
Connectivity of Graphs Under Edge Flips

Norbert Zeh

Faculty of Computer Science, Dalhousie University,
6050 University Ave, Halifax, NS B3H 2Y5, Canada

nzeh@cs.dal.ca

Abstract

We study the following problem: Given a set V of n vertices and a set E of m edge pairs, we
define a graph family G(V, E) as the set of graphs that have vertex set V and contain exactly
one edge from every pair in E . We want to find a graph in G(V, E) that has the minimal number
of connected components. We show that, if the edge pairs in E are non-disjoint, the problem
is NP-hard. This is true even if an edge is not allowed to appear in more than two edge pairs
and the union of the graphs in G(V, E) is planar. if the edge pairs are disjoint, we provide an
O(n2m)-time algorithm that finds a graph in G(V, E) with the minimal number of connected
components. Our proof of the latter statement is obtained by flipping edges in the graphs in
G(V, E), where the flip of an edge e in a graph G ∈ G(V, E) removes e from G and inserts the
other edge in the pair in E that contains e. We explore also the question whether any graph in
G(V, E) can be transformed into any other graph in G(V, E) using edge flips while guaranteeing
an upper bound on the number of connected components of every intermediate graph.

1 Introduction

Description of the problem. Given a set V of n vertices and a set E of m edge pairs, we define
a graph family G(V, E) as the set of graphs that have vertex set V and contain exactly one edge
from every pair in E . The maximal connectivity problem (MCP) is the problem of finding a graph
G∗ in G(V, E) that has the minimal number of connected components. We call such a graph G∗

maximally connected or maximal. Edelsbrunner [5] proposed MCP as a graph-theoretic formulation
of a problem arising in the repair of self-intersections of triangulated surfaces [6]. We show that,
if the edge pairs in E are non-disjoint, MCP is NP-hard. If the edge pairs are disjoint, we provide
a polynomial-time solution for MCP. We obtain a maximal graph in G(V, E) by starting with an
arbitrary graph in G(V, E) and making only local changes, so-called edge flips, that do not increase
the number of connected components in the graph. We study also the question whether any graph
in G(V, E) can be transformed into any other graph in G(V, E) using edge flips while guaranteeing
an upper bound on the number of connected components in every intermediate graph.

Motivation and related work. Edge flips have received considerable attention, particularly in
the context of geometric graphs such as triangulations and pseudo-triangulations of planar point
sets [1, 3, 7, 8, 9, 11, 12]. The reason is that they are combinatorially interesting and potentially
lead to efficient algorithms for solving certain optimization problems on graphs. In general, one
considers a family G of graphs that have the same vertex set and usually the same number of edges.

1

An edge flip removes an edge e from a graph G in G and replaces it with another edge e′ so that
the resulting graph is also in G. (Other types of flips that introduce or remove edges have been
studied, for instance, in [1, 3].) Often, the structure of the graphs in G guarantees that every flip
happens in a small subgraph of G; that is, flips are local transformations. For example, the flip of
an edge e in a triangulation of a planar point set replaces edge e with the other diagonal of the
quadrilateral that is the union of the two triangles on either side of e. If the structure of the graph
does not guarantee the locality of flips, we may explicitly restrict our attention to local flips. If
we have a certain quality measure of the graphs in G such as Delaunayhood (for triangulations) or
the number of faces (for pseudo-triangulations), it is interesting to ask whether a globally optimal
graph in G can be obtained by making only local changes that improve the quality of the graph.
If the answer is affirmative and the number of required flips is small, efficient algorithms result
because local transformations of the graphs can often be implemented efficiently.

A rich literature deals with edge flips in geometric and planar graphs [1, 2, 3, 7, 8, 9, 11, 12,
13, 14, 15, 16]. We only discuss a few of these results here. A by now classical result is that Θ(n2)
Delaunay flips are sufficient and necessary in the worst case to transform any triangulation of a point
set P into the Delaunay triangulation of P [8], where a Delaunay flip replaces an edge that violates
the empty-circle property of the Delaunay triangulation [4]. In [12], it is shown that the same
bound holds for transforming any two triangulations into each other using arbitrary diagonal flips.
More precisely, they show that Θ(n+k2) flips are required to transform any two triangulations of a
simple polygon with k reflex vertices into each other, and Θ(kn) flips are required to transform any
two triangulations of a planar point set with k convex layers into each other. In [9], simultaneous
flipping of multiple edges is allowed and the flip distance between any two triangulations using such
parallel flips is shown to be Θ(n). Aichholzer et al. [1, 3] prove that, by allowing so-called edge-
removing flips, the number of flips required to transform any minimum pseudo-triangulation into
any other minimum pseudo-triangulation of a point set can be reduced from Θ(n2) to O(n log2 n);
any pseudo-triangulation can be made minimum using O(n) of these flips. Negami [15] studies
diagonal flips in triangulated planar graphs; that is, only the topology, but not the geometry of the
graph matters in this case. Aichholzer et al. [2] study local transformations of non-crossing spanning
trees of planar point sets, including a continuous version of an edge flip, called an edge-slide, and
prove upper bounds on the number of such transformations required to obtain a minimum spanning
tree from any non-crossing spanning tree. Other relevant papers include [7, 11, 13, 14, 16], which
study the expected length of flip sequences in the randomized incremental construction of Delaunay
triangulations in two and higher dimensions.

Terminology and notation. We denote the number of connected components of a graph G by
ω(G). We define ω̃(G(V, E)) = min{ω(G) : G ∈ G(V, E)}; in particular, a graph G∗ ∈ G(V, E) is
maximal if ω(G∗) = ω̃(G(V, E)). We say that a family G(V, E) is k-thick if every edge appears in at
most k pairs in E ; in particular, G(V, E) is 1-thick if the edge pairs in E are pairwise disjoint. We
define k-MCP to be MCP restricted to k-thick families; planar MCP is MCP restricted to families
G(V, E) such that the graph (V,

⋃
P∈E P) is planar.

For a 1-thick family G(V, E), the flip of an edge e in a graph G ∈ G(V, E) removes edge e from
G and replaces it with the other edge ē in the edge pair P ∈ E that contains e. We call ē the
complementary edge or complement of e and denote the graph (V, (E(G) \ e) ∪ {ē}) obtained by
flipping edge e in G as G〈e〉. More generally, we denote the graph obtained from G by flipping edges
e1, . . . , eq as G〈e1, . . . , eq〉. We call the flip of an edge e splitting, stable, or merging depending on

2

whether ω(G〈e〉) is greater than, equal to, or less than ω(G). A flip sequence e1, . . . , eq is merging
if every flip in the sequence is stable or merging and ω(G〈e1, . . . , eq〉) < ω(G). A merging flip
sequence e1, . . . , eq is maximizing if G〈e1, . . . , eq〉 is maximal.

In Section 5, we consider G(V, E) to be itself a graph whose vertices are the graphs in G(V, E)
and such that there is an edge between two graphs G1 and G2 if G2 = G1〈e〉, for some edge e ∈ G1.
We use G(V, E , k) to denote the subgraph of G(V, E) induced by all vertices G ∈ G(V, E) such that
the graph G has at most k connected components.

Our results. We prove the following results:

• Planar k-MCP is NP-hard, for any k > 1. (Section 2)

• Every graph in a 1-thick family G(V, E) has a maximizing sequence of length at most n − 1.
(Section 3)

• For any non-maximal graph G in a 1-thick family G(V, E), a merging sequence of at most
n−1 flips can be found in O(nm) time. This implies that we can find a maximizing sequence
of at most n− 1 flips in O(n2m) time. (Section 4)

• For any 1-thick family G(V, E) and any k > ω̃(G(V, E)), the graph G(V, E , k) is connected and
has diameter at most m + n− 1; that is, for any two graphs G1, G2 ∈ G(V, E , k), there exists
a sequence e1, e2, . . . , eq of at most m + n − 1 edges such that G1〈e1, e2, . . . , eq〉 = G2 and
ω(G1〈e1, e2, . . . , ei〉) ≤ k, for all 1 ≤ i ≤ q. G(V, E , ω̃(G(V, E))) is not necessarily connected.
(Section 5)

2 NP-Hardness of Planar k-MCP

Our proof that planar k-MCP is NP-hard for k > 1 uses a linear-time reduction from 3-SAT to
planar 2-MCP. First we recall the necessary terminology. Given a Boolean variable x, we denote
its negation as x̄. A literal is a Boolean variable or its negation. A clause is the disjunction of
literals: C = λ1 ∨ λ2 ∨ · · · ∨ λk. A Boolean formula F is in conjunctive normal form (CNF) if it is
of the form F = C1 ∧C2 ∧ · · · ∧Cm, where C1, . . . , Cm are clauses. Formula F is in 3-CNF if every
clause Ci, 1 ≤ i ≤ m, contains exactly three literals. In this case, we denote the literals in Ci as
λi,1, λi,2, and λi,3. We denote the Boolean variables in F as x1, . . . , xn. It is well-known that the
problem of deciding whether a given formula in 3-CNF is satisfiable, 3-SAT, is NP-complete [10].
Hence, if we can provide a polynomial-time reduction from 3-SAT to MCP, MCP is NP-hard.

An important element used in a number of constructions in this paper is the “connector graph”
shown in Figure 1. This graph is planar. Its edges are grouped into disjoint edge pairs as indicated

a b

1

1

2

2

3

3

4

4

5
5

6

6

Figure 1: The connector graph. Two edges with the same number belong to the same edge pair.

3

Γ1 Γ2 Γ3 Γ4α1 α2 α3 α4α′

γ1,1 γ1,2 γ1,3 γ2,1 γ2,2 γ2,3 γ3,1 γ3,2 γ3,3 γ4,1 γ4,2 γ4,3β1 β2 β3 β4β′

e1,1

e1,2
e1,3 e2,1

e2,2
e2,3 e3,1

e3,2
e3,3 e4,1

e4,2
e4,3f1 f2 f3 f4

6 7,812 1

4

9 1,2 10 2,3

7

10,11 11,12

4,5

5,6

8,9

3

Figure 2: The graph G′(F) for the formula F = (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x3 ∨ x̄4) ∧
(x2 ∨ x3 ∨ x4). Regular edges are labelled with their names. The small italic labels identify the
edge pairs that contain each edge.

by the numbering in Figure 1. It is easy to verify that, no matter which edge we choose from each
edge pair, the resulting subgraph is connected. Hence, we can distinguish two of the vertices, a
and b, and think of the graph as a “permanent” edge between vertices a and b; that is, this edge
has to be present in every graph in the graph family. We will represent such permanent edges as
fat grey edges in subsequent figures.

Given a formula F in 3-CNF with n variables x1, . . . , xn and m clauses C1, . . . , Cm, we construct
a graph G′(F) and assign its edges to appropriate edge pairs to obtain a family G(F) of subgraphs
of G′(F). We ensure that no edge is in more than two pairs, that G′(F) is planar, and that G(F)
contains a connected graph if and only if F is satisfiable. For every literal λ, let κ(λ) be the number
of clauses containing λ. For a variable xi, we define κ∗(xi) = |κ(xi)−κ(x̄i)|. Let κ∗ =

∑n
i=1 κ∗(xi).

The vertex set of G′(F) contains vertices Γ1, . . . ,Γm, one per clause; vertices γi,j , 1 ≤ i ≤ m and
1 ≤ j ≤ 3, one per literal λi,j ; and vertices α1, . . . , αk∗ , β1, . . . , βk∗ , α′, β′. The vertices of G′(F),
excluding vertices Γ1, . . . ,Γm, are connected using permanent edges to form a chain as shown in
Figure 2. Besides these permanent edges, graph G′(F) contains regular edges ei,j = (Γi, γi,j),
1 ≤ i ≤ m and 1 ≤ j ≤ 3, and fk = (αk, βk), 1 ≤ k ≤ κ∗. We refer to an edge ei,j as a literal edge
and to an edge fk as a dummy edge. Graph G′(F) is obviously planar.

Next we group literal and dummy edges into pairs so that, in every graph in G(F), a literal
edge ei,j is present if and only if every edge ei′,j′ with λi,j = λi′,j′ is present and every edge
ei′′,j′′ with λi,j = λ̄i′′,j′′ is absent. Hence, the presence and absence of edges in a graph in G(F)
corresponds to a truth assignment to the variables x1, . . . , xn. Consider a variable xk and the
literals λi1,j1 , . . . , λiq ,jq such that λih,jh

= xk or λih,jh
= x̄k, for all 1 ≤ h ≤ q. We assume w.l.o.g.

that λi1,j1 = · · · = λir,jr = xk and λir+1,jr+1 = · · · = λiq ,jq = x̄k, for some 1 ≤ r ≤ q. We also
assume that κ∗(xk) = κ(xk)− κ(x̄k), that is, there are at least as many positive literals xk in F as
negative literals x̄k. Then we choose a set of s = κ∗(xk) dummy edges fl1 , . . . , fls that have not been
included in any pairs yet. We define the following edge pairs, where t = q − r: {eih,jh

, eih+r,jh+r
},

for 1 ≤ h ≤ t; {eih+r,jh+r
, eih+1,jh+1

}, for 1 ≤ h ≤ max(t, r − 1); {eih+t,jh+t
, flh}, for 1 ≤ h ≤ s;

and {flh , eih+t+1,jh+t+1
}, for 1 ≤ h < s. Intuitively, we construct a “path” of edge pairs as shown

in Figure 3 where edges corresponding to positive and negative literals alternate until we run out
of negative literals; once this happens, we place a dummy edge between every pair of consecutive
positive literals. This ensures that all edges corresponding to literal xk are either all present or all
absent; the former is the case if and only if all edges corresponding to literal x̄k are absent; the latter
is the case if and only if all edges corresponding to literal x̄k are present. Note that, by creating
κ∗ dummy edges, we ensure that we have enough dummy edges to complete this construction for

4

Γ1 Γ2 Γ4
α2

γ1,2 γ2,2 γ4,1 β2

e1,2 e2,2 e4,1 f2

Figure 3: The “path” of alternating literal edges for the variable x2 in the formula F = (x1 ∨ x2 ∨
x̄3) ∧ (x̄1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x3 ∨ x̄4) ∧ (x2 ∨ x3 ∨ x4). Edge pairs are shown as dotted boxes.

all variables x1, . . . , xn while using every dummy edge in the creation of edge pairs for exactly one
variable xk. This guarantees that, indeed, every edge is in at most two edge pairs, as illustrated in
Figure 2.

Now we observe that the vertices in the chain formed by the permanent edges in G′(F) belong
to the same connected component H in any graph in G(F). In a graph G ∈ G(F), vertex Γi is
connected to a vertex in H if and only if the truth assignment corresponding to G satisfies clause
Ci. Hence, there is a connected graph in G(F) if and only if F is satisfiable. Since the construction
of G(F) from F can easily be carried out in linear time, we obtain the following result.

Theorem 1 Planar k-MCP is NP-hard, for any k ≥ 2.

3 Existence of Stable and Merging Flips and Flip Sequences

Given the NP-hardness of k-MCP for k > 1, we restrict our attention to 1-MCP in the remainder
of this paper. In order to solve this problem, we start with an arbitrary graph G in the given
1-thick family G(V, E) and then compute a maximizing sequence of flips. In this section, we prove
that every graph in G(V, E) has a maximizing sequence of at most n− 1 flips. In the next section,
we develop an O(n2m)-time algorithm that finds such a sequence. First we prove that every non-
maximal graph G in G(V, E) has a merging flip or a stable flip that leaves the connected components
of G invariant, that is, does not change their vertex sets. We call such a stable flip strongly stable.

Lemma 1 Every non-maximal graph G in a family G(V,E) has a merging or strongly stable flip.

Proof. Every non-maximal graph contains a cycle. Flipping any edge e in the cycle cannot de-
stroy connected components, but may merge two components if the endpoints of ē are in different
connected components.

Given a graph G, we call a flip of an edge e ∈ G greedy if the endpoints of edge ē are in different
connected components of G. A sequence e1, . . . , eq of edge flips is greedy if, for every 1 ≤ i ≤ q, the
flip of edge ei is greedy for G〈e1, . . . , ei−1〉. The following two observations establish two important
properties of greedy flips.

Observation 1 The flip of an edge e ∈ G is merging if and only if it is greedy and e is not a cut
edge of G.

5

(a)

1 12 2

3 3

4

4 5

6

6

75 7

(b)

1 12 2

3 3

4

4 5

6

6

75 7

Figure 4: (a) A graph G with no merging flip. Solid edges are in the graph; dotted edges are not
in the graph and can be exchanged for edges in the graph through flips. (b) A graph in the same
family with one less connected component than G.

Observation 2 An edge e ∈ G such that the flip of edge e is greedy and stable is a cut edge of G.

Another way to interpret Observation 2 is that stable greedy flips leave all cycles in G intact.
Also observe that, for every greedy flip e, edge ē is a cut edge of G〈e〉. We are now ready to prove
that not every non-maximal graph has a merging flip; but every non-maximal graph has a merging
or, in fact, maximizing sequence of at most n− 1 flips.

Lemma 2 Not every non-maximal graph has a merging flip.

Proof. The graph G in Figure 4a is not maximal because the graph in Figure 4b belongs to the
same family and has one less connected component. By Observation 1, any merging flip would have
to remove an edge in the bold triangle. However, all these flips are stable.

Lemma 3 Every non-maximal graph has a maximizing sequence of of most n− 1 flips.

Proof. Let G be a non-maximal graph in a 1-thick family G(V, E), let G∗ be a maximal graph in
G(V, E), and let T ∗ be a spanning forest of G∗ that contains a spanning tree for every connected
component of G∗. We prove that there exists a maximizing sequence for G that flips at most
all the edges in G whose complements are in T ∗. Since there are at most n − 1 such edges, this
proves the lemma. The proof is by induction on the number of edges in G whose complements are
in T ∗. If there is exactly one such edge e, the graph G〈e〉 has T ∗ as a subgraph and is, hence,
maximal. Thus, the single flip of edge e is maximizing. So assume that G contains r > 1 edges
whose complements are in T ∗ and that the lemma holds for every graph G′ that contains less than
r edges whose complements are in T ∗. Since T ∗ has fewer connected components than G, there has
to be an edge ē in T ∗ that connects two vertices in different connected components of G. The flip
of edge e is greedy for G; that is, this flip is either merging or stable for G. If G〈e〉 is maximal, then
the sequence that flips only edge e is maximizing. Otherwise, G〈e〉 is a non-maximal graph that
contains r−1 edges whose complements are in T ∗. Hence, by the inductive hypothesis, there exists
a maximizing sequence e1, . . . , et for G〈e〉 with t ≤ r − 1. The sequence e, e1, . . . , et is maximizing
for G and has length at most r.

4 Finding Merging Sequences of Flips

Given that every graph G has a maximizing sequence of at most n − 1 flips, we would like to
compute such a sequence efficiently. Given G and a maximal graph G∗, the construction in the
proof of Lemma 3 can easily be implemented in O(nm) time. The problem is finding G∗. In this
section, we provide an O(nm)-time algorithm that finds a merging sequence of at most n− 1 flips

6

for any non-maximal graph. By applying this procedure at most n− 2 times, which takes O(n2m)
time, we obtain a maximal graph G∗.

Given a graph G ∈ G(V, E), we use an auxiliary directed graph H, which is derived from G,
to find a merging flip sequence for G. We prove that every shortest path between certain vertices
in H has length at most n − 1 and corresponds to a merging flip sequence and that at least one
such path exists if G is non-maximal. Hence, all we have to do is apply breadth-first search to H
to either find such a shortest path and report the corresponding flip sequence or output that G is
maximal if no such path exists.

The vertex set of H is the edge set of G. For two edges e and f of G, there is an edge (e, f)
(directed from e to f) in H if f is a cut edge of G, but not of G∪ {ē}. Every edge in G that is not
a cut edge corresponds to a source (vertex of in-degree 0) in H; we call such a source a root. Every
edge e in G such that ē has its endpoints in different connected components of G corresponds to a
sink (vertex of out-degree 0) in H; we call such a sink a leaf. Every merging sequence of flips has
to flip an edge corresponding to a root, because it has to break at least one cycle in G. It also has
to flip at least one edge corresponding to a leaf in H because, otherwise, the flips in the sequence
cannot reduce the number of connected components. In particular, if we stop the construction in
the proof of Lemma 3 as soon as the number of connected components has reduced by one, we
obtain a merging sequence of length at most n−1 that starts with a greedy flip, which corresponds
to a leaf in H, and ends with a merging flip, which, by Observation 1, corresponds to a root.
Our goal is to show that graph H contains a root-to-leaf path if G is not maximal and that every
shortest such path corresponds to a merging sequence of flips. So assume that G is not maximal.
We call a greedy flip sequence e1, . . . , eq monotone if edges e1, . . . , eq are in G.1 As shown in the
proof of Lemma 3, a monotone merging sequence of length at most n−1 exists if G is not maximal.
The following two lemmas are the first steps toward showing that there exists a root-to-leaf path
in H.

Lemma 4 In a shortest monotone merging sequence e1, . . . , eq for G, edges e1, . . . , eq−1 are cut
edges of G.

Proof. Assume the contrary and choose j minimal so that ej is not a cut edge; that is, e1, . . . , ej−1

are cut edges. We claim that e1, . . . , ej is a monotone merging sequence of flips. This would
contradict the assumption that e1, . . . , eq is the shortest such sequence for G. Sequence e1, . . . , ej

is certainly monotone, as every subsequence e1, . . . , eh of a monotone sequence of flips must itself
be monotone. To see that sequence e1, . . . , ej is merging, we make the following observations:
(1) ω(G〈e1, . . . , ej−1〉) ≤ ω(G), because the sequence e1, . . . , eq is merging. (2) Edge ēj has its
endpoints in different connected components of G〈e1, . . . , ej−1〉, because the sequence e1, . . . , ej is
greedy. (3) The cycles of G are invariant under deletion of cut edges. Hence, ej is not a cut edge
of G〈e1, . . . , ej−1〉 and, by Observation 1, ω(G〈e1, . . . , ej〉) < ω(G〈e1, . . . , ej−1〉) ≤ ω(G).

Lemma 5 In a shortest monotone merging sequence e1, . . . , eq for G, eq is not a cut edge of G.

Proof. Since sequence e1, . . . , eq is a shortest monotone merging sequence, no subsequence e1, . . . , ej ,
j < q, is merging. Hence, the flip of edge eq is merging for G〈e1, . . . , eq−1〉. By Observation 1, this
implies that eq is not a cut edge of G〈e1, . . . , eq−1〉. If eq is a cut edge of G, we choose j minimal so
that eq is not a cut edge of G〈e1, . . . , ej〉. Since eq is a cut edge of G〈e1, . . . , ej−1〉, the insertion of

1A sequence of greedy flips may flip an edge and later flip it back; this is what we disallow here.

7

edge ēj must create a cycle in G〈e1, . . . , ej〉. But then the endpoints of ēj are in the same connected
component of G〈e1, . . . , ej−1〉, contradicting the greediness of sequence e1, . . . , eq.

Lemma 5 implies that eq is a root in H. Since the endpoints of edge e1 are in different connected
components of G, by the greediness of sequence e1, . . . , eq, edge e1 is a leaf of H. Hence, to prove
that graph H contains a root-to-leaf path of length at most n− 1 if G is not maximal, it suffices to
show that there exists a path from eq to e1. We are unable to show exactly this; but we can show
that there exists a path of this length from eq to e1 or to another leaf of H.

Lemma 6 If G is not maximal, then there exists a root-to-leaf path of length at most n− 1 in H.

Proof. Consider a shortest monotone merging flip sequence e1, . . . , eq. Then q ≤ n − 1. We have
just observed that e1 is a leaf and eq is a root of H. We show that for every edge ei, 1 ≤ i ≤ q,
there exists a path of length at most i from ei to a leaf in H. Hence, there is a path of length at
most n − 1 from eq to a leaf; eq is a root. The proof is by induction on i. Since e1 is itself a leaf,
the claim holds for e1. So assume that i > 1 and that the claim holds for e1, . . . , ei−1. If ei is a
leaf, the claim holds for ei. Otherwise, the endpoints of ēi are in the same connected component
of G. But they are in different connected components of G〈e1, . . . , ei−1〉; so there must be an edge
ej , j < i, that is on all paths in G connecting the endpoints of ēi, because edges e1, . . . , eq−1 are
cut edges. This implies that ej is an out-neighbour of ei in H. By the induction hypothesis, there
exists a path of length at most j from ej to a leaf. This implies that there exists a path of length
at most j + 1 ≤ i from ei to a leaf.

Given that graph H is guaranteed to contain a root-to-leaf path if G is not maximal, it is
natural to ask what the relationship between root-to-leaf paths in H and merging flip sequences
for G is. It is easy to show that not every root-to-leaf path in H corresponds to a merging flip
sequence. (See Figure 8 in the appendix.) Next we prove that every shortest root-to-leaf path in
H corresponds to a merging sequence. To prove this fact, we make use of the following two results.

Lemma 7 For a shortest root-to-leaf path (e1, . . . , eq) in H and any 1 ≤ i < q, edges ēi and ei+1

are in a common simple cycle of the graph G〈e1, . . . , ei〉.

Proof. Assume that the lemma does not hold. Then let i be minimal so that edges ēi and ei+1

are not in a common simple cycle in G〈e1, . . . , ei〉. Since edge (ei, ei+1) exists in H, edges ēi

and ei+1 are in a common cycle in G ∪ {ēi}. We choose j maximal so that ēi and ei+1 are in a
common cycle of G〈e1, . . . , eh〉 ∪ {ēi}, for all 0 ≤ h ≤ j. Then j < i, and edges ēi and ei+1 do not
belong to a common cycle in the graph G〈e1, . . . , ej+1〉 ∪ {ēi}. Hence, edge ej+1 is on the cycle in
G〈e1, . . . , ej〉∪{ēi} that contains edges ei+1 and ēi (see Figure 5a). Since ēj and ej+1 belong to the
same cycle in G〈e1, . . . , ej〉, the removal of edge ej+1 still leaves a cycle that contains ēi and ei+1

(Figure 5b), unless the cycle containing ēj and ej+1 also contains ei+1 (Figure 5c). In the former
case, we obtain a contradiction to the assumption that no cycle containing ēi and ei+1 exists in
G〈e1, . . . , ej+1〉 ∪ {ēi}. We prove that, in the latter case, there exists a shorter path from e1 to eq

in H, which contradicts the assumption that path e1, . . . , eq is a shortest root-to-leaf path in H.
Since edge (ej , ej+1) exists in H, edge ej+1 is a cut edge on the path in G that connects

the two endpoints of edge ēj . If ei+1 is also on this path, then edge (ej , ei+1) exists in H and
(e1, . . . , ej , ei+1, . . . , eq) is a shorter path from e1 to eq in H, a contradiction. So assume that ei+1

is not on this path. Edge ei+1 is a cut edge of G and both endpoints of edge ēj are in the same

8

(a) ēi

ei+1
ej+1

(b) ēi

ei+1
ej+1

ēj

(c) ēi

ei+1ej+1

ēj

Figure 5: (a) Edges ēi, ei+1, and ej+1 belong to a cycle in G〈e1, . . . , ej〉 ∪ {ēi}. (b) If edge ei+1 is
not on the cycle in G〈e1, . . . , ej〉 containing edges ej+1 and ēj , then there exists a cycle (bold) in
G〈e1, . . . , ej+1〉 ∪ {ēi} that contains edges ēi and ei+1. (c) The case when edge ei+1 is on the cycle
in G〈e1, . . . , ej〉 containing edges ej+1 and ēj .

connected component of G − ei+1. Moreover, none of the edges ē1, . . . , ēj connects two vertices in
different connected components of G. Hence, the only way to create a path in G〈e1, . . . , ej−1〉 that
connects the endpoints of edge ēj and contains edge ei+1 is by adding an edge ēh, h < j, whose
endpoints are in different connected components of G−ei+1, but in the same connected component
of G (see Figure 6). Then, however, edge (eh, ei+1) exists in H and the path (e1, . . . , eh, ei+1, . . . , eq)
is a shorter path from e1 to eq in H, again a contradiction.

Corollary 1 Let e1, . . . , eq be a shortest root-to-leaf path in H. Then, for every 1 ≤ i < q, the
flip of edge ei is strongly stable for G〈e1, . . . , ei−1〉.

Using Lemma 7 and Corollary 1, we can now prove that every shortest root-to-leaf path in H
corresponds to a merging sequence of flips for G.

Lemma 8 A shortest root-to-leaf path in H corresponds to a merging sequence of flips for G.

Proof. Consider a shortest root-to-leaf path e1, . . . , eq in H. By Corollary 1, all flips in the sequence
e1, . . . , eq−1 are strongly stable. By Lemma 7, edge eq belongs to a cycle in G〈e1, . . . , eq−1〉. By
Corollary 1, edge ēq has its endpoints in different connected components of G〈e1, . . . , eq−1〉, because
this is true in G. Hence, by Observation 1, the flip of edge eq is merging for G〈e1, . . . , eq−1〉 and
the whole sequence e1, . . . , eq is merging for G.

Given this correspondence between shortest root-to-leaf paths in H and merging sequences for
G, we can find a merging sequence of flips for G in O(nm) time: First we create the vertex set of
graph H by adding a vertex for every edge of G. Next we identify the cut edges of G and label all
those vertices in H as roots whose corresponding edges in G are not cut edges. We contract every
2-edge connected component into a single vertex and call the resulting graph G′. We compute its
connected components, which are trees, and root each such tree at an arbitrary vertex. To identify
the edge set of H and the leaves of H, we scan the set of complementary edges of the edges in G.
We discard edges that have become loops as the result of the contraction of the 2-edge connected
components of G, because they run parallel to a path in a 2-edge connected component of G and,
hence, neither have any out-neighbours nor are leaves in H. We mark a vertex e in H as a leaf if

9

ēh

ēj

ei+1

Figure 6: The proof that there must be an edge (ēh, ei+1) in H, where h < i, if edge ei+1 is on the
cycle in G〈e1, . . . , ej〉 that contains edges ej+1 and ēj .

the endpoints of edge ē are in different connected components of G′. For every edge ē that is not a
loop and that has its endpoints in the same connected component of G′, we add an edge (e, f) to
H, for every edge f on the tree path connecting the endpoints of ē. These edges can be identified
by traversing paths from the endpoints of ē to their LCA in the tree. Since there are at most n− 1
cut edges in G, the edge set of G′ has size at most n− 1; the vertex set has size at most n. There
are m edges ē. Hence, after constructing G′, which takes O(n + m) time, it takes O(nm) time to
construct H. Now we decide whether there exists a root-to-leaf path in H and, if so, find a shortest
such path by running BFS simultaneously from all roots; that is, we place all the roots at the first
level of the BFS and then grow the BFS-forest as usual level by level. This takes O(nm) time. If
G is not maximal, our discussion implies that this procedure finds a root-to-leaf path. Since we
use BFS to find it, it is a shortest such path; in particular, the resulting path has length at most
n−1. Hence, we report the sequence of flips corresponding to the vertices on the path as a merging
sequence of flips.

Theorem 2 It takes O(nm) time to decide whether a graph G ∈ G(V, E) is maximal and, if not,
find a merging sequence of at most n− 1 flips.

Since any graph in G(V, E) has at most n− 1 connected components, unless E is empty, we can
apply the algorithm sketched above at most n−2 times before we obtain a connected graph, which
is obviously maximal. Hence, we can start with an arbitrary graph G in G(V, E) and repeatedly
apply Theorem 2 to compute a maximizing sequence of at most (n−2)(n−1) flips. We apply these
flips in O(n2) time to obtain a maximal graph G∗ ∈ G(V, E). As pointed out at the beginning of
this section, we can compute, in O(nm) time, a maximizing sequence of at most n− 1 flips for G,
once G∗ is given. This proves the following result.

Corollary 2 It takes O(n2m) time to compute a maximal graph in G(V, E) and to compute a
maximizing sequence of at most n− 1 flips for a given graph G in G(V, E).

5 Connectivity of Sub-Families Under Edge Flips

Since every graph in a 1-thick family G(V, E) can be transformed into a maximal graph, an in-
teresting question to ask is whether for any two graphs G1 and G2 in G(V, E) with at most k
connected components, there exists a flip sequence e1, . . . , eq that transforms G1 into G2 and such
that ω(G1〈e1, . . . , ei〉) ≤ k, for all 1 ≤ i ≤ q. We call such a sequence k-stable. Note that some
of the flips in a k-stable sequence may be splitting. Another question to ask is how many flips
such a sequence has to contain. Formally, we ask whether the graph G(V, E , k) is connected and

10

1 3 2 1 3 2

Figure 7: A family G(V, E) of graphs such that G(V, E , ω̃(G(V, E))) is disconnected.

what its diameter is. We prove that G(V, E , k) is connected, for every k > ω̃(G(V, E)), and that
G(V, E , ω̃(G(V, E))) may be disconnected. We also show that, for k > ω̃(G(V, E)), G(V, E , k) has di-
ameter at most m + n− 1. To show this, we prove a fact that is in a sense orthogonal to Lemma 3:
While Lemma 3 shows that every non-maximal graph can be transformed into some maximal graph
using a merging sequence of at most n− 1 flips, we prove next that every non-maximal graph can
be transformed into any maximal graph using a k-stable sequence of at most m flips, some of whose
flips may be splitting.

Lemma 9 For any graph family G(V, E) and any k > ω̃(G(V, E)), G(V, E , k) is connected and has
diameter at most m + n− 1.

Proof sketch. The proof of Lemma 3 can easily be adapted to show that any non-maximal graph
G1 can be transformed into any maximal graph G2 using a k-stable sequence of at most m flips.
Indeed, the only difference is that, instead of stopping when a maximal graph G′ is obtained, we
keep flipping edges until G2 is obtained. The crucial observation is that, if the current graph G′

is not maximal, there exists an edge in G′ that is not in G2 and whose flip is merging. If G′ is
maximal, we can flip any edge e in G′ that is not in G2; this will result in a graph G′〈e〉 with
ω(G′〈e〉) ≤ ω(G′) + 1 ≤ k.

The lemma now follows because, for any two graphs G1 and G2 in G(V, E , k), we first find a
maximizing sequence e1, . . . , eq of of at most n − 1 flips that transforms G1 into a maximal graph
G3. Such a sequence exists by Lemma 3. Then we find a k-stable sequence e′1, . . . , e

′
r of at most m

flips that transforms G2 into G3. Sequence e1, . . . , eq, ē
′
r, . . . , ē

′
1, which has length q+r ≤ m+n−1,

transforms G1 into G2 and is k-stable.

The statement of Lemma 9 is true for any k > ω̃(G(V, E)). For k = ω̃(G(V, E)), the example
in Figure 7 shows that G(V, E , ω̃(G(V, E))) is not necessarily connected: The horizontal edges are
permanent; that is, they represent connector graphs. Two graphs in the family are G1, which
includes the permanent edges and the solid vertical edges, and G2, which includes the permanent
edges and the dashed vertical edges. Flipping any vertical edge in G1 increases the number of
connected components by one. Hence, there is no ω̃(G(V, E))-stable sequence of flips that transforms
G1 into G2, which proves the following lemma.

Lemma 10 There exists a graph family G(V, E) such that G(V, E , ω̃(G(V, E))) is disconnected.

6 Open Problems

The algorithm for finding a merging sequence of flips takes O(nm) time. We do believe that there
exists an O(n + m)-time algorithm for this problem. If this is true, we would be able to compute
a maximal graph in a 1-thick graph family G(V, E) in O(nm) time. What is a lower bound for the

11

running time of any algorithm that solves 1-MCP? Can one obtain a more efficient algorithm for
planar 1-MCP?

One can ask similar questions about the behaviour of the biconnected components of a graph
under edge flips. We define the maximal biconnectivity problem (MBP) as the problem of finding
a graph in a family G(V, E) that has the minimal number of biconnected components. We ask
whether (planar) k-MBP is NP-hard for k ≥ 2. We believe that the answer to this question is “yes”
and that some adaptation of our proof from Section 2 proves this. The more interesting question
is whether and how our algorithm for 1-MCP can be adapted to solve 1-MBP efficiently.

Acknowledgements. I would like to thank Anil Maheshwari for some insightful discussion on
the subject, Ferran Hurtado for giving a talk that made me see 1-MCP as an edge-flip problem,
and Herbert Edelsbrunner for pointing out a possible improvement of Lemma 3.

References

1. O. Aichholzer, F. Aurenhammer, P. Brass, and H. Krasser. Pseudo-triangulations from surfaces and a
novel type of edge flip. SIAM Journal on Computing, 32(6):1621–1653, 2003.

2. O. Aichholzer, F. Aurenhammer, and F. Hurtado. Sequences of spanning trees and a fixed tree theorem.
Computational Geometry: Theory and Applications, 21(1–2):3–20, 2002.

3. O. Aichholzer, F. Aurenhammer, and H. Krasser. Adapting (pseudo)-triangulations with a near-linear
number of edge flips. In Proceedings of the 8th International Workshop on Algorithms and Data Struc-
tures, volume 2748 of Lectures Notes in Computer Science, pages 12–24. Springer-Verlag, 2003.

4. B. Delaunay. Sur la sphère vide. Izvestiya Akademii Nauk SSSR, Otdelenie Matematicheskii i Estestven-
nyka Nauk, 7:793–800, 1934.

5. H. Edelsbrunner. Personal communication. 2003.
6. H. Edelsbrunner and D. V. Nekhayev. Repairing self-intersections of triangulated surfaces in space.

Technical Report rgi-tech-03-053, Raindrop Geomagic Inc., 2003.
7. H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations.

Algorithmica, 15:223–241, 1996.
8. S. Fortune. Voronoi diagrams and Delaunay triangulations. In Computing in Euclidean Geometry, D.

Z. Hu and F. K. Wang, (eds.), pages 225–265. World Scientific, Singapore, 2nd edition, 1995.
9. J. Galtier, F. Hurtado, M. Noy, S. Pérennes, and J. Urrutia. Simultaneous edge flipping in triangulations.

International Journal on Computational Geometry and Applications, 13(2):113–133, 2003.
10. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, San Francisco, 1979.
11. L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and

Voronoi diagrams. Algorithmica, 7:381–413, 1992.
12. F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in triangulations. Discrete and Computational

Geometry, 22:333–346, 1999.
13. B. Joe. Three-dimensional triangulations from local transformations. SIAM Journal on Scientific and

Statistical Computing, 10:718–741, 1989.
14. B. Joe. Construction of three-dimensional Delaunay triangulations using local transformations. Com-

puter Aided Geometric Design, 8:123–142, 1991.
15. S. Negami. Diagonal flips of triangulations on surfaces, a survey. Yokohama Mathematical Journal,

47:1–40, 1999.
16. V. T. Rajan. Optimality of the delaunay triangulation in <d. Discrete & Computational Geometry,

12:189–202, 1994.

12

Appendix

1

1

2

2

3

3

4

4

1

2 3

4

(a) (b)

1

1

2

2

3

3

4

4

1

1

2

2

3

3

4

4

(c) (d)

Figure 8: (a) A graph G. (b) Its auxiliary graph H. (c) The graph G〈e1, e2, e3, e4〉 has the same
number of connected components as G, even though (e1, e2, e3, e4) is a root-to-leaf path in H.
(d) The graph G〈e1, e4〉 has one less connected component than G; the path (e1, e4) is a shortest
root-to-leaf path in H.

13

