
Geometric Algorithms for Private-Cache Chip Multiprocessors

(Extended Abstract)

Deepak Ajwani

MADALGO∗

Department of Computer Science

University of Aarhus, Denmark

ajwani@madalgo.au.dk

Nodari Sitchinava

MADALGO∗

Department of Computer Science

University of Aarhus, Denmark

nodari@madalgo.au.dk

Norbert Zeh†

Faculty of Computer Science

Dalhousie University, Halifax, Canada

nzeh@cs.dal.ca

Abstract

We study techniques for obtaining efficient algorithms for geometric problems on private-cache chip
multiprocessors. We show how to obtain optimal algorithms for interval stabbing counting, 1-D range
counting, weighted 2-D dominance counting, and for computing 3-D maxima, 2-D lower envelopes, and
2-D convex hulls. These results are obtained by analyzing adaptations of either the PEM merge sort
algorithm or PRAM algorithms. For the second group of problems—orthogonal line segment intersection
reporting, batched range reporting, and related problems—more effort is required. What distinguishes
these problems from the ones in the previous group is the variable output size, which requires I/O-efficient
load balancing strategies based on the contribution of the individual input elements to the output size.
To obtain nearly optimal algorithms for these problems, we introduce a parallel distribution sweeping
technique inspired by its sequential counterpart.

1 Introduction

With recent advances in multicore processor technologies, parallel processing at the chip level is becoming
increasingly mainstream. Current multicore chips have 2, 4 or 6 cores, but Intel recently announced a 48-core
chip [21], and the trend to increasing numbers of cores per chip continues. This creates a need for algorithmic
techniques to harness the power of increasing chip-level parallelism [17]. A number of papers have made
progress towards addressing this need [2, 3, 9, 11–13].

Ignoring the presence of a memory hierarchy, current multicore chips resemble a PRAM, with all pro-
cessors having access to a shared memory and communicating with each other exclusively through shared
memory accesses. However, each processor (core) has a low-latency private cache inaccessible to other
processors. In order to take full advantage of such architectures, now commonly known as private-cache
chip multiprocessors (CMP’s), algorithms have to be designed with a focus on minimizing the number of
accesses to shared memory. In this paper, we study techniques to address this problem for a number of
geometric problems, specifically for 2-D dominance counting, 3-D maxima, 2-D lower envelope, 2-D convex

∗MADALGO is the Center for Massive Data Algorithmics – a Center of the Danish National Research Foundation
†Supported in part by the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs

programme.

1

B Cache

M/B

Cache

M/B M/B

Cache

B Shared memory

CPU 1 CPU 2 CPU P

Figure 1: PEM model

hull, orthogonal line segment intersection reporting, batched 2-D orthogonal range reporting, and related
problems.

For these problems, optimal PRAM [5,7,14,18] and sequential I/O-efficient algorithms [10,19] are known,
and some of these problems have also been studied in coarse-grained parallel models [15, 16]. The previous
parallel algorithms and the I/O-efficient sequential algorithms achieve exactly one of our goals—parallelism
or I/O efficiency—while the algorithms in this paper achieve both.

1.1 Model of Computation and Previous Work

Our algorithms are designed in the parallel external memory (PEM) model of [2]; see Figure 1. This model
considers a machine with P processors, each with a private cache of size M . Processors communicate with
each other through access to a shared memory of conceptually unlimited size. Each processor can use only
data in its private cache for computation. The caches and the shared memory are divided into blocks of size
B. Data is transferred between the caches and shared memory using parallel input-output (I/O) operations.
During each such operation, each processor can transfer one block between shared memory and its private
cache. The cost of an algorithm is the number of I/Os it performs. As in the PRAM model, different
assumptions can be made about how to handle multiple processors reading or writing the same block in
shared memory during one I/O operation. Throughout this paper, we allow concurrent reading of the same
block by multiple processors but disallow concurrent block writes; in this respect, the model is similar to
a CREW PRAM. The cost of sorting in the PEM model is sortP (N) = O

(

N
PB logM/B

N
B

)

[2], provided

P ≤ N/B2 and M = BO(1).
The PEM model provides the simplest possible abstraction of current multicore chips, focusing on the

fundamental I/O issues that need to be addressed when designing algorithms for these architectures, similar
to the I/O model [1] in the sequential setting. The hope is that the developed techniques are also applicable
to more complicated multicore models. For the PEM graph algorithms developed in [3], this has certainly
been the case already [13].

A number of other results have been obtained in more complicated multicore models. In [8], Bender
et al. discussed how to support concurrent searching and updating of cache-oblivious B-trees by multiple
processors. In [9,11,12], different multicore models are considered and cache- and processor-oblivious divide-
and-conquer and dynamic programming algorithms are presented whose performance is within a constant
factor of optimal for the studied problems.

An important difference between the work presented in this paper and the previous results mentioned
above is that the algorithms in this paper are output-sensitive. This creates a challenge in allocating input
elements to processors so that all processors produce roughly equal fractions of the output. To the best
of our knowledge, output-sensitive computations have not been considered before in any of the multicore
models mentioned above. However, there exists related work in the sequential I/O [1,19] and cache-oblivious
models [4, 10], and in the PRAM [14, 18] model. The PRAM solutions rely on very fine-grained access to
shared memory, while the cache-efficient solutions seem inherently sequential.

2

1.2 New Results

In this paper, we focus on techniques to solve fundamental computational geometry problems in the PEM
model. The main contribution of the paper is a parallelization of the distribution sweeping paradigm [19],
which has proven very successful as a basis for solving geometric problems in the sequential I/O model.
Using this technique, we obtain solutions for reporting orthogonal line segment intersections, batched range
searching, and related problems.

The above problems can be solved using Θ(sortP (N)+K/PB) I/Os in the sequential I/O model (P = 1)
and in the CREW PRAM model (M,B = O(1)). Thus, it seems reasonable to expect that a similar I/O
bound can be achieved in the PEMmodel. We don’t achieve this goal in this paper but present two algorithms
that come close to it: one performing O(sortP (N + K)) I/Os, the other O(sortP (N) logd P + K/PB), for
d := min(

√

N/P,M/B). The main challenge in obtaining these solutions is to balance the output reporting
across processors, as different input elements may make different contributions to the output size. Our
solutions are obtained using two different solutions to this balancing problem.

As building blocks to our algorithms, we require solutions to the counting versions of these problems.
Using different techniques, we obtain optimal O(sortP (N)) I/O solutions to these problems, as well as for
computing the lower envelope of a set of non-intersecting line segments in the plane, the maxima of a 3-D
point set, and the convex hull of a 2-D point set.

2 Tools

In this section, we define primitives we use repeatedly in our algorithms. Unless stated otherwise, we assume
P ≤ min(N/B2, N/(B logN)) and M = BO(1).

Prefix sum and compaction. Given an array A[1 . .N], the prefix sum problem is to compute an array

S[1 . .N] such that S[i] =
∑i

j=1 A[j]. Given a second boolean array M [1 . .N], the compaction problem is to
arrange all elements A[i] such that M [i] = true consecutively at the beginning of A without changing their
relative order. PEM algorithms for these problems with I/O complexity O(N/PB + logP) are presented
in [2] (also see [22]). Since we assume P ≤ N/(B logN), the I/O complexity of both operations reduces to
O(N/PB).

Global load balancing. Let A1, A2, . . . , Ar be a collection of arrays with r ≤ P and
∑r

j=1 |Aj | = N , and

assume each element x has a positive weight wx. Let wmax = maxxwx, Wj =
∑

x∈Aj
wx and W =

∑r
j=1 Wj .

A global load balancing operation assigns contiguous subarrays of A1, A2, . . . , Ar to processors so that O(1)
subarrays are assigned to each processor and the total weight of the elements assigned to any processor is
O(W/P +wmax). This operation can be implemented using O(1) prefix sum and compaction operations and,
thus, takes O(N/PB) I/Os. For details, see Appendix A.

Transpose and compact. Given P arrays A1, A2, . . . , AP of total size N and such that each array Ai

is segmented into d sub-arrays Ai,1, Ai,2, . . . , Ai,d, a transpose and compact operation generates d arrays
A′

1, A
′
2, . . . , A

′
d, where A′

j is the concatenation of arrays A1,j , A2,j , . . . , AP,j . The segmentation is assumed
to be given as a P × d matrix M stored in row-major order and such that M [i, j] is the size of array Ai,j .
A transpose and compact operation can be implemented using O(N/PB + d) I/Os as follows.

We copy M into a matrix M ′ and round every entry in M ′ up to the next multiple of B. We add a 0th
column to M and a 0th row to M ′, all of whose entries are 0, and compute row-wise prefix sums of M and
column-wise prefix sums of M ′. Let the resulting matrices be M r and M c, respectively. Array Ai,j needs
to be copied from position M r[i, j − 1] in Ai to position M c[i− 1, j] in A′

j . We assign portions of the arrays
A1, A2, . . . , AP to processors using a global load balancing operation so that no processor receives more than
O(N/P +B) = O(N/P) elements and the pieces assigned to processors, except the last piece of each array
Ai,j , have sizes that are multiples of B. Each processor copies its assigned blocks of arrays A1, A2, . . . , AP

3

to arrays A′
1, A

′
2, . . . , A

′
d. Finally, we use a compaction operation to remove the gaps introduced in arrays

A′
1, A

′
2, . . . , A

′
d by the alignment of the sub-arrays Ai,j at block boundaries.

Note that the size of the arrays A′
1, A

′
2, . . . , A

′
d with the sub-arrays Ai,j padded to full blocks is at most

N + Pd(B − 1). Thus, the prefix sum, compaction, and global load balancing operations involved in this
procedure can be carried out using O(N/PB + d) I/Os. The row-wise and column-wise prefix sums on
matrices M and M ′ can also be implemented in this bound. However, M ′ needs to be stored in column-
major order for this operation. This is easily achieved by transposing M ′ using O(d) I/Os (as its size is only
(P + 1)× d) and then transposing it back into row-major order after performing the prefix sum.

3 Counting Problems

Interval stabbing counting and 1-D range counting. Let I be a set of intervals, S a set of points
on the real line, and N := |I| + |S|. The interval stabbing counting problem is to compute the number of
intervals in I containing each point in S. The 1-D range counting problem is to compute the number of
points in S contained in each interval in I.

Theorem 1. Interval stabbing counting and 1-D range counting can be solved using O(sortP (N)) I/Os in
the PEM model. If the input is given as an x-sorted list of points and interval endpoints, interval stabbing
counting and 1-D range counting take O(N/PB) and O(sortP (|I|) + |S|/PB) I/Os, respectively.

Proof. Given the x-sorted list of points and interval endpoints, the number of intervals containing a point
q ∈ S is the prefix sum of q after assigning a weight of 1 to every left interval endpoint, a weight of −1 to
every right interval endpoint, and a weight of 0 to every point in S. Thus, the interval stabbing problem can
be solved using a single prefix sum operation, which takes O(N/PB) I/Os.

The number of points contained in an interval in I is the difference of the prefix sums of its endpoints
after assigning a weight of 1 to every point in S and a weight of 0 to every interval endpoint. This prefix sum
operation takes O(N/PB) I/Os again. To compute the differences of the prefix sums of the endpoints of each
interval, we extract the set of interval endpoints from the x-sorted list using a compaction operation and
sort the resulting list to store the endpoints of each interval consecutively. This takes another O(sortP (|I|)+
|S|/PB) I/Os, for a total of O(sortP (|I|) + |S|/PB) I/Os.

If the x-sorted list of points and interval endpoints is not given, it can be produced from I and S using
O(sortP (N)) I/Os, which dominates the total cost of the computation.

2-D weighted dominance counting. Given two points q1 = (x1, y1) and q2 = (x2, y2) in the plane,
we say that q1 1-dominates q2 if y1 ≥ y2; q1 2-dominates q2 if, in addition, x1 ≥ x2. The latter is the
standard notion of 2-D dominance. In the 2-D weighted dominance counting problem, we are given a set
S of points, each with an associated weight w(q), and our goal is to compute the total weight of all points
in S 2-dominated by each point in S. Our algorithm in Section 4 for orthogonal line segment intersection
reporting requires us to count the number of intersection of each segment. This problem and the problem of
2-D batched range counting reduce to 2-D weighted dominance counting by assigning appropriate weights to
segment endpoints or points [6]. Thus, it suffices to present a solution to 2-D weighted dominance counting
here.

Theorem 2. 2-D weighted dominance counting can be solved using O(sortP (N)) I/Os in the PEM model,
provided P ≤ N/B2 and M = BO(1).

Proof. We start by sorting the points in S by their x-coordinates and partitioning the plane into vertical
slabs σi, each containing N/P points. Each processor pi is assigned one slab σi and produces a y-sorted list
U(σi) of points in this slab, each annotated with labels W 1

σi
(q) and W 2

σi
(q), which are the total weights of the

points within σi that q 1- and 2-dominates, respectively. After the initial sorting step to produce the slabs,
which takes O(sortP (N)) I/Os, the lists U(σi) and the labelling of the points in these lists can be produced
using O(sort1(N/P)) I/Os using standard I/O-efficient techniques [19] independently on each processor.

4

We merge these lists using the d-way cascading merge procedure of PEM merge sort [2], which takes
O(sortP (N)) I/Os and can be viewed as a d-ary tree with leaves σ1, σ2, . . . , σP and logd P levels. At each
tree node v, the procedure computes a y-sorted list U(v), which is the merge of the y-sorted lists U(σi)
associated with the leaves of the subtree with root v. Next we observe that we can augment the merge
procedure at each node v to compute weights W 1

v (q) and W 2
v (q), which are the total weights of the points in

U(v) 1- and 2-dominated by q, respectively. For the root r of the merge tree, we have U(r) = S, and W 2
r (q)

is the total weight of the points dominated by q, for each q ∈ U(r).
So consider a node v with children w1, w2, . . . , wd. The cascading merge produces list U(v) in rounds, in

each round merging finer samples of the lists U(w1), U(w2), . . . , U(wd) than in the previous round. In the
round that produces the full list U(v) from full lists U(w1), U(w2), . . . , U(wd), the processor placing a point
q ∈ U(wi) into U(v) also accesses the predecessor prdwj

(q) of q in list U(wj), for all 1 ≤ j ≤ d, which is the

point in U(wj) with maximum y-coordinate no greater than q’s. Now it suffices to observe that W 1
v (q) and

W 2
v (q) can be computed asW 1

v (q) =
∑d

j=1 W
1
wj

(prdwj
(q)) andW 2

v (q) = W 2
wi
(q)+

∑i−1
j=1 W

1
wj

(prdwj
(q)). This

does not increase the cost of the merge step, and the total I/O complexity of the algorithm is O(sortP (N)).

4 Parallel Distribution Sweeping

We discuss our parallel distribution sweeping framework using orthogonal line segment intersection reporting
as an example. Batched orthogonal range reporting and rectangle intersection reporting can be solved in the
same complexity using adaptations of the procedure in this section; see Appendices C and D.

The distribution sweeping technique recursively divides the plane into vertical slabs, starting with the en-
tire plane as one slab and in each recursive step dividing the given slab into d child slabs, for an appropriately
chosen parameter d. This division is chosen so that each slab at a given level of recursion contains roughly
the same number of objects (e.g., segment endpoints and vertical segments). In the sequential setting [19],
d = M/B, and the recursion stops when the input problem fits in memory. In the parallel setting, we set
d := min{

√

N/P,M/B},1 and the lowest level of recursion divides the plane into P slabs, each containing
about N/P input elements. Viewing the recursion as a rooted tree, we talk about leaf invocations and
children of a non-leaf invocation. We refer to an invocation on slab σ at the kth recursive level as Ikσ .

We describe two variants of parallel distribution sweeping. In both variants, each invocation Ikσ receives
as input a y-sorted list Y k

σ containing horizontal segments and vertical segment endpoints, and the root
invocation I0

R2 contains all horizontal segments and vertical segment endpoints in the input. For a non-
leaf invocation Ikσ , let Ik+1

σ1
, Ik+1

σ2
, . . . , Ik+1

σd
denote its child invocations, Ek

σj
the y-sorted list of horizontal

segments in Y k
σ with an endpoint in σj , S

k
σj

the y-sorted list of horizontal segments in Y k
σ spanning σj and

with an intersection in σj , and V k
σj

the y-sorted list of vertical segment endpoints in Y k
σ contained in σj . The

first distribution sweeping variant constructs Y k+1
σj

as the merge of lists Ek
σj
, Sk

σj
, and V k

σj
and recurses on

each child invocation Ik+1
σj

with this input. The second variant constructs a y-sorted list Rk
σj

:= Sk
σj

∪ V k
σj
,

for each child slab σj , reports all intersections between segments in Rk
σj
, and then recurses on each child

invocation Ik+1
σj

with input Y k+1
σj

:= Ek
σj

∪ V k
σj
; see Figure 2. In both variants, every leaf invocation Ikσ finds

all intersections between the elements in Y k
σ using sequential I/O-efficient techniques, even though some

effort is required to balance the work among processors.
The first variant, with I/O complexity O(sortP (N + K)), defers the reporting of intersections to the

leaf invocations and ensures that the input to every leaf Ikσ invocation is exactly the list of vertical segment
endpoints in σ and of all horizontal segments with an endpoint or an intersection in σ. The second variant
achieves an I/O complexity of O(sortP (N) logd P + K/PB) and is similar to the sequential distribution
sweeping technique in that each non-leaf invocation Ikσ finds all intersections between vertical segments in
each child slab σj and horizontal segments spanning this slab and then recurses on each slab σj to find
intersections between segments with at least one endpoint in this slab.

1The choice of d comes from the d-way PEM mergesort of [2] and ensures that d = O(N/PB).

5

σ1 σ2 σ3 σ4

h

Figure 2: When deferring intersection reporting to the leaves, we have h ∈ Y k+1
σj

, for j ∈ {1, 2, 4}. When

reporting intersections immediately, we have h ∈ Y k+1
σj

, for j ∈ {1, 4} and h ∈ Rk
σ2
.

First we discuss how to produce the lists Y k+1
σj

(for both variants) and Rk
σj

at non-leaf invocations, as
this step is common to both solutions. Then we discuss each of the two distribution sweeping variants in
detail.

4.1 Generating Lists Y k+1
σj

and Rk

σj
for Non-Leaf Invocations

We process all invocations Ikσ at the kth recursive level in parallel. LetNk :=
∑

σ |Y k
σ | and Pσ := ⌈P |Y k

σ |/Nk⌉.
Since Nk = Ω(N), Nk can be computed using O(Nk/PB) I/Os using a prefix sum operation.

Within each vertical slab σ, we define Pσ horizontal slabs, each containing |Y k
σ |/Pσ = Nk/P elements

of Y k
σ . The Pσ horizontal slabs and d vertical child slabs σj define a Pσ × d grid. We refer to the cell in

row i and column j as Cij . Our first step is to compute the number of vertical segments intersecting the
horizontal boundaries between adjacent grid cells. Then we use this information to count, for each horizontal
segment h ∈ Y k

σ , the number of grid cells that h spans and where it has at least one intersection. Finally, we
generate y-sorted lists Yij and Rij , for each grid cell Cij , which are the portions of Y k+1

σj
and Rk

σj
containing

elements from the ith horizontal slab. The lists Y k+1
σj

and Rk
σj

are then obtained from the lists Yij and Rij ,
respectively, using transpose and compact operations. Next we discuss these steps in detail.

1. Intersection counts for horizontal grid cell boundaries. Using global load balancing, we allocate
O(Nk/P) elements of each list Y k

σ to a processor. This partition of Y k
σ defines the Pσ horizontal slabs in

σ’s grid. The processor associated with the ith horizontal slab sequentially scans its assigned portion of
Yσ and generates y-sorted lists Vij of vertical segment endpoints in each cell Cij . It also adds an entry
representing the top boundary of the cell Cij as the first element in each list Vij . Using a transpose
and compact operation, we obtain y-sorted lists V ′

σj
of vertical segment endpoints and cell boundaries

in each of the d child slabs σj . Observing that Nk = Ω(N) and d = O(N/PB) [2], the intersection
counts for all cell boundaries in σj can now be computed using O(Nk/PB) I/Os by treating these cell
boundaries as stabbing queries over V ′

σj
. The total I/O complexity of this step is therefore O(Nk/PB).

2. Counting cells with intersections for each horizontal segment. Each processor performs a
vertical sweep of the portion of Y k

σ assigned to it in Step 1. For each vertical slab σj , it keeps track of
the number of vertical segments in σj that span the current y-coordinate, starting with the intersection
count of the top boundary of Cij and updating the count whenever the sweep passes a top or bottom
endpoint of a vertical segment. When the sweep passes a horizontal segment h, this segment has an
intersection in a cell Cij spanned by h if and only if the count for slab σj is non-zero. By testing this
condition for each cell, we can determine t′h, the number of slabs σj spanned by h and where h has an
intersection. We assign weights wh := 1 + t′h and wq := 1 to each horizontal segment h and vertical
segment endpoint q. The I/O complexity of this step is O(Nk/PB) I/Os because each processor scans
Nk/P elements in this step and keeps d ≤ M counters in memory.

3. Generating child lists. Using a global load balancing operation with the weights computed in Step 2,
we reallocate the elements in Y k

σ to processors so that the elements assigned to each processor have
total weight Wk/P , where Wk =

∑

σ

∑

e∈Y k
σ
we. This partitioning of Y k

σ induces new horizontal slabs

6

in σ’s grid. We repeat Step 1 to count the number of vertical segments intersecting each horizontal
cell boundary and repeat the sweep from Step 2, this time copying every horizontal segment with an
endpoint in Cij to Yij and, depending on the distribution sweeping variant, adding every horizontal
segment spanning σj and with an intersection in σj to Yij or Rij , and every vertical segment endpoint in
σj to Yij and Rij . Finally, we obtain the lists Y k+1

σj
and Rk

σj
using a transpose and compact operation.

The I/O complexity of this step is O(Wk

PB) = O(Nk+Lk

PB) I/Os, where Lk =
∑

h t
′
h with the sum taken

over all horizontal segments h ∈ Y k
σ .

By summing the costs of these three steps, we obtain the following lemma.

Lemma 1. At the kth recursive level, the y-sorted lists Y k+1
σj

and Rk
σj

can be generated using O(Nk+Lk

PB)

I/Os, where Nk =
∑

σ |Y k
σ | and Lk =

∑

h t
′
h with the second sum taken over all horizontal segments in slab

lists Y k
σ .

4.2 An O(sortP (N + K)) Solution

Our O(sortP (N + K)) I/O solution defers the reporting of intersections to the leaf invocations, ensuring
that the input to each leaf invocation Ikσ includes all segments with an endpoint in σ and all horizontal
segments with an intersection in σ. We achieve this by setting Y k+1

σj
:= V k

σj
∪ Ek

σj
∪ Sk

σj
, for each child

slab σj of a non-leaf invocation Ikσ . By Lemma 1, the input lists for level k + 1 can be generated using
O(Nk+Lk

PB) = O(N+K
PB) I/Os because Nk ≤ N +K and Lk ≤ K. Since there are logd P recursive levels, the

cost of all non-leaf invocations is O(N+K
PB logd P) = O(sortP (N +K)) I/Os. At the leaf level, we balance the

reporting of intersections among processors based on the number of intersections of each horizontal segment.
The details are as follows.

1. Counting intersections. We partition each list Y k
σ into y-sorted lists Hσ and Vσ of horizontal

segments and vertical segment endpoints. This takes O(Nk/PB) I/Os by copying each element of Y k
σ

into the corresponding position of Hσ or Vσ and compacting the two lists. Using global load balancing,
we allocate O(Nk/P) = O(N+K

P) horizontal segments from O(1) slabs to each processor. Applying
sequential I/O-efficient orthogonal intersection counting [19] to its assigned horizontal segments and the
vertical segments in the corresponding slabs, each processor computes th, the number of intersections
of each of its horizontal segments h, and assigns weight wh := 1 + th to h. Since |Vσ | = O(N/P), the
cost of this step is O(sort1(

N+K
P)) = O(sortP (N +K)).

2. Reporting intersections. Using global load balancing with the weights computed in the previous
step, we re-allocate horizontal segments to processors so that each processor is responsible for segments
of total weight W/P = (

∑

σ

∑

h∈Hσ
wh)/P = O(N+K

P). Each processor runs a sequential I/O-efficient
orthogonal line segment intersection reporting algorithm [19] on its horizontal segments and the vertical
segments in the corresponding O(1) slabs. This step takes O(sort1(N/P +W/P)) = O(sortP (N +K))
I/Os.

By summing the costs of all invocation, we obtain the following theorem.

Theorem 3. In the PEM model, orthogonal line segment intersection reporting takes O(sortP (N + K))
I/Os, provided P ≤ min{ N

B logN , N
B2 } and M = BO(1).

4.3 An O(sortP (N) log
d
P + K/PB) Solution

In our O(sortP (N) logd P + K/PB) solution, each invocation Ikσ generates lists Y k+1
σj

:= V k
σj

∪ Ek
σj

and

Rk
σj

:= V k
σj

∪ Sk
σj
, for each child slab σj of σ, and then reports all intersections between elements in Rk

σj

before recursing on each slab σj with input Y k+1
σj

. The leaf invocations are the same as in the O(sortP (N+K))
solution, and we process all invocations at each level of recursion simultaneously.

7

Generating all lists Y k+1
σj

and Rk
σj

at the kth recursive level takes O(Nk+Lk

PB) I/Os; see Section 4.1. Since

each list Y k
σ contains only segments with an endpoint in σ, we have Nk ≤ 2N and

∑

k Nk = O(N logd P).
Since we also have

∑

k Lk ≤ K, the cost of generating lists Y k+1
σj

and Rk
σj

for all non-leaf invocations is
O((N/PB) logd P +K/PB), while the cost of all leaf invocations is O(sortP (N) +K/PB) (each processor
processes elements from only O(1) slabs, and each slab contains only O(N/P) vertical segments and horizontal
segment endpoints). Next we discuss how to report all intersections between elements of the lists Rk

σj
at

the kth recursive level using O(sortP (N) + Kk+K/ logd P
PB) I/Os, where Kk is the number of intersections

reported at the kth recursive level. This sums to a cost of O(sortP (N) logd P +K/PB) I/Os for all non-leaf
invocations and dominates the total cost of the algorithm. This proves the following result.

Theorem 4. In the PEM model, orthogonal line segment intersection reporting takes O(sortP (N) logd P +
K
PB) I/Os, if P ≤ min{ N

B logN , N
B2 } and M = BO(1).

To achieve a cost of O(sortP (N)+
Kk+K/ logd P

PB) I/Os per recursive level, we assume every vertical segment
has at mostK ′ := max{N/P,K/(P logd P)} intersections. Below we sketch how to eliminate this assumption
by splitting vertical segments with more thanK ′ intersections into subsegments with at mostK ′ intersections
as needed.

To report the intersections at the kth recursive level, we process all lists Rk
σj

in parallel. We do this in
three steps. First we count the number of intersections of each vertical segment in such a list. Then we split
each list Rk

σj
into y-sorted lists Vσj

and Hσj
containing the top endpoints of vertical segments and horizontal

segments, respectively. Each endpoint in Vσj
also stores the bottom endpoint and the number of intersections

of the corresponding segment. In the third step, we allocate portions of the lists Vσj
to processors, and each

processor reports the intersections of its allocated vertical segments. The details are as follows.

1. Counting intersections. Counting the number of intersections for each vertical segment in Rk
σj

is equivalent to answering 1-D range counting queries over Rk
σj
, as each horizontal segment in Rk

σj

completely spans σj . Thus, by applying Theorem 1 to all lists Rk
σj

simultaneously, this step takes
O(sortP (N) + Kk/PB) I/Os because there are O(N) vertical segments and at most Kk horizontal
segments in all lists Rk

σj
at the kth recursive level.

2. Generating lists Hσj
and Vσj

. Splitting Rk
σj

into lists Hσj
and Vσj

can be done as the splitting

of Y k
σ for leaf invocations. Before doing this, however, we annotate every vertical segment endpoint

q with the index scc(q) such that Hσj
[scc(q)] is the first horizontal segment below q in the list Hσj

.
This is done by assigning a weight of 0 to vertical segment endpoints and 1 to horizontal segments and
computing prefix sums on these weights. Thus, the I/O complexity of this step is O(N+Kk

PB).

3. Reporting intersections. Let tq be the number of intersections of the vertical segment with top
endpoint q, and wq := 1 + tq. We allocate portions of the lists Vσj

to processors by using global load
balancing with these weights. Since every vertical segment has at most K ′ intersections, this assigns
segment endpoints with total weight O(N+Kk

P + K ′) to each processor. The cost of this assignment

step is O(N+Kk

PB) I/Os.

Now each processor performs a sequential sweep of its assigned portion V ′ of a list Vσj
and of a portion

H ′ of Hσj
, starting with position scc(q), where q is the first point in Vσj

. The elements in V ′ and
H ′ are processed by decreasing y-coordinates. When processing a segment endpoint in V ′, its vertical
segment is inserted into an active list A. When processing a segment h in H ′, we scan A to report all
intersections between h and vertical segments in A and remove all vertical segments from A that do
not intersect h. The sweep terminates when all points in V ′ have been processed and A is empty.

The I/O complexity per processor pi is easily seen to be O(ri + (Wi + Zi)/B), where ri = O(1) is the
number of portions of lists Vσj

assigned to pi, Wi is the total weight of the elements in these portions,
and Zi is the total number of scanned elements in the corresponding lists H ′. Our goal is to show
that Zi = O(Wi + K ′), which bounds the cost of reporting intersections by O(1 + N+Kk

PB + K′

B) =

8

O(N+Kk

PB + K′

B). To this end, we show that there are only O(K ′) horizontal segments scanned by pi
that do not intersect any vertical segments assigned to pi. Consider the last segment h in a portion H ′

of a list Hσj
scanned by pi and which does not intersect a segment in the corresponding sublist V ′ of

Vσj
assigned to pi. Since every horizontal segment in Hσj

has at least one intersection at this recursive
level, h must intersect some vertical segment v assigned to another processor. Observe that the top
endpoint of v must precede V ′ in Vσj

, which implies that v intersects all segments in H ′ scanned by pi
but without intersections with segments in V ′. Since v has at most K ′ intersections, there can be at
most K ′ such segments in H ′, and pi scans portions of only O(1) lists Hσj

.

By adding the costs of the different steps, we obtain a cost of O(sortP (N)+ (Kk +K/ logd P)/PB) I/Os
per recursive level, as claimed in Theorem 4.

Our algorithm relies on the assumption that every vertical segment has at most K ′ intersections in two
places: balancing the reporting load among processors and bounding the number of elements in Hσj

-lists
scanned by each processor. After Step 1, the top endpoint q of each vertical segment in Vσj

stores its
intersection count tq and the index scc(q) of the first segment in Hσj

below q. For each endpoint q with
tq > K ′, we generate lq := ⌈tq/K ′⌉ copies q1, q2, . . . , qlq , each with an intersection count of K ′—qlq has
intersection count tq mod K ′—and successor index scc(qi) := scc(q) + (i − 1)K ′. We sort the resulting
augmented Vσj

-list by the successor indices of its entries and modify the reporting step to remove a vertical
segment from the active list when a number of intersections matching its intersection count have been
reported. This is equivalent to splitting each vertical segment with more than K ′ intersections at the current
recursive level into subsegments with at most K ′ intersections each. In Appendix B, we show that the
number of elements in the Vσj

-lists at each recursive level remains O(N) and that the generation of the
copies of top endpoints can be implemented using O(sortP (N)) I/Os. Thus, this does not alter the cost of
the algorithm.

5 Additional Problems

Theorem 5. The lower envelope of a set of non-intersecting 2-D line segments, the convex hull of a 2-D
point set, and the maxima of a 3-D point set can be computed using O(sortP (N)) I/Os, provided P ≤ N/B2

and M = BO(1).

Proof. (Sketch) The lower envelope of a set of non-intersecting line segments and the maxima of a 3-D
point set can be computed by merging point lists sorted along one of the coordinate axes and computing
appropriate labels of the points in each list U(v) from the labels of their predecessors in v’s child lists using
the same strategy as for 2-D weighted dominance counting [6]. The result on convex hull is obtained using
a careful analysis of an adaptation of the CREW PRAM algorithm of [7]. For details see Appendix E.

References

[1] Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Communica-
tions of the ACM 31(9), 1116–1127 (1988)

[2] Arge, L., Goodrich, M.T., Nelson, M.J., Sitchinava, N.: Fundamental parallel algorithms for private-
cache chip multiprocessors. In: SPAA. pp. 197–206 (2008)

[3] Arge, L., Goodrich, M.T., Sitchinava, N.: Parallel external memory graph algorithms. In: IPDPS (2010),
to appear

[4] Arge, L., Mølhave, T., Zeh, N.: Cache-oblivious red-blue line segment intersection. In: ESA. pp. 88–99
(2008)

[5] Atallah, M.J., Cole, R., Goodrich, M.T.: Cascading divide-and-conquer: A technique for designing
parallel algorithms. SIAM J. Comp. 18(3), 499–532 (1989)

9

[6] Atallah, M.J., Goodrich, M.T.: Efficient plane sweeping in parallel. In: SoCG. pp. 216–225 (1986)

[7] Atallah, M.J., Goodrich, M.T.: Parallel algorithms for some functions of two convex polygons. Algo-
rithmica 3, 535–548 (1988)

[8] Bender, M.A., Fineman, J.T., Gilbert, S., Kuszmaul, B.C.: Concurrent cache-oblivious b-trees. In:
SPAA. pp. 228–237 (2005)

[9] Blelloch, G.E., Chowdhury, R.A., Gibbons, P.B., Ramachandran, V., Chen, S., Kozuch, M.: Provably
good multicore cache performance for divide-and-conquer algorithms. In: SODA. pp. 501–510 (2008)

[10] Brodal, G.S., Fagerberg, R.: Cache oblivious distribution sweeping. In: ICALP. Lecture Notes in Com-
puter Science, vol. 2380, pp. 426–438. Springer-Verlag (2002)

[11] Chowdhury, R.A., Ramachandran, V.: The cache-oblivious gaussian elimination paradigm: Theoretical
framework, parallelization and experimental evaluation. In: SPAA. pp. 71–80 (2007)

[12] Chowdhury, R.A., Ramachandran, V.: Cache-efficient dynamic programming for multicores. In: SPAA.
pp. 207–216 (2008)

[13] Chowdhury, R.A., Silvestri, F., Blakeley, B., Ramachandran, V.: Oblivious algorithms for multicores
and network of processors. In: IPDPS (2010), to appear

[14] Datta, A.: Efficient parallel algorithms for geometric partitioning problems through parallel range
searching. In: ICPP pp. 202–209 (1994)

[15] Dehne, F., Fabri, A., Rau-Chaplin, A.: Scalable parallel geometric algorithms for coarse grained multi-
computers. In: SoCG. pp. 298–307 (1993)

[16] Fjällström, P.O.: Parallel algorithms for batched range searching on coarse-grained multicomputers.
Linköping Electronic Articles in Computer and Information Science 2(3) (1997)

[17] Gibbons, P.: Theory: Asleep at the switch to many-core.Workshop on Theory and Many-Cores (T&MC)
(May 2009)

[18] Goodrich, M.T.: Intersecting line segments in parallel with an output-sensitive number of processors.
SIAM J. Comp. 20(4), 737–755 (1991)

[19] Goodrich, M.T., Tsay, J.J., Vengroff, D.E., Vitter, J.S.: External-memory computational geometry. In:
FOCS. pp. 714–723 (1993)

[20] Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Information
Processing Letters 1(4), 132–133 (1972)

[21] Intel Corp.: Futuristic Intel chip could reshape how computers are built,
consumers interact with their PCs and personal devices. Press Release:
http://www.intel.com/pressroom/archive/releases/2009/20091202comp sm.htm (Dec 2009)

[22] Sitchinava, N.: Parallel external memory model – a parallel model for multi-core architectures. Ph.D.
thesis, University of California, Irvine (2009)

10

A Global Load Balancing

Let A1, A2, . . . , Ar be arrays each of whose elements e has a positive weight we. Assume further that r ≤ P
and

∑r
i=1 |Ai| = N , and let Wi =

∑

e∈Ai
we be the total weight of the elements in array Ai, W =

∑r
i=1 Wi,

and wmax = max1≤i≤r maxe∈Ai
we. The global load balancing problem is to assign contiguous chunks of

arrays A1, A2, . . . , Ar to processors so that each processor receives O(1) chunks and the total weight of the
elements assigned to each processor is O(W/P +wmax). In Section 2, we claimed that this operation can be
implemented using O(N/PB + logP) I/Os in the PEM model and gave a sketch of the algorithm. Here we
provide the details.

Without loss of generality, we also assume that every array Ai is aligned at block boundaries and its size
is a multiple of B. If that is not the case, we can pad each array with dummy entries of weight 0 at the end
and remove the padding after the completion of the load balancing procedure. Note that the padding does
not asymptotically increase the total size of the arrays because the padding is at most B − 1 elements for
each array, r(B − 1) ≤ P (B − 1) ≤ N elements in total because P ≤ N/B.

First we apply a prefix sum operation to the weights of the elements in each array Ai. This can be
implemented using a single “segmented” prefix sum operation applied to the concatenation A of arrays
A1, A2, . . . , Ar, which does not sum across the boundary of two consecutive arrays Ai and Ai+1. Thus, this
step takes O(N/PB + logP) I/Os. Next we divide A into P chunks of size ⌈N/P ⌉ and assign one chunk
to each processor. This can be done using simple index arithmetic on A. Each processor inspects every
element e in its assigned chunk and marks it if either e is the first element of an array Ai or the prefix sums
We and We′ of e and its predecessor e′ in Ai satisfy ⌊PWe′/W ⌋ < ⌊PWe/W ⌋. Next we apply a compaction
operation to A to obtain the list of marked elements, each annotated with the array Ai it belongs to and
its position in Ai. These marked elements are the start elements of the chunks we wanted to construct, and
we assign two consecutive chunks to each processor. The I/O complexity of this procedure is easily seen to
be O(N/PB + logP), as it involves a prefix sum and a compaction operation, plus sequential processing
of ⌈N/PB⌉ blocks per processor, and one access to two consecutive elements per processor in the array of
marked elements. The constructed chunks have the desired properties.

• Since the first element of every array Ai is marked, every chunk contains elements from exactly one
array Ai.

• The number of chunks is at most 2P , that is, by assigning two chunks to each processor, we do assign
all chunks to processors. To see this, observe that the number of marked elements per array Ai is at
most 1+⌊WiP/W ⌋, which implies that the total number of marked elements, that is, the total number
of chunks is at most r + P ≤ 2P .

• Every chunk has total weight at most W/P + wmax. To see this, consider a chunk with first element
e and last element e′, and let We and We′ denote their prefix sums. Then ⌊PWe/W ⌋ = ⌊PWe′/W ⌋,
that is, the total weight of the elements in the chunk, excluding e, is at most W/P . Since e has weight
at most wmax, the total weight of the chunk is at most W/P + wmax.

B Splitting Segments with Many Intersections

Our O(sortP (N) logd P +K/PB) I/O line segment intersection reporting algorithm in Section 4.3 assumes
that no vertical segment has more than K ′ := max(N/P,K/(P logd P)) intersections. We also claimed in
Section 4.3 that this assumption can be removed by splitting segments with more than K ′ intersections on
the fly and provided a sketch of how to achieve this. In this appendix, we provide the details.

Recall that we split each list Rk
σj

in an invocation Ikσ into two sublists Vσj
and Hσj

, the former containing

all top endpoints of vertical segments in Rk
σj
, the latter all horizontal segments in Rk

σj
. Each top segment

endpoint q ∈ Vσj
is annotated with the number tq of intersections of its segments and with the index scc(q)

of the first horizontal segment in Hσj
that is below q. Generating these lists for all invocations on the kth

recursive level takes O(sortP (N)) I/Os, as discussed in Section 4.3.

11

The first observation we make is that, given scc(q) and tq, the coordinates of q and of the bottom endpoint
of the same segment are no longer needed for reporting intersections, as the segment intersects the horizontal
segments at positions scc(q), scc(q) + 1, . . . , scc(q) + tq − 1 in Hσj

. Thus, we treat a point q ∈ Vσj
simply as

an interval [scc(q), scc(q) + tq − 1]q to be interpreted as an instruction to report intersections between the
vertical segment with top endpoint q and the horizontal segments in the interval [scc(q), scc(q) + tq − 1] in
Hσj

.
We replace every interval [a, b]q ∈ Vσj

of size greater thanK ′ with sub-intervals [a1, b1]q, [a2, b2]q, . . . , [alq , blq]q
of size at most K ′ each and with a1 = a, bl = b and ai = bi−1 + 1, for all 1 < i ≤ lq. Clearly, these intervals
lead to the reporting of exactly the same intersections as interval [a, b]q. We choose these intervals so that
ai = ai−1 +K ′, for all 1 < i ≤ lq, which implies that lq = ⌈tq/K ′⌉. Once we have generated these intervals,
we sort them by their left endpoints (corresponding to top segment endpoints) and then proceed to reporting
intersections as in Section 4.3. The assumption of Section 4.3 is now satisfied, as each interval in Vσj

now
has size at most K ′.2

First we bound the number of intervals added to all Vσj
-lists at the kth recursive level by splitting

intervals in this fashion. The total number of subintervals created at the kth recursive level is
∑

q⌈tq/K ′⌉ ≤
N + Kk/K

′ ≤ N + K/K ′ = N + P logd P ≤ 2N because P ≤ N/ logN . This implies that the sorting of
the generated intervals by their left endpoints costs O(sortP (N)) I/Os and the analysis of all other steps
executed at the kth recursive level is unaffected.

The only remaining task now is to discuss how to generate the subsegments of each interval [a, b]q
efficiently. The problem is that one such interval may be split into more than N/P subintervals, in which
case one processor alone cannot generate all these subintervals in O(N/PB) I/Os. A more careful load
balancing approach is needed. We do this in several steps.

First we assign weights to intervals. The weight of interval [a, b]q is lq := ⌈tq/K ′⌉, that is, the number
of subintervals into which [a, b]q needs to be split. Also remember that tq = b − a + 1. These weights are
easily computed using O(N/PB) I/Os by having each processor compute the weights of O(N/P) elements
after assigning this many elements to each processor using a global load balancing operation.

Now we call an interval [a, b]q heavy if lq > 4N/P and light otherwise. Similar to the splitting of input
lists Y k

σ for leaf invocations discussed in Section 4.2, we can split each list Vσj
into two lists V h

σj
and V l

σj
of

heavy and light intervals. This takes O(N/PB) I/Os.
We apply global load balancing to the lists V l

σj
to allocate intervals with total weight O(W/P +N/P) =

O(N/P) to each processor, where W ≤ 2N is the total weight of all light intervals, and each processor then
proceeds to splitting its allocated light intervals in O(N/PB) I/Os.

Note that there are at most P/2 heavy intervals. For each heavy interval [a, b]q, we compute a count of
processors to be allocated to it as Pq := ⌈lqP/4N⌉. This ensures that the sum of these processor counts is
at most P because

∑

q lq ≤ 2N . We spend O(logP) I/Os to compute the prefix sums of these processor
counts. Each processor pi then spends O(logP) I/Os to perform a binary search on these prefix sums
to find the interval [a, b]q it is assigned to. By subtracting the prefix sum of the previous heavy segment
from its own index i, it can also determine which index it has among the processors assigned to interval
[a, b]q. Let this index be j. Then processor pi generates those subintervals [ah, bh]q of [a, b]q that satisfy
(j − 1)⌈lq/Pq⌉ < h <= min{j⌈lq/Pq⌉, Pq}. Each such interval [ah, bh]q is defined by ah := a+ (h− 1)K ′ and
bh := min(b, ah +K ′ − 1). Since Pq = Ω(Plq/N), each processor generates ⌈lq/Pq⌉ = O(N/P) subintervals
[ah, bh]q, that is, the generation of subintervals of heavy intervals costs O(logP +N/PB) = O(N/PB) I/Os
in total.

By summing the costs of all the different steps, we obtain that the splitting of vertical segments at each
recursive level can be carried out using O(sortP (N)) I/Os.

2The assumption that the total number of intersections per vertical segment is at most K ′ is not needed in Section 4.3,
only that no vertical segment is involved in more than K ′ intersections at each recursive level, which we guarantee by splitting
vertical segments as discussed here.

12

C Batched Orthogonal Range Reporting

Given N rectangles and points, the batched orthogonal range reporting problem is to report all point-
rectangle pairs such that the point lies inside the rectangle. In this appendix, we use the parallel distribution
sweeping framework to solve this problem using O(min{sortP (N +K), sortP (N) · logd P +K/PB}) I/Os.

C.1 An O(sortP (N +K)) Solution

Our first solution, with I/O complexity O(sortP (N +K)), is nearly identical to the O(sortP (N +K)) I/O
solution to the orthogonal line segment intersection problem. Now the input list Y k

σ to each invocation Ikσ
contains the points in σ, as well as the bottom boundaries of rectangles whose left or right boundaries are
contained in σ or which contain a point in σ. Once we reach the leaf invocations, we can solve the problem
in O(sortP (N +K)) I/Os using a sequential batched range searching solution [19] after balancing the load
across processors as in the line segment intersection algorithm. We need to discuss how we decide whether
to add a rectangle to the input list Y k+1

σj
of a child invocation of a non-leaf invocation Ikσ .

Recall the grid defined by the child slabs of σ and the horizontal slabs we assign to processors in invocation
Ikσ . Our goal is to simulate a top-down sweep, keeping track of the lowest point in each slab σj above the
current y-coordinate. When passing the bottom boundary of a rectangle spanning slab σj , this rectangle
contains a point in σj (and, thus, should be added to Y k+1

σj
) if and only if its top boundary is above this

lowest point in σj . Our strategy to simulate this sweep is similar to the line segment intersection solution.
First we record the lowest point in each cell Cij by processing each horizontal slab independently on a
processor. Then we perform a prefix sum operation on each slab to label the bottom boundary of each
cell with the lowest point above this bottom boundary. The details are as in Section 4.1, except that the
prefix sum operation now uses a “min”-operation on the y-coordinates instead of addition on weights. Given
these lowest points above horizontal cell boundaries, each processor can sweep the elements in its assigned
horizontal slab to carry out the vertical sweep across the elements in this slab. Since these modifications do
not affect the cost of a non-leaf invocation, the analysis form Section 4.2 implies that this solution to the
batched range reporting problem takes O(sortP (N +K)) I/Os.

C.2 An O(sortP (N) log
d
P + K/PB) Solution

For the O(sortP (N)·logd P+K/PB) I/O solution, we again process child invocations as for the O(sortP (N+
K)) solution, leading to an I/O complexity of O(sortP (N)+K/PB) for all leaf invocations because, as for the
segment intersection problem, we place a rectangle into an input list Y k

σ only if it has one of its boundaries
inside σ, that is, every input instance contained in a leaf slab σ processed by a single processor has size
O(N/P), and each processor processes only O(1) such instances.

It remains to discuss how to report intersections for non-leaf invocations. For this solution, we place
top and bottom rectangle boundaries into lists Y k

σ , not just bottom boundaries as in the O(sortP (N +K))
solution.

For the line segment intersection problem, we generated a list Rk
σj
, for each child slab σj of σ, placing

into it all vertical segments and all horizontal segments that span σj and have an intersection in σj . The
same strategy does not work for batched range reporting, as it would be the top and bottom boundaries
of rectangles with intersections in more than one slab σj that are duplicated over multiple lists Rk

σj
. This

creates problems because the load balancing of the reporting of point-rectangle pairs requires us to count the
number of points in σj contained in each rectangle in Rk

σj
, which involves sorting the rectangle boundaries

in Rk
σj
, as this is a batched 1-D range counting problem (see Section 3). Since we add a rectangle to possibly

more than one list Rk
σj
, we can no longer bound the cost of these sorting steps by O(sortP (N)) per level.

The solution to this problem is to use multislabs. We reduce the fan-out of the recursion to
√
d, which

increases the depth of the recursion by only a factor of two. Then, for each invocation Ikσ with child
slabs σ1, σ2, . . . , σ√

d, we define multislabs µjl, for all 1 ≤ i ≤ l ≤
√
d, where µjl is the union of slabs

σj , σj+1, . . . , σl. Now we generate multislab lists Rk
µjl

, one per multislab µjl. This list contains the top and

13

bottom boundaries of all rectangles that span µjl but no larger multislab, as well as all points in µjl that
are contained in at least one rectangle in Rk

µjl
. To simplify terminology, we say a rectangle spans µjl if it

spans µjl but no larger multislab from here on.
To generate these lists, we apply the same strategy as in the line segment intersection algorithm, with

points playing the roles of horizontal segments and rectangles playing the roles of vertical segments. In
particular, we again define horizontal slabs assigned to processors, and these horizontal slabs together with
the multislabs now define multicells Cijl. First we generate a list V k

jl of top and bottom boundaries of
rectangles spanning slab µjl and of all boundaries between multicells in this multislab. This is done as in
Section 4.1. A prefix sum on each list V k

jl as in Section 4.1 computes the count of all rectangles spanning µjl

that span each horizontal multicell boundary in the y-direction. Using these counts as starting values, each
processor can now perform a vertical sweep of its horizontal slab, keeping track of the number of rectangles
spanning each multislab µjl that span the current y-coordinate, and adding a point to Rk

jl if and only if this
count is positive when the sweep passes this point.

Since this procedure is identical to the orthogonal line segment intersection solution with the exception of
an increase of the recursion depth by a factor of two, the cost of the solution is O(sortP (N) · logd P +K/PB)
I/Os. If there are rectangles containing more than K ′ points, they can be split into smaller rectangles
containing at most K ′ points each, analogously to the splitting of vertical segments with more than K ′

intersections in the line segment intersection reporting algorithm.

D Reporting Rectangle Intersections

As a simple consequence of our orthogonal line segment intersection and batched range searching algorithms,
we also obtain a solution to the rectangle intersection problem, which is to report all pairs of non-disjoint
rectangles in a collection of N axis-aligned rectangles. The solution is based on the simple observation that
two rectangles are non-disjoint if their boundaries intersect or the top-left corner of one is contained in
the other. Thus, we split the problem into the problems of reporting intersections of the set of segments
defining the rectangle boundaries and of batched range searching over the set of rectangles and their top-left
corners. Since there are at most 4 intersections per pair of rectangles, this solution has I/O complexity
O(min{sortP (N + K), sortP (N) · logd P + K/PB}) but may report a pair of intersecting rectangles more
than once. To avoid this multiple reporting of non-disjoint rectangle pairs, we report an intersection we
detect only if it is the topmost leftmost intersection of this pair of rectangles. Similarly, we report a pair of
rectangles such that the top left vertex of one is contained in the other only if the two rectangle boundaries
do not intersect.

Theorem 6. Reporting all K pairs of non-disjoint rectangles in a collection of N axis-aligned rectan-
gles takes O(min{sortP (N + K), sortP (N) · logd P + K/(PB)}) I/Os in the PEM model, provided P ≤
min{N/(B logN), N/B2}.

E Convex Hull

In this appendix, we provide the details of the 2-D convex hull algorithm in Theorem 5. We focus only on
computing the upper hull. The lower hull can be computed analogously, and the convex hull is the union
of the two. We start by sorting the points by their x-coordinates in O(sortP (N)) I/Os. Next we apply an
adaptation of the CREW PRAM algorithm of [7] to compute the upper hull of the given point set S.

Given an x-sorted list of N points and P processors, the algorithm distinguishes two cases.
If P = 1, we use Graham Scan [20] to find the upper hull of the points using O(N/B) I/Os.
If P > 1, we partition the points into a left and a right subset containing N/2 points each, recursively

compute the upper hull of each subset using P/2 processors, and then find the common tangent of the two
hulls using the tangent finding procedure of [7]. This procedure takes O(logP N) time and, thus, O(logP N)
I/Os.

14

The I/O complexity of this procedure is given by the recurrence

T (N,P) =

{

O(N/B) P = 1

T (N/2, P/2) + O(logP N) P > 1

By expanding this recurrence, we obtain

T (N,P) = O

⌈log P⌉−1
∑

i=0

logP/2i(N/2i)

+O(N/PB)

= O

⌈log P⌉−1
∑

i=0

log(N/2i)

log(P/2i)

+O(N/PB)

= O

⌈log P⌉−1
∑

i=0

logN − i

logP − i

+O(N/PB)

= O

⌈log P⌉
∑

j=1

logN − ⌈logP ⌉+ j

logP − ⌈logP ⌉+ j

+O(N/PB)

= O

⌈log P⌉
∑

j=1

(log(N/P) + j)/j

+O(N/PB)

= O

logP + log(N/P)

⌈logP⌉
∑

j=1

1/j

+O(N/PB)

= O(logP + log(N/P) · log logP +N/PB).

Next we argue that this is bounded by O(sortP (N)), thereby showing that the convex hull of a set of N
points in the plane can be computed using O(sortP (N)) I/Os in the PEM model.

Since we assume P ≤ N/B2 and M = BO(1), we have logP + N/PB = O(sortP (N)). To prove that
log(N/P) · log logP = O(sortP (N)), we distinguish two cases.

If P ≤ N/(B log2 N), then N/PB ≥ log2 N , that is, log(N/P) · log logP = O(log2 N) = O(N/PB) =
O(sortP (N)).

If N/(B log2 N) < P , we have B < log2 N because we assume that P ≤ N/B2. Thus, logB =
O(log logN), which implies that O(log(N/P)·log logP) = O((logB+log logN) log logN) = O((log logN)2) =
O(logN/ log logN). Since we also assume that M = BO(1), we have M = O(log logN) and, hence,
logN/ log logN = O((logN − log logN)/ log logN) = O(logM (N/B)) =
O((N/PB) logM/B(N/B)) = O(sortP (N)).

15

