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Abstract. We improve on earlier FPT algorithms for computing a
rooted maximum agreement forest (MAF) or a maximum acyclic agree-
ment forest (MAAF) of a pair of phylogenetic trees. Their sizes give the
subtree-prune-and-regraft (SPR) distance and the hybridization num-
ber of the trees, respectively. We introduce new branching rules that
reduce the running time of the algorithms from O(3kn) and O(3kn log n)
to O(2.42kn) and O(2.42kn log n), respectively. In practice, the speed up
may be much more than predicted by the worst-case analysis. We confirm
this intuition experimentally by computing MAFs for simulated trees and
trees inferred from protein sequence data. We show that our algorithm
is orders of magnitude faster and can handle much larger trees and SPR
distances than the best previous methods, treeSAT and sprdist.

1 Introduction

Phylogenetic trees are used to represent the evolution of a set of species (taxa)
[13]. In addition to ’vertical’ inheritance from parent to offspring, genetic mate-
rial can be exchanged between contemporary organisms via lateral gene transfer,
recombination and hybridization. These processes enable the rapid spread of an-
tibiotic resistance and other harmful traits in pathogenic bacteria, and more
generally allow species to rapidly adapt to new environments. Untangling ver-
tical and lateral evolutionary histories requires the comparison of phylogenetic
trees, and metrics that model reticulation events using subtree prune-and-regraft
(SPR) [11] or hybridization [1] permutations are of particular interest, since the
resulting series of permutations has a direct evolutionary interpretation [14,15].

Although these distance metrics are biologically meaningful, they are NP-
hard to compute [8, 10, 12]. This has led to significant effort to develop ap-
proximation [5, 7, 16] and fixed-parameter (FPT) algorithms [7, 9], as well as
heuristic approaches [3, 12], for computing these distances. The main tool of
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most such algorithms is the notion of a maximum agreement forest [1,8,11]. Re-
cently, Whidden and Zeh [18] presented a unified view of previous methods for
computing agreement forests and introduced improvements that led to the the-
oretically fastest approximation and FPT algorithms for computing such forests
so far. The FPT algorithms for SPR distance and hybridization number use a
bounded search tree approach and take O(3kn) and O(3kn logn) time, respec-
tively (O(3kk + n3) and O(3kk log k + n3) using standard kernelizations [8, 9].)

In this paper, we introduce improved branching rules to be used in the algo-
rithms of [18]. These branching rules reduce the running times of the algorithms
for SPR distance and hybridization number to O(2.42kn) and O(2.42kn logn),
respectively. Using the same kernelizations as before, the running times can be
reduced further to O(2.42kk + n3) and O(2.42kk log k + n3), respectively.

While these theoretical improvements are valuable in their own right, our
main contribution is to evaluate the practical performance of the algorithm
of [18] and the impact of our improved branching rules. An additional opti-
mization we apply is to use the linear-time 3-approximation algorithm for SPR
distance of [16,18] to prune branches in the search tree that are guaranteed to be
unsuccessful. This reduces the size of the search tree substantially and leads to
a corresponding decrease in running time. We demonstrate that each of the im-
proved branching rules and the pruning of unsuccessful branches have a marked
and distinct effect on the performance of the algorithm. Our experiments con-
firm that our algorithm is orders of magnitude faster than the currently best
exact alternatives [4,20] based on reductions to integer linear programming and
satisfiability testing, respectively. The largest distances reported using imple-
mentations of previous methods are a hybridization number of 14 on 40 taxa [6]
and an SPR distance of 19 on 46 taxa [20]. In contrast, our method took less
than 5 hours to compute SPR distances of up to 46 on trees with 144 taxa and
99 on synthetic 1000-leaf trees. This represents a major step forward towards
tools that can infer reticulation scenarios for the hundreds of genomes that have
been fully sequenced to date.

The rest of this paper is organized as follows. Section 2 introduces the nec-
essary terminology and notation. Section 3 presents our FPT algorithms using
the improved branching rules. Section 4 presents our experimental results.

2 Preliminaries

Throughout this paper, we mostly use the definitions and notation from [7–9,16,
18]. A (rooted binary phylogenetic) X-tree is a rooted tree T whose leaves are the
elements of a label set X and whose non-root internal nodes have two children
each; see Figure 1(a). The root of T has label ρ and has one child. Throughout
this paper, we consider ρ to be a member of X . For a subset V of X , T (V ) is the
smallest subtree of T that connects all nodes in V ; see Figure 1(b). The V -tree
induced by T is the tree T |V obtained from T (V ) using forced contractions, each
of which removes an unlabelled node v with only one child and its incident edges.
If v was the root of the current tree, its child becomes the new root; otherwise
an edge is added between v’s parent and child. See Figure 1(c).
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Fig. 1. (a) An X-tree T . (b) The subtree T (V ) for V = {1, 2, 4}. (c) T |V . (d) Illustra-
tion of an SPR operation.
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Fig. 2. (a) SPR operations transforming T1 into T2. Each operation changes the top
endpoint of one of the dotted edges. (b) The corresponding agreement forest, which
can be obtained by cutting the dotted edges in both trees.

A subtree-prune-and-regraft (SPR) operation on an X-tree T cuts an edge
ex := xpx, where px denotes the parent of x. This divides T into subtrees Tx

and Tpx
containing x and px, respectively. Then it introduces a node p′x into Tpx

by subdividing an edge of Tpx
and adds an edge xp′x, making x a child of p′x.

Finally, px is removed using a forced contraction. See Figure 1(d).

The distance measure dspr(T1, T2) between X-trees is the minimum num-
ber of SPR operations required to transform T1 into T2. A related distance
measure is the hybridization number, hyb(T1, T2), which is defined in terms of
hybrid networks. A hybrid network of T1 and T2 is a directed acyclic graph
H such that both trees, with their edges directed away from the root, can
be obtained from H by forced contractions and edge deletions. For a node
x ∈ H , let degin(x) be its in-degree and deg−

in
(x) = max(0, degin(x) − 1). Then

hyb(T1, T2) = minH

∑

x∈H deg−
in
(x), taking the minimum over all hybrid net-

works H of T1 and T2. These metrics are related to the sizes of appropriately
defined agreement forests. To define these, we first introduce some terminology.

For a forest F whose components T1, T2, . . . , Tk have label setsX1, X2, . . . , Xk,
we say F yields the forest with components T1|X1, T2|X2, . . . , Tk|Xk; if Xi = ∅,
then Ti(Xi) = ∅ and, hence, Ti|Xi = ∅. For a subset E of edges of G, we use
F − E to denote the forest obtained by deleting the edges in E from F , and
F ÷E to denote the forest yielded by F −E. We say that F ÷E is a forest of F .

Given X-trees T1 and T2 and forests F1 of T1 and F2 of T2, a forest F is
an agreement forest (AF) of F1 and F2 if it is a forest of both F1 and F2; see
Figure 2. F is a maximum agreement forest (MAF) of F1 and F2 if there is no AF
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of F1 and F2 with fewer components. We denote the number of components in an
MAF of F1 and F2 bym(F1, F2), and the size of the smallest edge set E such that
F÷E is an AF of F1 and F2 by e(F1, F2, F ), where F is a forest of F2. Bordewich
and Semple [8] showed that dspr(T1, T2) = e(T1, T2, T2) = m(T1, T2)− 1.

Hybridization numbers correspond to MAFs with an additional constraint.
For two forests F1 and F2 of T1 and T2 and an AF F of F1 and F2, each node x in
F can be mapped to nodes φ1(x) in T1 and φ2(y) in T2 by defining Xx to be the
set of labelled descendants of x in F and φi(x) to be the lowest common ancestor
in Ti of all nodes in Xx. We say that F contains a cycle if there exist nodes x
and y (a cycle pair (x, y)) that are roots of trees in F and such that φ1(x) is an
ancestor of φ1(y) and φ2(y) is an ancestor of φ2(x). Otherwise, F is an acyclic
agreement forest (AAF). A maximum acyclic agreement forest (MAAF) of F1

and F2 is an AAF with the minimum number of components among all AAFs of
F1 and F2. We denote its size by m̃(F1, F2) and the number of edges in a forest
F of F2 that must be cut to obtain an AAF of F1 and F2 by ẽ(F1, F2, F ). Baroni
et al. [1] showed that hyb(T1, T2) = ẽ(T1, T2, T2) = m̃(T1, T2)− 1.

We write a ∼F b when there exists a path between two nodes a and b of
a forest F . For a node x ∈ F , F x denotes the subtree of F induced by all
descendants of x, inclusive. For forests F1 and F2 and nodes a, b ∈ F1 with a
common parent, we say (a, b) is a sibling pair of F1 if there exist nodes a′, b′ ∈ F2

such that F a
1 = F a′

2 and F b
1 = F b′

2 . We refer to a′ and b′ as a and b for simplicity.

3 The Algorithms

In this section, we present our improved FPT algorithms for computing an MAF
or MAAF of two phylogenies. As is customary for FPT algorithms, we focus on
the decision version of the problem: “Given two X-trees T1 and T2, a distance
measure d(·, ·), and a parameter k, is d(T1, T2) ≤ k?” To compute the distance
between two trees, we start with k = 0 and increase it until we receive an
affirmative answer. This does not asymptotically increase the running time of
the algorithm, as the dependence on k is exponential.

We begin with the MAF algorithm. The algorithm is recursive. Each in-
vocation takes as input two forests F1 and F2 of T1 and T2 and a parame-
ter k, and decides whether e(T1, T2, F2) ≤ k. We denote such an invocation by
Maf(F1, F2, k). The forest F1 is the union of a tree Ṫ1 and a forest F , while
F2 is the union of the same forest F and another forest Ḟ2 with the same label
set as Ṫ1. We maintain two sets of labelled nodes: Rd contains the roots of F ,
and Rt contains roots of subtrees that agree between Ṫ1 and Ḟ2. We refer to the
nodes in these sets by their labels. For the top-level invocation, F1 = Ṫ1 = T1,
F2 = Ḟ2 = T2, and F = ∅; Rd is empty, and Rt contains all leaves of F2.

Maf(F1, F2, k) identifies a small collection {E1, E2, . . . , Eq} of subsets of

edges of Ḟ2 such that e(T1, T2, F2) ≤ k if and only if e(T1, T2, F2−Ei) ≤ k−|Ei|,
for at least one 1 ≤ i ≤ q. It makes a recursive call Maf(F1, F2 − Ei, k − |Ei|),
for each subset Ei, and returns “yes” if and only if one of these calls does. The
steps of this procedure are as follows.
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Fig. 3. The cases in Step 6 of the rooted MAF algorithm. Only Ḟ2 is shown. Each box
represents a recursive call.

1. (Failure) If k < 0, there is no subset E of at most k edges of F2 such that
F2 − E yields an AF of T1 and T2. Return “no” in this case.

2. (Success) If |Rt| ≤ 2, then Ḟ2 ⊆ Ṫ1. Hence, Ḟ2 ∪ F is an AF of F1 and F2

and, thus, also of T1 and T2. Return “yes” in this case.
3. (Prune maximal agreeing subtrees) If there is no node r ∈ Rt that is a root

in Ḟ2, go to Step 4. Otherwise remove r from Rt and add it to Rd, thereby
moving the corresponding subtree of Ḟ2 to F . Cut the edge er in Ṫ1 and apply
a forced contraction to remove r’s parent from Ṫ1. This does not alter F2 and,
thus, neither e(T1, T2, F2). Return to Step 2.

4. Choose a sibling pair (a, c) in Ṫ1 such that a, c ∈ Rt.
5. (Grow agreeing subtrees) If (a, c) is not a sibling pair of Ḟ2, go to Step 6.

Otherwise remove a and c from Rt, label their parent in both trees with
(a, c), and add it to Rt. Return to Step 2.

6. (Cut edges) Distinguish three cases (see Figure 3).
6.1. If a ≁F2

c, make two recursive calls Maf(F1, F2 ÷ {ea}, k − 1) and
Maf(F1, F2 ÷ {ec}, k − 1).

6.2. If a ∼F2
c and the path from a to c in Ḟ2 has one pendant node b, make

one recursive call Maf(F1, F2 ÷ {eb}, k − 1).
6.3. If a ∼F2

c and the path from a to c in Ḟ2 has q ≥ 2 pendant nodes
b1, b2, . . . , bq, make three calls Maf(F1, F2 ÷ {eb1 , eb2 , . . . , ebq}, k − q),
Maf(F1, F2 ÷ {ea}, k − 1), and Maf(F1, F2 ÷ {ec}, k − 1).

Return “yes” if one of the recursive calls does; otherwise return “no”.

The above algorithm is identical to the one presented in [18], with the ex-
ception of Step 6. In this step, the algorithm of [18] chooses a and c so that the
distance of a from the root of T2 is no less than that of c, identifies the sibling
b of a in Ḟ2 and then makes three recursive calls Maf(F1, F2 ÷ {ea}, k − 1),
Maf(F1, F2 ÷{eb}, k− 1), and Maf(F1, F2÷{ec}, k− 1). Next we show that by
distinguishing between Cases 6.1–6.3 we achieve an improved running time.

Theorem 1. For two rooted X-trees T1 and T2 and a parameter k, it takes
O((1 +

√
2)kn) = O(2.42kn) time to decide whether e(T1, T2, T2) ≤ k.
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Using the same data structures as in the algorithm of [18], each recursive call
takes O(n) time. Thus, the running time claimed in Theorem 1 follows if we can
bound the number of recursive calls by O((1 +

√
2)k). The number of recursive

calls spawned by an invocation depends only on k with the following recurrence

I(k) =











1 + 2I(k − 1) Case 6.1

1 + I(k − 1) Case 6.2

1 + 2I(k − 1) + I(k − q) Case 6.3

≤ 1 + 2I(k − 1) + I(k − 2)

because Case 6.3 dominates the other two cases and q ≥ 2 in this case. Simple
substitution shows that this recurrence solves to I(k) = O((1+

√
2)k). It remains

to prove the correctness of the algorithm. Our strategy is as follows. Consider
an edge set E of size e(T1, T2, F2) and such that F2 ÷ E is an AF of T1 and T2.
F2 ÷ E is also an AF of F1 and F2. Now we consider each of the three cases of
Step 6. We show that, in each case, there exists a set E as above and a recursive
call Maf(F1, F2÷Ei, k− |Ei|) made in this case such that Ei ⊆ E. This implies
by induction that (1) none of the other recursive calls we make returns “yes”
unless e(T1, T2, F2) ≤ k (because each recursive callMaf(F1, F2÷Ej, k

′) satisfies
k′ = k−|Ej |) and (2) the recursive call Maf(F1, F2÷Ei, k−|Ei|) returns “yes”
if and only if e(T1, T2, F2) = k. Thus, the current invocation gives the correct
answer. Each of the following three lemmas considers one case. Due to the lack
of space, proofs are omitted but can be found in [17].

Lemma 1 (Case 6.1). If a ≁F2
c, there exists an edge set E of size e(T1, T2, F2)

(resp. ẽ(T1, T2, F2)) such that F2 ÷ E is an AF (resp. AAF) of T1 and T2 and
E ∩ {ea, ec} 6= ∅.

Lemma 2 (Case 6.2). If a ∼F2
c and the path from a to c in F2 has only one

pendant node b, there exists an edge set E of size e(T1, T2, F2) such that F2 ÷E
is an AF of T1 and T2 and eb ∈ E.

Lemma 3 (Case 6.3). If a ∼F2
c and the path from a to c in F2 has q ≥ 2

pendant nodes b1, b2, . . . , bq, there exists an edge set E of size e(T1, T2, F2) (resp.
ẽ(T1, T2, F2)) such that F2÷E is an AF (resp. AAF) and either E∩{ea, ec} 6= ∅
or {eb1 , eb2 , . . . , ebq} ⊆ E.

As shown in [18], an algorithm for deciding whether T1 and T2 have a max-
imum acyclic agreement forest of size at most k + 1 can be obtained using a
two-phased approach. In the first phase, we employ the MAF algorithm. When-
ever the MAF algorithm would return “yes” in Step 2, however, we invoke a
second algorithm that tests whether all cycles in the obtained agreement forest
can be eliminated by cutting at most k edges:

2′. If |Rt| ≤ 2, then F2 = Ḟ2∪F is an AF of T1 and T2. Now invoke an algorithm
Maaf(F2, k) that decides whether all cycles in F2 can be eliminated by
cutting at most k edges.
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Such an algorithm Maaf(F, k) with running time O(2kn logn) time is pre-
sented in [18]. The correctness of this two-phased MAAF procedure follows if we
can show that in each of the three cases in Step 6, there exists a recursive call
Maf(F1, F2÷Ei, k−|Ei|) such that Ei is a subset of a set E of size ẽ(T1, T2, F2)
and such that F2 ÷E is an AAF of T1 and T2. For Cases 6.1 and 6.3, Lemmas 1
and 3 state that this is the case. In Case 6.2, however, edge eb may not belong
to such a set. To fix this, we replace it with the following case when computing
an MAAF:

6.2′. If the path from a to c in F2 has one pendant node b, make two recursive
calls Maf(F1, F2 ÷ {eb}, k − 1) and Maf(F1, F2 ÷ {ec}, k − 1).

Theorem 2. For two rooted X-trees T1 and T2 and a parameter k, it takes
O((1 +

√
2)kn logn) = O(2.42kn logn) time to decide whether ẽ(T1, T2, T2) ≤ k.

The correctness proof of the MAAF algorithm obtained from our MAF al-
gorithm using the above modifications is identical to the correctness proof of
the MAF algorithm; however, we use Lemma 4 below instead of Lemma 2 to
show that we cut the right edges in Case 6.2′. To bound the running time of
the algorithm, we observe that the recurrence for the number of recursive calls
in Case 6.2′ is I(k) = 1 + 2I(k − 1), which is still dominated by the recur-
rence for Case 6.3. Using that the running time of the MAAF procedure is
T (n, k) = O(2kn logn), substitution yields the claimed bound. Again, a proof of
this lemma can be found in [17].

Lemma 4 (Case 6.2′). If a ∼F2
c and the path from a to c in F2 has only

one pendant node b, there exists an edge set E of size ẽ(T1, T2, F2) and such that
F2 ÷ E is an AAF of T1 and T2 and either eb ∈ E or ec ∈ E.

As in [18], Theorems 1 and 2 along with known kernelizations [8,9] imply the
following corollary.

Corollary 1. For two rooted X-trees T1 and T2 and a parameter k, it takes
O(2.42kk+n3) time to decide whether e(T1, T2, T2) ≤ k and O(2.42kk log k+n3)
time to decide whether ẽ(T1, T2, T2) ≤ k.

4 Evaluation of SPR Distance Algorithms

In this section, we present an experimental evaluation of our MAF (SPR dis-
tance) algorithm that compares the algorithm’s performance to that of two com-
petitors using the protein tree data set examined in [2, 3] and using synthetic
trees. We also investigate the impact of the improved branching rules in Step 6
on the performance of the algorithm. Our competitors were sprdist [20] and
treeSAT [4], which reduce the problem of computing SPR distances to integer
linear programming and satisfiability testing, respectively. We do not provide a
comparison with EEEP [3] because sprdist outperformed it and other heuristics
at finding the exact SPR distance between binary rooted phylogenies [20].

7



For sprdist and treeSAT, we used publicly available implementations of
these algorithms. For our own algorithm, we developed an implementation in
C++ that allowed us to individually turn the optimized branching rules in Step 6
on and off. When the optimized branching rule in one of the cases is turned off,
the algorithm uses the 3-way branching of [18] described on page 5 in this case.
In particular, with all optimizations off, the algorithm is the one of [18]. Source
code for our algorithm is available at [19].

We also implemented the linear-time 3-approximation algorithm for MAF
of [18] and used it to implement two additional optimizations of our FPT al-
gorithm. The FPT algorithm searches for the correct value of e(T1, T2, T2) by
starting with a lower bound k of e(T1, T2, T2) and incrementing k until it deter-
mines that k = e(T1, T2, T2). If the 3-approximation algorithm returns a value
of k′, then e(T1, T2, T2) ≥ ⌈k′/3⌉; by using this as the starting value of our
search, we can skip early iterations of the algorithm and thereby obtain a small
improvement in the running time. The same approach can be used in a branch-
and-bound strategy that prunes unsuccessful branches from the search tree. In
particular, we extended Step 1 of the FPT algorithm as follows:

1′. (Failure) If k < 0, return “no”. Otherwise compute a 3-approximation k′ of
e(T1, T2, F2). If k

′ > 3k, then e(T1, T2, F2) > k; return “no” in this case.

We allowed this optimization of Step 1 to be turned on or off in our algorithm
to investigate its effect on the running time, but our implementation always uses
the 3-approximation algorithm to provide a starting guess of e(T1, T2, T2).

4.1 Data Sets

The protein tree data set of [2, 3] contains 5689 protein trees with 10 to 144
leaves (each corresponding to a different microbial genome); each of these was
compared in turn to a rooted reference tree covering all 144 genomes. The protein
trees were unrooted, so we selected a rooting for each tree that gave the minimum
SPR distance according to the 3-approximation algorithm of [18].

The synthetic tree pairs were created by first generating a random tree T1

and then transforming it into a second tree T2 using a known number of random
SPR operations. Note that the SPR distance may be lower because the sequence
of SPR operations we generated may not be the shortest such sequence. For n
taxa, the label set of T1 was represented using integers 1 through n, and T1

was generated by splitting the interval [1, n] into two sub-intervals uniformly
at random, recursively generating two trees with these two intervals as label
sets and then adding a root to merge these trees. Random SPR operations were
generated by choosing an edge xpx to cut uniformly at random and then choosing
the new parent p′x of x uniformly at random from among all valid locations
of p′x. We constructed pairs of 100-leaf trees with 1–20 SPR operations and with
25, 30, . . . , 50 SPR operations. We also constructed pairs of 1000-leaf trees with
1–20 SPR operations and with 25, 30, . . . , 100 SPR operations. For each tree size
and number of SPR operations we generated ten pairs of trees.
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4.2 Results

Our experiments were performed on a 3.16Ghz Xeon system with 4GB of RAM
and running CentOS 2.6 Linux in a Rocks 5.1 cluster. Our code was compiled
using gcc 4.4.3 and optimization -O2. Each run of an algorithm was limited to
5 hours of running time. If it did not produce an answer in this time limit,
we say the algorithm did not solve the given input instance in the following
discussion. We refer to the FPT algorithm with all optimizations off as fpt, and
with only the branch-and-bound optimization turned on as bb. The activation
of the improved branching rules in Step 6 is indicated using suffixes sc (Case 6.1:
separate components), cob (Case 6.2: cut only b), and cab (Case 6.3: cut a or b).
Thus, the algorithm with all optimizations on is labelled bb cob cab sc.

Number of instances solved. Figure 4 shows the number of solved protein
tree instances for the given ranges of tree sizes. Our experiments showed that the
average SPR distance for trees of the same size ranged between one sixth and one
third of the number of leaves. All of the algorithms solved all instances with 20 or
fewer leaves and only treeSAT did not solve all instances with 40 or fewer leaves.
sprdist solved most of the instances with 41-50 leaves, and half of the instances
with 51-100 leaves, but very few of the larger instances. fpt performed similarly
to sprdist but solved all of the instances with 41-50 leaves and more of the larger
instances than sprdist. bb improved upon this somewhat. However, adding our
new branching rules improved the results greatly. In particular, bb cob cab sc
solved all of the instances in this data set.

Figure 5 shows the number of protein trees found with a given SPR distance
from the reference tree. The “number solved” axis is a log3-scale to allow easy
comparison of the trees with small and large SPR distances, as the majority
had small SPR distances. treeSAT was unable to solve any instances with SPR
distance greater than 8. sprdist and fpt solved instances with a distance as large
as 20. Since bb cob cab sc solved all the instances in this data set, including
instances with an SPR distance of 46, we were able to verify that sprdist and
fpt solved all instances with SPR distance up to 15 and 18, respectively.

Running time. Figure 6 shows the mean running time of the algorithms on
solved protein tree instances with the given SPR distance. The time axis here
and in the following figures is a log3-scale to highlight the exponential running
time of the algorithms and to allow easy comparison of the runs. The curves
for some of the algorithms ‘dip” for higher distance values, which is a result of
taking the average running time only over solved instances. The slope of the
curve for fpt is close to 1, indicating that the algorithm is close to its worst-
case running time of O(3kn). bb shows a marked improvement over fpt; however,
the improvement achieved using the new branching rules is much more dramatic.
treeSAT was much slower than all the other algorithms and although sprdist
solved a similar number of instances as fpt, as shown in Figure 5, it took much
longer to solve them on average. The two instances that sprdist solved with an
SPR distance of 19 and 20 are an exception to this, but that is likely an artifact
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of considering only solved instances. bb cob cab sc solved all input instances
with SPR distance of up to 20 in 5.5 seconds or less, and solved instances with
SPR distance up to 46 in well under 2 hours, while none of the previous methods
was able to solve instances with SPR distance greater than 20 in under 5 hours.

Figure 7 shows the mean running time of the fixed-parameter algorithms
on the random data set. As expected, fpt took 10 times longer on average
for the 1000-leaf trees as for the 100-leaf trees, given the same SPR distance.
fpt cob cab sc did not show this difference, which suggests that the improved
branching rules have a more pronounced impact on larger trees. bb cob cab sc
was able to solve instances with SPR distances up to 99 on the 1000-leaf trees,
while a distance of 42 was the limit on 100-leaf trees. We believe that, since the
proportion of SPR operations to the number of leaves is smaller for the bigger
trees, the randomly generated SPR operations are more likely to operate on in-
dependent subtrees, which brings the approximation ratio of the approximation
algorithm closer to its worst-case bound of 3 on these inputs. In our case, this
provides better lower bounds on the true SPR distance and, thus, allows us to
prune more branches in the search tree than is the case for the smaller trees.

Figure 8 shows the mean running time of the fixed-parameter algorithms
without branch-and-bound on the protein tree data set and using only some of
the improved branching rules. Case 6.1, Case 6.3, and Case 6.2 provide small,
moderate and large improvements, respectively. Using all of the cases gives an-
other large improvement, since each occurs under different conditions.

5 Conclusions

Our theoretical results improve on previous work, and our experiments confirm
that these improvements have a tremendous impact in practice. Our algorithm
efficiently solves problems with up to 144 leaves and an SPR distance of 20 in
less than a second on average; for distance values up to 46, the running time
was less than two hours. Our branch-and-bound approach showed a marked
improvement on larger trees, allowing us to compute distance values up to 42
on 100-leaf synthetic trees and 99 on 1000-leaf synthetic trees.

We expect experimental results using an implementation of the hybridiza-
tion algorithm would be similar, as only Case 6.2 is more costly than in the
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SPR algorithm. Thus, our hybridization algorithm should also be able to solve
instances beyond the reach of current hybridization approaches. Producing an
implementation of the hybridization algorithm is future work. Other open prob-
lems include extending our results to multifurcating trees or the related problem
of finding maximum agreement forests of multiple trees.
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