
A Unifying View on Approximation and FPT of

Agreement Forests (Extended Abstract⋆)

Chris Whidden⋆⋆ and Norbert Zeh⋆ ⋆ ⋆

Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
{whidden,nzeh}@cs.dal.ca

Abstract. We provide a unifying view on the structure of maximum
(acyclic) agreement forests of rooted and unrooted phylogenies. This en-
ables us to obtain linear- or O(n log n)-time 3-approximation and im-
proved fixed-parameter algorithms for the subtree prune and regraft dis-
tance between two rooted phylogenies, the tree bisection and reconnec-
tion distance between two unrooted phylogenies, and the hybridization
number of two rooted phylogenies.

1 Introduction

Phylogenies, or evolutionary trees, are a standard model to represent the evolu-
tionary history of a set of species and are an indispensable tool in evolutionary
biology [14]. Since determining the correct phylogeny of a set of species is hard,
a host of heuristic methods for computing phylogenies have been proposed. The
computation of distances between phylogenies under different metrics has proven
essential for assessing the quality of phylogenies proposed by these heuristics, as
well as for visualizing tree space (see, e.g., [13]). Of particular interest are met-
rics that model reticulation events, such as hybridization, lateral gene transfer,
and recombination. These events result in species being composites of genes de-
rived from different ancestors, and the analysis of different genes may produce
different phylogenies over the same set of species. The subtree prune and re-
graft (rSPR) distance [11] and the hybridization number [2] of two rooted trees
over the same set of species are important tools that often help to discover such
events [15,16]. A related distance measure for unrooted trees is the tree bisection
and reconnection (TBR) distance [1].

While biologically meaningful, TBR distance, rSPR distance, and hybridiza-
tion number are NP-hard to compute [1, 6, 8]. As a result, significant efforts
have been made to develop approximation and fixed-parameter (FPT) algo-
rithms, as well as heuristic approaches [3, 12], for computing these distances.
The best previous approximation algorithm for rSPR distance [17] provides a 3-
approximation in O(n2) time. This algorithm builds on earlier results from [11].
Another 3-approximation algorithm [5] has running time O(n5); the “shifting

⋆ For details, see [18].
⋆⋆ Supported by an NSERC CGS-M graduate scholarship.

⋆ ⋆ ⋆ Supported in part by NSERC and the Canada Research Chairs programme.

lemma” central to its analysis is also the key to our new results. The same paper
presents the best previous FPT algorithm for rSPR distance with running time
O(4kk4 + n3), where k is the distance between the two trees. For TBR distance,
the best previous approximation algorithm [9] computes an 8-approximation in
polynomial time, and the best previous FPT algorithm [10] has running time
O(4kk5 + p(n)), where p(·) is a polynomial function. We are not aware of any
approximation algorithms for hybridization number; the best previous FPT al-
gorithm for this problem [7] has running time O((28k)k + n3).

The contribution of this paper is to provide a unifying view on the structure
of rooted and unrooted agreement forests, using the “shifting lemma” mentioned
above. This allows us to show that the framework of the algorithms of [4,11,17]
can be used not only to approximate rSPR distances but also to obtain approx-
imation and FPT algorithms for rSPR distance, TBR distance, and hybridiza-
tion number. Our approximation algorithms provide a 3-approximation of the
distance between the two trees and run in linear or, in the case of hybridization
number, O(n log n) time. Our FPT algorithms for rSPR distance, TBR distance,
and hybridization number have running times O(3kn), O(4kn), and O(3kn log n),
respectively. Using standard kernelizations, their running times can be reduced
to O(3kk + n3), O(4kk + n3), and O(3kk log k + n3), respectively. All our algo-
rithms represent improvements over the best previous algorithms for the same
problems, substantial ones except in the case of the approximation algorithm
for rSPR distance and the FPT algorithm for TBR distance. It should be noted
here that “our” 3-approximation algorithm for rSPR distance is the algorithm
of [17], with a minor modification to reduce its running time to O(n). We believe,
however, that the correctness proof obtained using our approach is simpler than
the one presented in [17].

The rest of this paper is organized as follows. Section 2 introduces the neces-
sary terminology and notation. Section 3 presents the main structural theorems
at the heart of our approximation and FPT algorithms. Section 4 presents the
approximation algorithms. Section 5 discusses briefly how to turn the approxi-
mation algorithms into FPT algorithms based on bounded search trees.

2 Preliminaries

Throughout this paper, we mostly use the definitions and notation from [1, 4–
6, 17]. An (unrooted binary phylogenetic) X-tree is a tree T whose leaves are
the elements of a label set X and whose internal nodes each have degree three.
For a subset V of X , T (V) is the smallest subtree of T that connects all nodes
in V . The V -tree induced by T is the tree T |V obtained from T (V) using forced
contractions, each of which replaces a vertex of degree two and its incident edges
with a single edge between its neighbours. Figure 1 illustrates these definitions.

A rooted X-tree is obtained from an unrooted one, T , by subdividing one of
T ’s edges, declaring the node this introduces to be the root, and defining parent-
child and ancestor-descendant relations accordingly. For a subset V of X , T (V)

1

2

3

4

5

6

7

(a)

2

3

4

5

7

(b)

2

3

4

5

7

(c)

Fig. 1. (a) An X-tree T . (b) The subtree T (V) for V = {2, 3, 4, 5, 7}. (c) The tree T |V
obtained from T (V) using forced contractions.

and T |V are defined as in the unrooted case, but the construction of T |V from
T (V) excludes the root of T (V) from forced contractions.

Given an unrooted X-tree T , a tree bisection and reconnection (TBR) opera-
tion cuts an edge xy, thereby dividing T into two subtrees Tx and Ty containing
x and y, respectively. Then it introduces two new vertices x′ and y′ into Tx

and Ty by subdividing one edge of each tree, and adds an edge x′y′ to reconnect
the two trees. Finally, x and y are removed using forced contractions. A subtree
prune and regraft (SPR) operation is the one-sided equivalent of a TBR oper-
ation in that it introduces a new vertex y′ into only Ty, adds an edge xy′, and
then removes y using a forced contraction. Figure 2 illustrates both operations.
For a rooted tree T , a rooted SPR (rSPR) operation is an SPR operation in
which the endpoints of edge xy are chosen so that Ty contains the root of T .
Moreover, if y is the root of Ty, it is removed and its child becomes the new root.

TBR and rSPR operations define distance measures dTBR(·, ·) and drSPR(·, ·)
between X-trees, defined as the number of such operations required to transform
one tree into the other. A related distance measure for rooted X-trees is their
hybridization number, hyb(T1, T2), which is defined in terms of hybrid networks
of the two trees. A hybrid network of T1 and T2 is a directed acyclic graph H
such that both T1 and T2, with their edges directed away from the root, can be
obtained from H by deleting edges and performing forced contractions. For a
vertex x ∈ H , let degin(x) be its in-degree and deg−in(x) = max(0, degin(x) − 1).
Then the hybridization number of T1 and T2 is minH

∑
x∈H deg−in(x), where the

minimum is taken over all hybrid networks H of T1 and T2.
TBR distance, rSPR distance, and hybridization number are known to be one

less than the sizes of appropriately defined maximum agreement forests (MAF’s).
To define these MAF’s, we first introduce some terminology.

Given a forest F and a subset E of its edges, F−E denotes the forest obtained
by deleting the edges in E from F . If F has components T1, T2, . . . , Tk with
label sets X1, X2, . . . , Xk, F yields the forest F ′ whose components T ′

1, T
′
2, . . . , T

′
k

satisfy T ′
i = Ti|Xi, for all 1 ≤ i ≤ k; if all nodes of a component Ti are unlabelled

(that is, Xi = ∅), we define T ′
i = Ti|Xi = ∅. If T − E yields F , for an X-tree T

and a subset E of its edges, we say that F is a forest of T .
Given two X-trees T1 and T2, a forest F is an agreement forest of T1 and

T2 if there exist edge sets E1 and E2 such that T1 − E1 and T2 − E2 yield F ;
see Figure 3. F is a maximum agreement forest (MAF) of T1 and T2 if there
is no agreement forest of T1 and T2 with fewer connected components. We use

TBRSPR

Contract deg-2
vertices

Move both
endpoints

Move one
endpoint

Contract deg-2
vertices

1 2

3

4

y
′

x
5

6

7
1

2

3

4
5

6

7

x y

y
′

1

2

3

4
5

6

7

x

y

1

2

3

4
5

6

7

x

y
x
′

y
′

1 2

3y
′

x
′

4
5

6

7

Fig. 2. Illustration of TBR and SPR operations.

m(T1, T2) to denote the number of connected components in an MAF of T1

and T2. For a forest F of T2, we use e(T1, T2, F) to denote the size of the smallest
edge set E such that F − E yields an agreement forest of T1 and T2. Allen and
Steel [1] showed that, for two unrooted X-trees, T1 and T2, dTBR(T1, T2) =
e(T1, T2, T2) = m(T1, T2) − 1.

In the rooted case, MAF’s are similarly related to rSPR distances. This,
however, is true only if the MAF is defined with respect to augmented versions of
the two trees, obtained by adding a new root node with label ρ to both trees and
making it the parent of their original roots. An agreement forest of two rooted
X-trees T1 and T2 is then defined as a collection {T ′

ρ, T
′
1, T

′
2, . . . , T

′
k} of rooted

trees with label sets Xρ, X1, X2, . . . , Xk that satisfy the following conditions [6]:

1. The label sets Xρ, X1, X2, . . . , Xk partition X ∪ {ρ}, and ρ ∈ Xρ.
2. For all i ∈ {ρ, 1, 2, . . . , k}, T ′

i = T1|Xi = T2|Xi in the rooted sense.
3. The trees in each of the sets {T1(Xi) | i ∈ {ρ, 1, 2, . . . , k}} and {T2(Xi) | i ∈

{ρ, 1, 2, . . . , k}} are vertex-disjoint.

An MAF is again one with the minimum number of connected components.
Bordewich and Semple [6] proved that, for two rooted X-trees T1 and T2,
drSPR(T1, T2) = e(T1, T2, T2) = m(T1, T2) − 1.

The hybridization number of two rooted X-trees T1 and T2 corresponds to
an MAF of T1 and T2 with an additional constraint. An agreement forest F of T1

and T2 is said to contain a cycle if there exist two nodes x and y that are roots
of trees in F and such that x is an ancestor of y in T1, while y is an ancestor of
x in T2. (Each node x in F can be mapped to nodes φ1(x) in T1 and φ2(y) in
T2 by defining Xx to be the set of labelled descendants of x in F and defining
φi(x) to be the lowest common ancestor in Ti of all nodes in Xx.) F is acyclic if
it contains no cycles. A maximum acyclic agreement forest (MAAF) of T1 and
T2 is an agreement forest with the minimum number of connected components
among all acyclic agreement forests of T1 and T2. We denote its size by m̃(T1, T2)
and the number of edges in a forest F of T2 that must be cut to obtain an acyclic
agreement forest of T1 and T2 by ẽ(T1, T2, F). Baroni et al. [2] showed that, for
two rooted X-trees T1 and T2, hyb(T1, T2) = ẽ(T1, T2, T2) = m̃(T1, T2) − 1.

For two nodes a and b of a forest F , we write a ∼F b to indicate that there
exists a path from a to b in F . Two labelled leaves a and c with the same

1

2

35

7

4 6

1

2

3

4

5

6

7 1

2

6

4

3

7

5T1 T2F

Fig. 3. Two X-trees T1 and T2 and an agreement forest F of T1 and T2. F is obtained
from each tree by cutting the dashed edges.

neighbour, denoted rac, form a sibling pair (a, c). Our algorithms rely on the
following two lemmas, which were proved in [4, 6] for rooted MAF’s but are
easily seen to apply also to the unrooted case.

Lemma 1. Let T1 and T2 be X-trees, F a forest of T2, and (a, c) a sibling pair
that exists in T1 and F . Let T ′

1, T ′
2, and F ′ be obtained from T1, T2, and F by

relabelling node a as (a, c), removing c, and performing forced contractions to
eliminate degree-2 nodes. We refer to this as contracting the sibling pair (a, c).
Then e(T1, T2, F) = e(T ′

1, T
′
2, F

′).

Lemma 2. Let T1 and T2 be X-trees, F a forest of T2, and c a singleton in
F . Let T ′

1, T ′
2, and F ′ be obtained from T1, T2, and F by removing c and per-

forming forced contractions to eliminate degree-2 nodes. Then e(T1, T2, F) =
e(T ′

1, T
′
2, F

′).

3 The Structure of Agreement Forests

This section presents results that provide the intuition and correctness proofs
for our approximation and FPT algorithms, presented in Sections 4 and 5. All
these algorithms start with a pair of trees (T1, T2) and then cut edges, remove
singletons, and contract sibling pairs in both trees until they are identical. The
intermediate state is that T1 has been reduced to a smaller tree, and T2 to a
forest F . Each iteration has to decide which edges in F to cut next. The results
in this section identify small edge sets in F so that at least one edge in each of
these sets has the property that cutting it reduces e(T1, T2, F) by one. Thus, the
approximation algorithm cuts all edges in the identified set, and the size of the
edge set cut in each step gives the approximation ratio of the algorithm. The
FPT algorithm tries each edge in the set in turn, and the size of the set gives
the branching factor for a bounded search tree algorithm. The following lemma
by Bordewich et al. [5] is the central tool used in all our proofs.

Lemma 3 (Shifting Lemma). Let F be a forest of an X-tree, e and f edges
in the same component of F , and E a subset of edges of F such that f ∈ E
and e /∈ E. Let vf be the end-vertex of f closest to e, and ve an end-vertex
of e. If vf ∼F−E ve and x ≁F−(E∪{e}) vf , for all x ∈ X, then F − E and
F − (E \ {f} ∪ {e}) yield the same forest.1

1 In the rooted case, it is assumed that ρ ∈ X.

The other tool we need is an observation that relates incompatible triples
and quartets to agreement forests. A triple ab|c in a rooted tree T is defined by
three leaves a, b, c such that the path from a to b is vertex-disjoint from the
path from c to the root. A quartet ab|cd in an unrooted tree T is defined by
four leaves a, b, c, d such that the two paths from a to b and from c to d are
vertex-disjoint. Given a tree T and a forest F , we say a triple ab|c or quartet
ab|cd of T is incompatible with F if its leaves do not all belong to the same
component of F or define a different triple or quartet in F (e.g., ac|b or ac|bd).

Observation 1. (i) Let T1 and T2 be rooted X-trees, F a forest of T2, and E
a set of edges such that F − E yields an agreement forest of T1 and T2. If
ab|c is a triple of T1 incompatible with F , then a ≁F−E b or a ≁F−E c.

(ii) Let T1 and T2 be unrooted X-trees, F a forest of T2, and E a set of edges
such that F −E yields an agreement forest of T1 and T2. If ab|cd is a quartet
of T1 incompatible with F , then a ≁F−E b, a ≁F−E c or c ≁F−E d.

Now consider two X-trees T1 and T2 and a forest F of T2, and let (a, c) be
a sibling pair of T1 that does not exist in F and such that neither a nor c is a
singleton in F . If a and c belong to the same tree of F , the sibling b of a in F
is the node adjacent to a’s neighbour that is not on the path from a to c in F ;
otherwise, b is any node at distance two from a in F . Note that b may not be a
leaf. We use ea and eb to denote the edges connecting a and b to their common
neighbour rab, and B to denote the subtree of F induced by all nodes b′ such
that eb belongs to the path from b′ to a. The sibling d of c and edges ec and ed

are defined analogously. In the rooted case, we choose b so that rab is the parent
of a and b; to ensure that c /∈ B, we assume that the distance from the root
to a is no less than the distance from the root to c, which is easily ensured by
swapping the roles of a and c if necessary.

With these tools in hand, we are now ready to prove three results character-
izing edges that need to be cut in order to make progress towards an M(A)AF.
The first result considers rooted MAF’s.

Theorem 1. Let T1 and T2 be rooted X-trees, F a forest of T2, and (a, c) a
sibling pair of T1 that is not a sibling pair of F . Assume that neither a nor c is a
singleton in F . Then e(T1, T2, F−{ex}) = e(T1, T2, F)−1, for some x ∈ {a, b, c}.
In particular, e(T1, T2, F − {ea, eb, ec}) ≤ e(T1, T2, F) − 1.

Proof. It suffices to prove that there exists an edge set E of size e(T1, T2, F) such
that F −E yields an MAF of T1 and T2 and E ∩{ea, eb, ec} 6= ∅. So assume that
F − E yields an MAF F ′ of T1 and T2 and that E ∩ {ea, eb, ec} = ∅. We prove
that we can replace an edge f ∈ E with an edge in {ea, eb, ec} without changing
the forest yielded by F − E.

First assume that b′ ≁F−E rab, for all leaves b′ ∈ B. In this case, we choose
an arbitrary leaf b′ ∈ B and the first edge f ∈ E on the path from rab to b′.
Lemma 3 implies that F − E and F − (E \ {f} ∪ {eb}) yield the same forest.

Now assume that there exists a leaf b′ ∈ B such that b′ ∼F−E rab. We prove
that this implies that c is a singleton in F ′. Since ea /∈ E, we have a ∼F−E rab

and, hence, a ∼F−E b′. Since (a, c) is a sibling pair of T1, ac|b′ is a triple of T1,
while c /∈ B implies that either ab′|c is a triple of F or a ≁F c. In either case,
the triple ac|b′ is incompatible with F . By Observation 1(i), this implies that
a ≁F−E c because F −E yields an agreement forest of T1 and T2 and a ∼F−E b′.
Then, however, either a or c is a singleton of F ′ because (a, c) is a sibling pair
of T1. Since a ∼F−E b′, a cannot be a singleton of F ′, that is, c must be a
singleton.

Now, as c is not a singleton in F , there exists a leaf l such that c ∼F l. Since
c is a singleton in F ′, at least one of the edges on the path from c to l in F
belongs to E; let f be the one closest to c. Since c is a singleton in F ′, edges ec

and f satisfy the conditions of Lemma 3, and F − E and F − (E \ {f} ∪ {ec})
yield the same forest. ⊓⊔

Note that Theorem 1 also holds if we replace e(·, ·, ·) with ẽ(·, ·, ·). To see
this, it suffices to consider a set E in the proof such that F −E yields an MAAF
instead of an MAF. The next theorem provides an analogous result for unrooted
MAF’s. Its proof is similar to that of Theorem 1 and is omitted.

Theorem 2. Let T1 and T2 be unrooted X-trees, F a forest of T2, and (a, c)
a sibling pair of T1 that is not a sibling pair of F . Assume that neither a nor
c is a singleton in F . Then e(T1, T2, F − {ex}) = e(T1, T2, F) − 1, for some
x ∈ {a, b, c, d}.

Similar to Theorem 1, Theorem 2 implies that e(T1, T2, F −{ea, eb, ec, ed}) ≤
e(T1, T2, F) − 1. However, we can do a little better.

Theorem 3. Let T1 and T2 be unrooted X-trees, F a forest of T2, and (a, c) a
sibling pair of T1 that is not a sibling pair of F . Assume that neither a nor c is
a singleton in F . Then e(T1, T2, F − {ea, eb, ec}) ≤ e(T1, T2, F) − 1.

Proof. Let E be an edge set of size e(T1, T2, F) such that F −E yields an MAF
of T1 and T2. We can again assume that E ∩ {ea, eb, ec} = ∅, as otherwise the
theorem holds trivially. As in the proof of Theorem 1, we can also assume there
exists a leaf b′ ∈ B such that b′ ∼F−E rab and, hence, b′ ∼F−E a. We prove
that this implies that c is a singleton of the forest F ′ yielded by F −Eab, where
Eab = E ∪ {ea, eb}. As in the proof of Theorem 1, this implies that there exists
an edge f ∈ E such that F − Eab and F − (Eab \ {f} ∪ {ec}) yield the same
forest, F ′, which proves the theorem. We distinguish two cases.

If a ≁F−E c, c is a singleton of F ′ because (a, c) is a sibling pair of T1 and
a ∼F−E b′. If a ∼F−E c, (a, c) being a sibling pair in T1 and c /∈ B imply that
ac|b′d′ is a quartet of T1 incompatible with F , for all d′ /∈ XB ∪{a, c}, where XB

is the label set of B. Hence, by Observation 1(ii), a ∼F−E b′ and a ∼F−E c imply
that c ≁F−E d′, for each such leaf d′. This, however, implies that c ≁F−Eab

x,
for all x ∈ X , that is, c is a singleton of F ′. ⊓⊔

While Theorem 1 suffices as a basis for an algorithm to compute or approx-
imate an MAF of two rooted trees, a little extra work is required to obtain an
MAAF. As observed after the proof of Theorem 1, we can use this theorem to

make progress towards an MAAF until we obtain an agreement forest of the two
trees. If this forest is in fact acyclic, we are done. Otherwise, we need to continue
cutting edges to remove all cycles that may exist. The next theorem identifies
candidate edges to cut. In this theorem, we consider two trees, A and B, of the
agreement forest whose roots, a and b, form a cycle. We call (a, b) a cycle pair
and use ea to denote any of the two edges in A incident to a, and eb to denote
any of the two edges in B incident to b.

Theorem 4. Let T1 and T2 be two rooted X-trees, F an agreement forest of T1

and T2, and (a, b) a cycle pair of F . Then ẽ(T1, T2, F −{ex}) = ẽ(T1, T2, F)− 1,
for some x ∈ {a, b}. In particular, ẽ(T1, T2, F − {ea, eb}) ≤ ẽ(T1, T2, F) − 1.

Proof. Once again, our goal is to show that there exists a set E of ẽ(T1, T2, F)
edges of F such that F −E yields an MAAF of T1 and T2 and E ∩ {ea, eb} 6= ∅.
So we choose E to be a set such that F − E yields an MAAF F ′ of T1 and T2,
and we show that, if E ∩ {ea, eb} = ∅, we can find an edge f ∈ E such that, for
some x ∈ {a, b}, F − E and F − (E \ {f} ∪ {ex}) yield the same forest. Let A1

and A2 be the two subtrees of A rooted in a’s children, and let B1 and B2 be
the two subtrees of B rooted in b’s children.

First observe that there exists an index i such that either a′
≁F−E a for all

a′ ∈ XAi
or b′ ≁F−E b for all b′ ∈ XBi

. If this was not the case, there would
exist leaves a1 ∈ A1, a2 ∈ A2, b1 ∈ B1, and b2 ∈ B2 such that a1 ∼F−E a2 and
b1 ∼F−E b2, implying that both a and b exist in F ′, and F ′ would not be acyclic.

So assume w.l.o.g. that a′
≁F−E a, for all a′ ∈ A1. In this case, Lemma 3

implies that, if we choose a leaf a′ ∈ A1 and the edge f ∈ E closest to a on the
path from a to a′, then F −E and F − (E \{f}∪{ea}) yield the same forest. ⊓⊔

4 Approximation Algorithms

Rooted and unrooted MAF. The first algorithm we present is a 3-approximation
algorithm for rooted MAF, that is, rSPR distance. This is essentially the algo-
rithm discussed in [17], modified to achieve linear time. We include it here to
demonstrate that Theorem 1 proves its correctness, and also as a reference for
the other algorithms. The algorithm maintains a triple (T1, T2, F) and modifies
it through a series of transformations. Initially, F = T2. T1 and T2 shrink over
time but are always trees with the same label set; F is always a forest of T2.
The algorithm also maintains a counter, D, of the number of edges in F it has

cut so far. We use T
(i)
1 , T

(i)
2 , F (i), and D(i) to denote snapshots of T1, T2, F ,

and D after the ith transformation. The algorithm terminates when the label

set of T
(i)
1 and T

(i)
2 has size at most 2, including the root label ρ, which is never

eliminated. The output is the value of D(i) at the time of termination. Each
iteration applies one of the following cases, illustrated in Figure 4.

1. As long as F contains a singleton c 6= ρ, the algorithm removes c from T1,
T2, and F and performs forced contractions in T1 and T2 to merge the other
two edges incident to c’s parents in T1 and T2. D remains unchanged.

c

(a) Case 1
a c

(a, c)

(b) Case 2

a
cb

a
cb

(c) Case 3

Fig. 4. The three cases of the approximation algorithm for rooted MAF. Only F is
shown. In Figure (c), the dashed edges indicate that a and c may or may not belong
to the same tree of F in Case 3.

For the other two cases, the algorithm chooses a fixed sibling pair (a, c) of T1.

2. If (a, c) is also a sibling pair of F , the algorithm contracts the sibling pair
as discussed in Lemma 1. D remains unchanged.

3. If (a, c) is not a sibling pair in F , then assume w.l.o.g. that a’s distance from
the root of T2 is no less than that of c. Node a must have a sibling b in F
because F contains no singletons. In this case, the algorithm cuts edges ea,
eb, and ec in F and increases D by three. T1 and T2 remain unchanged.

Theorem 5. Given two rooted X-trees T1 and T2, a 3-approximation of
e(T1, T2, T2) = drSPR(T1, T2) can be computed in linear time.

Proof. We use the algorithm above and output the final value of D as the approx-
imation of e(T1, T2, T2). We argue below that the algorithm terminates, in linear
time. If the algorithm terminates after k iterations, k′ of which change D, then its
output is D(k) = 3k′. We prove that e(T1, T2, T2) ≤ 3k′ ≤ 3e(T1, T2, T2), thereby
proving that the value D(k) is a 3-approximation of e(T1, T2, T2) = drSPR(T1, T2).

For every iteration that leaves D unchanged (Cases 1 and 2), Lemmas 1
and 2 show that the applied transformations do not alter e(T1, T2, F), and

thus e(T
(i)
1 , T

(i)
2 , F (i)) = e(T

(i−1)
1 , T

(i−1)
2 , F (i−1)). Every iteration that changes

D applies Case 3. Since (a, c) is not a sibling pair of F in this case, and nei-

ther a nor c is a singleton in F , Theorem 1 implies that e(T
(i)
1 , T

(i)
2 , F (i)) ≤

e(T
(i−1)
1 , T

(i−1)
2 , F (i−1)) − 1. Hence, we have e(T1, T2, T2) ≥ k′, that is, D(k) =

3k′ ≤ 3e(T1, T2, T2). Conversely, since the 3k′ edges we cut in T2 yield an agree-
ment forest of T1 and T2, we have e(T1, T2, T2) ≤ 3k′.

To bound the running time of the algorithm, we observe that it terminates
after O(n) iterations, as each iteration removes at least one vertex or edge from
T1 or F . Using arguments similar to the ones presented in [4], we can show that
each iteration takes constant time. (See [18] for details.) ⊓⊔

The 3-approximation algorithm for unrooted MAF and, hence, for TBR dis-
tance is the same as for the rooted case, except that the edges ea, eb, and ec

in Case 3 are used in their unrooted meaning. Moreover, in the unrooted case,
edge eb is less trivial to identify in constant time. Instead, we cut ea and one
additional edge incident to rab. It is not hard to see that cutting any two of
the three edges incident to rab has the same effect as cutting ea and eb. Hence,
Theorem 3 establishes the correctness of this procedure, and we obtain:

Theorem 6. Given two unrooted X-trees T1 and T2, a 3-approximation of
e(T1, T2, T2) = dTBR(T1, T2) can be computed in linear time.

Rooted MAAF. The approximation algorithm for rooted MAAF consists of three
phases: a preprocessing phase and two cutting phases. The preprocessing phase
labels every node in T1 and T2 with its preorder number and with the interval of
preorder numbers of its descendants, in order to identify cycles in an agreement
forest of T1 and T2 later. The first cutting phase runs the algorithm for rooted
MAF to obtain an agreement forest F of T1 and T2. (The described algorithm
computes only the number of edges that need to be cut in T2 to obtain an
agreement forest F , but it is easily augmented to compute F itself.) The second
cutting phase identifies and breaks cycles in F . Whenever we cut an edge in either
of the two cutting phases, we increase D by one. The algorithm terminates when
no cycle pair remains in F . The output is the final value of D.

To implement the second cutting phase, we maintain two sets, Rd and Rt, of
roots of trees in F . Rd contains a set of roots that do not form any cycles with
each other. Rt contains roots that may be involved in cycles. Initially, Rd = ∅ and
Rt contains the roots of all trees in F . Each iteration of the algorithm removes
a root a from Rt and tests whether a forms a cycle with any root b ∈ Rd. This
is true if and only if a’s preorder interval in T1 contains b′s, and b′s preorder
interval in T2 contains a’s (or vice versa). If not, we add a to Rd and move on to
the next root in Rt. If there is a root b ∈ Rd such that (a, b) is a cycle pair, we
cut one of the two edges incident to each of a and b and increase D by two. This
breaks the two trees in F with roots a and b into two subtrees each; their roots
are the children of a and b in F . We add these children to Rt and then move on
to the next iteration. The algorithm terminates when Rt = ∅, at which point F
is an acyclic agreement forest of T1 and T2.

Each iteration of this algorithm is easily implemented in linear time, resulting
in a total running time of O(n2). In the full paper (see also [18]), we show how
to reduce the running time to O(n log n). Thus, we have the following result.

Theorem 7. Given two unrooted X-trees T1 and T2, a 3-approximation of
ẽ(T1, T2, T2) = hyb(T1, T2) can be computed in O(n log n) time.

Proof. We have already discussed the running time of the algorithm. To prove the
approximation bound, consider all iterations over the two cutting phases of the
algorithm. An iteration that leaves D unchanged does not increase ẽ(T1, T2, T2).
By Theorem 1, every application of Case 3 in the first cutting phase decreases
ẽ(T1, T2, F) by at least one and cuts three edges in F . By Theorem 4, every time
we cut two edges in the current agreement forest F in the second cutting phase,
ẽ(T1, T2, F) decreases by at least one. Hence, the number k′ of iterations that
change D is at most ẽ(T1, T2, T2), and each such iteration increases D by at most
three. Thus, D ≤ 3k′ ≤ 3ẽ(T1, T2, T2) at the end of the algorithm. On the other
hand, once the algorithm terminates, Rt is empty, and the roots in Rd do not
form cycles. The resulting agreement forest is therefore acyclic, and we cut D
edges to obtain it. Thus, ẽ(T1, T2, T2) ≤ D. Together with the upper bound, this
shows that the final value of D is a 3-approximation of ẽ(T1, T2, T2). ⊓⊔

5 Fixed-Parameter Algorithms

The approximation algorithms discussed in the previous section are easily mod-
ified to obtain fixed-parameter algorithms for the respective problems. As is
customary when discussing such algorithms, we focus on the decision version:
“Given two X-trees T1 and T2, a distance measure d(·, ·), and a parameter k,
is d(T1, T2) ≤ k?” If this decision version can be solved in O(ckpoly(n)) time,
then the exact distance d = d(T1, T2) can be found in O(cdpoly(n)) time by
iteratively trying larger guesses of k until we obtain the first positive answer.

To obtain such a decision algorithm for (rooted or unrooted) MAF, we modify
the approximation algorithm from Section 4. We denote an invocation of the
algorithm on trees T ′

1, T ′
2, forest F ′, and distance bound k by A(T ′

1, T
′
2, F

′, k).
If T ′

1 and T ′
2 have at most two nodes each, the algorithm returns “yes” if and

only if k ≥ 0. Otherwise, whenever the approximation algorithm applies Case 1
or 2, so does A(T ′

1, T
′
2, F

′, k). When the approximation algorithm would apply
Case 3, A(T ′

1, T
′
2, F

′, k) recurses. In the rooted case, the algorithm makes three
recursive calls A(T ′

1, T
′
2, F

′ − {ex}, k − 1), for x ∈ {a, b, c}, and returns “yes” if
and only if one of these recursive calls does. In the unrooted case, the algorithm
makes four recursive calls A(T ′

1, T
′
2, F

′ − {ex}, k − 1), for x ∈ {a, b, c, d}, and
again returns “yes” if and only if one of these recursive calls does.

Theorem 8. For two rooted X-trees T1 and T2 and a parameter k, it takes
O(3kn) time to decide whether e(T1, T2, T2) ≤ k. In the unrooted case, it takes
O(4kn) time.

Proof. The correctness of the algorithm follows immediately from Lemmas 1
and 2, and from Theorems 1 and 2. As for the running time, we can view each
recursive call as a truncated invocation of the approximation algorithm from
Section 4 that recurses as soon as it would invoke Case 3. Hence, each recursive
call takes O(n) time. The recursion depth is k, and each recursive call spawns
at most three recursive calls, four in the unrooted case. Hence, the number of
recursive calls is O(3k) in the rooted case and O(4k) in the unrooted case. This
gives the claimed running times of O(3kn) and O(4kn), respectively. ⊓⊔

To obtain an FPT algorithm for MAAF, we augment the above algorithm
for rooted MAF as follows. For every recursive call A(T ′

1, T
′
2, F

′, k) that would
output “yes” without recursing, we compute the corresponding agreement forest
F of the two original trees T1 and T2. Note that F is not necessarily an MAF,
as k may be greater than e(T1, T2, T2). If F is acyclic, the algorithm answers
“yes”. Otherwise, it invokes a second recursive algorithm B(T1, T2, F, k). This
invocation returns “yes” if k ≥ 0 and F contains no cycle, and “no” if k < 0.
If k ≥ 0 and F contains a cycle pair (a, b), B(T1, T2, F, k) makes two recursive
calls B(T1, T2, F − {ea}, k − 1) and B(T1, T2, F − {eb}, k − 1), and returns “yes”
if and only if one of the two calls does. The correctness and running time of the
algorithm are established similarly to Theorem 8 (see [18]). Hence, we have:

Theorem 9. For two rooted X-trees T1 and T2 and a parameter k, it takes
O(3kn log n) time to decide whether ẽ(T1, T2, T2) ≤ k.

Known kernelizations [1, 6, 7] reduce trees T1 and T2 to trees T ′
1 and T ′

2 in
O(n3) time such that e(T1, T2, T2) = e(T ′

1, T
′
2, T

′
2) = k and T ′

1 and T ′
2 have size

O(k). The same holds for ẽ(T1, T2, T2). Hence, we obtain the following corollary.

Corollary 1. For two rooted X-trees T1 and T2 and a parameter k, it takes
O(3kk +n3) time to decide whether e(T1, T2, T2) ≤ k and O(3kk log k +n3) time
to decide whether ẽ(T1, T2, T2) ≤ k. In the unrooted case, it takes O(4kk + n3)
time to decide whether e(T1, T2, T2) ≤ k.

References

1. B. L. Allen and M. Steel. Subtree transfer operations and their induced metrics
on evolutionary trees. Annals of Comb., 5:1–15, 2001.

2. M. Baroni, S. Grünewald, V. Moulton, and C. Semple. Bounding the number of
hybridisation events for a consistent evolutionary history. J. Math. Biol., 51:171–
182, 2005.

3. R. G. Beiko and N. Hamilton. Phylogenetic identification of lateral genetic transfer
events. BMC Evol. Biol., 6:15, 2006.

4. M. L. Bonet, K. St. John, R. Mahindru, and N. Amenta. Approximating subtree
distances between phylogenies. J. Comp. Biol., 13:1419–1434, 2006.

5. M. Bordewich, C. McCartin, and C. Semple. A 3-approximation algorithm for the
subtree distance between phylogenies. J. Disc. Alg., 6:458–471, 2008.

6. M. Bordewich and C. Semple. On the computational complexity of the rooted
subtree prune and regraft distance. Annals of Comb., 8:409–423, 2005.

7. M. Bordewich and C. Semple. Computing the hybridization number of two phylo-
genetic trees is fixed-parameter tractable. IEEE/ACM Trans. on Comp. Biol. and
Bioinf., 4:458–466, 2007.

8. M. Bordewich and C. Semple. Computing the minimum number of hybridization
events for a consistent evolutionary history. Disc. Appl. Math., 155:914–928, 2007.

9. F. Chataigner. Approximating the maximum agreement forest on k trees. Inf.
Proc. Letters, 93:239–244, 2005.

10. M. Hallett and C. McCartin. A faster FPT algorithm for the maximum agreement
forest problem. Theory of Comp. Sys., 41:539–550, 2007.

11. J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing
evolutionary trees. Disc. Appl. Math., 71:153–169, 1996.

12. G. Hickey, F. Dehne, A. Rau-Chaplin, and C. Blouin. SPR distance computation
for unrooted trees. Evol. Bioinf., 4:17–27, 2008.

13. D. M. Hillis, T. A. Heath, and K. St. John. Analysis and visualization of tree
space. Syst. Biol., 54:471–482, 2005.

14. D. M. Hillis, C. Moritz, and B. K. Mable, editors. Molecular Systematics. Sinauer
Associates, 1996.

15. W. P. Maddison. Gene trees in species trees. Syst. Biol., 46:523–536, 1997.
16. L. Nakhleh, T. Warnow, C. R. Lindner, and K. St. John. Reconstructing reticulate

evolution in species—theory and practice. J. Comp. Biol., 12:796–811, 2005.
17. E. M. Rodrigues, M.-F. Sagot, and Y. Wakabayashi. The maximum agreement

forest problem: Approximation algorithms and computational experiments. Theor.
Comp. Sci., 374:91–110, 2007.

18. C. Whidden and N. Zeh. A unifying view on approximation and FPT of agreement
forests. http://www.cs.dal.ca/∼nzeh/Publications/maf.pdf, 2009.

