
An External Memory Data Structure for

Shortest Path Queries (Extended Abstract)⋆

David Hutchinson1,⋆⋆, Anil Maheshwari1,⋆⋆, and Norbert Zeh1,2,⋆ ⋆ ⋆

1 School of Computer Science, Carleton University, Ottawa, Canada
2 Fakultät für Math. und Inf., Friedrich-Schiller-Universität Jena, Germany

{hutchins,maheshwa,nzeh}@scs.carleton.ca

Abstract. We present results related to satisfying shortest path queries
on a planar graph stored in external memory. In particular, we show how
to store rooted trees in external memory so that bottom-up paths can be
traversed I/O-efficiently, and we present I/O-efficient algorithms for tri-
angulating planar graphs and computing small separators of such graphs.
Using these techniques, we can construct a data structure that allows for
answering shortest path queries on a planar graph I/O-efficiently.

1 Introduction

Motivation. Answering shortest path queries in graphs is an important and well
studied problem. Applications include communication systems, transportation
problems, scheduling, computation of network flows, and geographic information
systems (GIS). Typically, an underlying geometric structure is represented by
an equivalent combinatorial structure, which is often a weighted, planar graph.

Model of Computation. In many applications data sets are too large to fit into
the main memory of existing machines. In such cases, conventional internal mem-
ory algorithms can be inefficient, accessing their data in a random fashion, and
causing many data transfers between internal and external memory. This I/O-
bottleneck is becoming more significant as parallel computing gains popularity
and CPU speeds increase, since disk speeds are not keeping pace. Several com-
putational models for estimating the I/O-efficiency of algorithms have been de-
veloped [10, 11, 3]. We adopt the parallel disk model PDM [10] as our model of
computation for this paper due to its simplicity, and the fact that we consider
only a single processor.

In the PDM, an external memory, consisting of D disks, is attached to a
machine with memory size M data items. Each of the disks is divided into
blocks of B consecutive data items. Up to D blocks, at most one per disk, can
be transferred between internal and external memory in a single I/O operation.
The complexity of an algorithm is the number of I/O operations it performs.

⋆ For details see [12].
⋆⋆ Research partially supported by NSERC.

⋆ ⋆ ⋆ Research partially supported by Studienstiftung des deutschen Volkes.

Previous Results. Frederickson [5] proposed an O
(

N
√
logN

)

time algorithm to
compute shortest paths in planar graphs using separators. This technique was
extended by Djidjev [4] who developed an O(S)-space data structure (N ≤ S ≤
N2) that answers distance queries on planar graphs in O(N2/S) time in internal
memory. The corresponding shortest path can be reported in time proportional
to the length of the reported path.

Lipton and Tarjan [6] presented a linear-time algorithm for finding a 2
3 -

separator of size O
(√

N
)

for any planar graph.

In the PDM, sorting an array of size N takes sort(N) = Θ
(

N
DB logM

B

N
B

)

I/Os [10, 9]. Scanning an array of size N takes scan(N) = Θ
(

N
DB

)

I/Os. For a
comprehensive survey of external memory algorithms, refer to [9]. The only ex-
ternal memory shortest path algorithm known to us is the single source shortest

path algorithm by Crauser et al. [2], which takes O
(

|V |
D + |E|

DB logM

B

|E|
B

)

I/Os

with high probability on a random graph with random weights. We do not know
of previous work on computing separators in external memory. One can use the
PRAM simulation results of Chiang et al. [1] together with known PRAM sep-
arator algorithms. Unfortunately, the PRAM simulation introduces O(sort(N))
I/Os for every PRAM step, and so the resulting I/O complexity is not attractive
for our purposes.

Our Results. The main results of this paper are listed below. Details can be
found in [12].

1. In Sect. 3, we present a blocking to store a rooted tree T of size N in at

most
(

2 + 2
1−τ

)

N
B +D blocks so that a path of length K towards the root

can be traversed in at most
⌈

K
τDB

⌉

+ 1 I/Os, for 0 < τ < 1. For fixed τ ,
the tree uses optimal O(|T |/B) space and traversing a path takes optimal
O(K/DB) I/Os. Using the best previous result by Nodine et al. [8], the tree
would use the same amount of space within a constant factor, but traversing
a path would take O(K/ logd(DB)) I/Os, where d is the maximal degree of
the vertices in the tree.

2. In Sect. 4, we present an external memory algorithm to compute a separator
of size O

(√
N
)

for an embedded planar graph in O(sort(N)) I/Os, provided
that a breadth-first search tree (BFS-tree) of the graph is given. Our algo-
rithm is based on the planar separator technique in [6]. The main challenge
in designing an external memory algorithm for this problem is to determine
a good separator corresponding to a fundamental cycle.

3. In Sect. 5, we describe an external memory algorithm which triangulates an
embedded planar graph in O(sort(N)) I/O operations.

4. Results 1-3, above, are the main techniques that we use to construct an
external memory data structure for answering shortest path queries online.
Our data structure uses O

(

N3/2/B
)

blocks of external storage and answers

online distance and shortest path queries in O
(√

N/DB
)

and O
((√

N +

K
)

/DB
)

I/Os, respectively, where K is the number of vertices on the path.

The separator and triangulation algorithms may be of independent interest,
since graph separators are used in the design of efficient divide-and-conquer
graph algorithms and many graph algorithms assume triangulated input graphs.

2 Preliminaries

A graph G = (V,E) is a pair of sets V and E, where V is called the vertex set
and E is called the edge set of G. Each edge in E is an unordered pair {v, w}
of vertices v and w in V . A graph G is called planar if it can be drawn in the
plane so that no two edges intersect, except possibly at their endpoints. Such
a drawing defines, for each vertex v of G, an order of the edges incident to v
clockwise around v. We call G embedded if we are given this order for every
vertex of G. By Euler’s formula, |E| ≤ 3|V |− 6 for planar graphs. A path from a
vertex v to a vertex w in G is a list p = 〈v = v0, . . . , vk = w〉 of vertices, where
{vi, vi+1} ∈ E for 0 ≤ i < k. A graph G is connected if there is a path between
any two vertices in G. A subgraph G′ = (V ′, E′) of G is a graph with V ′ ⊆ V
and E′ ⊆ E. Connected components of G are the maximal connected subgraphs
of G. Let c : E → R

+ be a mapping that assigns non-negative costs to the edges
of G. The cost of a path p = 〈v0, . . . , vk〉 is defined as |p| = ∑k−1

i=0 c({vi, vi+1}).
A shortest path π(v, w) is a path from v to w of minimal cost. Let w : V → R

+

be a mapping that assigns non-negative weights to the vertices of G such that
∑

v∈V w(v) ≤ 1. The weight of a subgraph H of G is the sum of the weights
of the vertices in H . An ǫ-separator, 0 < ǫ < 1, of G is a subset C of V whose
removal partitions G into two subgraphs, A and B, each of weight at most ǫ, so
that there is no edge in G that connects any vertex in A to any vertex in B. We
will describe results on paths in a tree which originate at an arbitrary node of
the tree and proceed to the root. We will refer to such paths as bottom-up paths.

3 Blocking Rooted Trees

In this section we describe a blocking of a rooted tree T so that we can traverse a
bottom-up path from a given vertex v of T in an I/O-efficient manner. We assume
that all accesses to T are read-only. Thus, we can store each vertex an arbitrary
number of times and use redundancy to reduce the number of blocks that have to
be read. However, this increases the space requirements. The following theorem
gives a trade-off between the space requirements of the data structure and the
I/O-efficiency of the tree traversal. The proof follows from Lemmas 1 and 2. The
proof of Lemma 2 and an algorithm to construct such a blocking for a given tree
in O(sort(N)) I/Os are given in [12].

Theorem 1. Given a rooted tree T of size N and a constant τ , 0 < τ < 1,

we can store T in at most
(

2 + 2
1−τ

)

N
B +D blocks on D parallel disks so that

traversing any bottom-up path of length K in T takes at most
⌈

K
τDB

⌉

+ 1 I/Os.

(b)(a)

18 19 20
21

1716

12

11

10

0

1514

13

12

11

10

98

765

4

3

22

11

00

10

11

129

6 7 14 15

13 16 17

21
201918

3

2
1

0

5

8

4

Fig. 1. (a) A rooted tree Ti with its vertices labelled with their preorder numbers.
Assuming that t = 8, V0, V1, and V2 are the sets of black, grey, and white vertices,
respectively. (b) The subtrees Ti(V1), Ti(V2), and Ti(V3) from left to right.

Intuitively, our approach is as follows. We cut T into layers of height τDB.
This divides every bottom-up path of lengthK in T into subpaths of length τDB;
each subpath stays in a particular layer. We ensure that each such subpath is
stored in a single block and can thus be traversed at the cost of a single I/O
operation. This gives us the desired I/O-bound because any path of length K is
divided into at most

⌈

K
τDB

⌉

+ 1 subpaths.
More precisely, let h(T) represent the height of T , and let h′ = τDB be the

height of the layers to be created (we assume that h′ is an integer). Let the level
of a vertex v be the number of edges in the path from v to the root r of T . Cut
T into layers L0, . . . , L⌈h(T)/h′⌉−1, where layer Li is the subgraph of T induced
by the vertices on levels ih′ through (i+1)h′− 1. Each layer is a forest of rooted
trees whose heights are at most h′. Suppose that there are r such trees, taken
over all layers. Let T1, . . . , Tr denote these trees for all layers of T .

Lemma 1. Given a rooted tree Ti of height at most τDB, we can divide Ti

into subtrees Ti,0, . . . , Ti,s with the following properties: (1) |Ti,j | ≤ DB, for all

0 ≤ j ≤ s, (2)
∑s

j=0 |Ti,j | ≤
(

1 + 1
1−τ

)

|Ti|, and (3) for every leaf l of Ti, there

is a subtree Ti,j containing the whole path from l to the root of Ti.

Proof sketch. If |Ti| ≤ DB, we “divide” Ti into one subtree Ti,0 = Ti. Then
Properties 1–3 trivially hold. So assume that |Ti| > DB. Given a preorder num-
bering of the vertices of Ti, let vk be the vertex with preorder number k. Let
h′ = τDB, t = DB − h′, and s = ⌈|Ti|/t⌉ − 1. We define vertex sets V0, . . . , Vs,
where Vj = {vjt, . . . , v(j+1)t−1} for 0 ≤ j ≤ s (see Fig. 1(a)). The subtree
Ti,j = Ti(Vj) is the subtree of Ti consisting of all vertices in Vj and their ances-
tors in Ti (see Fig. 1(b)). We claim that these trees Ti,j have Properties 1–3.

Property 3 is ensured by including the ancestors in Ti of all vertices in Vj in
Ti(Vj). Property 2 follows, if we can prove Property 1 because then

∑s
j=0 |Ti,j | ≤

∑s
j=0 DB = (s+ 1)DB ≤

(

1
1−τ + 1

)

|Ti|.
It can be shown that every vertex in Ti(Vj) that is not in Vj is an ancestor

of vjt. As the height of Ti is at most h′, there can be at most h′ such ancestors
of vjt. Moreover, |Vj | ≤ DB − h′. Thus, |Ti(Vj)| ≤ DB. ⊓⊔

Lemma 2. If a rooted tree T of size N is partitioned into subtrees Ti,j such that

the properties 1–3 in Lemma 1 hold, then T can be stored using
(

2 + 2
1−τ

)

N
B +D

blocks of external memory, and any bottom-up path of length K in T can be
traversed in at most

⌈

K
τDB

⌉

+ 1 I/Os.

4 Separating Embedded Planar Graphs

We now present an external memory algorithm for separating embedded planar
graphs. It is based on Lipton and Tarjan’s [6] linear-time separator algorithm.
The input to our algorithm is an embedded planar graph G and a spanning
forest F of G. Every tree in F is a rooted BFS-tree of the respective connected
component. The graph G is represented by its vertex set V and its edge set E.
To represent the embedding, let the edges incident to a vertex v be numbered
in counterclockwise order around v. This defines two numbers nv(e) and nw(e),
stored with every edge e = {v, w}. The spanning forest F is given implicitly by
marking every edge of G as tree or non-tree edge and storing, with each vertex
v in V , the name of its parent p(v) in F . We prove the following theorem.

Theorem 2. Given an embedded planar graph G with N vertices and a BFS-
tree1 T of G, a 2

3 -separator of G of size at most 2
√
2
√
N can be computed in

O(sort(N)) I/Os.

Proof sketch. W.l.o.g., we assume that the given graph is connected. If it is not,
we can compute its connected components in O(sort(N)) I/Os [1] and compute
a separator of the component with weight greater than 2

3 , if any. Moreover we
assume that G is triangulated. If it is not, it can be triangulated in O(sort(N))
I/Os using the algorithm in Sect. 5.

The separator consists of two parts. First we compute two levels l0 and l2
in G’s BFS-tree T whose removal divides G into three parts G1, G2, G3 with
|G1|, |G3| ≤ 2

3 and such that L(l0) + L(l2) ≤ 2
√
2
√
N − 2(l2 − l0 − 1), where

L(l) is the number of vertices on level l. Lipton and Tarjan [6] proved that such
levels l0 and l2 exist. Computing levels l0 and l2 takes O(sort(N)) I/Os using a
generalization of the list ranking algorithm in [1], sorting, and scanning.

To separate G2 into components of weights at most 2
3 each, we shrink levels

0 through l0 to a single vertex, remove levels l2 and below, and retriangulate the
resulting graph. Call the resulting graph G′. We construct G′, a spanning tree
T ′ of G′, and an embedding of G′ in O(sort(N)) I/Os using sorting, scanning,
and the triangulation algorithm in Sect. 5. The separator of G2 is a simple cycle
separator of G′, which contributes at most 2(l2− l0−1) vertices to the separator
because the height of T ′ is l2− l0. Thus, the total size of the separator is at most
2
√
2
√
N . Lemma 3 states that a simple cycle separator of G′ can be computed

in O(sort(N)) I/Os. ⊓⊔

1 The currently best known BFS-algorithm [7] takes O
(

|V |+ |E|
|V |

sort(|V |)
)

I/Os.

2R (e)

1R (e)

����
����
����

����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

e

v w

u

r

(8, 7, 3, 9)

(2, 9, 4)

(3, 1, 2, 4, 9)

(5, 10, 8, 9, 2, 1, 3, 6, 3)

(7, 8, 10, 5, 3)

2

1
3

6

5

10

8

9

4

7

Fig. 2. A non-tree edge e and its funda-
mental cycle c(e) shown in bold. R1(e)
is the set of vertices embedded inside
the cycle and R2(e) is the set of ver-
tices embedded outside the cycle.

Fig. 3. A given graph G (black vertices and
solid lines). White vertices and dotted ar-
rows represent the graph Ĝ for G. Every
face f of Ĝ is labelled with its correspond-
ing vertex list Ff .

Finding a Small Simple Cycle Separator. Every non-tree edge e = {v, w} in G′

defines a fundamental cycle c(e) consisting of e itself and the two paths in the
tree T ′ from the vertices v and w to the lowest common ancestor (LCA) u of v
and w (see Fig. 2). Any fundamental cycle c(e) separates G′ into two subgraphs
R1(e) and R2(e), one induced by the vertices embedded inside c(e) and the other
induced by those embedded outside. Lipton and Tarjan showed that there is a
non-tree edge e in G′ such that R1(e) and R2(e) have weights at most 2

3 each.

Lemma 3. Given a triangulated graph G′ with N vertices and a BFS-tree T ′ of
G′. A 2

3 -simple cycle separator of size at most 2h(T ′)−1 for G′ can be computed
in O(sort(N)) I/Os.

Proof sketch. For every vertex v in T ′, we compute a 4-tuple A(v) = (n(v), ν(v),
δ(v),W (v)) of the following labels: (1) its preorder number n(v), (2) its “weighted
preorder number” ν(v) =

∑

n(u)≤n(v) w(u), (3) the total weight δ(v) of v and

all its ancestors in T ′, and (4) the weight W (v) of all vertices in the subtree of
T ′ rooted at v. It is essential that the preorder numbers n(v) and ν(v) respect
the embedding. That is, if p(v), w1, and w2 appear in counterclockwise order
around vertex v, then w1 has a smaller preorder number than w2. Less formally,
this means that the subtrees in T ′ are labelled in left-to-right order. In [12] it
is shown how to compute these labels in O(sort(N)) I/Os using known external
memory techniques such as sorting, scanning, and time-forward processing [1].

We store the tuples A(v), A(w), and A(u) with every edge e = {v, w}, where
u is the LCA of v and w. Computing all LCAs takes O(sort(N)) I/Os [1]. To

copy the appropriate vertex labels to all edges, we have to sort and scan the
vertex and edge sets of G′.

For every vertex v of T ′, let e0, . . . , ek be the set of edges incident to it in
counterclockwise order, and let e0 = {v, p(v)}. We define t(ei) = 0, if ei is a
non-tree edge, and t(ei) = W (wi), if ei = {v, wi} is a tree edge and v = p(wi).
We compute labels tv(ei) = tv(ei−1) + t(ei), for 0 < i ≤ k, and tv(e0) = 0,
sorting and scanning the edge set of G′.

Given a non-tree edge e, the weights ofR1(e) and R2(e) can now be computed
from the labels stored locally with e: Consider Fig. 2. A non-tree edge e =
{v, w} is shown and u is the LCA of v and w in T ′. Four classes of subtrees are
indicated by different patterns in Fig. 2. The vertices in the vertically hatched
subtree are not important to the algorithm, but are included for completeness.
The set of vertices R1(e), embedded inside the cycle, are the vertices in the
white and black subtrees. The vertices in the horizontally hatched and white
subtrees and on the tree path from u to w are exactly the vertices with preorder
numbers between n(v) and n(w). Thus, their total weight is ν(w) − ν(v). The
total weight of the vertices in the horizontally hatched trees is tv(e); the total
weight of the vertices on the path from u to w is δ(w) − δ(u); the total weight
of the black trees is tw(e). Thus, the total weight of vertices in R1(e) is ν(w) −
ν(v) − tv(e) + tw(e) − δ(w) + δ(u). The total weight of the vertices on c(e)
is δ(v) + δ(w) − 2δ(u) + w(u). Hence, the total weight of vertices in R2(e) is
w(G′)− w(R1(e))− δ(v)− δ(w) + 2δ(u)− w(u).

Thus, we can scan the edge set of G′ and stop at the first non-tree edge
with w(R1(e)), w(R2(e)) ≤ 2

3 . The fundamental cycle c(e) can be reported in
O(sort(N)) I/Os by sorting the vertex set of G′ by levels and preorder numbers
in T ′ and then reporting on every level lower than that of u, those vertices with
greatest preorder number less than n(v) and n(w), respectively. ⊓⊔

5 Triangulating Embedded Planar Graphs

In this section we present an O(sort(N))-algorithm to triangulate a connected
embedded planar graph G = (V,E). We assume the same representation of G
and its embedding as in the previous section. Our algorithm consists of two
phases. First we identify the faces of G. We represent each face f by a list of
vertices on its boundary, sorted clockwise around the face. In the second phase,
we use this information to triangulate the faces of G. The following theorem
follows from Lemmas 4 and 6 below.

Theorem 3. An embedded planar graph can be triangulated in O(sort(N)) I/Os.

Identifying Faces. We compute a list F which is the concatenation of vertex
lists Ff , one for each face of G. For a given face f , the list Ff is the clockwise
sequence of vertices around face f . The list Ff may contain more than one copy
of the same vertex, depending on how often this vertex is visited in a clockwise
traversal of the face boundary.

TriangulateFaces(G,F):

1: Make all faces of G simple:
For each face f , (a) mark the first appearance of each vertex v in Ff , (b) append
a marked copy of the first vertex in Ff to the end of Ff , and (c) scan Ff backward
and remove each unmarked vertex v from f and Ff by adding a chord between
its predecessor and successor in the current list.

2: Triangulate the simple faces:
Let Ff̂ = 〈v0, . . . , vk〉. Add “temporary chords” {v0, vi}, 2 ≤ i ≤ k − 1, to f̂ .

3: Mark conflicting chords:
Sort E lexicographically, ensuring that edge {v, w} is stored before all “tempo-
rary chords” {v, w}. Scan E and mark all occurrences of each edge, except the
first, as “conflicting”. Restore the original order of all edges and “temporary
chords”.

4: Retriangulate conflicting faces:
For each face f̂ , let Df̂ = 〈{v0, v2}, . . . , {v0, vk−1}〉 be the list of “temporary
chords”. Scan Df̂ until we find the first conflicting chord {v0, vi}. Replace
{v0, vi}, . . . , {v0, vk−1} by chords {vi−1, vi+1}, . . . , {vi−1, vk}.

Algorithm 1: Triangulating the faces of G.

Lemma 4. The list F can be constructed in O(sort(N)) I/Os.

Proof sketch. We first compute a graph Ĝ which is comprised of disjoint directed
cycles. Each cycle represents a clockwise traversal of the boundary of a face f of
G. Given a cycle in Ĝ that represents a face f of G, every vertex in this cycle
represents an edge on the boundary of f . We construct Ff as the list of first
endpoints of these edges in clockwise order around f (see Fig. 3).

Two vertices in Ĝ that are consecutive on a cycle of Ĝ represent two edges
that are consecutive on the boundary of a face of G in clockwise order. Thus,
these two edges are consecutive around a vertex of G in counterclockwise order.
The graph Ĝ contains vertices v(v,w) and v(w,v) for every edge {v, w} of G and
edges (v(u,v), v(v,w)), where {u, v} and {w, v} are consecutive counterclockwise
around v. These vertex and edge sets can be computed sorting and scanning the
vertex and edge sets of G.

We identify the cycles of Ĝ as its connected components using the algorithm
in [1], sort and scan the edge set of Ĝ to remove an arbitrary edge from every
such cycle. This transforms every cycle into a list, which can be ranked and then
sorted by rank. As a result, the vertices of Ĝ are sorted clockwise around the
faces of G. We scan these sorted lists to construct F . As we only use scanning,
sorting, and the list ranking technique in [1], the complexity of this algorithm is
O(sort(N)). ⊓⊔

Triangulating Faces. We triangulate each face f in four steps (see Algorithm 1).

First, we reduce f to a simple face f̂ . (A face is simple if each vertex on its
boundary is visited only once in a clockwise traversal of the boundary.) This

reduces the list Ff to Ff̂ . In the second step, we triangulate f̂ . We ensure that

there are no multiple edges in f̂ , but we might add conflicting edges (edges with

v0

vk
vi+1

vi

vi-1

d

d’

vi

vi-1

vi+1

v0

vk

d’

f2

f1

(b)(a)

Fig. 4. (a) A simple face f̂ . Chord d conflicts with d′ and divides f̂ into two parts f1
and f2. One of them, f1, is conflict-free. Vertex vi−1 is the third vertex of the triangle
in f1 that has d on its boundary. (b) The conflict-free triangulation of f̂ .

the same endpoints) to adjacent faces. (See Fig. 4 for an example.) In the third
step, we detect all such conflicting edges. In the fourth step, we retriangulate all
faces f̂ so that conflicts are resolved and a final triangulation is obtained.

In [12] we show that, for each face f of G, the face f̂ , computed in Step

1 of Algorithm 1 is simple. The parts of f that are not in f̂ are triangulated.
Moreover, Step 1 does not introduce parallel edges. Step 2 triangulates all simple
faces f̂ . However, we may add the same chord {v, w} to several faces f̂1, . . . , f̂k.
It can also happen that {v, w} is already an edge of G. If {v, w} ∈ G, we have
to remove the chords {v, w} from all k faces where we have added such a chord.
Otherwise, we have to remove k − 1 of them. In Step 3, we mark the respective
chords as conflicting. We have to show that the output of Step 4 is a conflict-free
triangulation of G.

Lemma 5. Step 4 makes all faces f̂ conflict-free, i.e. the graph obtained after
Step 4 is simple.

Proof sketch. Let d = {v0, vi} (see Fig. 4). Then d cuts f̂ into two halves, f1
and f2. All chords {v0, vj}, j < i are in f1; all chords {v0, vj}, j > i are in f2.
That is, f1 does not contain conflicting chords. Vertex vi−1 is the third vertex
of the triangle in f1 that has d on its boundary. Step 4 removes d and all chords
in f2 and retriangulates f2 with chords incident to vi−1.

Let d′ be the edge that is in conflict with d. Then d and d′ form a closed
curve, and vi−1 is outside this curve. All boundary vertices of f2 excluding the
endpoints of d are inside this curve. As no edge, except for the new chords in
f̂ , can intersect this curve, the new chords in f̂ are non-conflicting. The “old”
chords in f̂ were in f1 and thus, by the choice of d and f1, non-conflicting. Hence,
f̂ does not contain conflicting chords. ⊓⊔

We mark the first appearances of vertices in each list Ff in O(sort(N)) I/Os
as follows: sort Ff by vertex numbers, scan Ff to mark the first appearance of
every vertex, and restore the original order of Ff . The rest of Algorithm 1 takes
O(sort(N)) I/Os.

Lemma 6. Given the list F as defined in the previous section, Algorithm 1
triangulates the graph G in O(sort(N)) I/Os.

In order to use this algorithm as part of our separator algorithm, we also
have to embed the chords in the faces. Let v1, e1, v2, e2, . . . , vk, ek be the list of
vertices and edges visited in a clockwise traversal of the boundary of a face f
(i.e., Ff = 〈v1, . . . , vk〉). We define labels n1(vi) = nvi(e(i−1) mod k) and n2(vi) =
nvi(ei), and store them with vi in Ff . When we add a chord d incident to vertex
vi, we give it a label nvi(d) which is a rational value between n1(vi) and n2(vi).
(To avoid problems related to arithmetic precision, we assign the new label as an
offset of 1

N from either n1(vi) or n2(vi).) This embeds d between e(i−1) mod k and
ei. After that, the labels n1(vi) and n2(vi) are updated to ensure that subsequent
chords are embedded between e(i−1) mod k or ei and d, depending on the current
configuration. We can maintain labels n1(v) and n2(v) for all vertices in the lists
Ff without increasing the number of I/O-operations by more than a constant
factor.

Acknowledgements. We would like to thank Lyudmil Aleksandrov, Jörg-Rüdiger
Sack, Hans-Dietrich Hecker, and Jana Dietel for helpful discussions.

References

[1] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, J. S.
Vitter. External-memory graph algorithms. Proc. 6th SODA, Jan. 1995.

[2] A. Crauser, K. Mehlhorn, U. Meyer. Kürzeste-Wege-Berechnung bei sehr großen
Datenmengen. Aachener Beitr. zur Inf. (21). Verl. d. Augustinus Buchh. 1997.

[3] F. Dehne, W. Dittrich, D. Hutchinson. Efficient external memory algorithms by
simulating coarse-grained parallel algorithms. Proc. 9th SPAA, pp. 106–115, 1997.

[4] H. N. Djidjev. Efficient algorithms for shortest path queries in planar digraphs.
Proc. of the 22nd Workshop on Graph-Theoretic Concepts in Comp. Sci., Lecture
Notes in Comp. Sci., pp. 151–165. Springer Verlag, 1996.

[5] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM J. Comp., 16(6):1004–1022, Dec. 1987.

[6] R. J. Lipton, R. E. Tarjan. A separator theorem for planar graphs. SIAM J.

Appl. Math., 36(2):177–189, 1979.
[7] K. Munagala, A. Ranade. I/O-complexity of graph algorithms. Proc. 10th SODA,

Jan. 1999.
[8] M. Nodine, M. Goodrich, J. Vitter. Blocking for external graph searching. Algo-

rithmica, 16(2):181–214, Aug. 1996.
[9] J. Vitter. External memory algorithms. Proc. 17th ACM Symp. on Principles of

Database Systems, June 1998.
[10] J. Vitter, E. Shriver. Algorithms for parallel memory I: Two-level memories.

Algorithmica, 12(2–3):110–147, 1994.
[11] J. Vitter, E. Shriver. Algorithms for parallel memory II: Hierarchical multilevel

memories. Algorithmica, 12(2–3):148–169, 1994.
[12] N. Zeh. An External-Memory Data Structure for Shortest Path Queries. Diplo-

marbeit, Fak. f. Math. und Inf., Friedrich-Schiller-Univ. Jena, Nov. 1998.

