
Politician’s Firefighting

Allan E. Scott1, Ulrike Stege1, and Norbert Zeh2,⋆

1 Department of Computer Science, University of Victoria, Victoria, Canada
{aescott,stege}@cs.uvic.ca

2 Faculty of Computer Science, Dalhousie University, Halifax, Canada
nzeh@cs.dal.ca

Abstract. Firefighting is a combinatorial optimization problem on
graphs that models the problem of determining the optimal strategy
to contain a fire and save as much (trees, houses, etc.) from the fire as
possible. We study a new version of firefighting, which we call Politi-

cian’s Firefighting and which exhibits more locality than the classical
one-firefighter version. We prove that this locality allows us to develop
an O(bn)-time algorithm for this problem on trees, where b is the number
of nodes initially on fire. We further prove that Politician’s Firefighting
is NP-hard on planar graphs of degree at least 5, and we present an
O(m+ k2.54k)-time algorithm for this problem on general graphs, where
k is the number of nodes that burn using the optimal strategy, thereby
proving that it is fixed-parameter tractable. We present experimental re-
sults that show that our algorithm’s search tree size is in practice much
smaller than the worst-case bound of 4k.

1 Introduction

Firefighting can be thought of as a puzzle game where the player’s goal is to
save nodes in a graph from an advancing fire. Given a graph G = (V, E) and a
set B0 ⊂ V of initially burning nodes, the game proceeds in rounds, numbered
0 through r. In each round, first the fire advances and then the player places
firefighters on one or more nodes that are neither burning nor occupied (by a
firefighter). Once a node is burning or occupied, it stays that way for the rest of
the game. Round 0 is special; all nodes in B0 are set on fire. In subsequent rounds,
the fire spreads from each burning node to every adjacent unoccupied node. The
game ends when the fire can no longer spread, that is, when all neighbours of
burning nodes are burning or occupied. Viewed as an optimization problem,
the player’s goal is to find a firefighter-placement strategy that minimizes the
number of burning nodes at the end of the game. The problem can be seen as a
model of the spread of forest fires or diseases in social networks, which motivated
the initial study of this problem [3, 4, 7].

The classical version of firefighting, introduced in [4] allows the player to
place one firefighter on an arbitrary node in each round, so long as the node is

⋆ Research supported by the Natural Sciences and Engineering Research Council of
Canada and the Canadian Foundation for Innovation.

not yet occupied or burning. Finding an optimal strategy under these conditions
is NP-hard even on trees of degree three and with |B0| = 1, provided that the
node in B0 has degree three [1]. It is not hard to see that a simple greedy
algorithm produces an optimal strategy on binary trees. On arbitrary trees the
greedy strategy that always protects the heaviest threatened subtree produces
a 2-approximation w.r.t. the number of saved nodes [5]. In [8], algorithms for
containing the fire on 2- and 3-dimensional grids are studied. Apart from the
results cited here, we are not aware of any other algorithmic results for this
problem. What makes this version of firefighting hard is the complete freedom
where to place the firefighter, that is, the non-local nature of the problem.

In this paper, we study Politician’s Firefighting, a more localized version of
the problem: In each round, we are allowed to deploy as many firefighters as
there are burning nodes (politicians allocate resources according to how dire
the situation is, that is, how many nodes are burning). However, if a node x

“generates” a firefighter by being on fire, this firefighter can only be placed on
an unoccupied, non-burning neighbour of x. In other words, we can actually
use only as many firefighters as there are burning nodes with unoccupied non-
burning neighbours.

We feel that is is more realistic to allow more than one firefighter to be
placed in each round because typically more than one fire brigade fights a forest
fire. The constraints imposed on where firefighters may be placed reflect the
political reality that politicians and local inhabitants would prefer to see their
fire brigade protect them or their neighbours, rather than somebody miles away.
This constraint can also be seen as a logistic one since fire trucks travel at a
finite speed. Another motivation for the locality is that, when using vaccination
to contain the spread of a disease, one usually vaccinates persons interacting with
infected persons before using a much wider “radius” of vaccination, particularly
if vaccine is expensive or hard to obtain.

We prove in Section 2 that this problem can be solved in O(bn) time on trees,
where b = |B0|. In Section 3, we show that Politician’s Firefighting is NP-hard
even on planar graphs of degree 5. In Section 4, we present an O(m+k2.54k)-time
algorithm for general graphs, which shows that the problem is fixed-parameter
tractable. The worst-case bound on the size of the search tree in our algorithm
is tight. However, experimental results discussed in Section 4 indicate that, in
practice, the search-tree size is much smaller.

2 Trees

We start by arguing that the locality of Politician’s Firefighting helps to solve it
in polynomial time on trees. We choose an arbitrary node in B0 as the root of
the tree. For every node v, let Tv be the subtree rooted in v, let pv be v’s parent,
and let Cv be the set of v’s children. Our strategy is to consider all possible cases
how a node v may be set on fire or saved and, based on their analysis, develop
a recurrence for the number of nodes that burn in Tv in each case. This allows
us to use dynamic programming to determine the number of nodes that burn

v

P (v)

v (r)

(r)

Op(v, r)

v (r)

(r)

Oc(v, r)

v (r)

(r − 1)

B×
p (v, r)

v (r)

(r − 1)

(r)

B↓
p(v, r)

v (r)

(r − 1)

B×
c (v, r)

v (r)

(r − 1) (r)

B↓
c (v, r)

Fig. 1. The different states of a node v and the possible choices how v can attain
this state. Burning nodes are black, occupied nodes are white with a black dot inside,
and unoccupied non-burning nodes are white. The state of a gray node is unspecified.
Labels in parentheses show when the nodes attain the shown state.

using the optimal strategy. (The corresponding strategy is then easily found.) A
straightforward evaluation of these recurrences leads to a running time of Θ(n4)
in the worst case. We then discuss how to reduce the running time to O(bn).

2.1 The Basic Algorithm

Consider a node v. At the end of the game, v is in one of three states: burning,
occupied by a firefighter, or protected ; the latter means that there is no firefighter
on v, but there is a firefighter on every path between v and a burning node. A
burning node v either belongs to B0 or is set on fire by one of its neighbours in
some round r. We distinguish whether it is pv or a child of v that sets v on fire. We
further distinguish whether or not we choose to place v’s firefighter on a child of
v in round r+1. Similarly, an occupied node has a firefighter placed on it in some
round r. This firefighter is available because pv or a child of v catches fire in round
r. We use the following notation to denote the number of nodes that burn in Tv in
each of the resulting cases (see Figure 1 for an illustration): P (v) if v is protected;
Op(v, r) and Oc(v, r) if v is occupied in round r; B×

c (v, r), B↓
c (v, r), B×

p (v, r),

and B↓
p(v, r) if v is set on fire in round r. Subscripts p and c denote the subcases

when v is set on fire by its parent or a child, respectively, or when the parent’s
or a child’s firefighter is placed on v. Superscripts indicate whether we place v’s
firefighter on one of v’s children (↓) or not (×). In addition, we use the following
notation: Bp(v, r) = min(B↓

p(v, r), B×
p (v, r)), Bc(v, r) = min(B↓

c (v, r), B×
c (v, r)),

O∗
c (v, r) = min1≤r′≤r Oc(v, r′), B∗

c (v, r) = minr≤r′≤n Bc(v, r′), and L(v, r) =
min(Bc(v, r − 1), Bc(v, r), Bc(v, r + 1), O∗

c (v, r), Bp(v, r + 1)).
Since |B0| = b, every node v in T can be occupied or set on fire only in b

different rounds, corresponding to the lengths of the paths from v to the nodes
in B0. If node v cannot be set on fire or occupied at time r, we define its
corresponding B·

·(v, r) or O·(v, r) value to be +∞.
Next we derive a recurrence for B↓

c (v, r). Due to lack of space, we only state
the recurrences for the other cases; they are easily obtained using similar, but
simpler, analyses. For technical reasons, we treat every node v ∈ B0 as being
set on fire in round 0 by both an imaginary child and an imaginary parent.
Thus, for v ∈ B0 and r > 0, we have B↓

c (v, r) = +∞; for r = 0, we have
B↓

c (v, 0) = 1 + minw∈Cv

(

Op(w, 0) +
∑

w′∈Cv\{w} L(w′, 0)
)

because, after being

set on fire, node v chooses one child w to occupy in round 0; any other child
w′ ∈ Cv \ {w} is then either set on fire by v in round 1, set on fire by a child in
round 0 or 1, or occupied using one of its children’s firefighters in round 0.

For v 6∈ B0, node v is set on fire by one of its children, w1, and again node
v chooses a child w2 ∈ Cv \ {w1} to occupy using v’s firefighter; any other node
w′ ∈ Cv \ {w1, w2} is set on fire by v in round r +1, set on fire by one of its own
children in round r−1, r, or r+1, or occupied by one of its children’s firefighters
no later than round r. This leads to the following recurrence:

B↓
c (v, r) = 1 + min

w1,w2∈Cv

w1 6=w2

(

Bc(w1, r − 1) + Op(w2, r) +
∑

w′∈Cv\{w1,w2}

L(w′, r)

)

Using similar analyses, we obtain for v ∈ B0: Oc(v, r) = Op(v, r) = P (v) =
+∞. For r > 0, we have B×

c (v, r) = B↓
p(v, r) = B×

p (v, r) = +∞. For r = 0,

we have B↓
p(v, 0) = B↓

c (v, 0) and B×
c (v, 0) = B×

p (v, 0) = 1 +
∑

w∈Cv
L(w, 0) For

v 6∈ B0, we obtain

B×
c (v, r) = 1 + min

w∈Cv

(

Bc(w, r − 1) +
∑

w′∈Cv\{w}

L(w′, r)

)

B↓
p(v, r) = 1 + min

w∈Cv

(

Op(w, r) +
∑

w′∈Cv\{w}

L(w′, r)

)

B×
p (v, r) = 1 +

∑

w∈Cv

L(w, r)

Oc(v, r) = min
w∈Cv

(

B×
c (w, r) +

∑

w′∈Cv\{w}

min(P (w′), B∗
c (w′, r), O∗

c (w′, n))

)

Op(v, r) =
∑

w∈Cv

min(P (w), B∗
c (w, r), O∗

c (w, n))

P (v) =
∑

w∈Cv

min(O∗
c (w, n), P (w))

Each of these recurrences for a given node v depends only on values of the
recurrences on children of v. Hence, they can be computed bottom-up. Since
the game ends after at most n rounds, we must consider up to n different time
values. The most expensive recurrence to evaluate is B↓

c (v, r), where we must
consider all pairs of children (w1, w2) of v. The number of these pairs, summed
over all nodes in T , is Θ(n2) in the worst case. For each pair, we spend linear
time to evaluate the expression inside the outer parentheses, leading to a Θ(n3)
bound per round. Summing over all n rounds gives a running time of Θ(n4).

2.2 A Faster Algorithm

To reduce the running time to O(n2), we need to evaluate every recurrence
for a given pair (v, r) in O(1 + |Cv|) time. This is easy for P (v), Op(v, r), and

B×
p (v, r). Next we discuss how to achieve this bound for evaluating Oc(v, r),

B↓
c (v, r), B×

c (v, r), and B↓
p(v, r). We discuss B↓

c (v, r) in detail; the same ideas
also speed up the computation of the other recurrences. If we precompute the
sum L∗(v, r) =

∑

w∈Cv
L(w, r), which takes O(|Cv |) time, we can rewrite the

recurrence for B↓
c (v, r) as

B↓
c (v, r) = 1 +

min
w1,w2∈Cv

w1 6=w2

(

L∗(v, r) + Bc(w1, r − 1)− L(w1, r) + Op(w2, r)− L(w2, r)
)

,

which can be evaluated in O(1 + |Cv|2) time. Looking more closely at the
rewritten form of B↓

c (v, r), we observe that B↓
c (v, r) is minimized if B′(w1, r) =

Bc(w1, r−1)−L(w1, r) and B′′(w2, r) = Op(w2, r)−L(w2, r) are minimized, ex-
cept that w1 and w2 cannot be the same node. Thus, if w′

1 and w′′
1 are the

two children of v that minimize B′(w, r) and w′
2 and w′′

2 are the two chil-
dren of v that minimize B′′(w, r), we have three cases: Assume w.l.o.g. that
B′(w′

1, r) ≤ B′(w′′
1 , r) and B′′(w′

2, r) ≤ B′′(w′′
2 , r). If w′

1 6= w′
2, let w1 = w′

1 and
w2 = w′

2. If w′
1 = w′

2 and B(w′′
1 , r) − B(w′

1, r) ≤ B(w′′
2 , r) − B(w′

2, r), then let
w1 = w′′

1 and w2 = w′
2; otherwise, let w1 = w′

1 and w2 = w′′
2 .

Nodes w′
1, w

′′
1 , w′

2, w
′′
2 can be found in O(|Cv|) time. Once this is done, B↓

c (v, r)
can be evaluated in constant time because one of the three combinations (w′

1, w
′
2),

(w′
1, w

′′
2), (w′′

1 , w′
2) minimizes B↓

c (v, r). Hence, each recurrence can be evaluated
in O(1 + |Cv|) time per pair (v, r), and the total cost of evaluating the recur-
rences over all nodes is O(n) per time value r. Since we have to consider only
1 ≤ r ≤ n, the total running time is O(n2).

To reduce the running time to O(bn), we observe that every node can be set
on fire or occupied by a neighbour at only b different times, determined by the
distances from v to the nodes in B0. Thus, we must evaluate each recurrence for
only b different time values for each node in T ; we define every value that is not
computed explicitly to be +∞. This reduces the running time to O(bn).

Theorem 1. Politician’s Firefighting can be solved in O(bn) time on a tree with

n nodes of which b are initially on fire.

3 NP-Hardness on Planar Graphs

In this section, we prove that Politician’s Firefighting is NP-hard:

Theorem 2. Politician’s Firefighting is NP-hard, even on planar graphs with

vertices of degree at most five and only one node initially on fire.

We prove NP-hardness of Politician’s Firefighting by reduction from Planar
Vertex Cover [2]. In particular, given a planar graph G, we construct another
planar graph G′ with nodes3 of degree at most 5, and a set B0 = {ρ}, where ρ

3 To avoid confusion, we refer to the vertices of G as “vertices” and to the vertices of
G′ as “nodes”.

xe ye

ef eg

ex,1

ex,2

ex,3 ey,1

ey,2

ey,3

Pe,x Pe Pe,y

x′
e y′

e

xf fx

(a) (b)

Fig. 2. (a) The edge widget Ee for the edge e = xy. (b) A connector.

is an almost arbitrary node of G′, such that G has a vertex cover of size k if and
only if G′ has a firefighting strategy that burns only “a few” nodes.

The construction of G′ has the following intuition: First we replace the ver-
tices and edges of G with subgraphs called vertex widgets and edge widgets. A
vertex widget is built such that if any one of its nodes burn, n3 nodes burn in
the widget. An edge widget is built such that letting one or both of two spe-
cial incineration nodes burn sacrifices n5 nodes, unless we let at least one of
the vertex widgets corresponding to the endpoints of the edge burn as well. We
complete the construction by superimposing two additional graph structures on
the vertex and edge widgets. The first one allows the fire to spread from ρ to all
incineration nodes, and is built so that we cannot prevent the spread unless we
sacrifice n5 nodes elsewhere. Thus, if the size of a minimum vertex cover of G is
k, at least n5 nodes in G′ will burn unless we let k vertex widgets in G′ burn,
which means that roughly kn3 nodes burn. The second graph structure allows
the fire to spread to the k vertex widgets corresponding to vertices in a vertex
cover, without using nodes in edge widgets.

We use penalizers to ensure that letting certain nodes in G′ burn causes
many more nodes to burn. These are complete ternary trees whose leaves are at
depth d, for some d > 0. When the root of a penalizer P catches fire, the optimal
strategy burns a complete binary subtree of P of height d. Thus, we have

Lemma 1. If the root of a penalizer P of height d catches fire, the optimal

strategy burns 2d+1 − 1 nodes in P .

We call a penalizer small if 2d+1−1 = n3, and big if 2d+1−1 = n5. Both are
of polynomial size: small penalizers have size O(n3 log 3), big penalizers have size
O(n5 log 3). We say a node v of G′ is adjacent to a penalizer P if v is adjacent to
the root of P and no other node in P is adjacent to a node in G′ − P .

Next we define the different widgets that comprise G′ and discuss how they
are connected. For the construction, we assume that we are given a planar em-
bedding of G. From the construction, it will be obvious that G′ is planar and
that every node in G′ has degree at most five.

Vertex widgets. Let x be a vertex of G, and let e1, f1, . . . , ed, fd be the edges
and faces incident to x, in clockwise order. The vertex widget Vx consists

of a simple cycle (xe1
, xf1

, . . . , xed
, xfd

). Each node of this cycle is adjacent
to a small penalizer, except xe1

, which is adjacent to two small penalizers.
Note that, once a single node of the cycle burns we have two choices: let the
fire spread around the cycle and protect one penalizer per node, or protect
a cycle-neighbour of a burning node. In the former case, we let the second
penalizer attached to xe1

burn, incurring a penalty of n3 burning nodes. In
the latter case, the penalizers attached to the node whose cycle-neighbour
we protect burn. This incurs a penalty of at least n3 burning nodes.

Edge widgets. Let e be an edge with endpoints x and y and incident faces f

and g. In G′, edge e is represented by an edge widget Ee, shown in Figure 2a.
The endpoints xe and ye are shared between the edge widget Ee and the
vertex widgets Vx and Vy; that is, the endpoints of Ee are the same nodes
as the nodes with the same names in Vx and Vy. All penalizers in the edge
widget are big. We argue later that we have to let both ef and eg burn. We
call ef and eg incineration nodes, as we cannot protect all three penalizers
threatened by these two nodes unless we let at least one of the nodes x′

e and
y′

e burn, which can be achieved only by letting Vx or Vy (or both) burn.
Face widgets. G′ contains one face widget Ff per face f of G. Similar to

a vertex widget, the face widget for a face f with incident vertices and
edges x1, e1, . . . , xd, ed, in this order clockwise around f , consists of a cycle
(fx1

, fe1
, . . . , fxd

, fed
), each of whose nodes has an attached penalizer; but

this time the penalizers are big. Once one node in Ff catches fire, the only
way we can prevent n5 nodes from burning is to let the fire spread around
Ff , while protecting the roots of all penalizers in Ff .

The last two widgets build two additional graph structures within G′. The
first allows us to cheaply set fire to vertex widgets corresponding to vertices in a
vertex cover of G. The second ensures that every node ef or eg in an edge widget
burns eventually, forcing us to set fire to at least one vertex widget incident to
each edge widget in order to save all penalizers in the edge widget.

Channels. A channel is a path of length 42n. Each of its internal nodes has a
big penalizer attached to it. The first endpoint of the channel belongs to a
face widget; the second endpoint belongs to an edge widget. More precisely,
for every face f and every edge e on its boundary, there is a channel in G′

whose endpoints are fe and ef . Note that this implies that, once one of the
endpoints of the channel burns, we have to protect its big penalizer inside
the face or edge widget. This sets fire to its neighbour inside the channel.
In order to prevent n5 nodes from burning in the channel, we now have to
let the fire spread along the channel path and, for every node on the path,
protect its adjacent penalizer.

Connectors. A connector is used to let the fire spread cheaply between face
and vertex widgets. For every face f and every vertex x on its boundary,
there is a connector with endpoints xf and fx, which belong to Vx and Ff ;
see Figure 2b. For each connector, if fx burns, we have two choices: Either
we let the fire spread along the connector, thereby forcing all cycle nodes in

Vx to burn, or we let the fire spread to the middle node and then stop the
fire by placing this node’s firefighter on the neighbour of xf in the connector.

To finish the construction of the firefighting instance, we choose an arbitrary
non-penalizer node ρ in a face widget and define B0 = {ρ}. The following lemma
proves that connectors and face widgets allow us to cheaply and quickly set fire
to the appropriate vertex widgets in G′. Lemma 3 then uses this fact to prove
that G has a small vertex cover if and only if G′ has a firefighting strategy that
lets few nodes burn.

Lemma 2. Let V ′ = {x1, . . . , xk} be a vertex cover of G. Then G′ contains a

connected subgraph containing only nodes from face widgets, connector widgets,

and vertex widgets Cx1
, . . . , Cxk

. This graph includes ρ and has diameter at most

42n− 84.

Lemma 3. Graph G has a vertex cover of size k if and only if G′ has a strategy

that burns at most kn3 + 252n2 − 432n− 144 nodes.

Proof sketch. We prove only the “only if” part. The “if” part can be proved
using similar arguments. Let V ′ = {x1, . . . , xk} be a vertex cover of size k, and
let H be a subgraph of G′ as in Lemma 2. Then, due to the diameter bound of
H , we can make sure that every node in H burns by time 42n− 84. Moreover,
we can protect all penalizers incident to nodes in H , except one small penalizer
per vertex widget. Thus, we let kn3 nodes in penalizers burn.

Now observe that an incineration node in an edge widget Ee for an edge
e = xy catches fire no earlier than round 42n, unless we let the fire spread to
this node from xe or ye. In summary, for every edge widget Ee, at least one of xe

and ye catches fire at least 84 rounds before ef or eg can be set on fire through
a channel. We sketch here what happens if only xe burns, that is, y 6∈ V ′. The
other two cases are similar.

In this case, we let the fire spread from xe to x′
e and ex,1, using xe’s firefighter

to protect its incident penalizer inside Vx. In the next time step, we use the
firefighters of x′

e and ex,1 to protect the adjacent penalizers, letting ex,2 burn.
Next we let the fire spread from ex,2 to ex,3 and then on to ef , eg, ey,3, and ey,2.
Each of these nodes has only one unprotected adjacent penalizer by the time
it catches fire because x′

e has already protected Pe,x and then ef protects Pe

before eg catches fire. Thus, each node can use its firefighter to protect the one
penalizer it threatens. Finally, we use ey,2’s firefighter to protect ey,1, thereby
preventing the fire from spreading into Vy.

To obtain the claimed bound on the total number of nodes that burn, we
count the total number of non-penalizer nodes in vertex widgets, face widgets,
channels, and connectors, and add the kn3 nodes that burn in small penalizers
in the k vertex widgets Vx1

, . . . ,Vxk
. ⊓⊔

4 Fixed-Parameter Tractability on General Graphs

We present a bounded search-tree algorithm that solves Politician’s Firefight-
ing in O(m + k2.54k) time. Rather than deciding an entire round at once, our

algorithm is based on the idea of choosing a single threatened node v (i.e., a non-
burning node adjacent to a burning node), and branching recursively on two
cases: place a firefighter on v, or let v burn. However, there are two problems
that must be addressed for the algorithm to work.

The first problem arises because we decouple the recursion from the rounds.
Specifically, we have to track the set of nodes threatened from the beginning of
the round since we place fires during the round rather than at the beginning
of the next round. Otherwise, new nodes would become threatened during the
round as we place fires, which would spread fires indiscriminately.

The other problem is that this approach creates illegal firefighter placements,
since the branching step does not associate firefighters with fires. To overcome
this, before adding a node v to our set F of nodes to be occupied by firefighters,
we check the size of a maximum matching between the nodes in F ∪ {v} and
the nodes in B. If there is a matching that includes every vertex in F ∪ v, then
every firefighter can be matched to a unique fire, so putting a firefighter on v

does not create an illegal placement. If we delete the edges between two burning
nodes or two firefighters, the subgraph induced by B ∪F ∪ v is bipartite with at
most 2k vertices and k2 edges. A maximum matching in a bipartite graph can
be computed in O(

√
nm) time [6], or in this case in O(k2.5) time.

Algorithm politiciansFirefighting(V, E, B, F, T, k)
if k < 0 then return false
if T is empty then

T ← {v ∈ V \ (F ∪B) : v is adjacent to a node in B}
if T is still empty then return true
if |T |− max match(B, T, E) > k then

return false (more than k fires will spawn this round)
Choose any v ∈ T

if max match(B, F ∪ {v}, E) = |F |+ 1 and
politiciansFirefighting(V, E, B, F ∪ {v}, T \ {v}, k) then return true

return politiciansFirefighting(V, E, B ∪ {v}, F, T \ {v}, k − 1)

Algorithm politiciansFirefighting runs in time O(m + k2.54k), which can be
verified as follows. The height of the search tree is bounded by 2k: Overall we
cannot let more than k nodes burn; furthermore we cannot place more than k

firefighters because every fire gives us one firefighter to place. This results in a
search-tree size of at most 22k = 4k nodes.4 The time per node is dominated by
the cost of procedure max match, which computes a maximum matching for a
given bipartite graph and takes O(k2.5) time.

We have implemented our algorithm to measure the average search-tree size
in practice. Our experimental results indicate that, although the size of our
search tree is 4k in the worst-case, in practice the running times are much better.

4 This worst-case search-tree size for our algorithm is indeed tight up to a polynomial
factor. If the number of threatened nodes is exactly twice the number of burning
neighbours, the number of legal firefighter placements that must be generated is

≥ 2
2b

2b
, which is greater than x2b for any x < 2 and sufficiently large b.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 3 5 7 9 11 13 15 17 19 21 23
k

B
a
s
e

p = 0.04
p = 0.05
p = 0.06
p = 0.07
p = 0.08

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 3 5 7 9 11 13 15 17 19 21 23

k

B
a
s
e

n = 100, p = 0.06
n = 500, p = 0.012
n = 1000, p = 0.006

Fig. 3. Left: search-tree size for n = 100, k ≤ 25. Base refers to the x in our xk search
tree size. Right: search-tree sizes for n = 100, 500, 1000, k ≤ 25

For five different densities, we tested 1000 random (connected) graphs from
Gn,p where n is the number of nodes and p is the probability of any given edge
occuring. As shown in Figure 3 (left), running time decreases as graph density
increases. This is likely due to nodes in the graph burning more quickly, causing
the algorithm to reach a no-answer sooner. Therefore, we concentrated on sparse
graphs. We also checked several larger test cases, but as Figure 3 (right) shows,
the number of search nodes actually decreases slightly as n increases and relative
density is maintained.

References

1. S. Finbow, A. King, G. MacGillivray, and R. Rizzi. The firefighter problem for
graphs of maximum degree three. In Proc. European Conf. on Comb., Graph

Theory and Appl., 2003.
2. M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete problems.

In Proc. 6th ACM Symp. on the Theory of Comp., pp. 47–63, 1974.
3. S. G. Hartke. Graph-Theoretic Models of Spread and Competition. PhD thesis,

Rutgers University, 2004.
4. B. Hartnell. Firefighter! an application of domination. Presentation at the 24th

Manitoba Conf. on Comb. Math. and Comp., 1995.
5. B. Hartnell and Q. Li. Firefighting on trees: How bad is the greedy algorithm?

Congressus Numerantium, 145:187–192, 2000.
6. J. E. Hopcroft and R. M. Karp. A n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM Journal on Computing, 2:225–231, 1973.
7. F. Roberts. “Challenges for discrete mathematics and theoretical computer science

in the defense against bioterrorism” in Mathematical Modeling Approaches in

Homeland Security, pages 1–34. SIAM Frontiers in Applied Mathematics, 2003.
8. P. Wang and S. Moeller. Fire control in graphs. Journal of Combinatorial Mathe-

matics and Combinatorial Computing, 41:19–34, 2002.

