External Memory Algorithms for
Outerplanar Graphs

Anil Maheshwari* and Norbert Zeh

School of Computer Science, Carleton University, Ottawa, Canada
{maheshwa,nzeh}@scs.carleton.ca

Abstract. We present external memory algorithms for outerplanarity
testing, embedding outerplanar graphs, breadth-first search (BFS) and
depth-first search (DFS) in outerplanar graphs, and finding a %-separa,tor
of size 2 for a given outerplanar graph. Our algorithms take O(sort(INV))
I/0s and can easily be improved to take O(perm(N)) I/Os, as all these
problems have linear time solutions in internal memory. For BFS, DFS,
and outerplanar embedding we show matching lower bounds.

1 Introduction

Motivation. Outerplanar graphs are a well-studied class of graphs (e.g., see [3,4,
6]). This class is restricted enough to admit more efficient algorithms than those
for general graphs and general enough to have practical applications, e.g. [3].

Our motivation to study outerplanar graphs in external memory is three-
fold. Firstly, efficient algorithms for triangulating and separating planar graphs
were presented in [5,12]. The major drawback of their separator algorithm is
that it requires an embedding and a BFS-tree of the given graph as part of the
input. Embedding planar graphs and BFS in general graphs are hard problems
in external memory.! Our goal is to show that these problems are considerably
easier for outerplanar graphs. Secondly, outerplanar graphs can be seen as com-
binatorial representations of triangulated simple polygons and their subgraphs.
Thirdly, every outerplanar graph is a planar graph. Thus, any lower bound that
we can show for outerplanar graphs also holds for planar graphs.

Model of computation. When the data set to be handled becomes too large to
fit into the main memory of the computer, the transfer of data between fast
internal memory and slow external memory (disks) becomes a significant bottle-
neck. Existing internal memory algorithms usually access their data in a random
fashion, thereby causing significantly more I/O operations than necessary. Our
goal in this paper is to minimize the number of I/O operations performed. Sev-
eral computational models for estimating the I/O-efficiency of algorithms have
been developed. We adopt the parallel disk model PDM [11] as our model of

* Research supported by NSERC and NCE GEOIDE.
! No external memory algorithm for embedding planar graphs is known. For BFS in
general graphs, the best known algorithm takes O(|V'| + |E|/|V|sort(|]V])) I/Os [9].

computation for this paper due to its simplicity, and the fact that we consider
only a single processor. In the PDM, an external memory, consisting of D disks,
is attached to a machine with memory size M data items. Each of the disks is
divided into blocks of B consecutive data items. Up to D blocks, at most one
per disk, can be transferred between internal and external memory in a single
I/O operation. The complexity of an algorithm is the number of I/O operations
it performs.

2
2.
separator of size O (\/N) was presented in [7]. It is well known that every

Previous work. For planar graphs, a linear-time algorithm for finding a

outerplanar graph has a %—separator of size 2 and that such a separator can be
computed in linear time. Outerplanarity testing [8] and embedding outerplanar
graphs take linear time. There are simple linear time algorithms for BFS and
DFS in general graphs (see [2]). Refer to [4, 6] for a good exposition of outerpla-
nar graphs.

In the PDM, sorting, permuting, and scanning an array of size N take

sort(N) = 6O (%log% %), perm(N) = @ (min {N, sort(N)}), and scan(N) =

O ($%) 1/0s [10,11]. For a comprehensive survey of external memory algo-
rithms, refer to [10]. The best known BFS-algorithm for general graphs takes
O(%sort(lVl) + |V|) I/0s [9]. In [1], O(sort(N)) algorithms for computing an
open ear decomposition and the connected and biconnected components of a
given graph G = (V, E) with |E| = O(|V|) were presented. They also develop a
technique, called time-forward processing, that can be used to evaluate a directed
acyclic graph of size N, viewed as a (logical) circuit, in O(sort(N)) I/Os. They
apply this technique to develop an O(sort(N)) algorithm for list-ranking. An
external memory separator algorithm for planar graphs has been presented in
[5,12]; it takes O(sort(N)) I/Os provided that a BFS-tree and an embedding of
the graph is given. We do not know of any other results for computing separators
in external memory efficiently. Also, no efficient external memory algorithms for
embedding planar or outerplanar graphs in the plane are known.?

Our results. In this paper, we show the following theorem.

Theorem 1. It takes O(perm(N)) I/Os to decide whether a given graph G with
N wvertices is outerplanar. If G is outerplanar, breadth-first search, depth-first
search, and computing an outerplanar embedding of G take O(perm(N)) I/Os.
Computing a % -separator of size 2 for G takes O(perm(N)) I/Os.

Preliminaries. A graph G = (V, E) is a pair of sets, V and E. V is the vertez
set of G. E is the edge set of G and consists of unordered pairs {v,w}, where
v,w € V. In this paper, N = |V|. A path in G is a sequence, P = (vg, ..., v;), of

2 One can use the PRAM simulation technique of [1] together with known PRAM
results. Unfortunately, the PRAM simulation introduces O(sort(IN)) I/Os for every
PRAM step, and so the resulting I/O complexity is not attractive for our purposes.

vertices such that {v;_1,v;} € E, for 1 <14 < k. A graph is connected if there is a
path between any pair of vertices in G. A graph is biconnected if for every vertex
v € V, G — v is connected. A tree with N vertices is a connected graph with
N —1 edges. A subgraph of G is a graph G' = (V', E') with V' CV and E' C E.
The connected components of G are the maximal connected subgraphs of G. The
biconnected components (bicomps) of G are the maximal biconnected subgraphs
of G. A graph is planar if it can be drawn in the plane so that no two edges
intersect except at their endpoints. This defines an order of the edges incident
to every vertex v of G counterclockwise around v. We call G embedded if we are
given these orders for all vertices of G. R? \ (VU E) is a set of connected regions.
Call these regions the faces of G. Denote the set of faces of G by F. A graph
is outerplanar if it can be drawn in the plane so that there is a face that has
all vertices of G on its boundary. For every outerplanar graph, |E| < 2|V| — 3.
The dual of an embedded planar graph G = (V, E) with face set F is a graph
G* = (V*,E*), where V* = F and E* contains an edge between two vertices in
V* if the two corresponding faces in G share an edge.

An ear decomposition of a biconnected graph G is a decomposition of G into
edge-disjoint paths P, ..., P, P; = {v;,...,w;), such that G = U?:() P, By =
<’U(),’w0>, and for every B,) Z 1, Pz n Gi,1 = {v,-,wi}, where Gz',l = U;;t Pj.
The paths P; are called ears. An open ear decomposition is an ear decomposition
such that for every ear P;, v; # w;.

Let w: V — Rt be an assignment of weights to the vertices of G such that
Y vey w(v) < 1. The weight of a subgraph of G is the sum of the vertex weights
in the subgraph. A %—sepamtor of GG is a set S such that none of the connected
components of G — S has weight exceeding %

We will use the following characterization of outerplanar graphs [4].

Theorem 2. A graph G is outerplanar if and only if it does not contain a
subgraph that is an edge expansion of Ko 3 or Ky.

In our algorithms we represent a graph G as the two sets V' and E. The
embedding of a graph is represented as labels n,(e) and n,(e) for every edge
e = {v,w}, where n,(e) and n,(e) are the positions of e in the counterclockwise
orders of the edges around v and w, respectively.

2 Embedding and Outerplanarity Testing

We show how to compute a combinatorial embedding (i.e., edge labels n,(e) and
ny(e)) of a given outerplanar graph G. Our algorithm for outerplanarity test-
ing is based on the embedding algorithm. We restrict ourselves to biconnected
outerplanar graphs. If the given graph is not biconnected, we compute the bi-
connected components in O(sort(N)) I/Os [1]. Then we compute embeddings of
the biconnected components and join them at the cutpoints of the graph.

Our algorithm for embedding biconnected outerplanar graphs G' consists of
two steps. In Step 1 we compute the cycle C in G that represents G’s outer

boundary in the embedding. In Step 2 we embed the remaining edges, which
are diagonals of C. Step 1 relies on Observation 1. Let Eg = (P, .. ., Px) be the
given open ear decomposition. We call an ear P;, ¢ > 1, trivial if it consists of a
single edge. Otherwise we call it non-trivial. Ear Py is non-trivial by definition.
Let G; = U;:o P;. Given an embedding of G;, we call two vertices, v and w, of
G; consecutive if there is an edge {v, w} in G; that is on the outer boundary of
G;.

Observation 1. Given a decomposition of a biconnected outerplanar graph G
into open ears Py, ..., P, and an embedding of G. Then either P; is trivial or
the endpoints of P; are consecutive in G;—1, for 1 <i <k.

Observation 1 implies that, except if a non-trivial ear P; is attached to the
endpoints of P, there is exactly one non-trivial ear P;, j < 4, that contains
both endpoints of P;. We represent this relationship between non-trivial ears in
the ear tree Tr of G (see Fig. 1). This tree contains a node «y, for every non-
trivial ear P;. Node «; is the parent of node a; (a; = p(e;)) if P; contains both
endpoints of P;. If P;’s endpoints are also Py’s endpoints, «; is the child of ag.
The vertices in P; must appear in the same order along the outer boundary of
G as they appear in P;. Using these observations, we construct the order of the
vertices along C' using a depth-first traversal of T as follows:

Start the traversal of Ty at node ag. At a node «;, we traverse the ear P;
and append F;’s vertices to C. When we reach an endpoint of an ear P; with
a; = p(a;), we recursively traverse the subtree rooted at ;. When we are done
with the traversal of that subtree, we continue traversing P;.

To construct the final embedding, we use the following observation: Let
e1,-..,eq be the edges incident to a vertex v, sorted clockwise around v. Let
u; be the other endpoint of edge e;, for 1 < i < d. Then the vertices u1,...,uq
appear in clockwise order along the outer boundary of G (see Fig. 1).

Lemma 1. An outerplanar embedding of a given outerplanar graph G with N
vertices can be computed in O(sort(N)) I/0s.

Proof sketch. Open ear decomposition: The open ear-decomposition of G can be
computed in O(sort(N)) I/Os [1]. We scan the list, g, of ears to construct the
list, &, of non-trivial ears.

Ear tree construction: Let v be a vertex that is interior to ear P;. (Note that
every vertex, except for the two endpoints of Py, is interior to exactly one ear.)
Then we define v’s ear number as €(v) = i. For the two endpoints, vy and wy,
of Py we define €(vg) = e(wp) = 0. Let o; = p(e;) in Tg. It can be shown that
i = max{e(v;),e(w;)}. We scan the list of non-trivial ears to compute all ear
numbers. The ear tree can then be constructed in O(sort(N)) I/Os.
Construction of C': Consider the ears corresponding to the nodes stored in a
subtree Tr(a;) of Tk rooted at a node ;. The internal vertices of these ears
are exactly the vertices that appear between the two endpoints, v; and w;, of
P; on the outer boundary of G, i.e., in C. The number of these vertices can be
computed as follows: We assign the number of internal vertices of ear P; as a
weight w(a;) to every node a; and use time-forward processing to compute the
subtree weights w(Tg(a;)) of all subtrees Tr(a;).

Now we sort the ears P; in £ by their indices ¢. Scanning this sorted list
of ears corresponds to processing T from the root to the leaves. We use time-
forward processing to send small pieces of additional information down the tree.
We start at node ag and assign n(vg) = 0 and n(wg) = w(Tg(0)) + 1, where
n(v) is v’s position in a clockwise traversal of C. For every subsequent ear, P;,
we maintain the invariant that when we start the scan of P;, we have already
computed n(v;) and n(w;). Then we scan along P; and number the vertices of
P; in their order of appearance. Let x be the current vertex in this scan and y
be the previous vertex. If there is no ear attached to z and y, n(z) = n(y) + 1.
Otherwise, let ear P; be attached to = and y (i.e., {z,y} = {vi,w;}). Then
n(z) = n(y) + w(Tr(e;)) + 1. We send n(v;) and n(w;) to a; so that this
information is available when we process P;. Note that the current ear P; might
be stored in reverse order (i.e., n(w;) < n(v;)). This can easily be handled using
a stack to reverse P; before scanning.

Computing the final embedding: First, we relabel the vertices of G in their
order around C. Then we replace every edge e = {v,w} by two directed edges
(v,w) and (w,v). We sort the list of these edges lexicographically and scan it to
compute the desired labels n,(e) and n,(e). O

Note that ear Py requires some special treatment because it is the only ear
that can have two non-trivial ears attached on two different sides. However, the
details are fairly straightforward and therefore omitted. The above algorithm
can be augmented to do outerplanarity testing in O(sort(NN)) I/Os. Due to space
constraints, we refer the reader to the full version of the paper.

3 Breadth-first and Depth-first Search

We can restrict ourselves to BFS and DFS in biconnected outerplanar graphs. If
the graph is not biconnected, we compute its connected and biconnected com-
ponents in O(sort(N)) I/Os [1]. Then we represent every connected component

Fig. 2

by a rooted tree describing the relationship between its bicomps and cutpoints.
We process each such tree from the root to the leaves, applying Lemmas 3 and
2 to the bicomps of the graph, in order to compute a BFS resp. DFS-tree for
every connected component.

Given a biconnected outerplanar graph G, we first embed it. The list C
computed by our embedding algorithm contains the vertices of G sorted coun-
terclockwise along the outer boundary of G. Given a source vertex r, a path
along the outer boundary of G, starting at r, is a DFS-tree of G. Thus, we can
compute a DFS-tree of G by scanning C.

Lemma 2. Given a biconnected outerplanar graph G with N wvertices, depth-
first search in G takes O(sort(N)) 1/O:s.

The construction of a BFS-tree is based on the following observation: Let the
vertices of G be numbered counterclockwise around the outer boundary of G and
such that the source, r, has number 1. Let v1 < - -- < v be the neighbours of r.
The removal of these vertices partitions G into subgraphs G;, 1 < i < k, induced
by vertices v; +1,...,v;41 — 1. Indeed, if there was an edge {v, w} between two
such graphs G; and Gj, i < j, G would contain a K, consisting of the paths
between 7, v, w, v;, v, and vj41. We consider graphs G, that are induced by
vertices vj, ..., viy1. Let e and €' be two edges in such a graph G; such that
the left endpoint of e is to the left of the left endpoint of €’. Then either e is
completely to the left of ¢’ or e spans e'.

The vertices v; and v; 41 are at distance 1 from the root r, and the shortest
path from any vertex in G; to r must contain v; or vi,1. Thus, we can do BFS
in G; by finding the shortest path from every vertex in G, to either v; or Vit1,
whichever is shorter. We build an edge tree T, for G, (see Fig. 2). T, contains a
node v(e) for every edge e in G;. Node v(e) is the parent of another node v(e’)
if edge e spans edge e’ and there is no edge ¢’ that spans ¢’ and is spanned by
e. T, has an additional root node p, which is the parent of all nodes v(e), where
edge e is not spanned by any other edge. The level of an edge e in G; is the
distance of node v(e) from the root p of T,.

We call an edge e = {v,w} incident to vertex w a left (resp. right) edge if
v < w (resp. v > w). The minimal left (resp. right) edge for w has the minimal
level in T, among all left (resp. right) edges incident to w. The shortest path
from w to v; (viy+1) must contain either the minimal left edge, e = {v,w}, or
the minimal right edge, ¢/ = {v',w}, incident to w (see Fig. 2). Indeed, the
shortest path must contain v or v', and e (resp. €') is the shortest path from

w to v (resp. v'). Thus, we can process T, level by level from the root towards
the leaves maintaining the following invariant: When we visit a node v(e) in T,
where e = {v,w}, we know the distances d(r,v) and d(r,w) from v and w to
the source vertex r. Assume that v(e)’s children are sorted from left to right.
We scan the list of the corresponding edges from left to right to compute the
distances of their endpoints to v. In a right-to-left scan we compute the distances
to w. Then it takes another scan to determine for every edge endpoint z, the
distance d(r, z) = min{d(r,v) + d(v, z),d(r,w) + d(w, z)} and to set the parent
pointers in the BFS-tree properly. This computation ensures the invariant for
v(e)’s children.

Lemma 3. Given a biconnected outerplanar graph G with N vertices, breadth-
first search in G takes O(sort(N)) 1/O:s.

Proof sketch. Constructing C;‘l, ceny Gk_l: We use our embedding algorithm to
embed G and compute the order of the vertices of G along the outer boundary
of G. Given this ordering, we use sorting and scanning to split G into subgraphs
Gi.

Constructing T,: We sort the list, V;, of vertices of G, from left to right and
store with every vertex w, the list, E(w), of edges incident to w, sorted clockwise
around w. Then we scan V; and apply a simple stack algorithm to construct T:
We initialize the stack by pushing p on the stack. When visiting vertex w, we
first pop the nodes v(e) for all left edges e = {v,w} in E(w) from the stack and
make the next node on the stack the parent of the currently popped node. Then
we push the nodes v(e) for all right edges in E(w) on the stack, in their order
of appearance.

Breadth-first search in G;: We sort the edges of G; by increasing level and from
left to right and use time-forward processing to send the computed distances
downward in T,. Scanning the list of children of the currently visited node v(e)
takes O(scan(N)) I/Os for all nodes of T, because the edges of every level are
sorted from left to right, and the right-to-left scans can be implemented using a
stack. O

4 Separating Outerplanar Graphs

We assume that G is connected and no vertex in G has weight greater than é If
there is a vertex v with weight w(v) > %, S = {v} is trivially a 2-separator of G.
If G is disconnected, we compute G’s connected components in O(sort(N)) I/Os
[1]. If there is no component of weight greater than 2, S = () is a 2-separator
of G. Otherwise, we compute a separator of the connected component of weight
greater than 2.

Our strategy for finding a size-2 separator of G is as follows: First we embed
G and make G biconnected by adding appropriate edges to the outer face of
G. Then we triangulate the interior faces of the resulting graph and compute
the dual tree T corresponding to the interior faces of the triangulation G of
G. Every edge in T* corresponds to a diagonal of the triangulation, whose two

endpoints are a size-2 separator of G and thus of G. We assign appropriate
weights to the vertices of T* that allow us to find a tree edge that corresponds
to a Z-separator of Ga.

We use the following observations: (1) G is biconnected if and only if its
outer face is simple. (A face is simple, if every vertex appears at most once in
a counterclockwise traversal of its boundary.) (2) If G is a cycle, we can choose
one of the two faces of G as the outer face. Otherwise, the outer face of G is the
only face that has all vertices of G on its boundary.

The triangulation algorithm for planar graphs in [5] first makes all faces of the
given graph simple and then triangulates the resulting simple faces. Using the
two observations just made, this triangulation algorithm can easily be modified
to triangulate all faces of G except the outer face, which is only made simple.

Lemma 4. A size-2 %—sepamtor of a given outerplanar graph G with N vertices
can be computed in O(sort(N)) I/0Os.

Proof sketch. We have to show how to construct the dual tree T™ corresponding
to the interior faces of Gao and how to find an edge of T* corresponding to a
2-separator of Ga.

Constructing the dual tree: We first number the vertices 0 through N — 1 clock-
wise around Ga. With every vertex v we store its adjacency list A(v) sorted
counterclockwise around v, where (v — 1) mod N is the first vertex in A(v).
Denote the concatenation of A(0),..., A(N — 1) by A. We construct T* recur-
sively (see Fig. 3). We start at edge {a,b} = {0, N — 1} and consider triangle
Ay = (a,b,).

We make the vertex v(A;) corresponding to A; the root of T*. Let Ay =
(a,z,y) and Az = (z,b, z) be the two triangles adjacent to A;. Then the cor-
responding vertices v(As3) and v(A3) are the children of v(A;). We recursively
construct the subtrees of T rooted at v(A2) and v(A3), calling the tree con-
struction procedure with parameters {ai,b1} = {a,z} and {as2,b2} = {z,b},
respectively. Using this strategy we basically perform a depth-first traversal of
T*. The corresponding Euler tour (as represented by the dashed line in Fig. 3)
crosses the edges of Ga in their order of appearance in A. Thus, T* can be
constructed in a single scan over A and using O(N) stack operations.

Finding the separator: At every recursive call we assign weights w(v(A1)) = w(zx)
and wy(v(A1)) = w(a) + w(b) to the newly created vertex v(Aq). Let T*(v) be
the subtree of T* rooted at a vertex v. During the construction of 7" we can
compute for every vertex v, the weight w(T™(v)) = 3_, 1+ (,) w(uw) of the subtree
T*(v). The removal of the edge connecting v(A;) to its parent in T* corresponds
to removing vertices a and b from G a. This partitions G into two subgraphs
of weights w(T™*(v(A1))) and w(Ga) — w(T*(v(A1))) — wp(v(Aq)). Thus, once
the weights w(T™(v)) and wp(v) have been computed for every vertex v of T*,
it takes a single scan over the vertex list of 7* to compute a size-2 %—separator
of G and thus of G. O

5 Lower Bounds

In this section, we prove matching lower bounds for all results in this paper,
except for computing separators. We show these lower bounds by reducing list-
ranking, which has an £2(perm(N)) lower bound [1], to DFS, BFS, and embed-
ding of biconnected outerplanar graphs. The list-ranking problem is defined as
follows: Given a singly linked list L and a pointer to the head of L, compute for
every node of L its distance to the tail.

Note that list-ranking reduces trivially to DFS and BFS in general outerplanar
graphs, as we can consider the list itself as an outerplanar graph and choose the
tail of the list as the source of the search.

Lemma 5. List-ranking can be reduced to computing a combinatorial embedding
of a biconnected outerplanar graph in O(scan(N)) I/0Os.

Proof sketch. Given the list L, we can compute the tail ¢ of L (¢ is the node with
no successor) and node ¢ with succ(t') = ¢ in two scans over L. We consider
L as a graph with an edge between every vertex and its successor. In another
scan, we add edges {v,t} to L, for v ¢ {t,¢'}. This gives us a graph G; as in
Fig. 4(a). It can be shown that the outerplanar embedding of G is unique except
for flipping the whole graph. Thus, the rank of v in L is the position of edge
{v,t} in clockwise or counterclockwise order around ¢. O

Lemma 6. List-ranking can be reduced to breadth-first search and depth-first
search, respectively, in biconnected outerplanar graphs in O(scan(N)) 1/0s.

Proof sketch. We only show the reduction for BFS. The reduction to DFS is
even simpler. As in the proof of the previous lemma, we identify the tail ¢ of
L in a single scan. Then we add an edge {h,t} to L. This produces a cycle
G2. We perform two breadth-first searches (see Fig. 4(b)), one with source ¢
(labels outside) and one with source h (labels inside). It is easy to see that

the distance d(v) of every node to the tail of the list can now be computed as
d(v) = N —1—d(h,v) if d(h,v) < d(t,v), and d(v) = d(t,v) otherwise. O

Fig. 4

Proof sketch (Theorem 1). The theorem follows from the lemmas in this pa-
per, if we can reduce the upper bounds from O(sort(N)) to O(perm(N)) I/Os.
Let P be the problem at hand, A be an O(N) time internal memory algo-
rithm that solves P, and A’ be an O(sort(N)) external memory algorithm that
solves P. (For the problems studied in this paper, linear time solutions in in-
ternal memory are known, and we have provided the O(sort(N)) algorithms.)
We run algorithms A and A’ in parallel, switching from one algorithm to the
other at every I/O operation. The computation stops as soon as one of the algo-
rithms terminates. At this point algorithms A and A’ have performed at most
min{O(N),O(sort(N))} = O(perm(N)) 1/Os. |

References

1. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, J. S.
Vitter. External-memory graph algorithms. Proc. 6th SODA, Jan. 1995.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

3. G. N. Frederickson. Searching among intervals in compact routing tables. Algo-
rithmica, 15:448-466, 1996.

4. F. Harary. Graph Theory. Addison-Wesley, 1969.

5. D. Hutchinson, A. Maheshwari, N. Zeh. An external memory data structure for
shortest path queries. Proc. COCOON’99, LNCS 1627, pp. 51-60, July 1999.

6. J. van Leeuwen. Handbook of Theoretical Computer Science, Vol. A: Algorithms
and Complezity. MIT Press, 1990.

7. R. J. Lipton, R. E. Tarjan. A separator theorem for planar graphs. SIAM J. on
Applied Mathematics, 36(2):177-189, 1979.

8. S. L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar
graphs. Inf. Proc. Letters, 9(5):229-232, Dec. 1979.

9. K. Munagala, A. Ranade. I/O-complexity of graph algorithms. Proc. 10th SODA,
Jan. 1999.

10. J. S. Vitter. External memory algorithms. Proc. 17th ACM Symp. on Principles
of Database Systems, June 1998.

11. J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level
memories. Algorithmica, 12(2-3):110-147, 1994.

12. N. Zeh. An Ezternal-Memory Data Structure for Shortest Path Queries. Diplom-
arbeit, Fak. f. Math. und Inf. Friedrich-Schiller-Univ. Jena, Nov. 1998.

