
September 6, 2005 13:40 WSPC/Guidelines flooding

Boundary-Optimal Triangulation Flooding

Richard J. Nowakowski

Department of Mathematics and Statistics, Dalhousie University

Halifax, NS B3H 3J5, Canada

rjn@mathstat.dal.ca

Norbert Zeh

Faculty of Computer Science, Dalhousie University

Halifax, NS B3H 1W5, Canada

nzeh@cs.dal.ca

Given a planar triangulation all of whose faces are initially white, we study the problem
of colouring the faces black one by one so that the boundary between black and white
faces as well as the number of connected black and white regions are small at all times.
We call such a colouring sequence of the triangles a flooding. We prove that a flooding
with boundary size O(

√
n) and O(log n) regions can be computed in O(n log n) time.

We also prove that it is in general impossible to guarantee boundary size O(n1−ǫ), for
any ǫ > 0, and a number of regions that is o(log n), where n is the number of faces of
the triangulation.

Keywords: Planar triangulations, separators, graph layout.

1. Introduction

We study the following triangulation flooding problem posed by Hurtado: Given a

planar triangulation all of whose triangles are initially white, find an ordering of

the triangles such that, when colouring the triangles black in this order, the number

of connected monochromatic regions and the boundary between white and black

regions are small at all times.1

In this paper, we provide an O(n log n)-time algorithm that finds an order of

colouring the triangles such that, at all times, the boundary between the black and

the white regions has size O(
√

n), there are O(log n) white regions, and there is

only one black region. This is best possible up to constant factors: At the time

when exactly half the faces are black, the boundary vertices form a 1

2
-separator.

Since Lipton and Tarjan (Ref. 2) show that the minimum size of such a separator

is Ω(
√

n) in the worst case, we cannot hope to achieve a flooding with boundary

size o(
√

n) in the worst case. As for the number of white regions, we show that, for

any ǫ > 0, there exists a family of triangulations such that, if a boundary size of

O(n1−ǫ) is desired, there have to be Ω(log n) monochromatic regions at some point

during the colouring process.

1

September 6, 2005 13:40 WSPC/Guidelines flooding

2

The triangulation flooding problem can be rephrased as a layout problem of

the dual of the triangulation: Given a 3-regular planar graph, find a linear layout

(v1, v2, . . . , vn) of small cutwidth and such that, for every cut (Vi, V \Vi), the number

of connected components of G − Ei is small, where Vi = {v1, v2, . . . , vi} and Ei is

the set of edges with exactly one endpoint in Vi; that is, the edges in Ei cross the

cut.

Layouts of small cutwidth have applications in network reliability (see Ref. 3),

graph drawing (see Ref. 4), and rendering and stream processing of triangular

meshes (see Refs. 5, 6, 7). The cutwidth of a graph is also closely related to its

search number, which is relevant in VLSI design (see Ref. 8) and network security

(see Refs. 9, 10, 11). See Ref. 12 for a comprehensive survey of graph layout problems

and their applications. Next we discuss some results in this area that are closely

related to our work.

It is well-known that every planar graph of maximal degree d has cutwidth

O(
√

dn).13 For 3-regular planar graphs, this implies that their cutwidth is O(
√

n).

Our result shows that 3-regular planar graphs have linear layouts of cutwidth O(
√

n)

that are “well-behaved” in the sense that their cuts do not partition the graph into

too many connected components.

The following model for rendering a triangular mesh is studied in Ref. 5: Vertices

are pushed onto (and popped from) a vertex stack. To render a triangle, it is

necessary that all three vertices of the triangle are on the stack. The question studied

in Ref. 5 is to determine the stack size required to render any triangular mesh while

pushing every vertex onto the stack only once. It is shown that a stack of size

O(
√

n) suffices. In order to obtain this result, a recursive separator decomposition

is used, similar to the one used in Ref. 13 to compute a layout of small cutwidth.

Our approach for finding a colouring sequence of the triangles also uses a recursive

separator decomposition. The main difference is that we use simple-cycle separators

(see Ref. 14) in our partition and that we combine these separators carefully to keep

the number of monochromatic regions small.

In Refs. 6, 7, the problem of processing large triangular meshes is studied. More

precisely, the processed meshes are several gigabytes in size and, therefore, cannot

be processed in the main memory of commodity computers. The paradigm for

processing such gigantic meshes proposed in Refs. 6, 7 is the following: Read the

mesh from disk, one triangle at a time; process the triangles in memory; and write

processed triangles to disk, one at a time. THe processing of triangles often depends

on their neighbourhood or at least on their interaction with already processed

neighbours. Hence, in order to be able to keep the necessary information in memory,

it is beneficial to keep the boundary between processed an unprocessed triangles

small at all times. This is very similar to our flooding problem if we consider black

triangles to be those that have already been processed and white triangles to be

the unprocessed ones. Minimizing the scatter of the flooding may help to reduce

the amount of book-keeping that is required in these applications.

Finally, we want to point out the relationship between our results and the graph

Norbert Zeh
Pencil

Norbert Zeh
Pencil

Norbert Zeh
Note
Marked set by Norbert Zeh

Norbert Zeh
Note
Marked set by Norbert Zeh

September 6, 2005 13:40 WSPC/Guidelines flooding

3

search problem. In this problem, a number of searchers try to clean the edges of

a graph all of whose edges are initially contaminated. In order to clean an edge, a

searcher has to move along the edge; if there exists a path between a contaminated

edge and a clean edge that is free of searchers, the clean edge is recontaminated. The

search number of a graph is the minimal number of searchers that are sufficient to

clean the graph. The connected search number is the minimal number of searchers

that are sufficient to clean the graph and, in addition, guarantee that the graph

spanned by clean edges is connected at all times. Determining the search number

of a graph is NP-complete.15 For graphs of maximal degree 3, it is known that the

search number is equal to the graph’s cutwidth.16 Using the result of Ref. 13, this

implies that the search number of a 3-regular planar graph is O(
√

n). In fact, the

proof in Ref. 13 immediately implies that the connected search number of a 3-regular

planar graph is O(
√

n). Our result proves that, for 3-regular planar graphs, O(
√

n)

searchers suffice to clean the graph while keeping the clean subgraph connected and

keeping the number of maximal connected contaminated subgraphs small.

2. Preliminaries

In this section, we introduce the terminology used in this paper and discuss previous

results that are used in our algorithms.

Let T be a given planar triangulation with n faces (triangles). A colouring c of

T is an assignment of a colour c(f) ∈ {black, white} to every face f of T . Colouring

c is trivial if it colours all faces black or all faces white. The boundary ∂c of a

non-trivial colouring c is the set of edges in T whose two adjacent triangles have

different colours. We say that a colouring c is t(n)-bounded if |∂c| ≤ t(n). Consider

the connected components of R
2 \ ∂c. Each of these components contains either

only black or only white faces. Accordingly, we call such a region black or white.

We define W and B to be the union of all white and black faces, respectively. We

say that colouring c is (b(n), w(n))-scattered if B consists of at most b(n) connected

regions and W consists of at most w(n) connected regions. The colouring is s(n)-

scattered if the total number of monochromatic regions is at most s(n); that is,

a (b(n), w(n))-scattered colouring is also (b(n) + w(n))-scattered. See Fig. 1 for

illustrations of these definitions.

The black-count of a colouring c is the number of faces f of T such that c(f) =

black. A flooding is a sequence F = (c0, c1, . . . , cn) of colourings such that, for

all 0 ≤ i ≤ n, the black-count of colouring ci is i and ci(f) = black implies

that ci+1(f) = black. We say that a flooding F is t(n)-bounded, (b(n), w(n))-

scattered, or s(n)-scattered if every non-trivial colouring in F is t(n)-bounded,

(b(n), w(n))-scattered, or s(n)-scattered, respectively. See Fig. 2 for illustrations of

these definitions.

If both regions W and B defined by colouring c are connected, the boundary

of c is a simple cycle C. We call this cycle a simple-cycle separator of T . Given an

assignment of weights to the faces of T such that the weights of all faces sum to 1,

September 6, 2005 13:40 WSPC/Guidelines flooding

4

Fig. 1. A (3, 3)-scattered, 13-bounded colouring. There are 3 black and 3 white regions. The 13
boundary edges are shown in bold.

Fig. 2. A (2, 2)-scattered, 8-bounded flooding that starts with the central face and ends with the
exterior face. The colouring with maximal scatter and largest boundary size is the one shown in
the center (after colouring 4 faces).

we call the cycle C a balanced simple-cycle separator if the total weight of the faces

in each of the regions W and B is at most 2/3. The size of a simple-cycle separator

is the number of edges on the cycle. Miller shows the following result:

Theorem 1. Given a planar triangulation T with n vertices and a weight function

September 6, 2005 13:40 WSPC/Guidelines flooding

5

that assigns non-negative weights to the faces of T such that the total weight of all

faces is at most 1 and no face has weight more than 2/3, a balanced simple-cycle

separator of size at most
√

8n for T can be found in linear time.14

To obtain a separator as in Theorem 1, Miller uses a non-trivial refinement

of the separator algorithm by Lipton and Tarjan (see Ref. 2). Lipton and Tarjan

compute a breadth-first search (BFS) tree of the triangulation and then remove two

appropriate levels to partition the tree into a top, middle, and bottom part. The

top and bottom parts have weight at most 2/3 each, while the middle part may

have weight exceeding 2/3. However, the middle part is guaranteed to have small

diameter, so that a fundamental cycle w.r.t. an appropriate spanning tree can be

used to partition the middle part into two pieces of weight at most 2/3 each. Since

the removal of the separator produces two or more pieces, each of which has weight

at most 2/3, these pieces can be grouped together to obtain two graphs of weight

at most 2/3 each.

Miller’s refinement of this procedure consists of two parts: First, instead of

partitioning the graph into three pieces, as Lipton and Tarjan do, intuitively he

merges faces of T to form larger faces until he obtains a subgraph T ′ of T that has

diameter O(
√

n) and each of whose faces has weight at most 2/3 and a boundary

of length O(
√

n). When merging two faces, the weight of the resulting face is the

sum of the weights of the two merged faces. The final separator is a cycle in T ′. To

determine which faces to merge, he performs BFS in the face incidence graph of

T and then uses a search procedure similar to Lipton and Tarjan’s to identify the

subset of faces to be merged as those corresponding to subtrees in the BFS-tree.

The second refinement is the manner in which the cycle separator in T ′ is found.

While Lipton and Tarjan use a single fundamental cycle in a BFS-tree of the low-

diameter graph, Miller identifies a collection of fundamental cycles and shows that

the cycle space spanned by these fundamental cycles contains a cycle that is the

desired separator.

3. New Results

We prove that every planar triangulation T has an O(
√

n)-bounded (1,O(log n))-

scattered flooding. More strongly, given a face f0 of T , there exists such a flooding

F = (c0, c1, . . . , cn) such that c1(f0) = black; that is, f0 is the first triangle coloured

black, and every subsequent triangle is coloured black only after at least one of its

neighbours has been coloured black. We show that such a flooding can be computed

in O(n log n) time. Section 4 is dedicated to proving this result.

We also prove that the result from Section 4 is best possible in a very strong

sense: For any 0 < ǫ < 1, there exists a family of triangulations that do not have

O(n1−ǫ)-bounded o(log n)-scattered floodings. This result is presented in Section 5.

September 6, 2005 13:40 WSPC/Guidelines flooding

6

4. Floodings with Small Boundary and Low Scatter

In this section, we show how to efficiently find a flooding for a given triangulation

that maintains a small boundary at all times, keeps the black region connected,

and creates only few white regions at any time. The following theorem states this

formally:

Theorem 2. For every planar triangulation T with n faces and every face f0 of T ,

there exists an O(
√

n)-bounded (1,O(log n))-scattered flooding F = (c0, c1, . . . , cn)

such that c1(f0) = black. Such a flooding can be computed in O(n log n) time.

To prove Theorem 2, we compute a recursive partition P of T using simple-cycle

and multi-path separators and use an ordering of the leaves of P to compute the

order in which to colour the faces of T .

In Section 4.1, we define precisely what type of separators we use to obtain this

partition and show how to obtain the partition P . In Section 4.2, we show how to

order the leaves of P and how to flood each of these leaves so that the resulting

flooding satisfies the conditions of Theorem 2.

4.1. A Partition into Partial Triangulations

The partition P we compute recursively partitions T into partial triangulations. A

partial triangulation is an embedded planar graph G with the following properties

(see Fig. 3):

(i) Every face of G is marked as either interior or exterior.

(ii) All interior faces are triangles.

(iii) The union of all interior faces forms a connected region.

(iv) No two exterior faces share an edge.

Fig. 3. A partial triangulation. The interior faces are shaded. The boundary is shown in bold.

The boundary ∂G of G is the set of edges on the boundaries of the exterior

faces. For a partial triangulation G with parent G′ in P , the proper boundary

∂∗G of G is the set of boundary edges that are not boundary edges of G′; that

is, ∂∗G = ∂G \ ∂G′. We show how to compute a partition P of T into partial

triangulations with the following properties:

September 6, 2005 13:40 WSPC/Guidelines flooding

7

(P1) The root of P is T .

(P2) Every leaf triangulation has at most
√

n interior faces.

(P3) Every non-leaf triangulation has more than
√

n interior faces.

(P4) Every partial triangulation in P whose parent has size h has size at most 2

3
h

and a proper boundary of size O(
√

h).

An immediate consequence of Properties (P1), (P3), and (P4) is that the depth

of partition P is O(log n).

4.1.1. Separators of Partial Triangulations

To compute partition P , we recursively partition T by applying the following lemma

until all resulting partial triangulations have at most
√

n interior faces:

Lemma 1. Every partial triangulation G with n ≥ 2 interior faces has a separator

of one of the following two types:

(i) A simple cycle C of length at most
√

8n + 16 such that at most 2n/3 interior

faces are on either side of C.

(ii) A set of simple paths P1, P2, . . . , Pk of total length at most
√

8n + 16 such that

each path has its endpoints, but no internal vertices, in ∂G and each of the

regions into which the interior of G is partitioned by these paths contains at

most 2n/3 faces.

Such a separator can be found in linear time.

Proof. We triangulate the exterior faces of G and give weight 1/n to every interior

face of G and weight 0 to every triangle produced by triangulating the exterior

faces. We use Theorem 1 to find a balanced simple-cycle separator C of the resulting

triangulation T . Since the interior of G is connected, T has at most n + 2 vertices.

Hence, by Theorem 1, the cycle C has length at most
√

8n + 16. If C has at most

one vertex in ∂G, we have Case (i). Otherwise, let P1, P2, . . . , Pk be the maximal

subpaths of C that have no internal vertices in ∂G. Since C is simple, every path

Pi is simple and no two paths Pi and Pj , i 6= j, share an internal vertex. Every

region in the partition of the interior of G is completely on one side of C and, thus,

has size at most 2n/3. Thus, we have Case (ii).

The complexity of this procedure is linear: The exterior faces of G are easily

triangulated in linear time. By Theorem 1, finding the cycle C takes linear time.

Assuming that the vertices of G are labelled as belonging to ∂G or as being interior,

distinguishing between Cases (i) and (ii), and extracting paths P1, P2, . . . , Pk if we

have the latter, takes a single scan of the edge list representing C.

Given a partial triangulation G, a separator as in Lemma 1 partitions G into

partial triangulations G1, G2, . . . , Gh as follows (see Fig. 4): Let R1, R2, . . . , Rh

be the connected regions into which the interior of G is divided by the separator

September 6, 2005 13:40 WSPC/Guidelines flooding

8

P1 P2

P3

G1

G1

G2

G2

Fig. 4. The separator consisting of paths P1, P2, and P3 partitions the interior of the partial
triangulation into the two shown partial triangulations G1 and G2. The interior faces are shaded.

The boundary edges are shown in bold. The diagonals of the exterior faces that belong to the
cycle C from which the multi-path separator has been derived are dashed.

given by the lemma. Then the partial triangulation Gi has the faces of Ri as its

interior faces. The exterior faces of Gi are bounded by the boundary edges of Ri.

The following lemma is crucial for bounding the number of monochromatic regions

produced by our flooding:

Lemma 2. If G has an exterior face, then at most one of the partial triangulations

G1, G2, . . . , Gh does not share an edge with an exterior face of G.

Proof. Assume that there are two partial triangulations Gi and Gj , i 6= j, that

do not share an edge with an exterior face of G. Then the edges in ∂Gi and ∂Gj

belong to C. Since ∂Gi and ∂Gj consist of simple cycles, the simplicity of C implies

that ∂Gi = ∂Gj = C. In other words, Gi is the interior of C and Gj is the exterior

of C. But this is impossible because one of the two sides has to include an exterior

face of G.

4.1.2. Computing the Partition

Partition P is obtained by repeated application of Lemma 1. The root of P is

T . Every partial triangulation G in P that has more than
√

n interior faces is

partitioned into partial triangulations G1, G2, . . . , Gk using Lemma 1. These are the

children of G in P . Each Gi is partitioned recursively if the number of its interior

faces exceeds
√

n. Next we prove that partition P has the desired properties.

Lemma 3. Partition P has Properties P1–P4.

September 6, 2005 13:40 WSPC/Guidelines flooding

9

Proof. Properties P1–P3 are explicitly ensured. Observe that all proper boundary

edges of a partial triangulation H in P belong to the separator used to partition

the parent H ′ of H . By Lemma 1, this separator has size O(
√

h), where h is the

number of faces of H ′, and partitions H ′ into partial triangulations of size at most

2h/3, one of which is H . This proves Property P4.

For constructing the flooding, it is necessary to have the following auxiliary

information about P available: for every partial triangulation G in P , a complete

list of the boundary edges and a classification of these edges as proper or inherited

from the parent; for every partial triangulation G in P , a partition dual G◦, which

has one vertex G◦

i per child Gi of G and an edge (G◦

i , G
◦

j) if Gi and Gj share at

least one boundary edge; the dual T ∗ of T . Every proper boundary edge e between

Gi and Gj stores a pointer to the edge (G◦

i , G
◦

j) and information which of the

endpoints of e∗ belongs to G∗

i and which one belongs to G∗

j .

Lemma 4. Partition P and the auxiliary information just described can be com-

puted in O(n log n) time.

Proof. Computing the dual of G takes linear time. To analyze the cost of comput-

ing the partition P and the partition dual, we observe that the former is achieved by

applying Lemma 1 to every non-leaf triangulation H in P , and the latter is achieved

by computing the dual of the interior faces of H and contracting edges that are not

dual to proper boundary edges of the children of H . Both steps take O(|H |) time

for every partial triangulation H in P . The total size of all partial triangulations is

O(n log n) because there are O(log n) levels in P and the partial triangulations at

every level define a partition of T into face-disjoint partial triangulations. Hence,

the total cost of computing P and the partition duals is O(n log n).

4.2. Computing the Flooding

Given partition P , we show in this section how to order the leaves of P and how to

flood each of them in turn, in order to obtain the desired flooding. The ordering of

the leaves is discussed in Section 4.2.1. The procedure for flooding leaf triangulations

is presented in Section 4.2.2. In Section 4.2.3, we argue that flooding the leaves of P
in the order described in Section 4.2.1, and using the procedure from Section 4.2.2

to do so, produces the desired flooding.

4.2.1. Ordering the Leaf Triangulations

We obtain the ordering of the leaves of P as their left-to-right ordering defined

by ordering the children of every internal node of P . To order the children of

all internal nodes of P , we apply a recursive procedure that starts by ordering the

children of the root and then orders the children of the nodes in the subtrees rooted

at the children of the root. After ordering the children of all ancestors of a partial

triangulation G in P , we order the children of G as follows:

Norbert Zeh
Pencil

September 6, 2005 13:40 WSPC/Guidelines flooding

10

e

H ′

G = H

H ′′
G′

G = H

H ′′

G′

H ′

Fig. 5. Edge e is black w.r.t. G and white w.r.t. any descendant of H′ that has e on its boundary.

We start by colouring the boundary edges of G black or white (see Fig. 5). The

idea is to capture whether the triangle on the other side of this edge will be black or

white by the time G will be flooded. Formally, we define this colouring as follows:

Let e be a boundary edge of G, let f be the face of G incident to e, and let f ′ be

the other face incident to e (the one that does not belong to G). Let G′ be the leaf

triangulation that contains f ′, let H ′′ be the lowest common ancestor of G and G′

in P , let H be the child of H ′′ that is an ancestor of G, and let H ′ be the child of

H ′′ that is an ancestor of G′. Then edge e is black if H ′ precedes H in the ordering

of the children of H ′′, and white otherwise. Note that the colour of an edge depends

on the partial triangulation that is considered. If e is black w.r.t. G, then e is black

w.r.t. every descendant of H that has e on its boundary and white w.r.t. every

descendant of H ′ that has e on its boundary.

Our goal now is to order the children of G so that every child shares an edge

with a triangle that has been coloured before and so that colouring the children of G

in this order does not introduce too many white “holes” in intermediate colourings.

The former is captured by the first condition in the following lemma; the latter is

captured by the second condition.

Lemma 5. If a partial triangulation G in P has f0 as an interior face or has at

least one black boundary edge, then the children of G can be arranged in an order

G1, G2, . . . , Gh that satisfies the following two conditions:

(i) If f0 is an interior face of G, then f0 is an interior face of G1 and every child

Gi, i > 1, shares an edge with a child Gj , j < i. If f0 is not an interior face

of G, then every child Gi of G shares an edge with a child Gj, j < i, or has

a black boundary edge of G on its boundary.

(ii) There is at most one child Gi of G that does not share an edge with a child

Gj, j > i, and does not have a white boundary edge of G on its boundary.

Proof. We partition the children of G into three groups G1, G2, and G3: If f0 is

an interior face of G, then G2 contains the child G1 that contains f0; all remaining

faces are in G3. G1 is empty in this case. If f0 is not an interior face of G, then

G3 contains all children whose boundary edges are white or proper. G2 contains

September 6, 2005 13:40 WSPC/Guidelines flooding

11

all children that have at least one black boundary edge and at least one boundary

edge that is white or is shared with a child in G3. Group G1 contains the remaining

children, that is, those whose boundary edges are either black or shared with other

children in G1 and G2. If groups G2 and G3 are empty, we move an arbitrary child

from group G1 to group G2.

In the ordering of the children of G, the children in G1 precede the children in

G2, which in turn precede the children in G3. The children in G2 are arranged in no

particular order. The children in G3 are arranged so that each such child Gi shares

an edge with a child Gj , j < i. Since G1 ∪ G2 is non-empty, the connectivity of

the interior of G implies the existence of such an ordering. The children in G1 are

arranged so that each such child Gi shares an edge with a child Gj , j > i. Again,

the non-emptiness of G2 ∪ G3 and the connectivity of the interior of G imply the

existence of such an ordering.

The constructed ordering satisfies Condition (i): If f0 is in G, then Condition (i)

is trivially satisfied by the constructed ordering. So assume that f0 is not in G. Then

every face in G1 ∪G2 has a black boundary edge and every child Gi in G3 shares an

edge with a child Gj , j < i.

To see that Condition (ii) is satisfied, observe that, by Lemma 2, at most one

child in G3 does not have a white boundary edge. Every child Gi in G1 shares an

edge with a child Gj , j > i; every child in G2 shares an edge with a child Gj in G3

or has a white boundary edge.

The next lemma shows that the children of all partial triangulations in P and,

hence, the leaves of P can be ordered efficiently.

Lemma 6. The children of all partial triangulations in P can be ordered in

O(n log n) time.

Proof. Once we have computed the order of the children of G, we direct the edges

of the partition dual of G so that edge (G◦

i , G
◦

j) is directed from G◦

i to G◦

j if and

only if Gi precedes Gj in the computed order of the children of G. Then we direct

all edges of G∗ that are dual to proper boundary edges of the children of G. For

such an edge (f∗, g∗) with f ∈ Gi and g ∈ Gj , we choose its direction from f∗ to

g∗ if and only if the edge (G◦

i , G
◦

j) in the partition dual of G is directed from G◦

i to

G◦

j . These edge directions are used by the descendants of G to order their children.

In particular, after all ancestors of G have directed the edges of their duals to

reflect the order of their children, we use this information as follows to compute the

desired grouping of the children of G: For every child Gi, we inspect the edges in

∂Gi \ ∂∗Gi. Such an edge is black if its dual edge (f∗, g∗) with g ∈ Gi is directed

towards g∗. Otherwise, the edge is white. By inspecting all edges in ∂Gi \ ∂∗Gi, we

determine whether Gi has at least one black and/or at least one white edge on its

boundary. This information is sufficient to compute the grouping of the children of

G as in Lemma 5. Next we compute a spanning tree of the partition dual of G and

remove all vertices dual to children in G2. Since no vertex in G1 is adjacent to a

September 6, 2005 13:40 WSPC/Guidelines flooding

12

vertex in G3, every subtree in the resulting forest contains vertices from either G1 or

G3, but not both. At least one of the vertices in every subtree must be adjacent to

a vertex in G2. We choose this vertex to be the root. For a G1-subtree, we compute

a postorder numbering and arrange its vertices in this order. The vertices in a G3-

subtree are arranged according to a preorder numbering of the tree. Finally, we

concatenate the sorted vertex lists of all G1-subtrees; followed by all vertices in G2;

followed by the concatenation of the sorted vertex lists of all G3-subtrees.

The marking of the children of a partial triangulation G, depending on the

colours of their non-proper boundary edges, requires an inspection of all boundary

edges of G. This takes O(|G|) time. The computation of a spanning tree of the par-

tition dual of G and the removal of the vertices in G2, including their incident edges,

can also be carried out in O(|G|) time. Finally, it takes linear time to compute the

numberings of the vertices of the different trees and to concatenate these sorted

vertex lists. Since we repeat this process once for every partial triangulation, the

cost is bounded by the total size of all partial triangulations, which is O(n log n).

Given the ordering of the leaves of P produced by top-down application of

Lemma 5, we flood these partial triangulations in this order. The first leaf contains

f0 and is flooded starting from f0. Every subsequent triangulation G is flooded

starting from a face that has a black edge of G on its boundary. The following

lemma shows that this is possible.

Lemma 7. Every leaf triangulation, except the one containing f0, has a black

boundary edge.

Proof. We prove by induction on the depth d that every level in P contains at

most one triangulation with no black boundary edge, namely the one that contains

f0. This claim implies the lemma.

For d = 0, the claim is trivial because the root is the only triangulation at this

level and contains f0.

So assume that the claim holds for some level d. We want to show that it holds

for level d + 1. Consider the partial triangulation G at level d that contains f0. By

Lemma 5(i), the child of G that contains f0 is the first child in the ordering of the

children of G. Any other child shares an edge with a child that precedes it in the

ordering; thus, it has a black boundary edge.

For a partial triangulation G that does not contain f0, the ordering is chosen

so that every child either inherits a black boundary edge from G or shares an edge

with a a child of G that precedes it. Hence, every child of G has a black boundary

edge.

September 6, 2005 13:40 WSPC/Guidelines flooding

13

4.2.2. Flooding Leaf Triangulations

Maintaining a small boundary when flooding a leaf of P is trivial because every

leaf has at most
√

n faces. The next lemma shows that it is possible to bound the

scatter by log
√

n.

Lemma 8. A leaf triangulation G can be flooded starting from any face f of G so

that, at all times, the boundary between black and white interior faces of G has size

at most
√

n + 2, the number of black regions interior to G is one, and the number

of white regions interior to G is at most log
√

n.

Proof. We keep the black region connected by colouring f black and subsequently

colouring a face f ′ black only if at least one of its adjacent faces in G is black.

This keeps the black region connected. The bound on the boundary size follows

immediately from the fact that G has at most
√

n interior faces. To guarantee that

there are never more than log
√

n white regions, we choose the order in which to

colour triangles using the following recursive procedure: Let R be the current region

to be coloured. The next face in R to be coloured partitions R into at most two

regions. We flood each of them recursively, first the smaller one, then the bigger one.

If we consider this recursive partition of the interior of G into white regions, then,

at any time, only log
√

n ancestors of the current region can have siblings waiting to

be flooded because each such sibling is of at least the same size as the corresponding

ancestor of the current region. Since each sibling of such an ancestor is a connected

region, the number of white regions cannot be greater than the number of these

siblings.

4.2.3. Flooding T

It remains to show that, by flooding the leaves of P in the order described in

Section 4.2.1, and by using the procedure from Section 4.2.2 to do so, we obtain

a flooding F that has the desired properties. Each of the following three lemmas

establishes one of these properties.

Lemma 9. Every colouring in F defines only one black region.

Proof. Since we flood leaf triangulations in the order defined by recursive ordering

of the children of every node, the first triangulation we flood contains f0. For every

subsequent triangulation G, a black boundary edge is one that has a black triangle

on the other side by the time G is flooded. The flooding of G starts at a triangle

incident to such an edge and, by Lemma 8, keeps the black region connected. Hence,

the black region defined by any colouring in F is connected.

Lemma 10. The boundary size of every colouring in F is O(
√

n).

Proof. Consider the leaf G currently being flooded. Only ancestors of G can be

bichromatic. Thus, the boundary of the black region is part of the separators com-

September 6, 2005 13:40 WSPC/Guidelines flooding

14

puted at these ancestors. Since the separator of an ancestor with n′ internal faces

has size O(
√

n′), and the sizes of these ancestors are geometrically decreasing, the

proper ancestors of G contribute O(
√

n) to the boundary size of the colouring. By

Lemma 8, G itself also contributes O(
√

n) to the boundary size.

Lemma 11. Every colouring in F defines at most O(log n) connected white regions.

Proof. Consider the leaf triangulation G currently being flooded. As already ob-

served, only ancestors of G can be bichromatic. It suffices to prove that every ances-

tor contributes at most one white region to the current colouring. This is sufficient

because there are only O(log n) such ancestors and, by Lemma 8, the flooding of

G itself contributes only O(log n) white regions to the current colouring.

We prove this claim by induction on the depths of these bichromatic ancestors.

The separator used to partition the root is a cycle. In particular, the root has only

two children. At the time when the first child is being flooded, the second child

defines a white region.

Now consider the ancestor, G, of the current leaf that is at depth d > 0. By

the induction hypothesis, G’s ancestors contribute at most d− 1 white regions. By

Lemma 5, at most one child Gi of G has no white boundary edge and does not

share an edge with a child Gj , j > i. Thus, at any time, every white child of G,

except Gi, belongs to the same white region as a sibling of an ancestor of G; only

Gi may introduce an additional white region.

We have shown that partition P can be computed in O(n log n) time and that

the leaves of P can be ordered in the same amount of time. Once the leaf ordering

is given, the flooding of every leaf triangulation is easily carried out in linear time;

hence, the total time for flooding T is linear. This completes the proof of Theorem 2.

5. Families of Hard Triangulations

As already mentioned in the introduction, it is in general impossible to obtain an

o(
√

n)-bounded flooding for a given triangulation. In this section, we prove that

the scatter of the flooding in Theorem 2 is also optimal, even if we relax the bound

on the boundary size to O(n1−ǫ), for any 0 < ǫ < 1, and we allow more than one

black region, that is, we are only interested in the total number of monochromatic

regions. The following theorem states this formally:

Theorem 3. For any 0 < ǫ < 1, there exists a family of triangulations that do not

have O(n1−ǫ)-bounded o(log n)-scattered floodings.

To prove Theorem 3, we show how to construct, for any pair of parameters n

and ǫ, a triangulation T of size O(n) as in Theorem 3. Then we define a tree X that

captures the structure of T ; prove that the scatter of any O(n1−ǫ)-bounded flooding

of T cannot be less than the minimal scatter of an edge flooding of X , defined below;

and finally prove that X does not have an o(log n)-scattered flooding.

September 6, 2005 13:40 WSPC/Guidelines flooding

15

5.1. Construction of a Hard Triangulation

To construct triangulation T , we place triangles in the plane and then triangulate

the regions bounded by these triangles. Every such triangle ∆ is said to be at a level

(i, j). We compare levels lexicographically; that is, (i, j) < (i′, j′) if either i < i′ or

i = i′ and j < j′.

The first triangle we place is a bounding triangle at level (0, 0). All subsequent

triangles are placed inside this triangle. After placing the bounding triangle, we

iteratively place two level-(i+1, 0)-triangles into every level-(i, 0) triangle until the

last level (ℓ, 0) we produce contains between nα and 2nα triangles, where α = ǫ/2.

Observe that ℓ ≥ log(nα) = α · log n. We call levels (0, 0), (1, 0), . . . , (ℓ, 0) branching

levels. Now we continue by placing triangles at non-branching levels (i, j), j > 0.

Let m = ⌈n1−α⌉. Then we place one level-(i, j) triangle ∆, for 0 ≤ i ≤ ℓ and

1 < j < m, into every level-(i, j− 1) triangle ∆′ so that the level-(i + 1, 0) triangles

contained in ∆′ are also contained in ∆. We obtain our final triangulation T by

triangulating the regions between triangles at consecutive levels (see Fig. 6). To

avoid confusion, we refer to the nested triangles we place during the construction

of T as triangles and to the triangular faces of T as faces. Our first lemma proves

that T has the desired number of faces.

Lemma 12. Triangulation T has O(n) faces.

Proof. The number of triangles at level (ℓ, 0) is at most 2nα. The number of

triangles at all branching levels is at most twice that. Every triangle at a branching

level (i, 0) contains m = ⌈n1−α⌉ triangles at non-branching levels (i, j). Hence, the

total number of triangles is O(nα ·n1−α) = O(n). Since every triangle contributes 3

vertices to the vertex set of T , T has O(n) vertices and, hence, by Euler’s formula,

O(n) faces.

For two triangles ∆ and ∆′ at levels (i, j) and (i, j + 1), we call the region

bounded by ∆ and ∆′ a ring. If ∆ and ∆′ are at levels (i, 0) and (i, m − 1),

respectively, we call the region bounded by ∆ and ∆′ a tube. The next lemma

establishes that every O(n1−ǫ)-bounded colouring of T has to contain a sufficient

number of monochromatic rings, which is the key to lower-bounding the scatter of

any O(n1−ǫ)-bounded flooding of T by the scatter of edge floodings of certain trees.

Lemma 13. Every O(n1−ǫ)-bounded colouring c of T colours at least one ring in

every tube completely white or completely black.

Proof. Assume that there is a tube in T none of whose rings is monochromatic;

that is, every ring contains at least one black and at least one white face. Then

there is at least one boundary edge between black and white faces in every ring in

this tube. Since there are ⌈n1−α −1⌉ = ω(n1−ǫ) rings per tube, this contradicts the

assumption that c is O(n1−ǫ)-bounded.

September 6, 2005 13:40 WSPC/Guidelines flooding

16

Fig. 6. The construction of a triangulation as in Theorem 3. The nested triangles in the hierarchy
are shown in bold. Thin edges show a possible triangulation obtained from this hierarchy of
triangles.

5.2. The Tube Tree of T

Next we define a tree X that captures the structure of T and such that the minimum

scatter of an edge flooding of X is a lower bound on the scatter of any O(n1−ǫ)-

bounded flooding of T . Intuitively, the edges of X correspond to the tubes of T .

Hence, we call X the tube tree of T .

We begin by constructing a tree X0: Tree X0 contains one node per region that

is bounded by a set of triangles and does not contain any triangle. There is an edge

between two nodes if the corresponding regions have a common triangle on their

boundaries. Tree X is obtained from X0 by replacing every maximal path whose

internal nodes have degree two with an edge. The nodes of X represent the exterior

triangle of T , the regions that are bounded by three triangles, and the triangles

that do not contain any other triangles. The edges of X represent the tubes of T .

Fig. 7 shows the tube tree for the triangulation shown in Fig. 6.

September 6, 2005 13:40 WSPC/Guidelines flooding

17

X

X0

Fig. 7. The construction of the tube tree X for the triangulation T in Fig. 6.

For every O(n1−ǫ)-bounded colouring c of T , we define a colouring c′ of the

edges of X as follows: By Lemma 13, every tube of T contains either a black or a

white ring, or both. We colour the corresponding edge of X black if there is a black

ring in the tube and white if all rings in the tube are either white or bichromatic.

A monochromatic subtree of X under colouring c′ is a maximal subtree all of

whose edges have the same colour. We call an edge colouring of X s(n)-scattered

if it defines at most s(n) monochromatic subtrees of X . An edge flooding of X is

defined analogously to a flooding of T , the only difference being that we colour

edges. An edge flooding is s(n)-scattered if all its colourings are s(n)-scattered.

The next lemma proves that the number of monochromatic subtrees of X defined

by colouring c′ is a lower bound on the number of monochromatic regions of T

defined by colouring c.

Lemma 14. For every O(n1−ǫ)-bounded colouring c of T with k monochromatic

regions, the corresponding colouring c′ of X defines at most k monochromatic sub-

trees of X.

Proof. Let k′ be the number of monochromatic subtrees of X under colouring

c′. We prove that k ≥ k′. If there are at most two monochromatic subtrees, the

lemma is trivial because c cannot define less than one region of T and, if X has two

monochromatic subtrees, then T has two regions of different colours. So assume

that there are at least three monochromatic subtrees in X . We prove that, for each

of these subtrees, there is at least one monochromatic region in T .

Consider two black subtrees X1 and X2 and two edges e1 ∈ X1 and e2 ∈ X2.

Since X1 6= X2, there has to be at least one white edge e′ on the path connecting

e1 and e2. Since edges e1 and e2 are black, there is at least one black face in each

of the tubes represented by these edges. Call these faces f1 and f2. Edge e′ is white

because there is no black ring in the tube represented by e′. Hence, by Lemma 13,

this tube contains at least one white ring. Since e′ is on the path from e1 to e2 in

X , this ring separates f1 from f2. Therefore, f1 and f2 belong to different black

September 6, 2005 13:40 WSPC/Guidelines flooding

18

regions of T . This proves that, for every black subtree of X , there is at least one

black region in T . An analogous argument shows that the number of white regions

of T is at least the number of white subtrees of X .

The following is an easy consequence of Lemma 14:

Corollary 1. If X does not have an s(n)-scattered edge flooding, then T does not

have an O(n1−ǫ)-bounded s(n)-scattered flooding.

5.3. A Lower Bound on the Scatter of Floodings of the Tube Tree

By Corollary 1, it suffices to show that the tube tree X does not have an o(log n)-

scattered edge flooding. Observe that X has the shape of a complete binary tree

whose root has an extra parent. In particular, X has 2h nodes, for some integer

h. We call X an h-hanger. The following lemma proves that X does not have an

⌊h/2⌋-scattered edge flooding. By the construction of X , the number of nodes of X

is proportional to the number of branching triangles used in the construction of T .

Their number is Θ(nα). Hence, h/2 = 1

2
log Θ(nα) = Θ(logn).

Lemma 15. An h-hanger does not have an ⌊h/2⌋-scattered edge flooding.

Proof. We use induction on h to prove the lemma. If h ≤ 3, the claim holds

trivially because every colouring is at least 1-scattered and every flooding of a tree

with more than one edge is at least 2-scattered. So assume that h > 3 and that

the claim holds for h − 2. Let F = (c0, c1, . . . , c2h
−1) be an edge flooding of an

h-hanger H . By removing the root of H , its child, and the three edges incident

to these vertices, we partition H into two complete subtrees; both subtrees can be

partitioned into two (h − 2)-hangers. We denote these hangers as H1, H2, H3, H4.

Since the restriction of F to any Hj is an edge flooding of Hj with duplicate

consecutive colourings, there have to be colourings ci1 , ci2 , ci3 , ci4 , i1 < i2 < i3 < i4,

such that the restriction of cij
to Hj defines at least ⌊h/2⌋ monochromatic subtrees

of Hj . If, for any colouring cij
, H − Hj is not monochromatic, cij

defines at least

⌊h/2⌋ + 1 monochromatic subtrees of H . Now we observe that, for colouring ci2 ,

H −H2 cannot be monochromatic. Indeed, ci2 succeeds ci1 , so H1 contains at least

one edge that is coloured black by ci2 ; ci2 precedes ci3 , so H3 contains at least

one edge that is coloured white by ci2 . Hence, H does not have an ⌊h/2⌋-scattered

flooding.

By Lemma 15, the tube tree of T does not have an o(log n)-scattered edge flood-

ing. By Corollary 1, this implies that triangulation T does not have an O(n1−ǫ)-

bounded o(log n)-scattered flooding. This completes the proof of Theorem 3.

Acknowledgements

This work was partially supported by NSERC and MITACS. We would like to

thank three anonymous referees for pointing out the relationship of the triangulation

September 6, 2005 13:40 WSPC/Guidelines flooding

19

flooding problem to the large number of problems discussed in the introduction.

References

1. F. Hurtado. Open problem posed at the 15th Canadian Conference on Computational
Geometry. 2003.

2. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal

on Applied Mathematics, 36(2):177–189, 1979.
3. D. Karger. A randomized fully polynomial time approximation scheme for the all-

terminal network reliability problem. SIAM Journal on Computing, 29(2):492–514,
1999.

4. P. Mutzel. A polyhedral approach to planar augmentation and related problems. In
Proceedings of the 3rd Annual European Symposium on Algorithms, volume 979 of
Lecture Notes in Computer Science, pages 497–507, 1995.

5. R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for polygon mesh rendering.
ACM Transactions on Graphics, 15(2):141–152, 1996.

6. M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink. Large mesh simplification
using processing sequences. In Proceedings of IEEE Visualization, pages 465–472,
2003.

7. M. Isenburg and S. Gumhold. Out-of-core compression of gigantic polygon meshes.
In Proceedings of SIGGRAPH, pages 935–942, 2003.

8. T. Lengauer. Black-white pebble games and graph separation. Acta Informatica,
16(4):465–475, 1981.

9. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by
mobile agents. In Proceedings of the 14th ACM Symposium on Parallel Algorithms

and Architectures, pages 200–209, 2002.
10. M. Franklin, Z. Galil, and M. Yung. Eavesdropping games: A graph theoretic approach

to privacy in distributed systems. Journal of the ACM, 47(2):225–243, 2000.
11. E. H. Spafford and D. Zamboni. Intrusion detection using autonomous agents. Com-

puter Networks, 34(4):547–570, 2000.
12. J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems. ACM Computing

Surveys, 34(3):313–356, 2002.
13. K. Diks, H. N. Djidjev, O. Sykora, and I. Vrto. Edge separators of planar and outer-

planar graphs with applications. Journal of Algorithms, 14:258–279, 1993.
14. G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs.

Journal of Computer and System Sciences, 32:265–279, 1986.
15. N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriou. The complexity

of searching a graph. Journal of the ACM, 35(1):18–44, 1988.
16. F. Makedon and H. Sudborough. Minimizing width in linear layout. In Proceedings

of the 10th International Colloquium on Automata, Languages, and Programming,
volume 154 of Lecture Notes in Computer Science, pages 478–490. Springer-Verlag,
1983.

