition of D and D'.
Unfortunately, D; may have size 2(NN?), thereby leading to a spanner of superlinear
size. In [16], it is shown that another subdivision Dy with the desired properties can
be derived from D; by removing edges between cells. This subdivision has linear size
and can be constructed without constructing D; explicitly. In this section, we recall

the definition of this subdivision.

Subdivision D;. To define subdivision Dy, we first define the superimposition D;
of D and D’ formally and study its structure. Let S be the vertex set of the ob-
stacles in P, and let D' = (S, E') be the subdivision D' defined for point set S in
Section 14.1.1, viewed as a graph. Let D = (S, E) be the graph defined by the set of
obstacles in P. Then let graph D; be the superimposition of graphs D’ and D. That

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 293

Figure 14.3
A face with many vertices on its boundary (a) and its corresponding region (b).

is, the edges of D' and D are split at their intersection points, and these intersection
points are introduced as vertices of D;.

In order to derive subdivision Dy from Dy, we need to distinguish between a region
of subdivision D; and a face of graph D;. Every face f of graph D; is contained in
a region R of subdivision D'. We define the boundary of region R(f) corresponding
to face f as the sequence of edges defined by boundary vertices of region R, obstacle
vertices on the boundary of face f, and intersection points between the boundary of
region R and obstacle edges. As a result, the complexity of every region in subdivi-
sion D is bounded, even though the faces of graph D; may have a large number of
vertices on their boundaries (see Figure 14.3).

The regions of subdivision D; can now be partitioned into two classes: A red
region is a quadrilateral R(f) so that no vertex of face f isin SU S’ (Figure 14.4a).
That is, all the vertices of face f are intersection points between edges in F and E'.
In particular, the edges of such a region alternate between E and E’ in clockwise
order around the region. All remaining regions are blue (Figure 14.4b).

A blue region R(f) can be of two types, depending on whether face f has a vertex
in SUS'. If face f has no vertex in SUS’ on its boundary, region R(f) is bounded by
six or eight edges. This follows from the following three observations: If it had only
four edges on its boundary, it would be red. The number of boundary edges must

be even because edges from E and E' alternate along the boundary of R(f). There

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 294

Figure 14.4
(a) Two red regions. (b) The simplest and the most complicated blue region.

cannot be more than four edges from E’ on the boundary of R(f) if R(f) does not
contain a vertex from S U S'. If face f has a vertex in S U S’, the shape of R(f) can
vary. However, region R(f) can be bounded by at most 16 edges: 6 obstacle edges
and 10 edges from E’. Hence, blue and red regions of D; have constant complexity.
The construction of subdivision Dy maintains this property for all its regions. This

is important for the construction of the Steiner spanner from Ds.

Ladders, rungs, and the red graph. The construction of Dy merges adjacent red
regions in Dy, where adjacency is defined by means of a red graph of subdivision D;.
This graph is a subgraph of the dual of D;. It contains a vertex for every red region
of D; and an edge between two vertices if the two corresponding regions share an
edge that is part of an edge in E’. Since every red region has two edges from E’ on
its boundary, every vertex in the red graph has degree at most two. Hence, every
connected component of the red graph is a path (Figure 14.5).

Consider the set of red regions corresponding to a connected component of the
red graph. These regions are bounded by the same two obstacle edges and a set of
edges in E'. We call such a set of red regions a ladder. The two obstacle edges on
their boundaries are the sides of the ladder; the edges from E' are its rungs. More

generally, the rungs of graph D; are all edges in D; that are contained in edges of D'

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 295

Figure 14.5
A non-trivial ladder and its corresponding connected component of the red graph.

and both of whose endpoints are intersection points of edges in E and E’. We call
the topmost rung of a ladder its top rung. Left, right, and bottom rungs are defined
in a similar manner. All of these four types of rungs are called extremal rungs. To
simplify the description of the algorithm for constructing D, we also consider a single
rung between two blue regions to be a ladder. We call such a ladder trivial, while a

ladder formed as the union of red regions is non-trivial.

Subdivision D,. Subdivision D, is now obtained by removing the non-extremal
rungs from all ladders of D;. That is, the red regions of each non-trivial ladder are
merged into a single red region. The following lemma shows that subdivision D, has

linear size.

Lemma 14.6 (Arikati et al. [16]) Subdivision Dy has size O(N).

Proof. The number of blue regions each having at least one vertex in S U S’ on its
boundary is O(N) because |S| = N, |S’| = O(N), every vertex in S is on the boundary
of two regions, and every vertex in S’ is on the boundary of at most four regions.
The number of blue regions whose vertices are intersection points of D and D’ and
the number of red regions is linear in the number of rungs of Ds. We show that there
are O(N) top rungs. Using the same arguments, it can be shown that the number
of left, right, and bottom rungs is linear. Hence, the total number of extremal rungs

is O(N), and subdivision D, has O(N) regions.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 296

In order to bound the number of top rungs in subdivision Dy, we consider the
trapezoidation A of the obstacle set P obtained by shooting horizontal rays from all
obstacle vertices. This trapezoidation contains O(N) trapezoids. For every trape-
zoid f, let S} be the set of vertices of subdivision D’ that lie in trapezoid f. We show
that the number of top rungs in trapezoid f is at most 1 + [S%[, so that the total
number of top rungs is 3 (1 4+ S3) = [A] + |S'] = O(N).

To prove the bound on the number of top rungs in a trapezoid f, let e; and es
be two top rungs in trapezoid f, and let [and r be the two obstacle edges bounding
trapezoid f on the left and right. The trapezoid f’ defined by edges e;, ey, [, and 7
does not have any obstacle vertex on its boundary. Thus, if f' does not contain a
vertex in S}, it is the union of a set of red regions in D;, and the bottom edge of f’
cannot be a top rung. This proves that any two consecutive top rungs in trapezoid f
have to be separated by at least one vertex in S}, and the bound on the number of

top rungs in f follows. 0

Before showing in Sections 14.2.3 and 14.2.4 that subdivision D, can be con-
structed I/O-efficiently, we demonstrate that a planar L;-Steiner spanner for obstacle

set P can be derived from D,.

14.2.2 The Spanner

The procedure for deriving a spanner for obstacle set P from subdivision Ds is similar
to the one presented in Section 14.1.2: We remove all regions inside obstacles from D.
For each remaining region R, we consider all edges on its boundary that are contained
in edges of E'. For each such edge e, we apply INTERVAL(e, 7v||€'||1), where €’ is the
edge of subdivision D’ containing edge e, and shoot rays from the endpoints of e and
from the resulting Steiner vertices toward the interior of R until they hit another
boundary edge of R. Again, we add all intersection points between these rays as
Steiner points to Dy. Let D" be the resulting graph. The construction explicitly
ensures that D" is planar. The next two lemmas show that its size is small and its

spanning ratio is at most 1 + 3.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 297

Lemma 14.7 (Arikati et al. [16]) Graph D" has size O(N/~?).

Proof. Since graph D" is planar, the number of edges and faces of D" is linear
in the number of its vertices. Hence, it suffices to bound the number of vertices.
By Lemma 14.6, subdivision D, has size O(N). Every region R of D, is contained in
a donut or box cell of subdivision D', so that at most 4/ + 8 horizontal and vertical
rays are shot into region R. As in the proof of Lemma 14.3, this implies that at most
(4/v+8)? = O(1/~?) Steiner points are introduced per region of D,. Hence, the total
number of vertices in D" is O(N/~?). O

Lemma 14.8 (Arikati et al. [16]) Graph D" has Li-spanning ratio at most 1 + 3.

Proof. The proof is similar to that of Lemma 14.4. Let a and b be two obstacle
vertices, and let Q) = (a = py, p1,...,pr = b) be the shortest path from a to b, where
p1,...,Pr—1 are all bends and intersection points of () with edges in E'. W.l.o.g., we
can assume that bends occur only at obstacle vertices and intersection points of @)
with edges of subdivision D'. In addition, we ensure that path () visits an obstacle
vertex if without visiting it, it would come too close to that vertex. Formally, let R be
a box cell crossed by path @, and let p be the obstacle vertex contained in R. Let ¢
and r be the two points on the boundary of R crossed by Q. If z(q) < z(p) < z(r)
and y(q) < y(p) < y(r), we ensure that path) contains point p as one of its vertices.
This can be done without changing the length of path @) in the L;-metric.

As in the proof of Lemma 14.4, it suffices to show that every edge (p;—1,p:), 1 <
i < k, can be replaced with a path in D" whose length is at most (1+37)||(pi_1, pi)||1-
We distinguish between the possible types of region R containing edge (p; 1,pi)-
Assume first that region R is blue.

If wl.o.g. p;_1 is an obstacle vertex, then p; is an intersection point of () with
an edge in E' because no two obstacle vertices lie in the same region. No matter on
which boundary edge of region R point p; lies, it is easy to verify that there is a path
of Ly-length ||(pi—1, pi)||1 from p;—; to p; in D".

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 298

So assume that p;_; and p; are both intersection points. Then we construct a
path @' as in the proof of Lemma 14.4, assuming that there are no obstacle edges.
Path @' has length at most (1 + 37)||(pi—1,pi)|/1, by Lemma 14.4. However, it may
intersect obstacle edges and contain edges that are not in D" because they are inside
obstacles. We form pairs of consecutive intersection points between @)’ and obstacle
edges on the boundary of region R and replace the subpath of @' between each of
these pairs {z,y} of intersection points by the shortest path from z to y along the
boundary of the obstacle containing x and y. Let Q" be the resulting path. Then we
claim that Q" uses only edges in D" and ||Q"||1 = [|@'||l1 < (1 4+ 3)||(pi_1,p:)||1-

To prove the first claim, it suffices to prove that every pair {z,y} of intersection
points lies on the boundary of the same obstacle, so that the shortest path from x to
y along the boundary of this obstacle exists. To see this, observe that when path @’
leaves region R through point x on the boundary of an obstacle o € P, it is confined
to the intersection of obstacle o with the cell R’ of subdivision D’ which contains R
because it never leaves cell R'. Hence, it can only re-enter region R through an edge
of the same obstacle, so that point ¥ is on the boundary of obstacle o.

The second claim follows if we can show that the shortest path in D between
two consecutive intersection points z and y is an edge. So assume for the sake of
contradiction that there are two intersection points z and y so that the shortest
path in D from x to y is not an edge. Then region R is contained in a box cell,
which contains a vertex p € S, and path @’ intersects both edges e; and e, incident
to vertex p. Now consider the three cases in the proof of Lemma 14.4. In Cases
(a) and (b), path @' stays inside the axes-parallel rectangle R' defined by points
pi;—1 and p;. Since path @) contains a straight edge from p; ; to p;, the definition
of path @ implies that point p lies outside R'. Since edge (p;—1,p;) cannot intersect
edges e; or ey, this implies that edges e; and e, do not intersect rectangle R’, so
that path @' does not intersect either of these two edges. This leads to the desired

contradiction.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 299

Figure 14.6
Spanner paths in different types of red regions.

In Case (c), assume first that points p;_; and p; are contained in the same slab
defined by the rays shot perpendicular to the edges containing points p; ; and p;.
Then this slab does not contain point p because this point itself defines one of these
slab boundaries. Hence, path @' cannot intersect edges e; or es. If p;_; and p; lie in
different slabs, path @' contains a slab boundary between the two slabs containing
pi—1 and p;. This slab boundary is contained in rectangle R', so that again the choice
of path () guarantees that edges e; and e, do not intersect this slab boundary. Thus,
we obtain a contradiction in Case (c) as well, which shows that the shortest path
in D between two consecutive intersection points x and y is an edge. This finishes
the proof for edges (p;_1,p;) that are contained in blue regions.

Now assume that edge (p;_1,p;) is contained in a red region. In this case, points
pi—1 and p; lie on two opposite rungs of the region. If these two rungs are perpendic-
ular to each other, the path shown in Figure 14.6a has length ||(p;—1,p;)||1. If the two
rungs are parallel to each other, we distinguish two cases. Assume w.l.o.g. that the
two rungs are horizontal. If w.l.o.g. point p; does not fall into the z-range of the rung
containing p;_;, the path shown in Figure 14.6b has length ||(pi—1, pi)|[1. Otherwise,
we construct a path from p; 1 to p; as in the proof of Case (c¢) of Lemma 14.4 (Fig-
ure 14.6¢). The fact that the constructed path has length at most (1+37)||(p;i—1, pi)||1
follows from the same argument as in that proof, observing that either the two edges
of R containing points p; 1 and p; are opposite edges of the same region of subdivision

D', or they are even further apart. O

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 300

The previous two lemmas show that graph D" is an L;-Steiner spanner for obstacle

set P. The following lemma shows that it can be constructed I/O-efficiently.

Lemma 14.9 Given subdivision Dy, a planar L,-Steiner spanner of size O(N/~?%) and
with spanning ratio at most 1 + 3 can be computed in O(sort(N/~?)) 1/Os using
O(N/(v?B)) blocks of external memory.

Proof. Similar to the construction of spanner D” for a point set S, the set of Steiner
points and incident edges can be generated in internal memory, for every region of D,
because each such region has constant complexity. Hence, a scan of the set of regions
suffices to generate all Steiner points and edges in O(scan(N/~?)) I/Os.

An application of procedure DUPLICATEREMOVAL to the set of endpoints of the
generated edges produces the final vertex set of graph D”. The generation of the edge
set of D" is complicated by the fact that edges are not only horizontal and vertical,
as in the proof of Lemma 14.5. However, all generated edges are either part of an
edge in D' or obstacle edge, or they are new edges generated by partitioning the
regions of D,. The latter edges can be added to the edge set of D” without modifi-
cation. The former edges need to be superimposed as in the proof of Lemma 14.5.
This superimposition can be performed using the same procedure as in the proof of
Lemma 14.5, the only difference being that the edges are sorted by the identity of the
obstacle edges or edges of D' containing them. All edges that are contained in the
same edge are sorted by the distances of their closer endpoints to one of the endpoints
of e. Hence, graph D" can be constructed in O(sort(N/~?)) 1/Os using O(N/(v?B))

blocks of external memory. O

If we choose v = ¢/3, the following result follows from Lemmas 14.7, 14.8, 14.9,
and 14.11. Proving Lemma 14.11 is the subject of Sections 14.2.3 and 14.2.4.

Theorem 14.2 Given a set P of polygonal obstacles with a total of N vertices, a pla-
nar L,-Steiner spanner of size O(N/e?) and with spanning ratio at most 1+¢ for P can
be computed in O (% log a 2+ SOIt(N/€2)> I/Os using O (% (log% 2+ ,}2))

blocks of external memory.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 301

14.2.3 Computing the Subdivision

Having shown that subdivision D can be used to derive an L;-Steiner spanner with
spanning ratio 1 + ¢ for obstacle set P, we have to provide an I/O-efficient algorithm
for constructing subdivision D,. As mentioned before, subdivision D; may have size
Q(N?), so that constructing D; and removing all non-extremal rungs from the ladders
of D; does not lead to an efficient algorithm.

The solution proposed in [16], whose framework we follow here, first constructs
a supergraph D3 of Dy whose size is O(N). Due to the linear size of D3, we can
afford to compute the red graph of D; explicitly and remove non-extremal rungs
from Ds. Graph Dj is constructed by identifying the potential top, bottom, left, and
right rungs of each ladder in D; and computing the edge set of D3 as the union of
the set of these rungs, the set of all edges in D; incident to points in S’, and the
set of obstacle edges. In this section, we describe the I1/O-efficient construction of
subdivisions D3 and Ds, once the set of rungs of subdivision D3 has been computed.

An I/O-efficient algorithm for computing the rungs is described in Section 14.2.4.

14.2.3.1 Computing Subdivision Djg

Let E% be the set of potential top, bottom, left, and right rungs. Then subdivision Dj
is defined by all obstacles edges (i.e., the set of edges in FE), the set of rungs in EY,
and the set E of short edges of D;. A short edge is an edge which is completely
contained in an edge of D’ and has at least one endpoint in S’.

Since sets F and EY, are already given, we have to compute the set EY of short
edges and extract a representation of subdivision D3 as an embedded planar graph
from the edge set E'U E, U EY defining subdivision D3;. We describe these two steps

next.

Computing short edges. The set EY of short edges can be computed by answering
ray-shooting queries on P and shortening the edges in E’ appropriately. In particular,

let p € S’ be a vertex of D'. Then there are at most four edges in E’ incident to p.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 302

For each such edge E’, we shoot a ray p from p in the direction of edge ¢’ until it hits
an obstacle edge e. Let ¢ be the intersection point of e and p, and let ¢ = (p, q). If
e’ C ¢, we add €” to the set Ef of short edges. Otherwise, we add edge €’ to this set.

The ray-shooting queries used to compute edges e’ are axes-parallel, and there
are O(N) of them to be answered. Hence, we use the endpoint dominance algorithm
of [15] to answer these queries in O <D_]\§3 log u %) I/Os. Given the set of answers
to these queries, a single scan of this set is sufficient to decide for every edge e’ € E’

whether to add edge ¢’ or " to Ef.

Computing graph Ds. A representation of subdivision D3 as an unordered edge set
EUFELUEY is not very useful for computing Dy from Ds. In particular, a representa-
tion of D3 as vertex and edge sets is required. The geometric information pertaining
to the vertices and edges of D; then provides us with a planar embedding Ds of
graph Ds.

The vertex set of Dj is easily constructed as the set of endpoints of all edges in
E U E% U E}. We apply procedure DUPLICATEREMOVAL to remove duplicates from
the generated vertex set. To compute the edge set of D3, every obstacle edge has to
be split at the endpoints of rungs and short edges lying on this obstacle edge. Once
all obstacle edges have been split, duplicate rungs and short edges have to be removed
from the edge set, since these edges may have been generated more than once.

The computation of rungs and short edges can easily be augmented so that every
edge in Ej, U E% stores the identities of the obstacle edges containing its endpoints.
Hence, we can split the obstacle edges as follows: We sort the set of endpoints of
edges in £y, U E by the obstacle edges containing them and so that the endpoints
lying on the same obstacle edge are sorted by their distances from one endpoint of
that edge. We scan this sorted list of endpoints and the list £ of obstacles edges to
split obstacle edges.

To remove duplicate rungs and short edges from the edge set of D3, we apply

operation DUPLICATEREMOVAL to this edge set.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 303

In the above construction, we apply procedure DUPLICATEREMOVAL twice and
sort and scan sets of size O(N) a constant number of times. Hence, the construction
of graph Dj from the edge set E U E}, U EY takes O(sort(N)) I/Os. Together with
the fact that the set of short edges can be computed in O (D—A}fg log a'a D—g) I/0s, we

thus obtain the following lemma.

Lemma 14.10 Given the set E of obstacle edges, the set E}, of rungs of subdivi-
sion D3, and subdivision D', a representation of D3 as an embedded planar graph
can be computed in O (% log% %) I/Os using O (% logD_zvg DN—B> blocks of external

memory.

14.2.3.2 Computing Subdivision D,

To construct subdivision D, from graph Ds, we compute the dual Dj of graph Ds,
extract the red graph of D3 from Dj, and remove all edges dual to edges in the red
graph from Ds. The result is a graph D} whose faces define the regions of Dy. We
scan the list of edges on the boundary of each face of Dj and merge consecutive
collinear edges to produce a constant size description of each region in Ds.

Given a planar embedding D3 of Dj, it is shown in [100] how to compute the
dual Dj of D3 in O(sort(N)) I/Os. The computation of this algorithm can easily be
augmented to color every vertex of Dj as either red or blue, depending on the type of
its corresponding region, and to mark every edge of Dj as being dual to an obstacle
edge or an edge of D'. Now we use procedure COPYVERTEXLABELS to identify all
edges of D3 which have at least one blue endpoint. Then we scan the edge set of D3 to
remove all edges with at least one blue endpoint and edges which are dual to obstacle
edges. Let E} be the resulting set of edges. The edges in E} are the edges of the
red graph of D;. Each edge in E} is dual to a non-extremal rung of a ladder in Dj.
We scan set E} to construct the set EY of rungs dual to the edges in Ej. Finally, we
apply procedure SETDIFFERENCE to the edge set E3 of D3 and set EY to remove the

rungs in Ej from Ds. This produces graph Dj.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 304

The faces of graph Dj correspond to the regions of subdivision Ds. To construct
a representation of D, as a collection of regions, we compute a representation of the
faces of D} as a collection of edge lists, each storing the edges of one face, clockwise
around that face. Such a representation can be computed in O(sort(N)) I/Os, as
shown in [100]. Once this representation is given, a single scan of these edge lists
suffices to compute constant size representations of regions R(f), for all faces f of Dj.
In particular, we scan each edge list and merge consecutive collinear edges of the
same type (subsegment of an edge in E or E’). By the discussion in Section 14.2.1,
only O(1) edges remain per face.

In the above construction of subdivision Dy from graph Ds, we apply procedure
CoPYVERTEXLABELS and SETDIFFERENCE, two O(sort(/N)) I/O procedures for
constructing the dual D3 of D; and extracting the edges on the boundary of each
face of graph Dj, and otherwise sort and scan lists of size O(N) a constant number
of times. This takes O(sort(/N)) I/Os. Together with Lemmas 14.10 and 14.12, this

proves the following result.

Lemma 14.11 Given a set P of polygonal obstacles in the plane, subdivision D, can
be computed in O (%logD_Ag %) I/Os using O (%log% %) blocks of external

memory, where N is the total number of obstacle vertices.

14.2.4 Computing the Rungs

The construction of subdivision Dy in Section 14.2.3 assumes that the set E} of
extremal rungs of subdivision D, is given. Computing this set of rungs is the most
difficult part of the algorithm. The remainder of this section is dedicated to describing
a procedure for computing set E% in O (% log M D—J\%) I/Os. In [16], a plane-sweep
algorithm is used to compute each type of extremal rungs separately. We follow this
approach, but simplify the sweep-line data structure so that the approach leads to an
I/O-efficient algorithm.

Since top, bottom, left, and right rungs are computed using four similar plane

sweeps, we only describe the computation of top rungs. Let Ej be the set of horizontal

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 305

Procedure FINDTOPRUNGS

Input: The set Ej of horizontal edges of subdivision D’ and the set E of obstacle edges.
Output: A set E'; of size O(N) which contains the top rungs of all ladders in D;.

1: By« 0

2: L < ((a,b)), where a and b are the left and right sides of square C.
{L is the list of intervals intersected by the sweep-line, sorted from left to right.}
{C is the square containing all polygon vertices.}

3: Mark interval (a,b) as “non-ladder”.

4:Y ={ylp):peStu{yle):ec E}}
{Y is the set of y-coordinates where the set of intervals in L changes.}

5: for all y € Y, sorted from —oo to +oco do

6: if y = y(p), for some point p € S then

T: Let e; and ey be the two edges incident to p, where e; is to the left of or below es.
8: if p is the bottom corner of an obstacle in P then
9: PROCESSBOTTOMCORNER(p, €1, €2, L, E';)
10: else if p is the top corner of an obstacle in P then
11: PROCESSTOPCORNER(p, €1, €2, L, E')
12: else
13: PROCESSNONEXTREMALCORNER(p, €1, €2, L, E',)
14: end if
15: else
16: Let e € Ej}, so that y = y(e).
17: PROCESSHORIZONTALEDGE(e, L, EY,)
18: end if
19: end for

20: for all remaining intervals (I,7) € L do
21: Add the top-rung of interval (I,7) to E}, if (I,7) is a ladder interval.
22: end for

Algorithm 14.1
Finding the top-rungs of all ladders in D;.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 306

Procedure PROCESSBOTTOMCORNER(p, €1, €2, L, E';)

1: Find the interval (I,7) € L containing point p.

2: if (I,7) is a ladder interval then

3: Add the top rung of (I,7) to set E’,.

4: end if

5: Replace (I,r) by three non-ladder intervals (I,e1), (e1,e2), and (e2,r) in L.

Procedure PROCESSTOPCORNER(p, €1, €3, L, E')

1: Add the top rungs of all ladder intervals in {(I,e1), (e1, €2), (e2,7)} to Ef.
2: Replace (I, e1), (e1,e2), and (ez,r) by a single non-ladder interval (/,r) in L.

Procedure PROCESSNONEXTREMALCORNER(p, €1, €2, L, E;)

1: Let (I,e1) and (e1,r) be the two intervals incident to edge e;.

2: Add the top rungs of all ladder intervals in {(l,e1), (e1,7)} to E',.

3: Replace intervals (I,e;) and (e1,r) by two non-ladder intervals (I,e3) and (e,), re-
spectively.

Procedure PROCESSHORIZONTALEDGE(e, L, E'Y,)

Locate intervals (I1,71) and (lg,7) in L which contain the endpoints of edge e.
Let (I2,72),...,(lxk—1,7k—1) be the intervals between (l1,71) and (I, 7) in L.

Add the top-rungs of all ladder intervals in {(l1,71), (lx, %)} to Ef.

Mark intervals (I1,71) and (I, r;) as “non-ladder”.

Mark intervals (I3, 79),...,(lk—1,7k—1) as “ladder” and make edge e their top rung.

Algorithm 14.2
The four procedures used for processing event points in Algorithm 14.1.

edges of subdivision D'. Then we use Algorithm 14.1 to compute all potential top
rungs. The algorithm employs a plane-sweep in (+y)-direction to carry out its task.
During the sweep, it maintains a set of intervals defined by intersections between
the sweep-line ¢ and obstacle edges. In particular, let e,...,ex be the edges in E
intersected by the sweep line, sorted from left to right. Then the set of intervals
currently stored for £ is (e1, e3), (e2,€3), ..., (ex—1,ex). Each such interval (e;, e;1) is

classified as ladder or non-ladder depending on whether the algorithm has already

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 307

found a rung whose endpoints lie on e; and e; ;. In particular, for an interval I =
(€i,€it1), let h be the highest edge in Ej} below ¢ and intersecting both e; and e; ;.
Interval I is a non-ladder interval if A does not exist or the quadrilateral defined by
l, e;, e;11, and h contains a point from S U S’. Otherwise, I is a ladder interval.

During the sweep, an interval can be created or destroyed only when the sweep
passes the y-coordinate of an endpoint of an edge in E. The type of an interval can
change only when the sweep passes the y-coordinate of an edge in Ej}. The algorithm
deals with these different types of event points and maintains the list of intervals,
their classification, and for ladder intervals their top rungs. It is easy to verify that
the algorithm maintains the list of intervals and their classification correctly, so that
the rule for reporting top rungs is correct. We have to present a data structure to
represent the sweep-line status so that the list of intervals can be maintained I/O-
efficiently.

The data structure has to support updates of the status of a sequence of consec-
utive ladder intervals at the cost of o(1) changes to the data structure per interval in
the sequence. To see why this is necessary, observe that an edge e € Ej may intersect
Q(N) obstacle edges, so that the status of (V) intervals has to be updated when
the sweep passes edge e. As there are ©(/N) edges in Ej, the number of required
updates of the sweep-line data structure would be Q(N?) if each updated interval
caused (1) updates of the data structure. In order to achieve o(1) data structure
updates per modified interval, our data structure, just as the one presented in [16],

exploits the following observation.

Observation 14.1 (Arikati et al. [16]) Two consecutive ladder intervals have the

same top rung.

The data structure proposed in [16] exploits this fact by representing intervals and
their status in two separate binary search trees. The first tree, T', stores the current set
of intervals sorted from left to right. The second tree, T”, represents the status of all
intervals in a compressed form by storing only one entry for each consecutive sequence

of intervals of the same type. Since every event point generates or destroys only

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 308

O(1) intervals, procedure FINDTOPRUNGS performs only O(N) updates of tree 7.
Counting the number of updates of tree 7" is not quite that easy. However, it can be
shown that every generation or deletion of an entry in tree 7" can be charged to a
blue region in subdivision D; so that every region is charged only O(1) times. Every
change of the status of an existing entry in 7" can be charged to an edge in E}. Hence,
only O(N) updates of tree T" are performed, and procedure FINDTOPRUNGS takes
O(Nlog N) time.

In order to obtain a data structure which allows the sweep to be performed in
O(sort(N)) 1/Os, we could try to replace trees T and 7" by buffer trees. Unfortu-
nately, this simple idea cannot be applied, as the updates of tree 7" are driven by the
answers to queries on tree 7" and vice versa, so that immediate query responses are
required. The efficiency of the buffer tree, however, is achieved by delaying query
responses and answering queries whenever a large enough number of queries has ac-
cumulated.

Next we show how to represent the sweep-line status using only a single buffer
tree. The fact that the buffer tree delays the processing of updates and queries still
creates problems that have to be dealt with. In order to support our claim that our
data structure is simpler than the one proposed in [16], we present the algorithm as if
it used an (a, b)-tree which does not buffer updates or queries. In Section 14.2.4.2, we

discuss the problems created by delayed updates and show how to deal with them.

14.2.4.1 A Simplified Sweep-Line Data Structure

Our sweep-line data structure consists of a single (a, b)-tree T [99]. The leaves of T’
store the current set of intervals sorted from left to right. Every internal node stores
the obstacle edges separating the intervals stored at descendants of its children.

In order to obtain a classification of the intervals as ladder and non-ladder inter-
vals, every interval I stores a label A\(I) = (y, 7, p), and every internal node v of T
stores a label A(v) = (y, T, p). For an interval I, label A\(I) = (y, 7, p) signifies that

interval I was of type 7 just after sweep-line £ crossed y-coordinate y. If 7 = “ladder”,

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 309

p is the topmost rung of the ladder in interval I below or on the horizontal line at
y-coordinate y. For an internal node, label A\(v) = (y, 7, p) signifies that every in-
terval I stored at a descendant of v was of type 7 just after sweep-line ¢ crossed
y-coordinate y. If 7 = “ladder”, p is the topmost rung of the ladder in interval [
below or on the horizontal line at y-coordinate y.

We maintain the invariant that at any time, the correct type and top rung of an
interval I can be determined as follows: Let vy be the leaf of T" storing interval I,
and let vy,..., v, be the proper ancestors of vy in 7. Let A(I) = (yo, 7o, p0), and
let A(v;) = (s, 73, pi), for 1 <4 < k. Then interval I is of type 7; and its top rung
is p; if 7, = “ladder”, where y; = max{y; : 0 < j < k}. That is, in terms of the
plane-sweep, the most recent information stored on the path (vy,...,v;) in T is the
correct characterization of interval 1.

The basic query operation on tree 7' is now operation REPORT(I), which searches
for interval I and reports its top rung if interval I is a ladder interval. To do this,
it traverses the path in T from the root to the leaf storing interval I and finds the
triple with maximal y-coordinate stored on this path. By the above invariant, this
triple contains the correct type and top rung of interval /. Given at least one point in
interval I, the obstacle edges stored at the internal nodes of T are sufficient to locate
the leaf storing interval 1.

Next we discuss the required updates of tree T" when the sweep-line passes an event
point. We discuss the update procedures in Algorithm 14.2 for the four different types

of event points separately and argue that each of them maintains the above invariant.

PROCESSBOTTOMCORNER: A bottom corner p € S of an obstacle is a vertex whose
incident edges e; and e; are both above p. Let e; be to the left of e;. Then the
top rung of the interval I = (I, 7) containing point p has to be reported if inter-
val I is a ladder interval, and interval I has to be replaced by three non-ladder
intervals (I,e;), (e1,e2), and (eg,r). To achieve this, we apply an operation
REPORTANDSPLIT(/, €1, €2, y(p)) to tree T. This operation first applies op-

eration REPORT(]) to locate interval I and report its top rung if necessary.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 310

Then it replaces interval I with three new intervals Iy = (l,e1), I» = (e1, e2),
and I3 = (eg,r). Every interval I;, j € {1,2,3}, is assigned label \(I;) =
(y(p), “non-ladder”, null). Since y < y(p), for every label A(v) = (y, T, p) stored
at an ancestor of intervals Iy, I, and I3 in T, this correctly marks all three

intervals as non-ladder intervals.

The replacement of interval I with intervals I;, I, and I3 may cause tree 1" to
become unbalanced. Tree 7" can be rebalanced using the standard procedure

for rebalancing an (a, b)-tree after an INSERT operation.

PROCESSTOPCORNER: A top corner p € S of an obstacle is a vertex whose incident
edges e; and ey are both below p. Let e; be to the left of es. Then the top
rungs of the ladder intervals among intervals Iy = (l,e;), I = (e1,e3), and
I3 = (eq,r) incident to edges e; and e; need to be reported, and intervals Iy,
I, and I3 need to be replaced by a single non-ladder interval I = (I,r). To
achieve this, apply three operations 0; = REPORTANDREPLACE(]1, I, y(p)),
0o = REPORTANDDELETE(]y), and 03 = REPORTANDDELETE(/3) to tree T.
Operation o; searches for interval I, reports its top rung if it is a ladder in-
terval, and replaces it by interval I. The label of interval I is set to A(I) =
(y(p), “non-ladder”, null), thereby correctly marking interval I as a non-ladder
interval. Operations oy and o3 search for intervals I, and I3, report their top
rungs if necessary and delete these intervals. After deleting intervals I, and I3,
tree T' can be rebalanced using the standard rebalancing procedure for DELETE

operations on (a, b)-trees.

Note that procedure PROCESSTOPCORNER is supplied only with the two edges
e; and e incident to point p. This allows intervals Iy, 15, and I3 to be located
in T, but is not sufficient to provide operation o; with a complete description of
interval I. In order to work around this problem, we apply operations 0, and o3
first, and augment operation o3 so that it reports the right boundary edge of

interval I3, which is also the right boundary of interval /. Together with the left

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 311

boundary of interval I, operation 0o; can now compute a complete description

of interval I.

Another issue is that the search information in 7" may be invalidated by oper-
ation o;. This happens if the separating obstacle edges to the right of the path
traversed by operation o; intersect interval I because interval I spans three of
the intervals previously stored in 7". Operation o; can change these edges to the
right boundary of interval I while it traverses the path in 7" to the leaf storing

interval 1.

PROCESSNONEXTREMALCORNER: A non-extremal corner p € S of an obstacle is
a vertex so that an obstacle edge e; is incident to p from below, and another
obstacle edge es is incident to p from above. At such an event point, the
following updates are necessary. Let I; = (l,e;) and I, = (ey,r) be the two
intervals on both sides of edge e;. Then the top rungs of both intervals need
to be reported, depending on whether they are ladder intervals, and intervals
I and I, need to be replaced by two non-ladder intervals I} = (I,e3) and
I} = (e, r), respectively. This can be achieved by applying two operations
REPORTANDREPLACE(I4, I],y(p)) and REPORTANDREPLACE(/y, I}, y(p)) to
tree T'.

PROCESSHORIZONTALEDGE: The last type of event point is the y-coordinate of a
segment s € E;. Let p; and p, be the left and right endpoints of segment s, and
let I; and I, be the intervals containing these two endpoints, respectively. Then
the top rungs of intervals I; and I, need to be reported, depending on whether
these intervals are ladder intervals, intervals I; and I, have to be marked as
non-ladder intervals, and all intervals between I; and I, have to be marked
as ladder intervals with top rung s. We achieve this by applying an oper-
ation o = MAKELADDER(/, I,,y(s)) to tree T. Operation o searches down
the tree until it finds the first node v so that intervals I; and I, are stored

at descendants of different children of v. Let wy,...,w, be the children of v,

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 312

and let w; and w; be the two children so that intervals I; and I, are stored
at descendants of w; and wj, respectively. Then operation o changes the la-
bel of every node wp, i < h < j, to AMwp) = (y(s), “ladder”,s). Now we
split operation o into two operations 0, = MAKERIGHTLADDER(/}, y(s)) and
0o = MAKELEFTLADDER(/,,y(s)). Operation o; continues down the path
from w; to the leaf storing interval I;. Operation o, follows the path from w;
to the leaf storing interval I.. At every visited internal node v', operation o,
performs the following operation: Let wi, ..., w; be the children of node v’, and
let interval I; be stored at a descendant of w;. Then the label of every node w;},
i < h <k, is changed to A(w},) = (y(s), “ladder”, s). When the leaf v, storing
interval [; is reached, the top rung of interval I is reported if necessary, based on
the information collected by operations o and o; along the path from the root
of T to leaf vg. The label of interval I is set to A([;) = (y(s), “non-ladder”, null).
Operation oy performs the same updates w.r.t. interval /., but labels all inter-
vals to the left of the search path as ladder intervals. It is easily verified that an
interval appears between I; and I, if and only if it is stored at a descendant of a
node wy, or wy, in T whose label is changed to “ladder”. Hence, this procedure

correctly updates the type information of every interval.

Each of the above update procedures for the four different types of event points tra-
verses a constant number of root-to-leaf paths in 7. Each procedure spends O(b) time
per visited node. In internal memory, we would choose b = (1), so that every event
point can be processed in O(log N) time. As there are O(N) event points, procedure
FINDTOPRUNGS finds all top rungs in O(N log N) time.

14.2.4.2 Buffering Updates

In order to make the sweep-line data structure I/O-efficient, the first step is to turn
the (a,b)-tree into a buffer tree. Query and update procedures remain the same.

But they are processed in a batched fashion, so that processing O(N) queries and

14.2

A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 313

updates now takes O(sort(N)) I/Os. However, the delayed processing of updates

creates problems:

(i)

The z-order of obstacle edges and hence the order of intervals defined by these
edges is not a total order. While all segments intersected by a horizontal line
have a well-defined order, edges whose y-spans are disjoint are incomparable.
This does not create any problems for a standard (a,b)-tree, as queries and
updates are processed immediately, and the search information in tree T can
be updated so that all separating edges stored at internal nodes of T intersect
the current sweep-line. In a buffer tree, on the other hand, delayed updates
can lead to the situation that some nodes in 7' store splitter edges which are
incomparable to points on the current sweep-line because they are completely
below the sweep-line. Thus, it is not clear at this point at which child of such a

node to continue the search for a particular interval.

We argued in Section 14.2.4.1 that when operation REPORTANDREPLACE is
applied in procedure PROCESSTOPCORNER, the information about the right
boundary of interval I can be collected by first deleting interval I3 and then
replacing interval I; by interval I. In a buffer tree, this strategy cannot be ap-
plied because the deletion of interval I3 would have to be processed immediately.
This makes it impossible to guarantee that at every node of T a large enough
number of queries and updates has accumulated before emptying the buffer of

this node. But this is crucial for the I/O-efficiency of the buffer tree.

Our solution for Problem (i) is to define a total order of the intervals by precomputing

the set of all intervals defined by obstacle edges and numbering them in a manner

consistent with the partial z-order of these intervals. Intervals are then stored in

the buffer tree sorted according to their numbers. This solves the first problem, but

creates a new problem:

(iii)

An update operation cannot search for an interval in 7" using the location of

a point p in the interval, since tree 7" stores no geometric search information.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 314

Thus, every update information has to be provided with the numbers of the

intervals involved in the update.
The fourth and final problem is the following:

(iv) The procedure for updating splitter values that are invalidated by an application
of operation REPORTANDREPLACE requires the immediate processing of this
operation, which is not feasible using a buffer tree. Hence, the numbering of
the intervals has to be defined so that if the splitter values in the buffer tree are
chosen carefully, an application of operation REPORTANDREPLACE does not

invalidate any splitters.

As mentioned above, our solution for Problem (i) is to precompute the set of intervals
and assign a unique number v(I) to each interval I. We obtain a total order of the set
of intervals as the total order defined by numbering v. Below we discuss the compu-
tation of this numbering and argue that it satisfies the condition in Problem (iv). To
solve Problems (ii) and (iii), we compute three lists Lg, Lp, and Ly. List Lg stores
pairs (I, I5), where interval I; is replaced by interval I, during the sweep. List Lp
stores single intervals that are removed from tree T using operation REPORTAND-
DELETE during the sweep. List Ly stores pairs (I, I,) of intervals, where intervals
I, and I, contain the left and right endpoints of a segment in E}. The elements of lists
Ly, Lp, and Ly are sorted by the y-coordinates of the corresponding event points.
Every interval [in lists Ly, Lp, and Ly stores both its bounding segments as well as
its number v(I). The I/O-efficient version of Algorithm 14.1 now proceeds as follows:

We use a buffer tree instead of an (a, b)-tree to store the set of intervals intersected
by the sweep-line. These intervals are sorted by their numbers, which is consistent
with the z-order of these intervals, by the definition of numbering v. Operation
REPORTANDREPLACE retrieves the next pair ([, [5) from list Lg. It searches for
interval I; in T, using number v([;), and replaces I; with I5. Operation REPOR-
TANDSPLIT retrieves the next three pairs (I, 1), (I,13), and (I, I3) from Lg. It
searches for interval I in T and replaces this interval with intervals I;, I5, and I;.

Operation REPORTANDDELETE retrieves the next interval I from list Lp, searches

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 315

for interval I in T', and removes this interval. Operation MAKELADDER retrieves the
next pair ([;, I,) from list Ly and makes a ladder between intervals [; and I,.

The correctness of this modified version of Algorithm 14.1 is easily verified. Its
I/O-complexity is O(sort(N)) because it performs O(N) updates and queries on a
buffer tree T of size O(N) and scans lists Ly, Lp, and Ly. Below we show how to
compute numbering v as well as lists Lz, Lp, and Ly in O (%log% %) 1/0s,

which proves the following lemma.

Lemma 14.12 Given a set P of polygonal obstacles and subdivision D' defined by
the set S of obstacle vertices, the set of top rungs of subdivision D3 can be computed
in O (D—A% log% %) I/Os using O (% log#B %) blocks of external memory, where
N =15|.

The replacement tree. To compute numbering v and lists Lg, Lp, and Ly, we use a
rooted tree defined on the set of all intervals. We call this tree the replacement tree Tg.
We show that this tree can be computed in O (% log s D—]\;) I/Os. The extraction
of numbering v and lists Lg, Lp, and Ly from tree Ty takes O(sort(/N)) I/Os, as
shown below.

To construct the vertex set of Tk, we have to compute the set of all intervals
defined by edges of the obstacles in P. This set of intervals is easily obtained from
a trapezoidation of the obstacle set (see Figure 14.7). In particular, the y-span of
each trapezoid defines the life span of the interval defined by the two obstacle edges
on its boundary during the sweep. The interval is created when the sweep passes
the bottom boundary of the trapezoid, and it is replaced by a new interval when
the sweep passes the top boundary of the trapezoid. Since a trapezoid is an interval
augmented with the range of y-coordinates where this interval is valid, we henceforth
consider intervals and trapezoids to be the same, choosing between these two names

for the same object depending on the context.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 316

Figure 14.7
A trapezoidation of a set of polygons.

Figure 14.8
The replacement tree of the above trapezoidation. A preorder numbering of this tree defines a
total order of the trapezoids with a particularly nice property.

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 317

As already mentioned, tree Tk contains one node per trapezoid. The root of T is
the unbounded trapezoid extending to infinity in (—y)-direction. Every other trape-
zoid has a parent defined as follows: Consider an obstacle vertex p € S. If p is a
bottom corner, the three trapezoids I, I, and I3 incident to p from above are the
children of the trapezoid I below p. If p is a top corner, let I, I, and I3 be the three
trapezoids incident to p from below, sorted from left to right. Then the trapezoid [
above p is the child of trapezoid I;. Finally, for a non-extremal corner, there are two
trapezoids I; and I, incident to p from below and two trapezoids I] and I} incident
to p from above. Let I; be to the left of I, and I] be to the left of I}. Then I] is the
child of Iy, and I} is the child of I,. This construction is illustrated in Figure 14.8.

Lemma 14.13 The replacement tree Ty of the set of intervals defined by the obstacles
in P can be computed in O (D—A;,log% %) I/Os and O (%log% %) blocks of

external memory.

Proof. A trapezoidation of obstacle set P can be computed in O <D—]\; log as %) I/Os
using the endpoint dominance algorithm of [15]. In particular, this algorithm com-
putes the set of horizontal edges incident to every obstacle vertex and the obstacle
edges containing the other endpoints of these edges. That is, after applying this al-
gorithm, we obtain a representation of the trapezoidation as the set of obstacle edges
and horizontal edges defining the trapezoidation. Using the same algorithm as for de-
riving a representation of subdivision Dj as an embedded planar graph (see page 302),
we can derive a representation of the trapezoidation as an embedded planar graph in
O(sort(N)) 1/0s.

Using an algorithm of [100], the faces of the trapezoidation can be identified in
O(sort(N)) I/Os. The output of the algorithm is a representation of the faces as a
collection of lists, each storing the vertices of one face clockwise around the face. From
this representation we generate pairs (v, f), where v is a vertex on the boundary of
face f. Then we sort the list of these pairs lexicographically, so that for each vertex v,
pairs (v, f1),---, (v, f1) are stored consecutively. The edge set of tree T can now be

produced in a single scan of this list of pairs. O

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 318

Computing a total order of the intervals. In order to obtain a total order of all
trapezoids, we compute a preorder numbering v of T which is consistent with a
depth-first traversal of T that visits the children of every node in left-to-right order
(see Figure 14.8). Then I < I, if v([;) < v(I3). The following lemma is easy to
show by induction on the set of obstacle vertices, which is where the set of intervals

intersected by the sweep-line changes.

Lemma 14.14 Let I, ..., I; be the set of trapezoids intersected by a horizontal line £,
sorted from left to right. Then v(I;) < --- < v(I}).

Lemma 14.14 and the above discussion establish that the total order defined by
preorder numbering v can be used to sort the intervals in 7" from left to right.

Next we describe a rule for choosing the splitters in tree 7" so that REPORT AND-
REPLACE operations do not invalidate the splitters in 7. Let w; and w;;; be two
consecutive children of a node v in 7". Then we choose the splitter between w; and w; 1
to be 0; = min{v(I) : I € Z(w;41)}, where Z(x) is the set of intervals stored in the
subtree rooted at node xz. Note that this is a rule we apply whenever we choose a
new splitter. It is not an invariant we maintain at all times.

Now consider an application of operation REPORTANDREPLACE or REPORTAND-
SPLIT which replaces an interval I; with another interval I,. Let vy be the leaf storing
interval I, and let vy, ..., v, be the ancestors of leaf vy, sorted by increasing distance
from wvg. That is, vy is the root of tree 7. For 1 < i < k, let 0; and o] be the two
splitters stored at node v; so that for all intervals I’ € Z(v;11), 0; < v(I') < g}. Then

we prove the following lemma.

Lemma 14.15 If operation REPORTANDREPLACE or REPORTANDSPLIT replaces
an interval I; with an interval I, and v.,...,v, are the ancestors of the leaf v,

storing interval I, then o; < v(ly) < o}, for all 1 <1i < k.

Proof. Since we assume that the search information stored in tree 7" is correct before
the replacement of interval I; with interval Iy, 0; < v(I;) < o}, for all 1 < i < k.

This immediately implies that o; < v(I), for all 1 < i < k, because interval I is a

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 319

descendant of interval I; in tree T, and hence v([;) < v(l2). We have to show that
v(ly) <o, forall1 <i<k.

For the sake of this proof, we introduce the notion of a slot in tree 7. Every
slot holds an interval I,. Operation REPORTANDREPLACE leaves the set of slots
unchanged, but changes the content of the slot holding interval I; by storing interval I,
in this slot. Operation REPORTANDDELETE destroys the slot holding the deleted
interval. Operation REPORTANDSPLIT creates two new slots holding intervals /5 and
I3. The two create slots are immediately to the right of the slot holding interval I.

Now consider a splitter o;. Then o] = v(I'), for some interval I'. Let ¢ be a
horizontal line intersecting interval I’, and let I, be the ancestor of interval I; in Ty
which is intersected by line £. If we can show that interval I is to the left of interval I’,
we obtain that v([y) < v(I'), by Lemma 14.14. Since I, and I’ are intersected by
the same horizontal line, I’ is not a descendant of I,. Interval I, is a descendant of
interval Iy. Hence, v(I5) < v(I') = o}, by the property of any preorder numbering that
the nodes in any subtree of Tz rooted at some node I, are numbered consecutively.
In order to show that interval I, is to the left of interval I’, we show that the slot
holding interval Ij is to the left of the slot holding interval I".

So assume the contrary, i.e., that Iy = I', or interval I is stored in a slot to the
right of the slot storing interval I’. In both cases, the slot holding interval I is stored
at a descendant of a child of node v; which is to the right of splitter o;. Hence, if I,
and I; are stored in the same slot, we obtain the desired contradiction. Otherwise,
the slot holding interval I; has been created from the slot holding interval I; by a
sequence of REPORTANDSPLIT operations. This operation changes the content of an
existing slot and creates two new slots to the right of the existing slot. Hence, the

slot holding interval I; is to the right of splitter o} in this case as well. O

By Lemma 14.15, no updates of the splitters in the tree are required after an
application of operation REPORTANDREPLACE or REPORTANDSPLIT. Hence, the
plane-sweep can be carried out I/O-efficiently using a buffer tree instead of an (a, b)-

tree, provided that the intervals in 7" are sorted according to the preorder numbering v

14.2 A Planar L;-Steiner Spanner for Sets of Polygonal Obstacles 320

defined above and splitters are computed as described above. We have to show that
preorder numbering v can be computed in O(sort(/NV)) I/Os.

This can be done using the Euler tour technique and list-ranking. The Euler
tour describes a depth-first traversal of tree Tr. We have to ensure that it visits the
children of every node in left-to-right order. For every vertex I € Tk with incident
edges (I,I),...,(I,It), let I; be the parent of I in Tg, and let I, ..., I} be the
children of I, sorted from left to right. Then we define succ((I;,1)) = (I, I;41), for
1 < j <k, and succ((Ig, I)) = (I, I;). This produces the desired Euler tour.

Computing the replacement and deletion lists. Lists Lr and Lp can be computed
in a natural manner from tree Tx. In particular, every edge (I, I5) in Tg defines an
entry in list Lr because there is an edge (Iy,I5) in Tg if and only if interval I
is replaced by interval I, during the sweep. Similarly, every leaf of Tk is removed
from T during the sweep, using operation REPORTANDDELETE. Hence, the contents
of lists Lr and Lp can be computed in a single scan of the vertex and edge sets of
tree Tg. To arrange the elements ([, 1]),..., (s, I.) in Lg in the correct order, we
sort them by the y-coordinates of the edges shared by trapezoids I; and I J’-, 1<j<s.
We sort the elements I, ..., I; of list Lp by the y-coordinates of their top edges. This
computation of lists Lr and Lp clearly takes O(sort(XN)) I/Os.

Computing list Lgy. To construct list Ly, we have to compute the intervals /; and I,
containing the endpoints of each edge e € Ej. That is, we have to answer O(N) point
location queries on the trapezoidation of obstacle set P. To do this, we scan the vertex
set of tree Tr and add for each node I € Tg, the left boundary of trapezoid I to a
list X. Then a point p is contained in trapezoid I if and only if a ray shot from p in
(—x)-direction hits this left boundary of interval I. Hence, we can answer the point
location queries for all segment endpoints in O (% log M D—]\%) I/Os by applying the
endpoint dominance algorithm of [15] to the set X of left boundaries and the set of

endpoints of all segments in Ej}. The answers to all queries can be now combined to

14.3 A Planar Ly-Spanner 321

pairs ([}, I) in O(sort(N)) I/Os. Given the set of these pairs, we obtain list Ly by
sorting all pairs (I;, I,) by the y-coordinates of their corresponding edges in Ej}.
We summarize the above discussion in the following lemma, which completes the

proof of Lemma 14.12.

Lemma 14.16 A total order of all intervals defined by the edges of all obstacles in P

as well as lists Ly, Lp, and Ly can be computed in O (D—I\%logD_Ng %) I/Os using

(@ (% log M %) blocks of external memory.

14.3 A Planar L,-Spanner

Given that planar L;-Steiner spanners for sets of points and obstacles in the plane can
be computed I/O-efficiently, we can use them to compute planar Lo-Steiner spanners.
For the sake of brevity, we present proofs only for the case of polygonal obstacles,
since the case of a point set is simpler. The construction is based on the following
observation: If an edge e is close to vertical, i.e., its angle to the y-axis is at most 6,
then the Li-length of e is a (cos @ + sin §)-approximation of the Euclidean length of
edge e. For simplicity, we only use that ||e][; < (1 + sin#)|e||2. Hence, we construct
an Lo-spanner with spanning ratio 1+ ¢ for a set P of polygonal obstacles as follows:
We choose a constant &’ so that (1 +¢')2 < 1+¢,eg., e =¢/3. Let 0 < 0 < 7/2

so that sinf = ¢'.

Then we choose 7/ = O(1/e) coordinate systems at angles
0,60,26,... to a fixed reference coordinate system and construct L;-Steiner spanners
G, . ..,Gq for P with stretch factor 1 + ¢’ in these coordinate systems. Let G be
the graph obtained as the superimposition of graphs Gy, ...,G,. That is, the vertex
set of graph G contains all vertices of graphs Gy, ...,G, as well as all intersection
points between edges in these graphs. The edge set contains all edges obtained by
splitting the edges of graphs Gy, ..., G, at their intersection points. The following

lemma shows that graph G is a Euclidean Steiner spanner with spanning ratio 1 + ¢

for obstacle set P.

14.3 A Planar Ly-Spanner 322

Lemma 14.17 (Arikati et al. [16]) Graph G is an Ly-spanner with spanning ratio
1+4+e.

Proof. Consider the shortest path Q = (p = zg,21,...,2x = ¢) in the Ly-metric
between two points p and ¢. For each edge (x;, x;11), we construct a spanner path
as follows: We find the coordinate system so that the angle between edge (z;, z;11) and
the y-axis is at most 0. Let G; be the L-spanner constructed w.r.t. this coordinate
system. Then let @); be an L;-spanner path of length (1 + &')||(z;, zi41)|l1 in Gj.
Since G is the superimposition of graphs Gy, ...,Gy, graph G contains a spanner

path @)} of length

1@l < 1
= il
< (14 &)ll(s 2l
< (14 Pl s i) o

< (L+o)l[(@s, ziga) -

Hence, the path Q' = Qj 0---0Q)_, is a path in graph G whose length is
0 k—1

k—1
Q1 =D Q5]
j=0

B
—

< (U +e)) @i ziga)ll2

J

= (1 +9)llQll2:

Il
)

The following lemma shows that graph G is small.

Lemma 14.18 (Arikati et al. [16]) Graph G has size O(N/e%).

Proof. Since graph G is planar, it is sufficient to show that the number of vertices

in G is O(N/e*). The number of vertices in graphs Gy, ..., G, can be bounded by

14.3 A Planar Ly-Spanner 323

O(N/e?) because ¢ = O(1/¢) and |G;| = O(N/e?), by Lemma 14.7. We show that for
any pair of graphs G; and G, the number of intersections between edges in G; and G
is bounded by O(N/e?). As there are O(1/¢?) such pairs of graphs, this gives the
desired bound on the number of vertices in graph G.

In order to prove that the number of intersections between the edges of two graphs
G; and G is bounded by O(N/e?), let D} and D) be the two subdivisions of the plane
into box and donut cells w.r.t. the coordinate systems used to define graphs G; and Gj.
For each cell R in D}, the edges of graph G; contained in R are contained in O(1/¢)
lines. The same is true for every cell in D w.r.t. graph G;. Hence, for every pair of
regions R € D] and R’ € D}, the number of intersections between edges of G; in R
and edges of G; in R’ is bounded by O(1/e?). Moreover, the number of intersecting
edges is zero if R and R' are disjoint. We show that only O(N) pairs of regions
R € D; and R' € D} overlap, so that the total number of intersection points of edges
in G; with edges in G; is O(N/e?).

To show that there are only O(N) pairs of overlapping regions in subdivisions

D) and D',

%, we construct an overlap graph H. The vertex set of graph H contains

one vertex per region in subdivisions D; and D’. There is an edge from a vertex v
to a vertex w, if region R(v) overlaps region R(w), and £yax(R(v)) < Lmax(R(w)),
where R(v) and R(w) are the regions corresponding to vertices v and w. The number
of pairs of overlapping regions is bounded by the number of edges in graph H. We
show that every vertex in graph H has constant out-degree, so that the edge set of
graph H has size O(NV) because subdivisions D; and Dj consist of O(N) regions each,
by Lemma 14.6.

So let R be a region in D;. We need to bound the number of regions R’ in D;
overlapping R and so that £, (R') > £pnax(R). Consider the coordinate system used
to define subdivision D}. Then region R is contained in an axes-parallel rectangle R
whose sides have length at most v/2fy.,(R). Every region R’ overlapping R must
overlap R. Since the bounding rectangle of every region R’ is a box, we have £ (R') >

%EmaX(R') > %Kmax(R) > ﬁﬁmax(R). Now observe that all regions in D;- are disjoint

14.3 A Planar Ly-Spanner 324

and that every donut cell fills at least one ninth of the area of its bounding box.
Hence, the number of regions of D; overlapping R is bounded by 9(3\/§+ 1)2=0(1),
which finishes the proof. O

We have to show how to construct graph G 1/O-efficiently. In order to compute
graph G, we apply the following procedure, starting with graphs Gy, ..., Gy, and
repeating it until a single graph remains, which is graph G: We form pairs of graphs
in the current set of graphs. For each pair (G', G"), we apply the red-blue line segment
intersection algorithm of [15] to compute the set of intersection points between the
edges in G’ and G". We apply procedure DUPLICATEREMOVAL to the union of the
vertex sets of graphs G’ and G" with the set of intersection points to obtain the
vertex set of the superimposition G° of graphs G’ and G”. The red-blue line segment
intersection algorithm can be augmented so that it labels every intersection point
with the two edges of graphs G’ and G” intersecting in this point. Hence, we can
apply the procedure from page 302 to obtain the edge set of G°. This procedure
computes graph G° in O ('G log a . i |) I/Os.

Using the above procedure, we compute a hierarchy of graphs where graphs
Go,...,G, are at level 0, and every graph at level ¢ is produced by superimposing at
most two graphs at level 1 —1. Every graph at level 7 is the superimposition of at most
2! level-0 graphs. Hence, by the same arguments as in the proof of Lemma 14.18,
the size of a level-i graph is at most O(2%N/e?). On the other hand, the number
of these graphs can be bounded by [37/(2'¢)]. Hence, one level of the hierarchy of

2 N/s 1 2"N/z-:3
DB

of graph G takes ZZ N©, (QlN/g log ar 2IN/e?) =0 (N/E log N/g) I/Os, where

DB

graphs can be computed in O () I/Os, so that the computation

h = [log(37/¢)] is the number of levels in the hierarchy. This proves the following

result.

Theorem 14.3 Given a set P of polygonal obstacles with N vertices, a planar Lo-
Steiner spanner of size O(N/e*) and with spanning ratio 1 + ¢ can be computed in

(@] (N/E log u N/g) I/Os using (’)(Nyt log 12/;) blocks of external memory.

Chapter 15
Conclusions and Open Problems

The primary focus of this thesis is on exploiting the topology of outerplanar graphs,
planar graphs, and spanner graphs of point sets and sets of polygonal obstacles to
solve shortest path problems in these graphs I/O-efficiently. We believe that the work
in this thesis is a major step toward understanding the I/O-complexity of shortest
path problems on sparse graphs.

Two of the main results of Part I of this thesis show that the single source short-
est path problem can be solved I/O-efficiently on outerplanar and planar graphs.
In [128], it is shown that this is also true for graphs of bounded treewidth. The
reason why these graph classes admit I/O-efficient solutions to this problem is that
they have small separators and that a separator decomposition of these graphs can be
obtained I/O-efficiently. Indeed, the shortest path algorithms for outerplanar graphs,
planar graphs, and graphs of bounded treewidth solve the SSSP problem by applying
dynamic programming to a separator decomposition of the graph, even though this
decomposition has depth one in the case of planar graphs. For outerplanar and planar
graphs, we have demonstrated that their geometric nature provides sufficient infor-
mation to compute the required separator decomposition I/O-efficiently. For graphs
of bounded treewidth, the decomposition is obtained from a tree-decomposition of
the graph, which can be computed I/O-efficiently [128]. It is an interesting question

whether other properties than having small separators can be exploited to solve the

325

15 Conclusions and Open Problems 326

single source shortest path problem on sparse graphs that do not have small separa-
tors.

The major open problem in the context of Part I of the thesis is whether the
amount of main memory required by the unweighted separator algorithm for planar
graphs can be reduced. This algorithm and the shortest path algorithm of [12] are
the only steps of the algorithms for planar graphs presented here which require that
M = w(DB). A closely related open problem is the semi-external shortest path
problem. In particular, we ask the question whether there exists an algorithm which
solves the single source shortest path problem on general graphs in O(sort(|E|)) I/Os
under the assumption that the vertex set can be held in internal memory. If this is
the case, it seems that a bootstrapping approach can be applied to lower the memory
requirements of our separator algorithm and the shortest path algorithm of [12] to
M = O(DB polylog(DB)) or even M = O(DB).

The major open problem in the context of Part II of the thesis is whether there
exists a sparse spanner graph of a set of polygonal obstacles which does not require the
addition of Steiner points, can be computed I/O-efficiently, and allows spanner paths
to be reported I/O-efficiently. In [125], we give a partial answer to this question by
showing that the §-graph of [46] can be computed in O(sort(N)) I/Os. Even though it
should be possible to exploit the rather regular structure of this spanner to develop an
algorithm for reporting spanner paths I/O-efficiently, this appears to be non-trivial.

A minor open problem which we would like to mention is a possible improve-
ment of the algorithms for computing K-nearest neighbors and K-closest pairs. Our
algorithms are close to optimal, as it can be shown that these problems require
Q(sort(N) + scan(KN)) and Q(sort(N) + scan(K)) I/Os, respectively. The reason
why our algorithms do not match these lower bounds are the permutation problems
involved in constructing candidate sets X (B) and N'(a) in the K-nearest neighbor
algorithm, and the computation of candidate set C in the K-closest pair algorithm.
It seems that these permutations are of a special type and that it should be possible

to use the split tree to route these permutations in o(perm(N)) I/Os.

Bibliography

10.

J. Abello, A. L. Buchsbaum, and J. Westbrook. A functional approach to external
graph algorithms. In Proceedings of the 6th European Symposium on Algorithms,
pp. 332-343, 1998.

. P. K. Agarwal, L. Arge, M. Murali, K. R. Varadarajan, and J. S. Vitter. I/O-efficient

algorithms for contour-line extraction and planar graph blocking. In Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 117-126, 1998.

. P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum

spanning trees and bichromatic closest pairs. Discrete & Computational Geometry,
6:407-422, 1991.

A. Aggarwal and R. J. Anderson. A random NC algorithm for depth first search.
Combinatorica, 8(1):1-12, 1988.

. A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel depth-first search in general

directed graphs. SIAM Journal on Computing, 19:397-409, 1990.

. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, pp. 1116-1127, September 1988.

R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for the
shortest path problem. Journal of the ACM, 37(2):213-233, 1990.

. L. Aleksandrov and H. Djidjev. Linear algorithms for partitioning embedded graphs

of bounded genus. SIAM Journal of Discrete Mathematics, 9:129-150, 1996.

. L. Aleksandrov, H. Djidjev, H. Guo, and A. Maheshwari. Separators of low cost. In

Proceedings of the 4th Workshop on Algorithm Engineering and Experiments, 2002.
To appear.

N. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries.
Technical Report 71/87, Tel-Aviv University, 1987.

327

Bibliography 328

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Proceedings
of the Jth Workshop on Algorithms and Data Structures, volume 955 of Lecture Notes
in Computer Science, pp. 334-345. Springer-Verlag, 1995.

L. Arge, G. S. Brodal, and L. Toma. On external memory MST, SSSP, and multi-way
planar separators. In Proceedings of the 7th Scandinavian Workshop on Algorithm
Theory, volume 1851 of Lecture Notes in Computer Science, pp. 433-447. Springer-
Verlag, 2000.

L. Arge, U. Meyer, L. Toma, and N. Zeh. On external-memory planar depth first
search. In Proceedings of the 7th International Workshop on Algorithms and Data
Structures, volume 2125 of Lecture Notes in Computer Science, pp. 471-482. Springer-
Verlag, 2001.

L. Arge and P. B. Miltersen. On showing lower bounds for external-memory compu-
tational geometry problems. In J. Abello and J. S. Vitter, editors, Fxternal Memory
Algorithms and Visualization. AMS, 1999.

L. Arge, D. E. Vengroff, and J. S. Vitter. External-memory algorithms for processing
line segments in geographic information systems. In Proceedings of the 8rd Annual Eu-
ropean Symposium on Algorithms, volume 979 of Lecture Notes in Computer Science,
pp- 295-310. Springer-Verlag, 1995.

S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar
spanners and approximate shortest path queries among obstacles in the plane. In
Proceedings of the 4th Annual European Symposium on Algorithms, volume 1136 of
Lecture Notes in Computer Science, pp. 514-528. Springer-Verlag, 1996.

S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Applied Mathematics, 23:11-24, 1989.

S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean spanners: Short,
thin, and lanky. In Proceedings of the 27th Annual ACM Symposium on the Theory
of Computing, pp. 489-498, 1995.

S. Arya, D. M. Mount, and M. Smid. Randomized and deterministic algorithms
for geometric spanners of small diameter. In Proceedings of the 35th Annual IEEE
Symposium on Foundations of Computer Science, pp. 703-712, 1994.

S. Arya and M. Smid. Efficient construction of bounded-degree spanners with low
weight. Algorithmica, 17:33-54, 1997.

A. Baumker, W. Dittrich, and F. Meyer auf der Heide. Efficient parallel algorithms:
c-optimal multisearch for an extension of the BSP model. In Proceedings of the Annual
European Symposium on Algorithms, pp. 17-30, 1995.

Bibliography 329

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

R. Bayer and E. McCreight. Organization of large ordered indexes. Acta Informatica,
1:173-189, 1972.

R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):97-90,
1958.

M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the 15th
Annual ACM Symposium on the Theory of Computing, pp- 80-86, 1983.

J. L. Bentley. Multidimensional divide-and-conquer. Communications of the ACM,
23:214-229, 1980.

J. L. Bentley and M. I. Shamos. Divide-and-conquer in multidimensional space. In
Proceedings of the 8th Annual ACM Symposium on the Theory of Computing, pp. 220—
230, 1976.

H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In Pro-
ceedings of the 15th International Colloquium on Automata, Languages and Program-
ming, volume 317 of Lecture Notes in Computer Science, pp. 105—118. Springer-Verlag,
1988.

H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for
bounded treewidth. SIAM Journal on Computing, 27:1725-1746, 1998.

H. L. Bodlaender, G. Tel, and N. Santoro. Trade-offs in non-reversing diameter. Nordic
Journal of Computing, 1:111-134, 1994.

K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences,
13:335-379, 1976.

J. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simplified O(n) planar
embedding algorithm. In Proceedings of the 10th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 140-146, 1999.

A. Broder, R. Kumar, F. Manghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. In Proceedings of the 9th
International World-Wide Web Conference, 2000. http://www9.org.

A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. Westbrook. On
external memory graph traversal. In Proceedings of the 11th ACM-SIAM Symposium
on Discrete Algorithms, pp. 859-860, 2000.

P. B. Callahan. Optimal parallel all-nearest-neighbors using the well-separated pair
decomposition. In Proceedings of the 34th Annual IEEE Symposium on Foundations
of Computer Science, pp. 332-341, 1993.

Bibliography 330

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

P. B. Callahan. Dealing with Higher Dimensions: The Well-Separated Pair Decomposi-
tion and Its Applications. PhD thesis, Johns Hopkins University, Baltimore, Maryland,
1995.

P. B. Callahan, M. Goodrich, and K. Ramaiyer. Topology B-trees and their applica-
tions. In Proceedings of the 4th Workshop on Algorithms and Data Structures, volume
955 of Lecture Notes in Computer Science, pp. 381-392. Springer-Verlag, 1995.

P. B. Callahan and S. R. Kosaraju. A decomposition of multi-dimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. In Proceedings
of the 24th Annual ACM Symposium on the Theory of Computing, pp- 546556, 1992.

P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph prob-
lems in higher dimensions. In Proceedings of the 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 291-300, 1993.

P. B. Callahan and S. R. Kosaraju. Algorithms for dynamic closest pair and n-body
potential fields. In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 263-272, 1995.

P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest neighbors and n-body potential fields. Journal of the
ACM, 42:67-90, 1995.

B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph
spanners. International Journal of Computational Geometry & Applications, pp. 125—
144, 1995.

P. Chew. There is a planar graph almost as good as the complete graph. In Proceedings
of the 2nd Annual ACM Symposium on Computational Geometry, pp. 169177, 1986.

Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter. External-memory graph algorithms. In Proceedings of the 6th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 139-149, January 1995.

N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar
graphs using PQ-trees. Journal of Computer and System Sciences, 30(1):54-76, 1985.

K. L. Clarkson. Fast algorithms for the all nearest neighbors problem. In Proceedings of
the 24th Annual IEEE Symposium on Foundations of Computer Science, pp. 226—232,
1983.

K. L. Clarkson. Approximation algorithms for shortest path motion planning. In
Proceedings of the 19th ACM Symposium on the Theory of Computing, pp. 5665,
1987.

Bibliography 331

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

o7.

58.

E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decomposition.
Journal of Algorithms, 21:331-357, 1996.

E. Cohen. Polylog-time and near-linear work approximation scheme for undirected
shortest-paths. Journal of the ACM, 47:132-166, 2000.

R. Cole and M. T. Goodrich. Optimal parallel algorithms for polygon and point-
set problems. In Proceedings of the 4th Annual ACM Symposium on Computational
Geometry, pp.- 201-210, 1988.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, first edition, 1990.

A. Crauser, F. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos. Randomized
external-memory algorithms for some geometric problems. In Proceedings of the 1jth
Annual ACM Symposium on Computational Geometry, pp.- 259-268, 1998.

A. Crauser, K. Mehlhorn, and U. Meyer. Kiirzeste-Wege-Berechnung bei sehr
groen Datenmengen. In O. Spaniol, editor, Promotion tut not: Innovationsmotor
“Graduiertenkolleg”, volume 21 of Aachener Beitrage zur Informatik. Verlag der Au-
gustinus Buchhandlung, 1996.

G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional
Euclidean space. In Proceedings of the 9th Annual ACM Symposium on Computational
Geometry, pp. 53-62, 1993.

G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean span-
ners. International Journal of Computational Geometry & Applications, 7:297-315,
1997.

G. Das, G. Narasimhan, and J. S. Salowe. A new way to weigh malnourished Eu-
clidean graphs. In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 215-222, 1995.

F. Dehne, W. Dittrich, and D. Hutchinson. Efficient external memory algorithms by
simulating coarse-grained parallel algorithms. In Proceedings of the 9th ACM Sympo-
sium on Parallel Algorithms and Architectures, pp. 106115, 1997.

F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computational geometry
for coarse grained multicomputers. International Journal on Computational Geometry,
6(3):379-400, 1996.

M. T. Dickerson, R. L. S. Drysdale, and J.-R. Sack. Simple algorithms for enumer-
ating interpoint distances and finding k£ nearest neighbors. International Journal of
Computational Geometry & Applications, 2:221-239, 1993.

Bibliography 332

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

M. T. Dickerson and D. Eppstein. Algorithms for proximity problems in higher di-
mensions. Computational Geometry: Theory and Applications, 5:277-291, 1996.

E. W. Dijkstra. A note on two problems in connection with graphs. Numerical Math-
ematics, 1:269-271, 1959.

K. Diks, H. N. Djidjev, O. Sykora, and I. Vrto. Edge separators of planar and outer-
planar graphs with applications. Journal of Algorithms, 14:258-279, 1993.

H. Djidjev, G. Pantziou, and C. Zaroliagis. Computing shortest paths and distances
in planar graphs. In Proceecings of the 18th Internatonal Conference on Algorithms,
Languages, and Programming, volume 510 of Lecture Notes in Computer Science,
pp- 327-339. Springer-Verlag, 1991.

H. N. Djidjev. Partitioning graphs with costs and weights on vertices: Algorithms and
applications. Algorithmica, 28:51-75, 2000.

H. N. Djidjev and J. R. Gilbert. Separators in graphs with negative and multiple
vertex weights. Algorithmica, 23:57-71, 1999.

H. N. Djidjev, G. E. Pantziou, and C. D. Zaroliagis. Improved algorithms for dynamic
shortest paths. Algorithmica, 28:367-389, 2000.

D. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as good
as complete graphs. Discrete & Computational Geometry, 5:399-407, 1990.

D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry. North-Holland, 2000.

D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer. Separator based sparsification
I. Planarity testing and minimum spanning trees. Journal of Computer and System
Sciences, 52:3-27, 1996.

S. Even. Graph Algorithms. Computer Science Press, 1979.

S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer Science,
2:339-344, 1976.

R. W. Floyd. Algorithm 97 (SHORTEST PATHS). Communications of the ACM,
5(6):345, 1962.

L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with appli-
cations. SIAM Journal on Computing, 16(6):1004-1022, December 1987.

Bibliography 333

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

G. N. Frederickson. Planar graph decomposition and all pairs shortest paths. Journal
of the ACM, 38(1):162—204, January 1991.

G. N. Frederickson. Using cellular embeddings in solving all pairs shortest paths
problems. Journal of Algorithms, 19:45-85, 1995.

G. N. Frederickson. Searching among intervals in compact routing tables. Algorithmica,
15:448-466, 1996.

G. N. Frederickson. A data structure for dynamically maintaining rooted trees. Journal
of Algorithms, 24:37-65, 1997.

M. Fredman, F. Komlés, and E. Szemerédi. Storing a sparse table with O(1) worst
case access time. Journal of the ACM, 31:538-544, 1984.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34:596-615, 1987.

A. M. Frieze, G. L. Miller, and S.-H. Teng. Separator based parallel divide and conquer
in computational geometry. In Proceedings of the 4th Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 420-429, 1992.

H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems. SIAM
Journal on Computing, 18(5):1013-1036, 1989.

Z. Galil, G. F. Italiano, and N. Sarnak. Fully dynamic planarity testing. In Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, pp. 495-506, 1992.

H. Gazit and G. L. Miller. A parallel algorithm for finding a separator in planar graphs.
In Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer
Science, pp. 238-248, 1987.

H. Gazit and G. L. Miller. An improved parallel algorithm that computes the BFS
numbering of a directed graph. Information Processing Letters, 28:61-65, 1988.

R. K. Ghosh and G. P. Bhattacharjee. Parallel breadth-first search algorithms for
trees and graphs. International Journal of Computer Mathematics, 15:255-268, 1984.

J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separator theorem for graphs of
bounded genus. Journal of Algorithms, 5:391-407, 1984.

M. Golin, R. Raman, C. Schwarz, and M. Smid. Randomized data structures for the
dynamic closest-pair problem. SIAM Journal on Computing, 27:1036-1072, 1998.

M. T. Goodrich. Planar separators and parallel polygon triangulation. Journal of
Computer and System Sciences, 51(3):374-389, 1995.

Bibliography 334

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

M. T. Goodrich, Y. Matias, and U. Vishkin. Optimal parallel approximation algo-
rithms for prefix sums and integer sorting. In Proceedings of the 5th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 241-250, 1994.

M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory compu-
tational geometry. In Proceedings of the 34th Annual IEEE Symposium on Foundations
of Computer Science, November 1993.

S. Govindarajan, T. Lukovszki, A. Maheshwari, and N. Zeh. I/O-efficient well-
separated pair decomposition and its applications. In Proceedings of the 8th Annual
European Symposium on Algorithms, volume 1879 of Lecture Notes in Computer Sci-
ence, pp- 220-231. Springer-Verlag, September 2000.

T. Hagerup. Planar depth-first search in O(logn) parallel time. SIAM Journal on
Computing, 19(4):678-704, August 1990.

F. Harary. Graph Theory. Addison-Wesley, 1969.

X. He and Y. Yesha. A nearly optimal parallel algorithm for constructing depth first
spanning trees in planar graphs. SIAM Journal on Computing, 17:486-491, 1988.

K. Hinrichs, J. Nievergelt, and P. Schorn. Plane-sweep solves the closest pair problem
elegantly. Information Processing Letters, 26:255-261, 1987/88.

K. Hinrichs, J. Nievergelt, and P. Schorn. An all-round sweep algorithm for 2-
dimensional nearest-neighbors problems. Acta Informatica, 26:383-394, 1992.

J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. STAM
Journal on Computing, 2:135-158, 1973.

J. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM,
21(4):549-568, 1974.

S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.
Acta Informatica, 17:157-184, 1982.

D. Hutchinson, A. Maheshwari, and N. Zeh. An external memory data structure for
shortest path queries. In Proceedings of the 5th ACM-SIAM Computing and Combi-
natorics Conference, volume 1627 of Lecture Notes in Computer Science, pp. 51-60.
Springer-Verlag, July 1999. To appear in Discrete Applied Mathematics.

J. JaJa and R. Kosaraju. Parallel algorithms for planar graph isomorphism and related
problems. IEEE Transactions on Circuits and Systems, 35(3):304-311, March 1988.

J. J4J4 and J. Simon. Parallel algorithms in graph theory: Planarity testing. SIAM
Journal on Computing, 11(2):313-328, 1982.

Bibliography 335

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of
the ACM, 24(1):1-13, 1977.

M.-Y. Kao. Planar strong connectivity helps in parallel depth-first search. SIAM
Journal on Computing, 24:46-62, 1995.

M.-Y. Kao, S.-H. Teng, and K. Toyama. An optimal parallel algorithm for planar
cycle separators. Algorithmica, 14:398-408, 1995.

D. Kavvadias, G. E. Pantziou, P. G. Spirakis, and C. D. Zaroliagis. Hammock-on-ears
decomposition: A technique for the efficient parallel solution of shortest paths and
other problems. Theoretical Computer Science, 168(1):121-154, 1996.

J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete
Euclidean graph. Discrete & Computational Geometry, 7:13-28, 1992.

S. Khuller and Y. Matias. A simple randomized sieve algorithm for the closest-pair
problem. Information and Computation, 118:34-37, 1995.

T. Kim and K. Chwa. Parallel algorithms for a depth first search and a breadth first
search. International Journal of Computer Mathematics, 19:39-52, 1986.

P. Klein. On Gazit and Miller’s parallel algorithm for planar separators: Achieving
greater efficiency through random sampling. In Proceedings of the 5th Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 43—49, 1993.

P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest path algorithms for
planar graphs. Journal of Computer and System Sciences, 55:3-23, 1997.

P. Klein and J. Reif. An efficient parallel algorithm for planarity. Journal of Computer
and System Sciences, 37:190-246, 1988.

P. N. Klein and S. Sairam. A parallel randomized approximation scheme for shortest
paths. In Proceedings of the 24th Annual ACM Symposium on the Theory of Comput-
ing, pp. 750-758, 1992.

P. N. Klein and S. Subramanian. A linear-processor polylog-time algorithm for
shortest-paths in planar graphs. In Proceedings of the 34th Annual IEEE Symposium
on Foundations of Computer Science, pp. 259-270, 1993.

M. van Kreveld. Algorithms on triangulated terrains. In Proceedings of the 24th
SOFSEM, volume 1338 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

M. van Kreveld. Digital elevation models and TIN algorithms. In Algorithmic Foun-
dations of GIS, volume 1340 of Lecture Notes in Computer Science. Springer-Verlag,
1997.

Bibliography 336

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7:48-50, 1956.

V. Kumar and E. J. Schwabe. Improved algorithms and data structures for solving
graph problems in external memory. In Proceedings of the 8th IEEE Sumposium on
Parallel and Distributed Processing, pp. 169-176, October 1996.

M. Lanthier. Shortest Path Problems on Polyhedral Surfaces. PhD thesis, School of
Computer Science, Carleton University, Ottawa/Canada, December 1999.

M. Lanthier, A. Maheshwari, and J.-R. Sack. Approximating weighted shortest paths
on polyhedral surfaces. In Proceedings of the 13th Annual ACM Symposium on Com-
putational Geometry, pp. 274-283, June 1997.

M. Lanthier, A. Maheshwari, and J.-R. Sack. Approximating shortest paths on
weighted polyhedral surfaces. Algorithmica, to appear.

A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.
In Theory of Graphs: International Symposium (Rome 1966), pp. 215-232, New York,
1967. Gordon and Breach.

H.-P. Lenhof and M. Smid. Sequential and parallel algorithms for the &k closest pairs
problem. International Journal of Computational Geometry & Applications, 5:273—
288, 1995.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics, 36(2):177-189, 1979.

T. Lukovszki, A. Maheshwari, and N. Zeh. I/O-efficient batched range counting and
its applications to proximity problems. In Proceedings of the 21st Conference on
Foundations of Software Technology and Theoretical Computer Science, volume 2245
of Lecture Notes in Computer Science, pp. 244-255. Springer-Verlag, 2001.

A. Maheshwari, M. Smid, and N. Zeh. I/O-efficient shortest path queries in geometric
spanners. In Proceedings of the 7th International Workshop on Algorithms and Data
Structures, volume 2125 of Lecture Notes in Computer Science, pp. 287-299. Springer-
Verlag, 2001.

A. Maheshwari and N. Zeh. External memory algorithms for outerplanar graphs. In
Proceedings of the 10th International Symposium on Algorithms and Computation,
volume 1741 of Lecture Notes in Computer Science, pp. 307-316. Springer-Verlag,
December 1999.

Bibliography 337

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

A. Maheshwari and N. Zeh. I/O-efficient algorithms for graphs of bounded treewidth.
In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp- 89-90, 2001.

A. Maheshwari and N. Zeh. I/O-optimal algorithms for planar graphs using separators.
In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp- 372-381, 2002.

Y. Matias and U. Vishkin. On parallel hashing and integer sorting. Journal of Algo-
rithms, 12:573-606, 1991.

K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and Tarjan
planarity testing algorithm. Algorithmica, 16:233-242, 1996.

U. Meyer. External memory BFS on undirected graphs with bounded degree. In Pro-
ceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 87—
88, 2001.

G. Miller and J. Reif. Parallel tree contraction and its applications. In Proceedings of
the 26th IEEE Annual Symposium on Foundations of Computer Science, pp. 478—489,
1985.

G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs.
Journal of Computer and System Sciences, 32:265-279, 1986.

S. L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar
graphs. Information Processing Letters, 9(5):229-232, December 1979.

K. Munagala and A. Ranade. I/O-complexity of graph algorithms. In Proceedings of
the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 687—694, Jan-
uary 1999.

G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University
Press, To appear.

M. H. Nodine and J. S. Vitter. Deterministic distribution sort in shared and dis-
tributed memory multiprocessors. In Proceedings of the 5th Annual ACM Symposium
on Parallel Algorithms and Architectures, pp. 120-129, June/July 1993.

V. Pan and J. H. Reif. Fast and efficient solutions of path algebra problems. Journal
of Computer and System Sciences, 38:494-510, 1989.

G. Pantziou, P. Spirakis, and C. Zaroliagis. Efficient parallel algorithms for shortest
paths in planar digraphs. BIT, 32:215-232, 1992.

Bibliography 338

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

F. P. Preparata and M. I. Shamos. Computational Geometry — An Introduction.
Springer-Verlag, 1985.

R. C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389-1401, 1957.

W. Pugh. Skip lists: A probabilistic alternative to balanced search trees. Communi-
cations of the ACM, 33:668-676, 1990.

M. O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Com-
plexity: New Directions and Recent Results, pp. 21-39. Academic Press, 1976.

V. Ramachandran and J. H. Reif. Planarity testing in parallel. Journal of Computer
and System Sciences, 49(3):517-561, 1994.

J. H. Reif. Depth-first search is inherently sequential. Information Processing Letters,
20(5):229-234, June 1985.

C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer,
27(3):17-28, 1994.

J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean graph.
In Proceedings of the 3rd Canadian Conference on Computational Geometry, pp. 207—
210, 1991.

K. Salem and H. Garcia-Molina. Disk striping. In Proceedings of the 2nd IEEE Data
Engineering Conference, pp. 336-342, 1986.

J. S. Salowe. Constructing multidimensional spanner graphs. International Journal
on Computational Geometry & Applications, 1:99-107, 1991.

J. S. Salowe. Enumerating interdistances in space. International Journal of Compu-
tational Geometry & Applications, 2:49-59, 1992.

P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In Proceed-
ings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 849-858,
2000.

R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor,
New Trends in Discrete and Computational Geometry, pp. 37-67. Springer-Verlag,
1993.

M. I. Shamos. Geometric complexity. In Proceedings of the 7th Annual ACM Sympo-
sium on the Theory of Computing, pp. 224-233, 1975.

Bibliography 339

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

M. I. Shamos and D. Hoey. Closest-point problems. In Proceedings of the 16th Annual
IEEE Symposium on Foundations of Computer Science, pp. 151-162, 1975.

G. E. Shannon. A linear-processor algorithm for depth-first search in planar graphs.
Information Processing Letters, 29:119-123, 1988.

D. D. Sleator and R. E. Tarjan. A data sturcture for dynamic trees. Journal of
Computer and System Sciences, 26:362-391, 1983.

D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM, 32:652-686, 1985.

M. Smid. Maintaining the minimal distance of a point set in less than linear time.
Algorithms Review, 2:33-44, 1991.

M. Smid. Closest-point problems in computational geometry. In J.-R. Sack and J. Ur-
rutia, editors, Handbook of Computational Geometry. North-Holland, 2000.

M. Smid. Private communication, 2000.

J. R. Smith. Parallel algorithms for depth-first searches I. Planar graphs. SIAM
Journal on Computing, 15(3):814-830, August 1986.

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146-159, 1972.

M. Thorup. Undirected single source shortest paths with positive integer weights in
linear time. Journal of the ACM, 46:362—-394, 1999.

M. Thorup. Floats, integers, and single source shortest paths. Journal of Algorithms,
35:189-201, 2000.

J. L. Traff and C. D. Zaroliagis. A simple parallel algorithm for the single-source short-
est path problem on planar digraphs. Journal of Parallel and Distributed Computing,
60:1103-1124, 2000.

P. M. Vaidya. Minimum spanning trees in k-dimensional space. SIAM Journal on
Computing, 17:572-582, 1988.

P. M. Vaidya. An O(nlogn) algorithm for the all-nearest-neighbors problem. Discrete
& Computational Geometry, 4:101-115, 1989.

P. M. Vaidya. A sparse graph almost as good as the complete graph on points in K
dimensions. Discrete & Computational Geometry, 6:369-381, 1991.

L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103, August 1990.

Bibliography 340

171.

172.

173.

174.

175.

176.

177.

178.

179.

J. S. Vitter. External memory algorithms and data structures: Dealing with massive
data. ACM Computing Surveys, 33, 2001.

J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level mem-
ories. Algorithmica, 12(2-3):110-147, 1994.

S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11-12, 1962.

H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 54:150-168, 1932.

H. Whitney. Non-separable and planar graphs. Transaction of the American Mathe-
matical Society, 34:339-362, 1932.

A. C. Yao. On constructing minimum spanning trees in k-dimensional space and
related problems. STAM Journal on Computing, 11:721-736, 1982.

N. Zeh. An External-Memory Data Structure for Shortest Path Queries. Diplomarbeit,
Fakultat fiir Mathematik und Informatik, Friedrich-Schiller-Universitat Jena, Novem-
ber 1998.

N. Zeh. I/O-efficient planar embedding using graph separators. Technical Report
TR-01-07, School of Computer Science, Carleton University, Ottawa, Canada, 2001.

N. Zeh. I/O-efficient planar separators and applications. Technical Report TR-01-02,
School of Computer Science, Carleton University, Ottawa, Canada, 2001.

