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Abstract. Given a planar triangulation all of whose faces are initially
white, we study the problem of colouring the faces black one by one so
that the boundary between black and white faces as well as the number
of connected black and white regions are small at all times. We call such
a colouring sequence of the triangles a flooding. Our main result shows
that it is in general impossible to guarantee boundary size O(n1−ε), for
any ε > 0, and a number of regions that is o(log n), where n is the number
of faces of the triangulation. We also show that a flooding with boundary
size O(

√
n) and O(log n) regions can be computed in O(n log n) time.

1 Introduction

We study the following triangulation flooding problem posed by Hurtado [8]:
Given a planar triangulation all of whose triangles are initially white, find an
ordering of the triangles such that, when colouring the triangles black in this or-
der, the number of connected monochromatic regions and the boundary between
white and black regions are small at all times.

In this paper, we provide an O(n log n)-time algorithm that finds an order
of colouring the triangles such that, at all times, the boundary between the
black and the white regions has size O(

√
n), there are O(log n) white regions,

and there is only one black region. We also show that the boundary size as
well as the number of white regions are best possible up to constant factors. In
particular, there cannot be any floodings with boundary size o(

√
n) in general

because, at the time when half the faces are black and half the faces are white,
we would have a 1

2 -separator of size o(
√

n); but Lipton and Tarjan [11] show
that the minimal size of such a separator is Ω(

√
n) in the worst case. As for the

number of white regions, we show that, for any ε > 0, there exists a family of
triangulations such that, if a boundary size of O(n1−ε) is desired, there have to
be Ω(log n) monochromatic regions at some point during the colouring process.

The triangulation flooding problem can be rephrased as a layout problem of
the dual of the triangulation: Given a 3-regular planar graph, find a linear layout
(v1, v2, . . . , vn) of small cutwidth and such that for every cut (Vi, V \ Vi), the
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number of connected components of G−Ei is small, where Vi = {v1, v2, . . . , vi}
and Ei is the set of edges with exactly one endpoint in Vi; that is, the edges in
Ei cross the cut.

Layouts of small cutwidth have applications in network reliability [9], graph
drawing [15], and rendering and stream processing of triangular meshes [1, 2, 7].
The cutwidth of a graph is also closely related to its search number, which is
relevant in VLSI design [10] and network security [3, 6, 16]. See [4] for a compre-
hensive survey of graph layout problems and their applications. Next we discuss
some results in this area that are closely related to our work.

It is well-known that every planar graph of maximal degree d has cutwidth
O(

√
dn) [5]; for 3-regular planar graphs, this implies that the cutwidth is O(

√
n).

Our result shows that 3-regular planar graphs have linear layouts of cutwidth
O(

√
n) that are “well-behaved” in the sense that their cuts do not partition the

graph into too many connected components.
In [2], the following model for rendering a triangular mesh is studied: Vertices

are pushed onto (and popped from) a vertex stack. To render a triangle, it is
necessary that all three vertices of the triangle are on the stack. The question
studied in [2] is to determine the stack size required to render any triangular
mesh while pushing every vertex onto the stack only once. It is shown that a
stack of size O(

√
n) suffices. In order to obtain this result, a recursive separator

decomposition similar to the one used in [5] for computing a layout of small
cutwidth is used. Our approach for finding a colouring sequence of the triangles
also uses a recursive separator decomposition. The main difference is that we use
simple-cycle separators [14] in our partition and that we combine these separators
carefully to keep the number of monochromatic regions small.

While keeping the number of monochromatic regions small at all times is
of limited importance for mesh rendering (apart from aesthetic concerns if the
rendering process is slow), it is important for encoding triangular meshes in a
minimal number of bits [1, 7], which is desirable for applications that need to
stream triangular meshes over communication channels of limited bandwidth
such as the internet. The encoding schemes of [1, 7] achieve a compression of
between 0.2 and 3.5 bits per vertex, depending on the regularity of the mesh.
Similar to our triangulation flooding problem, the idea is to start at a triangle
of the mesh and encode the remaining triangles one at a time so that the next
triangle to be encoded is chosen from among the triangles that share an edge
with a previously encoded triangle. If the third vertex of the triangle is a new
vertex, the degree of the vertex is encoded. If the vertex has been seen before,
the addition of the triangle may split the set of triangles yet to be encoded into
two regions. This needs to be recorded using a so-called split code whose length
is logarithmic in the length of the current boundary cycle. Thus, split codes are
much more expensive than the encoding of new vertices and should be avoided.
Using our approach, the boundary size is guaranteed to be O(

√
n), which helps

to bound the length of the split codes. We also guarantee that the number of lists
on the boundary list stack in the algorithm of [1] is O(log n); each list on this
stack represents a boundary cycle of the already encoded region. Unfortunately,



the total number of split operations may still be linear and, other than in the
algorithm of [1], the order in which the triangles are encoded cannot easily be
determined from the degrees of the boundary vertices and, thus, needs to be
explicitly encoded.

Finally, we want to point out the relationship between our results and the
graph search problem where a number of searchers try to clean the edges of a
graph all of whose edges are contaminated. In order to clean an edge, a searcher
has to move along the edge; if there exists a path between a contaminated
edge and a clean edge that is free of searchers, the edge is recontaminated. The
search number of a graph is the minimal number of searchers that are sufficient
to clean the graph. The connected search number is the minimal number of
searchers that are sufficient to clean the graph and, in addition, guarantee that
the graph spanned by clean edges is connected at all times. Determining the
search number of a graph is NP-complete [13]. For graphs of maximal degree 3,
it is known that the search number is equal to the graph’s cutwidth [12]. Using
the result of [5], this implies that the search number of a 3-regular planar graph
is O(

√
n). In fact, the proof of [5] immediately implies that the connected search

number of a 3-regular planar graph is O(
√

n). Our result proves that, for 3-
regular planar graphs, O(

√
n) searchers suffice to clean the graph while keeping

the clean subgraph connected and keeping the number of maximal connected
contaminated subgraphs small.

2 Preliminaries

In this section, we introduce the terminology used in this paper and discuss
previous results that are used in our algorithms.

Let T be a given planar triangulation with n faces (triangles). A colouring
c of T is an assignment of a colour c(f) ∈ {black,white} to every face f of T .
Colouring c is trivial if it colours all faces black or all faces white. The boundary
∂c of a non-trivial colouring c is the set of edges in T whose two adjacent triangles
have different colours. We say that a colouring c is t(n)-bounded if |∂c| ≤ t(n).
Consider the connected components of R2\∂c. Each of these components contains
either only black or only white faces. Accordingly, we call such a region black
or white. We define W and B to be the union of all white and black faces,
respectively. We say that colouring c is (b(n), w(n))-scattered if B consists of at
most b(n) connected regions and W consists of at most w(n) connected regions.
The colouring is s(n)-scattered if the total number of monochromatic regions is
at most s(n); that is, a (b(n), w(n))-scattered colouring is also (b(n) + w(n))-
scattered. The black count of a colouring c is the number of faces f of T such that
c(f) = black. A flooding is a sequence F = (c0, c1, . . . , cn) of colourings such that,
for all 0 ≤ i ≤ n, the black count of colouring ci is i and ci(f) = black implies
that ci+1(f) = black. We say that a flooding F is t(n)-bounded, (b(n), w(n))-
scattered, or s(n)-scattered if every non-trivial colouring in F is t(n)-bounded,
(b(n), w(n))-scattered, or s(n)-scattered, respectively.



If both regions W and B are connected, the boundary of colouring c is a
simple cycle C. We call this cycle a simple-cycle separator of T . Given an as-
signment of weights to the faces of T such that the weights of all faces sum to 1,
we call cycle C a simple-cycle ε-separator if the total weight of the faces in each
of the regions W and B is at most ε. The size of a simple-cycle separator is the
number of edges on the cycle. Miller shows the following result.

Theorem 1 (Miller [14]). Given a planar triangulation T with n vertices and
a weight function that assigns non-negative weights to the faces of T such that
the total weight of all faces is at most 1 and no face has weight more than 2

3 , a
simple-cycle 2

3 -separator of size at most
√

8n for T can be found in linear time.

3 New Results

In Section 4, we prove that every planar triangulation T has an O(
√

n)-bounded
(1,O(log n))-scattered flooding. More strongly, given a face f0 of T , there exists
such a flooding F = (c0, c1, . . . , cn) such that c1(f0) = black; that is, f0 is the
first triangle coloured black and every subsequent triangle is coloured black only
after at least one of its neighbours has been coloured black. We show that such
a flooding can be computed in O(n log n) time.

In Section 5, we prove that the result from Section 4 is best possible in a
very strong sense: For any 0 < ε < 1, there exists a family of triangulations that
do not have O(n1−ε)-bounded o(log n)-scattered floodings.

4 Floodings with Small Boundary and Low Scatter

In this section, we show how to efficiently find a flooding for a given triangulation
that maintains a small boundary at all times, keeps the black region connected,
and creates only few white regions at any time. The following theorem states
this formally:

Theorem 2. For every planar triangulation T with n faces and every face
f0 of T , there exists an O(

√
n)-bounded (1,O(log n))-scattered flooding F =

(c0, c1, . . . , cn) such that c1(f0) = black. Such a flooding can be computed in
O(n log n) time.

To prove Theorem 2, we first compute a recursive partition P of T using
simple-cycle and multi-path separators and then use an ordering of the leaves of
P to compute the order in which to colour the faces of T . The subgraphs of T in
this partition are partial triangulations defined as follows: A partial triangulation
is an embedded planar graph G with the following properties:

(i) Every face of G is marked as either interior or exterior.
(ii) All interior faces are triangles.
(iii) The union of all interior faces forms a connected region.
(iv) No two exterior faces share an edge.



The boundary ∂G of G is the set of edges on the boundaries of the exterior faces.
To compute the partition P, we make use of the following lemma.

Lemma 1. Every partial triangulation G with n ≥ 2 interior faces contains a
separator of one of the following two types:

(i) A simple cycle C of length at most
√

8n + 16 such that at most 2n/3 inte-
rior faces are on either side of C.

(ii) A set of simple paths P1, P2, . . . , Pk of total length at most
√

8n + 16 such
that each path has its endpoints, but no internal vertices, in ∂G and each
of the regions into which the interior of G is partitioned by these paths
contains at most 2n/3 interior faces.

Such a separator can be found in linear time.

Proof. We triangulate the exterior faces of G and give weight 1/n to every in-
terior face of G and weight 0 to every triangle produced by triangulating the
exterior faces. We use Theorem 1 to find a simple-cycle separator C of the re-
sulting triangulation T . Since the interior of T is connected, T has at most n+2
vertices. Hence, by Theorem 1, the cycle C has length at most

√
8n + 16. If C

contains only interior edges of G, we have Case (i). Otherwise, let P1, P2, . . . , Pk

be the maximal sub-paths of C that consist of only interior edges of G. Every
path Pi is simple because C is simple. Every region in the partition of G is com-
pletely on one side of C and thus has size at most 2n/3. Thus, we have Case (ii).
The complexity of all three steps of this procedure is linear. ut

Given a partial triangulation G, a separator as in Lemma 1 partitions G
into partial triangulations G1, G2, . . . , Gh as follows: Let R1, R2, . . . , Rh be the
connected regions into which the interior of G is divided by the separator given
by the lemma. Then the partial triangulation Gi has the faces of Ri as its interior
faces. The exterior faces of Gi are bounded by the boundary edges of Ri. The
following observation is an immediate consequence of the simplicity of C.

Observation 1. If G has an exterior face, then at most one of the partial tri-
angulations G1, G2, . . . , Gh does not share an edge with an exterior face of G.

Next we define a recursive partition P of T into partial triangulations by
repeated application of Lemma 1. The root of P is T . For every non-leaf partial
triangulation G, its children are obtained by applying Lemma 1 to G. Every
non-leaf partial triangulations has more than

√
n interior faces; every leaf partial

triangulation has at most
√

n interior faces. To construct the desired flooding
F , we compute an ordering of the leaf partial triangulations of P and flood each
triangulation in turn. We obtain this ordering as the left-to-right ordering of the
leaves of P obtained by ordering the children of every internal node of P, from
the root toward the leaves. Given that the children of the ancestors of a partial
triangulation G in P have already been ordered, we give colours black and white
to the boundary edges of G as follows: Let e be such an edge, let f be the face
in G incident to e, let f ′ be the other face incident to e, and let G′ be the leaf



triangulation that contains f ′. Let H and H ′ be the ancestors of G and G′ that
are children of the LCA H ′′ of G and G′. If H ′ precedes H in the order of the
children of H ′′, edge e is black; otherwise, edge e is white. To order the children
of G, we now apply the following lemma.

Lemma 2. If a partial triangulation G in P has f0 as an interior face or has
at least one black boundary edge, then the children of G can be arranged in an
order G1, G2, . . . , Gh that satisfies the following two conditions:

(i) If f0 is an interior face of G, then f0 is an interior face of G1 and every
child Gi, i > 1, shares an edge with a child Gj, j < i. If f0 is not an
interior face of G, then every child Gi of G shares an edge with a child Gj,
j < i, or has a black boundary edge of G on its boundary.

(ii) There is at most one child Gi of G that does not share an edge with a child
Gj, j > i, and does not have a white boundary edge of G on its boundary.

Proof. We call a boundary edge of a child Gi of G black, white, or internal
depending on whether it is a black or white boundary edge of G or an edge
between two children of G. We partition the children of G into three groups: If
f0 is an interior face of G, then G2 contains the child G1 that contains f0 and all
remaining faces are in G3. G1 is empty in this case. If f0 is not an interior face of
G, then G3 contains all children whose boundary edges are white or internal. G2

contains all children that have at least one black boundary edge and at least one
boundary edge that is white or is shared with a child in G3. Group G1 contains
the remaining children, that is, those whose boundary edges are either black or
shared with other children in G1 and G2. If groups G2 and G3 are empty, we move
an arbitrary child from group G1 to group G2.

In the ordering of the children of G, the children in G1 precede the children in
G2, which in turn precede the children in G3. The children in G2 are arranged in
no particular order. The children in G3 are arranged so that each such child Gi

shares an edge with a child Gj , j < i. Since G1∪G2 is non-empty, the connectivity
of the interior of G implies the existence of such an ordering. The children in G1

are arranged so that each such child Gi shares an edge with a child Gj , j > i.
Again, the non-emptiness of G2 ∪ G3 and the connectivity of the interior of G
imply the existence of such an ordering.

If f0 is in G, then Condition (i) is trivially satisfied by the constructed or-
dering. So assume that f0 is not in G. Then every face in G1 ∪ G2 has a black
boundary edge and every child Gi in G3 shares an edge with a child Gj , j < i. To
see that Condition (ii) is satisfied, observe that, by Observation 1, at most one
child in G3 does not have a white boundary edge. Every child Gi in G1 shares an
edge with a child Gj , j > i; every child in G2 shares an edge with a child Gj in
G3 or has a white boundary edge. ut

Given the ordering of the leaf partial triangulations of P produced by top-
down application of Lemma 2, we flood these partial triangulations in this order.
The first leaf partial triangulation contains f0 and is flooded starting from f0.
Every subsequent triangulation G is flooded starting from a face that has a black



edge of G on its boundary. A simple inductive argument shows that such a face
always exists. (Details appear in the full paper.) The following lemma shows how
to flood leaf triangulations.

Lemma 3. A leaf triangulation G can be flooded starting from any face f of G
so that the boundary between black and white interior faces of G has size at most√

n + 2, the number of black regions interior to G is one at all times, and the
number of white regions interior to G never exceeds log

√
n.

Proof. We keep the black region connected by colouring f black and subse-
quently colouring a face f ′ black only if at least one of its adjacent faces is
black. The bound on the boundary size follows immediately from the fact that
G has at most

√
n interior faces. To guarantee that there are never more than

log
√

n white regions, we choose the order in which to colour triangles using
the following recursive procedure: Let R be the current region to be coloured.
After colouring f black, R is the interior of G minus f . We choose a face f ′ in
R adjacent to a black face and colour it black. Face f ′ divides R into at most
two connected regions. We flood each of them recursively, first the smaller one,
then the bigger one. If we consider this recursive partition of the interior of G
into white regions, then at any time only log

√
n ancestors of the current region

can have siblings waiting to be flooded because each such sibling is of at least
the same size as the corresponding ancestor of the current region. Every such
sibling is completely contained in a white region of the current colouring of G,
and every white region consists of at least one such sibling. Hence, there are at
most log

√
n white regions at any time. ut

The next three lemmas establish that the computed flooding F has the de-
sired properties.

Lemma 4. Every colouring in F defines only one black region.

Proof. This is obvious, once we observe that F floods the children of any partial
triangulation in P in left-to-right order. Hence, for every leaf partial triangulation
G, a black boundary edge is one that already has an incident black triangle at
the time when G is being flooded. The flooding of G starts at a triangle incident
to such an edge and keeps the black region connected, by Lemma 3. ut

Lemma 5. The boundary size of every colouring in F is O(
√

n).

Proof. Consider the leaf partial triangulation G currently being flooded. Only
ancestors of G can be bichromatic. Thus, the boundary of the black region is
part of the separators computed at these ancestors. Since the separator of an
ancestor with n′ internal faces has size O(

√
n′) and the sizes of these ancestors

are geometrically decreasing, the proper ancestors of G contribute O(
√

n) to the
boundary size of the colouring. By Lemma 3, G itself also contributes O(

√
n).
ut

Lemma 6. Every colouring in F defines at most O(log n) connected white re-
gions.



Proof. Consider the leaf partial triangulation G currently being flooded. As al-
ready observed, only ancestors of G can be bichromatic. It suffices to prove that
every ancestor contributes at most one white region to the current colouring.
This is sufficient because there are only O(log n) such ancestors and the flooding
of G itself contributes only O(log n) white regions to the current colouring, by
Lemma 3.

Our claim follows from Lemma 2. In particular, the second condition implies
that at most one of the white children of a partial triangulation G is not included
in the same white region as some white sibling of an ancestor of G. ut

Partition P can be computed in O(n log n) time by repeated application
of Lemma 1. In particular, every face of G is contained in exactly one partial
triangulation per level of P, so that the cost of computing every level of P
is O(n). There are at most log3/2 n = O(log n) levels in P. Once partition P is
given, the remainder of the algorithm is easily carried out in linear time. (Details
appear in the full paper.)

We have shown that an O(
√

n)-bounded (1,O(log n))-scattered flooding of
a planar triangulation can be computed in O(n log n) time. This completes the
proof of Theorem 2.

5 Families of Hard Triangulations

As already mentioned in the introduction, it is in general impossible to obtain
an o(

√
n)-bounded flooding for a given triangulation. In this section, we prove

that the scatter of the flooding in Theorem 2 is also optimal, even if we relax
the bound on the boundary size to be O(n1−ε), for any 0 < ε < 1, and we allow
more than one black region, that is, we are only interested in the total number
of monochromatic regions. The following theorem states this formally:

Theorem 3. For any 0 < ε < 1, there exists a family of triangulations that do
not have O(n1−ε)-bounded o(log n)-scattered floodings.

To prove Theorem 3, we show how to construct, for any pair of parameters n
and ε, a triangulation T of size O(n) as in Theorem 3. Then we define a tree X
that captures the structure of T ; prove that the scatter of any O(n1−ε)-bounded
flooding of T cannot be less than the minimal scatter of a flooding of X, defined
below; and finally prove that X does not have an o(log n)-scattered flooding.

To construct triangulation T , we place triangles in the plane and then trian-
gulate the regions bounded by these triangles. Every such triangle ∆ is said to
be at a level (i, j). We compare levels lexicographically; that is, (i, j) < (i′, j′) if
either i < i′ or i = i′ and j < j′.

The first triangle we place is a bounding triangle at level (0, 0). All subsequent
triangles are placed inside this triangle. After placing the bounding triangle, we
iteratively place two level-(i + 1, 0)-triangles into every level-(i, 0) triangle until
the last level (`, 0) we produce contains between nε′ and 2nε′ triangles, where ε′ =
ε/2. Observe that ` ≥ log(nε′) = ε′ · log n. We call levels (0, 0), (1, 0), . . . , (`, 0)



Fig. 1. The construction of a triangulation as in Theorem 3. The nested triangles in
the hierarchy are shown in bold. Thin edges show a possible triangulation obtained
from this hierarchy of triangles.

branching levels. Now we continue by placing triangles at non-branching levels
(i, j), j > 0. Let m = dn1−ε′e. Then we place one level-(i, j) triangle ∆, for
0 ≤ i ≤ ` and 1 < j < m, into every level-(i, j − 1) triangle ∆′ so that the level-
(i + 1, 0) triangles contained in ∆′ are also contained in ∆. We obtain our final
triangulation T by triangulating the regions between triangles at consecutive
levels (see Figure 1). To avoid confusion, we refer to the nested triangles we
place during the construction of T as triangles and to the triangular faces of T
as faces. Our first observation proves that T has the desired number of faces.

Observation 2. Triangulation T has O(n) faces.

Proof. The number of triangles at level (`, 0) is at most 2nε′ . The number of tri-
angles at all branching levels is at most twice that. Every triangle at a branching
level (i, 0) contains m = dn1−ε′e triangles at non-branching levels (i, j). Hence,
the total number of triangles is O(nε′ · n1−ε′) = O(n). Since every triangle con-



tributes 3 vertices to the vertex set of T , T has O(n) vertices and hence, by
Euler’s formula, O(n) faces. ut

We call the region bounded by two triangles ∆ and ∆′ such that ∆′ is con-
tained in ∆ and these triangles are at levels (i, j) and (i, j + 1), for some i
and j, a ring. If ∆ and ∆′ are at levels (i, 0) and (i, m − 1), respectively, we
call the region bounded by ∆ and ∆′ a tube. The next observation establishes
that every O(n1−ε)-bounded colouring of T has to contain a sufficient number
of monochromatic rings, which is the key to lower-bounding the scatter of any
O(n1−ε)-bounded flooding of T by the scatter of floodings of certain trees.

Observation 3. Every O(n1−ε)-bounded colouring c of T colours at least one
ring in every tube completely white or completely black.

Proof. Assume that there is a tube in T none of whose rings is monochromatic;
that is, every ring contains at least one black and at least one white face. Then
there is at least one boundary edge between black and white faces in every ring in
this tube. Since there are dn1−ε′ − 1e = ω(n1−ε) rings per tube, this contradicts
the assumption that c is O(n1−ε)-bounded. ut

Next we define a tree X whose floodings lower-bound the scatter of any
O(n1−ε)-bounded flooding of T . We begin by constructing a tree X0: Tree X0

contains one node per region that is bounded by a set of triangles and does not
contain any triangle. There is an edge between two nodes if the corresponding
regions have a common triangle on their boundaries. Tree X is obtained from
X0 by replacing every maximal path whose internal nodes have degree two with
an edge. The nodes of X represent the exterior triangle of T , the regions that
are bounded by three triangles, and the triangles that do not contain any other
triangles. The edges of X represent the tubes of T .

For every O(n1−ε)-bounded colouring c of T , we define a colouring c′ of the
edges of X as follows: By Observation 3, every tube of T contains either a black
or a white ring, or both. We colour the corresponding edge of X black if there
is a black ring in the tube and white if all rings in the tube are either white or
bichromatic.

A monochromatic subtree of X under colouring c′ is a maximal subtree all of
whose edges have the same colour. We call a colouring of X s(n)-scattered if it
defines at most s(n) monochromatic subtrees of X. A flooding of X is defined
analogously to a flooding of T , the only difference being that we colour edges.
A flooding is s(n)-scattered if all its colourings are s(n)-scattered.

The next lemma proves that the number of monochromatic subtrees of X
defined by c′ is a lower bound on the number of monochromatic regions of T
defined by colouring c.

Lemma 7. For every O(n1−ε)-bounded colouring c of T with k monochromatic
regions, the corresponding colouring c′ of X defines at most k monochromatic
subtrees of X.



Proof. Let k′ be the number of monochromatic subtrees of X under colouring
c′. We prove that k ≥ k′. If there are at most two monochromatic subtrees,
the lemma is trivial because c cannot define less than one region of T and if X
has two monochromatic subtrees, then T has two regions of different colours. So
assume that there are at least three monochromatic subtrees in X. We prove
that, for each of these subtrees, there is at least one monochromatic region in T .

Consider two black subtrees X1 and X2 and two edges e1 ∈ X1 and e2 ∈ X2.
Since X1 6= X2, there has to be at least one white edge e′ on the path connecting
e1 and e2. Since edges e1 and e2 are black, there is at least one black face in
each of the tubes represented by these edges. Call these faces f1 and f2. Edge e′

is white because there is no black ring in the tube represented by e′. Hence, by
Observation 3, this tube contains at least one white ring. Since e′ is on the path
from e1 to e2 in X, this ring separates f1 from f2. Therefore, f1 and f2 belong
to different black regions of T . This proves that, for every black subtree of X,
there is at least one black region in T . A symmetric argument shows that the
number of white regions of T is at least the number of white subtrees of X. ut

The following is an easy consequence of Lemma 7.

Corollary 1. If T has an O(n1−ε)-bounded s(n)-scattered flooding, then X has
an s(n)-scattered flooding.

We have to show that X does not have an o(log n)-scattered flooding. Observe
that, by the construction of T and X, X has 2h nodes, for some integer h.

Lemma 8. Let X have 2h nodes. Then X does not have an bh/2c-scattered
flooding.

Proof. Observe that, if we root X at the node representing the exterior face, X
is a complete binary tree with 2h−1 leaves whose root has an extra parent. We
call such a tree a hanger. Next we use induction on h to prove that a hanger
with 2h nodes does not admit an bh/2c-scattered flooding.

If h ≤ 3, the claim holds trivially because every colouring is at least 1-
scattered and every flooding of a tree with more than one edge is at least
2-scattered. So assume that h > 3 and that the claim holds for h − 2. Let
F = (c0, c1, . . . , c2h−1) be a flooding of a hanger H with 2h nodes. By removing
the root of H, its child, and the three edges incident to these vertices, we par-
tition H into two complete subtrees; both subtrees can be partitioned into two
hangers with 2h−2 nodes. We denote these hangers as H1,H2,H3,H4. Since the
restriction of F to any Hj is a flooding of Hj with duplicate consecutive colour-
ings, there have to be colourings ci1 , ci2 , ci3 , ci4 , i1 < i2 < i3 < i4, such that the
restriction of cij

to Hj defines at least bh/2c monochromatic subtrees of Hj . If,
for any colouring cij , H−Hj is not monochromatic, cij defines at least bh/2c+1
monochromatic subtrees of H. Now we observe that, for colouring ci2 , H − H2

cannot be monochromatic. Indeed, ci2 succeeds ci1 , so H1 contains at least one
edge that is coloured black by ci2 ; ci2 precedes ci3 , so H3 contains at least one
edge that is coloured white by ci2 . Hence, H does not have an bh/2c-scattered
flooding. ut



To complete the proof of Theorem 3, it suffices to observe that X has Θ(nε′)
nodes. By Lemma 8, this implies that X does not have an o(log n)-scattered
flooding and, hence, by Corollary 1, that T does not have an O(n1−ε)-bounded
o(log n)-scattered flooding.

Acknowledgements. We would like to thank two anonymous referees for point-
ing out the relationship of the triangulation flooding problem to the large number
of problems discussed in the introduction.
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