An External-Memory Data Structure for
Shortest Path Queries

Diplomarbeit
von

Norbert Zeh

zur Erlangung des akademischen Grades

Diplom-Informatiker

Friedrich-Schiller-Universitat Jena
Fakultat fir Mathematik und Informatik

Jena, Germany

November 1998

© Copyright
1998, Norbert Zeh

Selbstandigkeitserklarung

Hiermit erklare ich, daB ich die vorliegende Arbeit “An External-Memory Data Struc-
ture for Shortest Path Queries” selbstiandig und nur unter Verwendung der im Lite-
raturverzeichnis aufgelisteten Literatur verfafit habe.

Ich mochte jedoch erwahnen, dafl ich viele meiner Ideen mit Mitgliedern der
PARADIGM Group diskutiert habe.

Das Ergebnis in Abschnitt 3.4.2 ist das Resultat ausgiebiger Diskussionen mit
Prof. Anil Maheshwari und David Hutchinson. In diesen Diskussionen ist es aus einer
Reihe vorheriger Anséitze, die von mir entwickelt wurden, hervorgegangen.

Die Ergebnisse in den Kapiteln 6 und 7 konnte ich durch wertvolle Hinweise von
Prof. Jorg-Riidiger Sack, Prof. Anil Maheshwari und Dr. Lyudmil Aleksandrov stark

vereinfachen.

Ottawa, den 19. November 1998,

Norbert Zeh

i

An External-Memory Data Structure for Shortest Path Queries
Diplomarbeit

Norbert Zeh

Betreuer: Prof. Dr. Hans-Dietrich Hecker,

Friedrich-Schiller-Universitat Jena, Germany

Prof. Dr. Jorg-Riidiger Sack,

Carleton University, Ottawa, Canada

Friedrich-Schiller-Universitat Jena
November 1998

il

To My Parents

Edeltraut and Winfried Zeh

v

Abstract

In this work, we deal with the problem of preprocessing graphs with v/N-separators
for fast shortest path queries. We look at this problem in an external-memory en-
vironment. We use an efficient internal memory approach to this problem due to
Djidjev and replace the basic ingredients of this algorithm by their external-memory
equivalents.

These ingredients are (1) a separator algorithm for planar graphs and (2) a sin-
gle source shortest path algorithm. For (2) we use an algorithm due to Crauser,
Mehlhorn, and Ulrich. For (1) we present an external-memory version of the algo-
rithm by Lipton and Tarjan, provided that an external-memory breadth-first search
algorithm is given. Part of this algorithm is a new algorithm for triangulating em-
bedded planar graphs in external memory.

Another important ingredient is preprocessing of the shortest path trees which
are part of our data structure for reporting paths I/O-efficiently. More generally,
we present an approach to store rooted trees in external memory so that bottom-up

paths can be traversed I/O-efficiently.

Acknowledgements

Although there are many people who deserve to be thanked for their support in the
course of my studies, there are some whom I want to thank especially and explicitly
here.

First of all, I want to thank my two supervisors: Prof. Hans-Dietrich Hecker
and Prof. Jorg-Ridiger Sack for their devotion and for making my visit to Carleton
University and thereby this work possible at all.

I want to thank Prof. Anil Maheshwari and David Hutchinson for their wonderful
cooperation on external-memory matters and for all the time they spent on our joint
research.

Prof. Hristo Djidjev deserves to be thanked for interesting discussions on prob-
lems concerning graph separators and shortest path preprocessing during his visit to
Carleton University.

Jana Dietel deserves my most sincere thanks for being a wonderfully patient friend
who coped with my never ending list of questions about all these small details in many
papers that I really wanted to understand.

Still talking about school, I finally want to thank all the graduate students of the
School of Computer Science at Carleton University who made my visit to Carleton
University a wonderful experience. Especially, Pat Morin and Jason Morrison made
thinking about algorithms and data structures real fun instead of hard work.

My parents deserve very, very special thanks for helping me to cope with all these
every-day life problems, small and big ones, in a way only parents can do that. Thus,
I could always focus on my studies. Thank you for always believing in me and my

abilities.

vi

Finally, I must not forget to thank all my friends for never taking me too seriously.
This helped me a lot not to forget that there are other important things in life beside
computer science. Thank you for filling my breaks from work, shorter and longer

ones, with pleasure. I gained new energy for more work to come from that.

vii

Contents

Abstract v
Acknowledgements vi
1 Introduction 1
1.1 Overview. o . o e e 1

1.2 Model of Computation L 2
1.2.1 Single Disk Model oo oo 3

1.2.2 Parallel Disk Model, 4

1.2.3 Storing Data on Multiple Disks 5

1.2.4 Some Notation and Basic Results 5

1.2.5 An External-Memory Stack 6

1.3 Basic Definitions L 6
1.3.1 Graphs. 6

1.3.2 Pathsin Graphs. 0oL 8

1.3.3 Rooted Trees 9

1.3.4 Graph Separators L. 9

2 An External-Memory Shortest Path Data Structure 11
2.1 Shortest Paths and Hierarchical Decomposition Trees 12

2.2 Distance Queries 16
2.3 Shortest Path Queries, 18
24 Analysis 21
2.5 Constructing the Data Structure. 22

viii

3 Blocking Rooted Trees: The Storage Scheme
3.1 Path Traversals
3.2 Speed-Up and Storage Blow-Up
3.3 Previous Results for Online Traversals
3.4 Offline Traversals
3.4.1 Tight Bounds without Storage Blow-Up
3.4.2 An Optimal Approach with Storage Blow-Up

4 Labeling Rooted Trees in External Memory

4.1 Time-Forward Processing
4.2 3-Coloring a Tree in External Memory
4.3 Computing Vertex-to-Root Distances
4.4 Computing Subtree Sizes or Weights
4.5 Computing Preorder, Postorder, and Levelorder Numbers

4.5.1 Preorder and Postorder Numbers

4.5.2 Levelorder Numbers
4.6 Lower Bounds

5 Blocking Rooted Trees: The Algorithm
5.1 Framework of the Algorithm
5.2 MAKEEDGELIST
5.3 MAKEPARENTPOINTERS
5.4 COMPUTESUBTREELABELS

5.5 CONSTRUCTSUBTREES . . - « « v v v oo et e i i i s

6 Separating Embedded Planar Graphs in External Memory
6.1 Data Representation L o L.
6.2 Framework of the Algorithm
6.2.1 Computing Connected Components
6.2.2 Finding the Heaviest Component
6.2.3 Constructing Aand B 0oL
6.3 Separating Connected Planar Graphs

X

28
28
29
30
30
31
37

43
44
47
a0
o7
28
28
61
63

64
64
67
68
69
71

6.4 Finding a Simple Cycle Separator in an Embedded Triangulation
6.5 Graph Separators and Shortest Paths

7 Triangulating Embedded Planar Graphs in External Memory
7.1 Framework of the Algorithm
7.2 Identifying Faces o oo
7.3 'Triangulating Faces 0000

8 Conclusions
A Deutsche Zusammenfassung

Bibliography

105
105
106
111

124

127

130

Chapter 1

Introduction

1.1 Overview

In this work, we develop an external-memory data structure for fast shortest path
queries on graphs with v/N-separator. We also present an [/ O-efficient algorithm to
construct this data structure for a given graph. Finding shortest paths in graphs is a
very important and intensively studied problem. It has applications in communication
systems, transportation problems, scheduling, computation of network flows, and
geographic information systems.

The problem of preprocessing graphs for fast shortest path queries has been con-
sidered by Feuerstein and Marchetti [19], Djidjev, Pantziou, and Zariolagis [18], and
Djidjev [16]. Our external-memory approach is based on the approach in [16]. We
describe our solution in Chapter 2.

This solution relies on some other ingredients. The data structure contains short-
est path trees providing us with the shortest path information between appropriately
chosen pairs of vertices. To report the shortest path between two query vertices, we
have to traverse two paths in one of these shortest path trees towards the root. In
Chapter 3, we show how to store shortest path trees so that these path traversals
take an optimal number of I/Os.

For the construction of the shortest path data structure, we need a separator

algorithm for embedded planar graphs, a single source shortest paths algorithm, and

CHAPTER 1. INTRODUCTION 2

an algorithm that converts the shortest path trees constructed by the shortest path
algorithm into the blocked representation presented in Chapter 3.

The algorithm for converting the shortest path trees into a blocked representation
is described in Chapter 5. It uses some basic labeling techniques for rooted trees
which are developed in Chapter 4. For the single source shortest paths problem,
we use the currently best known algorithm by Crauser, Mehlhorn, and Meyer [13].
Our external-memory separator algorithm is based on Lipton and Tarjan’s planar
separator algorithm [26]. We describe our separator algorithm in Chapter 6. We
show that computing a separator of an embedded planar graph is asymptotically at
most as hard as computing a breadth-first spanning tree of this graph. Computing
such a spanning tree I/O-efficiently is still an open problem. We use a new external-
memory algorithm for triangulating embedded planar graphs as part of our algorithm.
We develop this algorithm in Chapter 7.

In Chapter 8, we highlight on some open problems related to the results in this
thesis and, more importantly, on some ideas how to avoid the apparently hard problem
of computing a BFS-tree in our separator algorithm.

The remaining two sections of this chapter introduce the model of computation
that we use, present results for some basic operations and data structures in this
model, and give the definitions of all terms that we use throughout this work. Addi-

tional definitions, if necessary, are presented in the respective chapters.

1.2 Model of Computation

In large-scale applications such as GIS, VLSI design, computational biology and chem-
istry, the whole data set usually does not fit into internal memory. Then the bottle-
neck of the computation is the transfer of data (input/output or short I/0) between
fast internal memory and slow external memory. This bottleneck becomes more sig-
nificant as parallel computing gains popularity and CPU speeds increase at an annual
rate of 40-60%, while disk transfer rates increase by only 7-10% annually [30]. The
internal memory sizes of computers also increase, but not nearly as fast as the amount

of data to be handled grows.

CHAPTER 1. INTRODUCTION 3

That is why we chose a model of computation which is designed to analyze the
I/O-complexity of algorithms. This model has been introduced by Aggarwal and
Vitter [2] and has been extended to multiple disks by Vitter and Shriver [35].

1.2.1 Single Disk Model

The most time-consuming part of an I/O-operation is the time to position the read-
write head of the disk. Thus, it takes almost the same amount of time to read or
write a block of B consecutive data items as it takes to read or write only one item
from or to disk. Therefore, modern computers try to “hide” (amortize) disk latency
by performing I/O-operations blockwise, where a block is a sequence of B contiguous
items on disk. Usually, as for instance in the UNIX file system, a block is also required
to begin at a position which is a multiple of B.

These features of real computers are captured in the I/O model of Aggarwal and
Vitter [2]. In this model we assume that the computer can hold M data items in
its fast internal memory. The problem size NV is considerably larger than M. Hence,
most of the information is stored in slow external memory. Let the memory cells in
external memory be numbered beginning with 0. We group external memory locations
iB through (i 4+ 1)B — 1 into block B;,7 € N. In practice, B is some parameter given
by the characteristics of the computer that we use. The only permitted operation in
external memory is the transfer of at most B items from internal memory to some
block B; or vice versa. Ome such transfer to or from a single block is counted as
one I/O-operation. Computation has to take place in internal memory and is for free.
This is reasonable because the time to transfer the data between internal and external
memory is the dominating part of the running time of an algorithm involving I/0O-
operations. The complexity of an algorithm is the number of I/Os that it performs.

In order to be able to transfer at least one block at a time to or from external
memory, we assume that M > B and often M > ¢B, for some constant ¢ > 1, so

that we can hold a constant number of blocks in internal memory.

CHAPTER 1. INTRODUCTION 4

1.2.2 Parallel Disk Model

A popular approach to increase the bandwidth between internal and external memory
is to use a number of disks in parallel. This approach is captured in the parallel disk
model (PDM) due to Vitter and Shriver [35], which is an extension of the model of
Aggarwal and Vitter. In this model, we assume that we have D > 1 parallel disks and
that it is possible to transfer up to D blocks between internal and external memory
in a single I/O-operation, as long as each of these blocks is stored on another disk.
The greater bandwith would not be much use, if we did not have enough memory to
hold at least D blocks of data at a time in internal memory. Thus, we assume that
M > DB or, as above, M > ¢DB, for some constant ¢ > 1.

Hence, the four parameters in terms of which we have to describe the I/0-

complexity of our algorithms are:

N = problem size,

M = internal memory size,

B = block size,

D = number of parallel disks.

An important issue in the PDM is balancing the load between the disks, i.e., dis-
tributing the data evenly over the D disks. We say that the load is evenly distributed
iff the number of used blocks differs by at most one between any two of the D disks.
Most of our algorithms balance the load; some do not.

Since we only distinguish between internal and external memory, the model that
we use is a two-level memory model. Other models describing more than two lev-
els of memory (e.g., registers, on-chip cache, off-chip cache, main memory, external
memory) have been proposed (e.g., [4] and [36]). We have chosen two-level models
because algorithm design is easier in these models than in one of the more sophisti-
cated multi-level models and because the most significant difference in speed and size

is between external and main memory.

CHAPTER 1. INTRODUCTION)

1.2.3 Storing Data on Multiple Disks

For many results in the parallel disk model, the layout of the data on the parallel
disks is crucial for the efficiency of the algorithm. The following layout, called disk
striping [35], is assumed for almost all PDM-algorithms.

Assume that, in the single disk model, we would store the data in blocks By, . . ., By,
in this order. Using disk striping, we store block B; in the |i/D|-th block on the
(¢ mod D)-th disk. This ensures that we can always read D consecutive blocks with
a single 1/O. We say that the data is striped across D disks.

If not stated otherwise, the inputs and outputs of our algorithms are striped. In
some of our results, we stripe the data and tie blocks B;p, ..., By1)p—1 together to
form a superblock Bj}. Each such superblock can be accessed with a single I/O. That
is, we can use D disks as a single disk with block size DB. However, it must be
guaranteed that we have enough internal memory to store DB items. We capture

this in the following lemma.

LEMMA 1.1 A single disk algorithm with 1/O-complexity T(N, M, B) = f(N, M, B)
for M > ¢B (¢ > 1) can be generalized to a multiple disk algorithm with I/0-
complexity Z(N, M, B, D) = f(N, M, DB) for M > cDB.

1.2.4 Some Notation and Basic Results

Assuming that B, D, and M are understood, we denote by sort(/N) the number of
I/Os required to sort N items on a machine with M internal memory and D parallel
disks with block size B. Analogously, perm(N) (resp. scan(N)) denotes the number
of 1/Os required to create a given permutation of N items (resp. to scan an array of
N items from head to tail once). It is easy to see that scan(N) = O(2%5). Aggarwal
and Vitter [2] showed that, for D = 1, sort(N) = @(%log% %) and perm(N) =
O(min{N, & log X1). Arge [6] presented an alternative proof for the upper and
lower bounds for sorting. To prove the upper bound, he used a new data structure
called buffer tree [5]. The lower bound follows from the proof of Arge, Knudsen, and

Larsen that any problem with an Q(N log N) time bound in the comparison model

CHAPTER 1. INTRODUCTION 6

has an Q(% log s %) 1/O-bound in this model [7]. Nodine and Vitter [29] and Vitter
and Shriver [35] proved that, for D > 1, sort(N) = (35 log £). Vitter and Shriver
[35] showed that, for D > 1, perm(N) = ©(min{Z, %log% X1}). Note that these
two bounds are better than the ones that we would achieve by applying Lemma 1.1

to the single-disk results.

1.2.5 An External-Memory Stack

A stack can be implemented with an optimal number of I/Os as follows: Assume that
M > 2B. Then we keep the stack in internal memory as long as its size is less than
2B. When its size becomes 2B, we write the bottommost B items to external memory.
This takes one I/O and makes room for another B items in internal memory. The
next I/O becomes necessary when either we do not have enough internal memory to
push more items on the stack or we try to pop an item that is not in internal memory
from the stack. For the first situation to arise, we have to push at least B additional
items on the stack. In order to access the topmost item that is not in internal memory,
we have to pop the B items which are in internal memory first. Thus, we perform
at least B stack operation before the next I/O. Hence, a sequence of N push and
pop operations on the stack takes optimal O(N/B) I/Os. Using Lemma 1.1, this
generalizes to O(N/DB) 1/0Os in the case D > 1.

1.3 Basic Definitions

The major part of this work is about graphs and rooted trees. We give some ba-
sic definitions here. Additional definitions, if necessary, are given in the respective

chapters.

1.3.1 Graphs

DEFINITION 1.1 A directed graph is a pair G = (V(G), E(Q)) of sets. V(G) is called
the vertex set of G, and E(G) C V(G) x V(G) is called the edge set of G.

CHAPTER 1. INTRODUCTION 7

DEFINITION 1.2 An undirected graph is a pair G = (V(G), E(G)) of sets. V(G) is
called the verter set of G, and E(G) C {{v,w}: v,w € V(G)} is called the edge set
of G.

For every directed graph G = (V(G), E(G)), there is a corresponding undirected
graph G' = (V(G'), E(G")) with V(G') = V(G) and E(G') = {{v,w} : (v,w) €

E(G)}. In this work, all graphs are undirected unless stated otherwise.

DEeFINITION 1.3 A graph G' = (V(G'), E(G")) is a subgraph of another graph G =
(V(G),E(G)), if V(G") C V(G), E(G") C E(G), and for each edge {v,w} (resp.
(v,w)), v,w € V(G").

DEFINITION 1.4 Two vertices v and w of an undirected graph G = (V(G), E(G))
are adjacent, if {v,w} € E(G). Adjacency in a directed graph is defined as adjacency

in the corresponding undirected graph.

DEFINITION 1.5 A graph G is planar, if it can be drawn in the plane such that ver-
tices are represented by points and edges are represented by pairwise non-intersecting

continuous curves connecting their endpoints.

DEFINITION 1.6 The removal of the points and curves representing vertices and edges

of a planar graph G divides the plane into connected regions. We call these regions
the faces of G.

Note that the faces of a planar graph G are not well-defined. They depend on
the embedding, i.e., on the way we draw the graph G in the plane. We call a graph

embedded, if it is drawn in the plane.

DEFINITION 1.7 The in-degree (resp. out-degree) of a vertex v in a directed graph
G = (V(G), E(GQ)) is defined as |[{w : (w,v) € E(G)}| (resp. |[{w : (v,w) € E(G)}|).

DEFINITION 1.8 The degree of a vertex v in an undirected graph G = (V(G), E(Q))
is defined as [{w : {v,w} € E(G)}|.

CHAPTER 1. INTRODUCTION 8

That is, the degree of a vertex v is the number of vertices in G that are adjacent
to v. Note that we use a slightly different definition of this term for rooted trees (see
Section 1.3.3).

1.3.2 Paths in Graphs

DEFINITION 1.9 A path p from a vertex v to a vertex w in a directed graph G =
(V(QG), E(G)) is a sequence (v = vg, ...,v = w) of vertices in V(G) with (v;,v;11) €
E(G), for 1 <i < l. We call [the (unweighted) length of p, which we denote by [p|.
If I =0, we call p empty.

DEFINITION 1.10 Let v and w be two vertices in a graph G. An (unweighted) shortest
path w(v,w) from v to w is a path from v to w with minimal (unweighted) length
|7(v,w)| among all paths from v to w. We call d(v,w) = |7 (v, w)| the (unweighted)

distance from v to w.

DEFINITION 1.11 Let a directed graph G = (V(G), E(G)), a weight function w :
V(G) — R (resp. w : E(G) — R), and a path p = (vy,...,v;) in G be given. The
weighted length of p is defined as [[p]] = Sty w(v:) (resp. [Ip]] = Sk (s v642))).

Paths, path lengths, shortest paths, and distances are defined analogously for
undirected graphs.

DEFINITION 1.12 A cycle in a graph G = (V(G), E(G)) is a non-empty path ¢ =

(v="g,...,v =wv). We call ¢ a negative cycle, if ||c|| < 0.

DEFINITION 1.13 An undirected graph G is connected, if, for any two vertices v and

w in G, there is a path from v to w.

DEFINITION 1.14 A connected component C of a graph G is a maximal connected
subgraph of G. That is, there is no connected graph C' with C C C' C G.

DEFINITION 1.15 A (free) tree is a connected undirected graph that does not contain

cycles.

CHAPTER 1. INTRODUCTION 9

DEFINITION 1.16 Let G = (V(G), E(G)) be a (directed) graph that does not contain
negative cycles. Then for any two vertices v and w in G, there is a path p from v
to w that has minimal weighted length ||p|| among all paths from v to w. We call
this path the weighted shortest path from v to w and denote it by II(v, w). We call

d(v,w) = ||II(v,w)|| the weighted distance from v to w.

1.3.3 Rooted Trees

DEFINITION 1.17 A rooted tree is a tree T = (V(T), E(T)) with a distinguished
vertex r € V(T). We call r the root of T. For an edge {v,w} € E(T), we call v the
parent of w and w the child of v, if d(r,v) < d(r,w). Two vertices are siblings, if they
have the same parent. Vertex v is an ancestor of w, and w is a descendant of v, if
the shortest path 7(v,w) does not contain v’s parent. If a vertex v has no children,

we call v a leaf of T. If v is no leaf, we call it an internal node.

For every rooted tree, there is a corresponding free tree.

DEFINITION 1.18 The degree of a vertex v in a rooted tree T is the number of children

ofvin T.

Note that according to this definition all internal nodes of a rooted tree, except
for the root of the tree, have degree one less than in the corresponding free tree. This
seems to be a bit inconsistent. However, considering rooted trees as directed graphs
with edges directed from parents to children, the degree of each vertex is just its

out-degree.

1.3.4 Graph Separators

Let G = (V(G),E(G)) be a graph and w : V(G) — R' be a weight function with
Yvev(e)w(v) < 1. We define the weight of a subgraph G' C G as the sum of the
weights of the vertices in V/(G'). A (vertex)-separator of G is a vertex set C' C V(Q)
that divides G into two components A and B, each of weight at most % That is,
G contains no edge {a,b} with a« € A and b € B. We say that an f(NN)-separator

theorem holds for a certain class of graphs, if each N-vertex graph in this class has a

CHAPTER 1. INTRODUCTION 10

separator of size O(f(V)). For trees and outerplanar graphs, a 1-separator theorem
holds. In particular, every tree has a separator consisting of only a single vertex.
Every outerplanar graph has a separator of size at most 2. For grid graphs, a v/ N-
separator theorem holds. Lipton and Tarjan were the first to present a proof that,
for planar graphs, a v/N-separator theorem holds.

If there are no weights assigned to the vertices of G, the goal is to find a small
set of vertices that divides GG into two components, each of which contains at most
2|V(G)| vertices. This case can be reduced to the weighted case by assigning vertex
weights 1/|V(G)| to all vertices of G.

Chapter 2

An External-Memory Shortest
Path Data Structure

In this chapter, we present an external-memory shortest path data structure that is
based on Djidjev’s internal-memory shortest path data structure for connected graphs
with v/N-separator [16]. Djidjev’s data structure uses O(N?/?) space and allows for
answering distance queries in O(v/N) time. Reporting the corresponding shortest
path takes O(K) additional time, where K is the length (number of vertices) of the
path.

Our data structure is an optimal external-memory version of the data structure in
[16]. That is, answering queries takes the same amount of computation, O(v/N/DB)
I/Os for answering distance queries, and O(K/DB) additional I/Os for reporting the
shortest path. The data structure uses O(N*?2/B) blocks of external memory.

We present this approach as a framework where we assume that certain parts can
be implemented to take a certain number of I/Os. The details of these parts are

presented in later chapters.

11

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 12

Figure 2.1: Illustrating the different cases of shortest paths in a hierarchically de-
composed graph G. Solid lines represent the “graph boundary” and the top-level
separator S. Dotted lines represent the separators of each of the four components
produced by the top-level separator. Dashed lines represent the shortest paths be-
tween the respective pairs of vertices.

2.1 Shortest Paths and Hierarchical Decomposi-

tion Trees

As already mentioned, our method is based on an internal-memory shortest path
preprocessing algorithm due to Djidjev. It can be applied to all graphs with a v/N-
separator theorem. We assume that the graph is connected. If not, we build a separate
shortest path data structure for every connected component of the graph. The basic
idea is as follows:

Let G be a graph with non-negative weights assigned to its vertices or edges, S
be a vertex separator of G, and s and ¢t be two query vertices. Let G1,...,G, be the
connected components of G — S. We want to compute the shortest path II(s,t) from
s to t in G. We have to distinguish two cases:

(1) s and ¢ are in two different components G and G of G\ S. Then the shortest

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 13

path from s to ¢ must contain some vertex b € S. Thus, we can compute II(s,?) as
the concatenation of II(s,b) and II(b,t) (II(z,y) in Figure 2.1).

(2) s and ¢ are in the same component. Then the shortest path might contain some
vertex in S (II(p, ¢) in Figure 2.1) or it might not (II(v, w) in Figure 2.1). We use
a separator S; of the component GG; containing s and ¢ and repeat the whole process
recursively. Note, however, that, as in the case of II(p, ¢) in Figure 2.1, II(s,t) does
not necessarily contain a vertex in S;. We show that, in this case, it either contains
a vertex in S or stays inside a connected component of G; \ S;. Hence, we can apply
this argument recursively.

Based on these observations, we construct a shortest path data structure as follows:
First, we build a hierarchical decomposition tree T(G) of G. With each node v of
T(G), we associate a subgraph G(v) of G and a vertex separator S(v) of G(v). We
store S(v) explicitly, while G(v) is given only implicitly.

If |V(G)| =1, then T(G) consists of a single node r with G(r) = G and S(r) =
V(G).

Otherwise, we apply a separator algorithm to find a /|V(G)|-separator S of G.
Let Gi,...,G, be the connected components of G \ S. We construct hierarchical
decomposition trees T(G1), ..., T(G,) for these components, create a root node r of
T(G) with G(r) = G and S(r) = S, and make the root nodes of T'(G,),...,T(G,)

children of r.

OBSERVATION 2.1 FEach verter v € G is stored exactly once in T(G).

PrRoOOF. This is shown by induction on the size of G.

If |[V(G)| =1, T(G) consists of a single node r. The only vertex of G is stored in
S(r).

If [V(G)| = n > 1, assume that the claim is true for all graphs G’ with n’ < n
vertices. Each component G; of G \ S has less than n vertices. Each vertex of G is
either in .S or in some component ;. By induction hypothesis, the vertices of each G;

are stored exactly once in the subtree T'(G;). The vertices in S are stored in S(r). O

Let s and ¢t be two query vertices. We define v(s) and v(t) to be the nodes in
T(G) such that s € S(v(s)) and t € S(v(t)). v(s,t) is the lowest common ancestor of

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 14

v(s) and v(t) in T(G). V(s,t) is the set of all ancestors of v(s, t), inclusive. B(s, 1) is
the set

B(s,;t)= | S(@).

vEV (s,t)

The following observation will come in handy later.
OBSERVATION 2.2 V(s,t) = {v € T(G) : {s,t} C G(v)}.

PROOF. Let z € G and V(x)
in T(G). Then V(s,t) = V(s) N
xz € G and any node v € T(G), z € G(v) iff v € V(z).

Let v be a node of T(G) that is not in V(z). If v is a descendant of v(zx), then
G(v) € G(v(z)) \ S(v(z)). But z € S(v(x)), so that x & G(v). Since v & V(z), v

cannot be an ancestor of v(x). Therefore, if v is not a descendant of v(z), the lowest

x) be the set containing all ancestors of v(x), inclusive,

s) NV (t). Hence, it suffices to show that, for any vertex

common ancestor w of v and v(z) in T(G) must be different from both v and v(z).
Let v' be the child of w such that v is a descendant of v’; v” be the child of w such
that v(z) is a descendant of v"”. Then G(v) C G(v') and G(v(z)) C G(v"). But
GW')NG®W") =0 and z € G(v(z)) € G(v"). Thus, z ¢ G(v). Hence, z € G(v)
implies that v € V(z).

Let vy,...,v, be the vertices in V(z) in top-down order, i.e., v; is the root of
T(G), v, = v(), and v; is the parent of v;; in T(G), for all 1 < i < k. Then
G(v1) 2 G(ve) D --- D G(vg), and = € S(vx) € G(vg). Thus, x € G(v) for each
vertex v € V(). O

Next we prove the most important lemma of this chapter.
LEMMA 2.1 II(s,t) N B(s,t) # 0.

More intuitively, this lemma says that, for any pair of vertices s, € GG, there is

at least one vertex in B(s,t) that is on the shortest path from s to ¢.

PROOF. Let vq,...,v; be the nodes in V (s,t) in top-down order, i.e., v; is the root
of T(G) and vy = v(s,t). We prove that, if II(s,£) N UZ; S(v;) = 0, II(s,t) stays
completely inside G(v;), for each 1 < j < k.

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 15

The proof is by induction, the base case, j = 1, being trivial. If j > 1 and
I(s,t) N U= S(v;) = 0, then II(s, t) N W=7 S(v;) = 0. Therefore, II(s, t) stays inside
G(vj—1) by induction hypothesis. The only way to leave a connected component of
G(vj—1)\S(v;-1) is to cross S(v;_1) or to leave G(v;_1). Thus, as II(s,t)NS(vj_1) =0
and TI(s, t) does not leave G(v; 1), I1(s, t) stays inside G(v;). If TI(s,£)N U= S(v;) =
0, I1(s, t) stays completely inside G(vy) = G(v(s,t)). However, s and ¢ are in different
connected components of G(v(s,t)) \ S(v(s,t)). Therefore, as II(s,?) stays inside
G(v(s,t)), it must cross S(v(s,t)) to get from s to ¢. Hence, TI(s,t) N B(s,t) # 0. O

Assume that, for each node v € T(G), we have stored distances dist(b, w) between
all vertices b € S(v) and w € G(v); dist(b,w) is the length of the shortest path

between b and w in G(v). We show the following lemma.
LEMMA 2.2 The distance 6(s,t) between two query vertices s and t in G is
d(s,t) = min{dist(s, b) + dist(b,t) : b € B(s,t)}.
PrOOF. Lemma 2.1 implies that
d(s,t) = min{d(s,b) +6(b,t) : b € B(s,1)}.
Thus, it suffices to show that
min{dist(s, b) + dist(b,t) : b € B(s,t)} = min{d(s,b) + d(b,t) : b € B(s,1)}.

Let v be the highest node in T(G) such that II(s,t) stays inside G(v). Then
v € V(s,t) because s,t € G(v). Hence, S(v) C B(s,t). Moreover, if II(s, t)NS(v) = 0,
I1(s,t) would stay inside a connected component of G(v) \ S(v), contradicting the
choice of v. Thus, there is a vertex b € S(v) N II(s,t), and the distances dist(s, b)
and dist(b,t) have been computed with respect to G(v). As II(s,t) stays inside G(v),
II(s,b) and II(b,t) do as well. Hence, d(s,b) = dist(s,b) and 0(b,t) = dist(b,t), and
d(s,t) = 0(s,b) + 6(b, t) = dist(s,b) + dist(b,t). That is,

min{ dist(s,b) + dist(b,t) : b € B(s,t)} < min{d(s,b) + 6(b,t) : b € B(s,t)}.

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 16

On the other hand, if
min{ dist(s, b) + dist(b,t) : b € B(s,t)} < min{d(s,b) + d(b,t) : b € B(s,t)},

there would be a vertex b € B(s, t) with dist(s, b)+ dist(b,t) < (s, b)+0(b,t). That is,
either dist(s,b) < d(s,b) or dist(b,t) < 6(b,t), or both. W.Lo.g. let dist(s,b) < d(s,b).
Then, however, there would be a shorter path from s to b in G(v(b)) than in G. This
is impossible because G(v(b)) is a subgraph of G. This concludes the proof. O

At this point, we only sketch the issue of reporting I1(s, t) itself. We observe that,
while computing d(s,t), we can memorize the vertex b that produced the minimal
sum dist(s,b) + dist(b,t). With the shortest path tree SPT(b, G(v)) of b with respect
to G(v) stored somewhere, we can retrieve the corresponding shortest paths II(s, b)
and I1(b, t) from SPT(b, G(v)) and concatenate them to produce II(s,t). We will see
later in this chapter how to do this efficiently.

2.2 Distance Queries

If we store T'(G) and distances between the vertices in S(v) and those in G(v) for each
node v of T'(G), the data structure quickly becomes complex to handle, especially as
we do not store G(v) anywhere. We show how a simple data structure consisting of
|V(G)| arrays (one per vertex) achieves the same performance as T'(G). However, we
use T'(G) to construct this data structure.

First, we redefine S(v) to be an array of separator vertices rather than a set, for
each node v of T(G). This is important because it defines some order on the vertices
in S(v). In addition we redefine V(w), for each vertex w € G, to be a list of nodes in
T(QG) rather than a set. This list will be sorted top-down with respect to T(QG).

Let V(w) = (v1,...,v,). We define a list B(w) = S(v1) | S(vq) | - -+ | S(vk), where
“|” is the concatenation operator. For each vertex b € B(w), we compute dist(b, w)
as the distance between b and w in G(v(b)) and store it with b in B(w).

We claim that these arrays B(w),w € G provide all necessary information to

compute the distance §(s,t) between two query vertices s and ¢ in G. Algorithm 2.1

shows how.

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 17

DISTANCEQUERY (s, t, B):

Input: The query vertices s and ¢ of G and the arrays B(v),v € G as defined in the
text.

Output: The distance (s, t) between s and ¢ in G.

1: § < o0

2: Scan B(s) and B(t) to compute the distance (s, t):
{v is the current vertex in B(s). w is the current vertex in B(t).}

if v = w then
if dist(v, s) + dist(w,t) < § then
0 + dist(v, 8) + dist(w, t)
end if
else
Stop scanning.
end if

3: Return §

Algorithm 2.1: Querying the distance (s, t) between two vertices s,t € G.
LEMMA 2.3 We can store the arrays B(w) in O (w) blocks such that
Algorithm 2.1 reports the distance 6(s,t) between s and t in the graph G. This takes
O(min{|B(s)|,|B(t)|}/DB) 1/O0s.

PRrROOF. We assume that the vertices of G are numbered contiguously from 1 through
N, where N = |V(G)|. The query vertices s = v; and ¢ = v; are given by their
numbers ¢ and j. Then we can store an array A and the arrays B(v),v € G at
contiguous locations in external memory. A has size N, and A[7] contains the address
of B(v;). Storing A and all B(v),v € G this way uses O ('V(G)+%”EG|B(U)|) blocks.
Since |B(v)| > 1, for each vertex v € G, |V(G)| is dominated by Y ,c¢ |B(v)|. Hence,
the used storage is O (M) blocks. We retrieve the start addresses of B(s) and
B(t) from A with at most 2 I/Os. Afterwards, we scan B(s) and B(t) simultaneously

until we find the first position in both lists where the stored vertices do not match.
Thus, we scan sublists of B(s) and B(t) of length at most min{|B(s)|, |B(t)|}. This
takes O(scan(min{|B(s)|, |B(t)|})) = O(min{|B(s)|, |B(t)|}/DB) 1/Os. That is, our

query algorithm achieves the claimed I/O-bound. It remains to show its correctness.

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 18

Obviously, Algorithm 2.1 computes the minimum of the sums dist(v, s) + dist(v, t)
over all visited vertices v. Thus, it suffices to show that it visits all vertices in B(s,t)
and only those.

First, we show that the algorithm visits all vertices in B(s,t): The nodes in V (s, t)
are stored at the beginning of V' (s) and V(¢). They appear in the same order in both
lists because both lists are sorted top-down. Therefore, the first |B(s,t)| vertices in
B(s) and B(t) are the vertices in B(s,t). They appear in the same order in both lists
because of the strict orders of the nodes in V'(s) and V(¢) and of the vertices in each
S(v),v € T(G). It remains to show that the (|B(s,t)|+ 1)-st pair of vertices in B(s)
and B(t) is no match anymore.

If v(s) is an ancestor of v(¢) in T'(G), then v(s,t) = v(s). Thus, |B(s)| = |B(s, t)|,
i.e., there is no (| B(s,t)| + 1)-st vertex pair. The case that v(¢) is an ancestor of v(s)
is analogous.

Otherwise (if neither s nor ¢ is an ancestor of the other), there is a (| B(s,t)|+1)-st
vertex pair because V(s) and V(t) each contain at least one node v that is not in
V (s, t). For this vertex, S(v) # 0. Let this (|B(s,t)| + 1)-st pair of vertices be (z,y).
Then z is the first vertex in S(v) and y is the first vertex in S(w), where v (resp.
w) is the child of v(s,t) on the path from v(s) (resp. v(t)) to v(s,t). Since v(s,t) is
the lowest common ancestor of v(s) and v(t), v # w. Therefore, as G(v) and G(w)
are two different connected components of G(v(s,t)) \ S(v(s,t)), G(v) N G(w) = .
S(v), however, is a separator of G(v). Therefore, it contains only vertices in G(v).
Analogously, S(w) contains only vertices in G(w). Hence, S(v)NS(w) = () and x # v.
This concludes the proof. O

2.3 Shortest Path Queries

In this section, we show how to augment the data structure described in the previous
section so that we can answer shortest path queries I/O-efficiently.

Let s and t be two vertices at distance d(s,t) from each other. By Lemma 2.2,
there is a vertex b € B(s,t) such that d(s,t) = dist(s,b) + dist(b,t). That is, the

shortest path Il(s,?) is the concatenation of the shortest paths form s to b and from

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 19

b to t in G(v(b)). Consequently, if the shortest path tree SPT(b, G(v)) is stored
somewhere, we can augment the distances dist(s,b) and dist(b,t) with pointers to s
and ¢ in SPT(b, G(v)). To compute II(s,t), we traverse the paths from s to the root
b and from ¢ to b in SPT(b, G(v)) and concatenate them.

That is, we extend our data structure as follows. For each node v € T(G) and
each vertex b € S(v), we compute SPT(b,G(v)) and store it somewhere. For each
vertex w € G and each vertex b € B(w), w must be a vertex in SPT(b, G(v(b)))
because b € B(w) implies that w € G(v(b)). We store a pointer p(b) to the copy of w
in SPT(b, G(v(b))) together with b in B(w).

Now, given two query vertices s and t, we first compute (s, t) and keep pointers
ps and p; to the copies of s and ¢, respectively, in the shortest path tree SPT(G (b)),
where b is the currently found vertex that minimizes dist(s, b) + dist(b,t). When we
are finished, we use these pointers and traverse the paths from s to the root of the
shortest path tree and from ¢ to the root of the shortest path tree. The code is shown
in Algorithm 2.2. We prove the following lemma.

LEMMA 2.4 We can store the lists B(w) and all shortest path trees SPT(b, G(v(b))) in

0 (M) blocks such that Algorithm 2.2 reports the shortest path I1(s,t) between

two query vertices s and t in G with O (mmﬂB(S}‘)’l‘gB() HK) I/0s, where K = |I1(s,t)]|.

PRrROOF. The correctness of Algorithm 2.2 follows immediately from the discussion at
the beginning of this section.

By Lemma 2.3, we can store the lists S(w) in O (Z”EG) blocks such that
Step 2 takes O(min{|B(s)|, |B(t)|}/DB) 1/0Os.

As we show in Corollary 3.2, the shortest path trees SPT(b, G(v(b))) can be
stored in O Zbegwml;(b’g(v(b)))' blocks so that traversing II(s,b) and II(¢,b) takes
O(|11(s,b)|/DB) and O(|IL(t,b)|/DB) 1/Os, respectively. The backward scan of
I1(¢,b) in Step 3 takes O(|II(¢,b)|/DB) 1/Os. Hence, Step 3 takes O((|II(s,b)| +
11z, b))/ DB) = O(|1l(s, t)|/DB) 1/Os.

We have shown that we can store the lists B(w) and the shortest path trees
SPT(b,G(v(b))) in O(EUEG|B(”)|+Zbec|SPT”G”(b |) blocks such that reporting

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 20

SHORTESTPATHQUERY (s, ¢, B):

Input: The query vertices s and ¢t of G, the arrays B(v),v € G as defined above,
and all shortest path trees SPT(b, G(v(b))) referenced by pointers in B.

Output: The shortest path II(s,¢) from s to ¢t in G.

1: § < o0

2: Scan B(s) and B(t) to compute the distance J(s, t):
{v is the current vertex in B(s). w is the current vertex in B(t).}

if v = w then
if dist(v, s) + dist(w,t) < § then
0 + dist(v, s) + dist(w, t)
ps + p(v)
P + p(w)
end if
else
Stop scanning.
end if

3: Construct II(s, t):

Traverse II(s,b) in SPT(b, G(v(b))) and write it it to disk. This path starts at position ps.
Traverse II(¢,b) in SPT(b, G(v(b))) and write it it to disk. This path starts at position p;.
Scan II(t, b) backward, starting one vertex after b. Append the traversed vertices to II(s, b).
{We start this scan one vertex after b so as not to include two copies of b in II(s,).}

Algorithm 2.2: Computing the shortest path II(s,t) between two vertices s,t € G.

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 21

[I(s,t) takes O (min“B(sg’l'gB(t)‘HK) I/Os. Next, we show now that > .o |B(v)| =
Ybec |SPT(b, G(v(b)))]-

Let w be a vertex in a shortest path tree SPT(b, G(v(b))). Then w € G(v(b)) and
b e S(v(b)). Thus, v(b) € V(w) and b € B(w). That is, each vertex w in a shortest
path tree SPT(b,G(v(b))) has a corresponding entry in the list B(w). This entry
cannot correspond to another vertex w’ in a shortest path tree SPT(V', G(v(b'))). O

2.4 Analysis

In this section, we show that each list B(w) has size O(v/N), provided that we apply

a v N-separator theorem to construct the hierarchical decomposition of G.

LEMMA 2.5 Assume that a /N -separator theorem holds for the given graph G and all

its subgraphs and that we apply this theorem to construct the hierarchical decompositon
of G. Then |B(w)| = O(V/'N), for each vertez w € G.

PROOF. Let w be a vertex of G and vy,...,v; be the nodes of T(G) in V(w) in
top-down order. Then G(v;) = G. The separator theorem implies that |V (G(v;))] <
2V(G(vi—1))|, for 1 < i <k, and |S(v;)| < ¢y/|V(G(v;))], for some positive constant
cand 1 < < k. This implies that

=3 (3)7 @
<3 (2) Ve

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 22

1
= Cﬁ\/ V(G)]
= O(VN).
O

COROLLARY 2.1 Given a graph G of size N such that a /N -separator theorem holds
for G and all its subgraphs, we can construct a data structure stored in O(N3?/B)
blocks that allows for answering distance queries between two query vertices s and t in
G with O(vV'N/DB) 1/0s. Reporting the corresponding shortest path takes O(K/DB)
additional 1/0s, where K is the length of the reported path.

Proor. This follows immediately from Lemmas 2.3, 2.4, and 2.5. O

2.5 Constructing the Data Structure

In this section, we show how to construct the shortest path data structure described
in this chapter efficiently, using algorithms presented in subsequent chapters.

Algorithm 2.3 shows the code of the construction algorithm. To understand it, we
have to explain the input and output representations of procedures SEPARATE and
EM_SSSP first.

Initially, G is given as a vertex list V(G) and an edge list E(G), represented
as arrays. Procedure SEPARATE computes a separator S of G and identifies the
connected components of G\ S. It labels all vertices v € S with C'(v) = 0 and all edges
e incident to a vertex v € S with C(e) = co. All other vertices and edges are labeled
with values C(v) > 0 (resp. C(e) < oo) that identify the connected components
containing in this vertex or edge. Eventually, it sorts V(G) (resp. E(G)) by increasing
labels C'(v) (resp. C(e)). That is, let Gy,...,G, be the connected components of
G\ S. Then SEPARATE sorts the vertices and edges of G such that V(G) is stored
as S,V (Gy),...,V(G,), and E(G) is stored as E(G), ..., E(G,), (E(G)\ E(G\S)).
The details of this procedure are provided in Chapter 6.

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE

CoNSTRUCTSP(G):
Input: A graph G as a vertex array V(G) and an edge array E(G).

Output: Distance arrays and shortest path trees as described in this chapter.
1: Push the pair (G, 0) on the stack.

{We do not actually push G on the stack. We represent G' by pointers to V(G)

and E(G) and sizes |V (G)| and |E(G)|.}
2: while the stack is not empty do
3: Pop the pair (G, s) from the stack.
4: if |[V(G')| > 1 then
5: SEPARATE(G')
6: end if
7

Scan V(G') to construct shortest path trees for all separator vertices:
{v is the current vertex.}
if C(v) =0 then
{v is a separator vertex.}
EM_SSSP(v,G', s)
else

Stop scanning.
end if

8: if [V(G')| > 1 then

©

the stack:
{v is the current vertex.}

while we have not reached the end of V(G') do
V(G") + {all vertices with the same component label as v}
E(G") + {all edges with the same component label as v}
Push the pair (G”,s + 1) on the stack.

end while

10: end if
11: end while

12: Construct the lists B:

Sort the tuples (s, b, w,d, p) by increasing w, s, and b.
Scan B and keep only one of multiple tuples with the same values s, b, and w.

13: Construct the address array A:

Continue scanning V(G') to push the connected components of G' — C on

Scan B. For each w, add the address of the first entry in B with label w to A. This is the

address of B(w).

Algorithm 2.3: Constructing the shortest path data structure.

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 24

Procedure EM_SSSP is an augmented version of the external-memory single
source shortest paths algorithm due to Crauser, Mehlhorn, and Meyer [13]. It com-
putes the shortest path tree SPT(b,G') for its input vertex b in the graph G’ and
blocks it using Algorithm 5.1. For each vertex w' in the blocked (!) tree, it writes a
tuple (s, b, w,d,p) to disk. Here, s is the depth of G' in T(G), b is the given vertex
b, w is the vertex of G of which w' is a copy, d = dist(b, w), and p is a pointer to w'.
Note that, when blocking SPT(b, G'), we can easily postpone writing the last non-full
block of SPT(b, G') together with writing the corresponding tuples until we block the
next shortest path tree. We just keep this information in a buffer in internal memory.
Thus, we end up with a blocking of the forest of all shortest path trees instead of
blocking each shortest path tree separately. Hence, we can apply Corollary 3.2 to es-
timate the used storage. Doing this, however, we have to use a version of Algorithm
5.1 without Step 7. The transformation of parent names back to parent pointers has
to be done for the whole forest by an explicit invokation of Algorithm 5.3.

Now we can state the following lemma.

LEMMA 2.6 Algorithm 2.3 constructs the shortest path data structure described in this

N
chapter with O (N;/z + 1\52}2 log% %) I/0Os with high probability, for \/Nloglzgilfgl >
B M
DB.

PROOF. Steps 1-11 of Algorithm 2.3 implement a depth-first search in T'(G). We
start by pushing G on the stack. In the WHILE-loop, we pop the topmost component
G’ labeled with its depth in 7'(G) from the stack. In Step 5, we separate it into smaller
components. These components are pushed on the stack in Step 9.

Step 9 is correct because, in Step 7, we have already scanned the separator of G'.
What remains of V(G') are the vertices in G’ — S. They are sorted by increasing
component labels. The edges in E(G') are sorted by increasing component labels
as well. Thus, we can easily identify V(G") and E(G"), for each component G” of
G' — S. We push the addresses and sizes of these two sets on the stack.

Thus, our algorithm constructs the hierarchical decomposition of G' correctly. In
Step 7, we construct the shortest path tree SPT(b, G'), for each separator vertex b of
G'.

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 25

Procedure EM_SPPP writes tuples (s,b,w,d,p) to disk, one per vertex in the
blocked shortest path trees. As there is a one-to-one correspondence between entries
in B and vertices in the shortest path trees, these tuples are all we need to construct
B. We only have to sort them by increasing w, s, and b. The primary key ensures that
B(w) is stored contiguously, for each w. The secondary key ensures that each B(w)
is sorted top down according to the position of each vertex in T(G). The tertiary key
ensures a fixed order in the lists S(v), where v € T(G). This matches exactly the
definition of the list B. However, as the shortest path trees are blocked, there are
multiple tuples with the same values w, s, and b. As they are stored consecutively
now, we scan B and keep only one of such multiple tuples.

Eventually, the start position of B(w) is the address of the first tuple in B with
label w. Thus, we just scan B. Whenever, we find a tuple with a new label w, we
write its address to the array A.

We have shown that we construct the shortest path trees and arrays B and A
correctly. Now let us analyze the I/O-complexity of Algorithm 2.3. We divide the
I/Os performed into five parts: (1) stack operations, (2) output generation, (3) graph
separation, (4) shortest path computation, and (5) rearranging of the lists S(w), w €
G.

The number of stack operations is bounded by N because each node of T(QG)
stores at least one node of G. Each node of T'(G) is pushed on the stack and popped
form the stack exactly once. Thus, the stack operations take O(N/DB) I/Os.

The output consists of two parts: the shortest path trees, and the lists B(w),w €
G. Both parts of the output are written to disk, block by block, either by the blocking
algorithm, or by sequentially writing the tuples (s, b, w,d, p) to disk. Thus, if N’ is
the output size, this takes O(scan(N')) = O(N'/DB) = O(N%/2/DB) 1/Os.

As for the graph separation and the shortest path computations, we assume that,
if |G'| < M, we perform all computation in internal memory. Stack operations are
still performed in external memory.

Using the result from Chapter 6, we obtain the following recurrence for the number

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 26

of I/Os that it takes to compute all separators of the hierarchical decomposition:

O(N/DB) if N < M
O(N)+ Yk I(N;) if N> M,

where N; < %N forl1 <i < kand N—avV/N < Zle N; < N. That is, for N > (2a)2/3,
% < Y% | N; < N. The solution to this recurrence is Z(N) = O (N log %)1 For
N <M, N/DB < Nlog&. For N > max{M, (2a)*/3}, we obtain

k
N,
I(N) <eN+ > ¢N;log—
i=1 M
k
3 N;
= CN + Z:Zl CI IOg §NZ 10g3/2 M
k
3 N
<cN+ Z;C' log §Ni(10g3/2 U 1)

¢ 3 b 3 N
<cN — 3 log §N + izzlc' log §Ni logy Y

3 N
< dlog ENlogg/2 i (We choose ¢ = 2¢/log3.)

N
= Nlog —.
¢Nlog —

For the number of I/Os that it takes to compute shortest paths, we obtain the

following recurrence using Crauser, Mehlorn, and Meyer’s result [13]:
vy _ | ON/DB) if N <M
VNO(% + P logn %) + i, I(N;) it N > M,

where N; < %N for 1 <i < kand N—a/N < Zle N; < N. The solution to

this recurrence is Z(N) = O (N;/z + %31/: log %) For N < M, N/DB < N;)/Q +

'We define log % = max {l,log %}, where the logarithm on the right hand side is defined as
usual.

CHAPTER 2. AN E.-M. SHORTEST PATH DATA STRUCTURE 27

N3/2

logM =. For N > M, we get

N3/2 N3/2 N k

< _
I(N)_c(ot D losy B>+2§I(Nz)

(NN Y e NN N
=\"D "DoB ®¥B)T&°\"D T DB ¥ B
(N NN +Zk: ,(ND* . NN
=“\'D "DB ¥ B)T&°\'D " DB *¥B

N3/2 N3/2 N k N;\/2N N;\/2N N
_C<D DB OgMB>+;c D DB %% B

Finally, it costs O(sort(N3/2)) 1/Os to create the lists B(w).

For \/_ lﬂ(}glf > DB, the I/O-complexities of all steps are dominated by the
I/ O—complex1ty for computing all shortest path trees. Thus, Algorithm 2.3 takes
O (257 + %22 logar &) 1/Os with high probability. [

D DB

THEOREM 2.1 Let a graph G of size N be given. Assume that a /N -separator theo-
rem holds for G and all its subgraphs. Then we can construct a data structure stored
in O(N3/2/B) blocks that allows for answering distance queries between two query
vertices s and t in G with O(v/N/DB) I/Os. Reporting the corresponding shortest
path takes O(K/DB) I/Os, where K is the length of the reported path. The construc-
tion of this data structure takes O (N 4 N log% %) I/Os with high probability,

+ DB
for «/ 111‘\’4371(1)3 > DB.

Proor. This follows immediately from Corollary 2.1 and Lemma 2.6. O

Chapter 3

Blocking Rooted Trees: The

Storage Scheme

In this chapter, we consider the problem of blocking rooted trees for fast path traver-
sals. This is motivated by the desire to retrieve shortest paths quickly from the
shortest path trees that are part of the data structure described in Chapter 2.

More precisely, storing a rooted tree in external memory as we do in internal
memory — that is, with pointers between vertices and the vertices at fairly arbitrary
memory positions — we must expect to perform one I/O operation per vertex of the
traversed path. Previous results by Nodine, Goodrich, and Vitter [28] show that we
can do better. We show that, for traversals toward the root, we can beat the bounds
proved in [28]. Since we can store B vertices per block and we have D parallel
disks, the optimum would be one I/O per DB vertices. We show that, for offline
traversals toward the root, we can achieve O(1) I/Os per DB vertices at the expense

of increasing the space used to store the tree by a constant factor.

3.1 Path Traversals

When talking about traversing paths in rooted trees, there are different scenarios to
think about. First, we distinguish between online and offline traversals. Traversing

a path online, we are given only the start vertex. The data read at each vertex

28

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 29

determines which of its neighbours has to be visited next. We repeat this process
until some final condition is reached. Traversing a path offline, we are given the
whole path (at least implicity) in advance, once we know the start vertex.

The second distinction comes from restrictions on the edges of the tree. They
might be undirected or directed. We assume that undirected edges can be traversed in
both directions, while directed edges can only be traversed from their source vertices
to their target vertices. We do not see any useful applications of the mixed case,
where some edges are directed from parents to children and others from children to
parents. Therefore, we only distinguish between the case where all edges are directed
from children to parents and the case where all edges are directed from parents to
children. In the case of undirected edges, we call the traversal unrestricted; if edges
are directed from parents to children we call it top-down; if edges are directed from
children to parents we call it bottom-up.

Note that there are no online bottom-up traversals because every vertex has ex-
actly one parent except for the root of the tree, which has no parent. Therefore, given
a start vertex v at distance d from the root of the tree and a path length | < d, there
is exactly one bottom-up path of length [starting at v. If no length [is given, the
query is to report the path from v to the root, which is equivalent to querying the
bottom-up path of length [= d starting at v.

Also, note that, as long as every vertex is stored exactly once or we do not modify
the information in the tree, there is no difference between offline bottom-up and offline
top-down traversals: For a top-down traversal, we can traverse the tree bottom-up,
thereby collecting the information in reverse order, process the collected information

in top-down order and, if necessary, write it back in another bottom-up traversal.

3.2 Speed-Up and Storage Blow-Up

In certain applications such as our shortest path data structure, we only want to read
the data but not modify it. Then we may try to facilitate blockwise 1/O by storing
data items more than once. Of course, this requires more space than storing each

item once. Hence, the two main parameters here are the speed-up o and the storage

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 30

blow-up p. The speed-up o of a given algorithm A is defined as the fraction of the
number of data items accessed by A and the number of I/Os performed by A. The
storage blow-up p is the fraction of the number of blocks that .4 uses to store the data
and the minimal number of blocks, [N/B], for storing the N data items. Obviously,
1 < o0 < DB. Usually, there is a trade-off between the speed-up and the storage
blow-up that we are willing to accept.

We state some results in terms of I/Os and others in terms of the achievable speed-
up. Note that an upper (resp. lower) bound on the number of I/Os is equivalent to

a lower (resp. upper) bound on the speed-up and vice versa.

3.3 Previous Results for Online Traversals

For unrestricted online traversals in perfect d-ary trees, Nodine, Goodrich, and Vitter
[28] have used an adversary argument to prove an upper bound of O(log, B)! on the
achievable worst-case speed-up in the case D = 1. This bound is independent of the
storage blow-up. They also proved a matching lower bound of Q(log, B) with only
constant storage blow-up. The adversary argument used in [28] generalizes easily
to multiple disks, giving an upper bound of O(log, DB) on the speed-up achievable
for unrestricted online traversals in the PDM. Using Lemma 1.1, the lower bound
generalizes to Q(log,(DB)) in the PDM.

A slight modification of their arguments easily gives a ©(log,(DB)) bound for the
achievable speed-up in the case of online top-down traversals.

Since there are no online bottom-up traversals, this exhausts the class of online

traversals of rooted trees.

3.4 Offline Traversals

In this section, we consider bottom-up traversals, which are always offline. We prove

speed-up bounds of ©(Dlog, B) for perfect d-ary trees and 2(log, DB) for arbitrary

!For convenience, we define log, + = max{1, |log, #|}, where the logarithm on the right hand
side is defined as usual.

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 31

d-ary trees in the case p = 1, i.e., if we do not accept any storage blow-up at all.
These blockings are important for applications where the data stored at the nodes of
the tree are modified during the traversals. Our main result of Section 3.4.2 does not
allow for efficient updating of all copies of a modified vertex. It is an interesting open
problem to find a better way to speed up modifying offline traversals using another
blocking scheme than the one proposed in this chapter.

In Section 3.4.2, we prove the main result of this chapter. We show that one can
achieve a speed-up 0 = ©(DB) for offline bottom-up traversals in arbitrary rooted
trees with only constant storage blow-up. Note that this main result is independent
of the maximal degree d of the given tree.

Using the observation at the end of Section 3.1, our bounds hold for offline top-

down traversals in the respective trees under the respective conditions as well.

3.4.1 Tight Bounds without Storage Blow-Up

If we do not accept any storage blow-up, i.e., p = 1, we have the following result.

LEMMA 3.1 Given an arbitrary d-ary tree of size N stored in [N/B] blocks on D
parallel disks, the best achievable worst-case speed-up for the traversal of a path from

a vertex v to an ancestor w of v in T is Q(log, DB)

ProOF. By Lemma 1.1, we can assume that we are given a single disk with block
size DB.

Let h be the height of T" and A’ = log, DB. We cut T into layers Ly, ..., Lip/p1-1,
where layer L; is the subgraph of T induced by all vertices of T" at distances ih'
through (i + 1)h' — 1 from the root of 7. Each layer is a forest of rooted trees of
height at most A'. Denote all these subtrees of T by T1,...,T,. Each such subtree T;

has size at most d(’;’:11 < m“{zﬂB}_l < DB. (See Figure 3.1.)

We store the vertices of T" so that the vertices of each T} are stored consecutively.
This means that we can access each T; with at most 2 I/Os because the at most DB
vertices of T} are distributed over at most 2 blocks.

A bottom-up path p of length k crosses at most [k/h'] + 1 different layers of T.

Moreover, the subpath of p within a layer L; is contained completely in some subtree

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 32

____._______,.__._.‘___________.________,__‘__.,_______.___.____

Figure 3.1: A given tree T' of maximal degree d = 4 that we cut into layers of height
2. We cut the tree along the dashed lines thereby removing all dotted edges. The
resulting trees are shaded.

T; of L;. That is, p crosses at most [k/h'| + 1 subtrees T of T', each of which can be
accessed with at most 2 I/Os.

Thus, we need at most 2([k/h'| +1) = 2([k/logaDB]+1) = O(k/log, DB) 1/0s
to traverse p. This means that the speed-up is (log, DB). O

If the given tree is perfect, we can show a better result. We also show a matching
upper bound, which is also an upper bound for arbitrary d-ary trees. In order to
achieve a better lower bound for perfect d-ary trees, we rely on the regular structure
of these trees. This allows us to take advantage of the independence of the D disks
that we use. Using Lemma 1.1, we would tie groups of D blocks, one per disk,
rigidly together. Here, we keep the blocks indepent from each other and group them

according to our needs only when we are about to read them with the next I/O.

LEMMA 3.2 Given a perfect d-ary tree T of size N stored in [N/B]| blocks on D
parallel disks, the best achievable worst-case speed-up for the traversal of a path from

a vertex v to an ancestor w of v in T is Q(D log, B).

PROOF. We use the same proof idea as for Lemma 3.1. That is, we cut 7" into [h/h']
layers of height A', where h is the height of T’; but this time, A’ = log, B.

The perfectness of 7" implies that all subtrees except those in the bottom layer

have height exactly A’ and size S’ = d;b__ll < B. All trees in the bottom layer have

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 33

"

height A" = (h mod h') < h’ and size S" = % < S'<B.

Assume that we store all subtrees of layer L; on disk D;0qp such that the vertices
of each subtree are stored consecutively.

Again, a path p of length k crosses at most [k/h’'| + 1 subtrees T}, one per crossed

T;

ik /R

layer. Denote these trees by T;,, ... so that p crosses them in this order.

Assume that we have a method to compute, for each tree crossed by p, its disk
number and address on this disk without any extra I/Os. D consecutive trees T;,,,
through 7; , ,,,_,,J € N belong to D consecutive layers and are therefore stored each
on another disk. That is, we can access these D trees with at most 2 I/Os because
the vertices of each tree are distributed over at most 2 blocks on the same disk.
Hence, traversing p takes at most 2[([k/h'] + 1)/D]| = 2[([k/log, B] + 1)/D] =
O(k/Dlog, B) 1/Os. The speed-up is 2(Dlog, B). It remains to describe such a
method for computing the addresses of the trees crossed by p. This method relies
crucially on the regular shape of 7" and would not work for arbitrary d-ary trees.

We define the size |L;| of layer L; as the number of vertices in it. If L; is the
bottom layer, then L; contains all vertices at levels ¢h’ through h in T'. Otherwise, it
contains all vertices at levels ih’ through (i + 1)h' — 1. That is, for the bottom layer

we have

dh—1 dh -1

Li| = .
Ll d—1 d—1
B (dh—ih’ _1)dih’
d—1
— dh B 1dih' :Slldih'
d—1 '

For all other layers we obtain

d(z’-l—l)h’ -1 dih’ -1

L;| = -

L4l d—1 d—1
_ (d¥ —1)d"
- d-1
— dh - 1dih’ — S,dih'-

d—1

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 34

If we store all layers stored on disk D; in top-down order, the first vertex of layer L,

where j = ¢+ kD, is stored at position

k—1 k—1) ,
Z |Li+lD‘ — Z Sld(z-l-lD)h
=0 =0
) ’kfl N
— Sldzh Z (dDh)
=0
o' \F
— gl it (d) -1
d—1
g AP — 1
— Sldzh
d—1
d(z’—i—kD)h’ _ dih’
d—1
B Idjh’ _ (jmod D)1’
B d—1

=9

Note that the size of each layer L;,;p appearing in the sum is indeed S'd(HP)

because the bottom layer is the last layer on its disk. That is, it is not stored before
any other layer.

Let the trees of each layer L; be numbered as Ty,...,T;,, from left to right,
where n; = d'. Let them also be stored in this order. Then, the address of tree T ;
is

) i’ —d'modP .
Saon oY
if L; is not the bottom layer, and
ih! —dimodD
S’id_ : + 5",
otherwise.

We number and store the vertices of each tree in preorder (starting with number
0). Then we can define the following labels for each vertex v: the layer number, L(v),
of the layer containing v, the tree number, T'(v) = j, of the tree T;; containing v,

the preorder number, n,(v), of v in T} ;, and a flag, B(v), telling whether Ly, is the

bottom layer.

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 35

The address of v can now be computed as
dL(,U)h/_dL(v)modD

Aw) =5
(v) = 5'—"—

+ S(v)T (v) + ny(v), where

S" if Ly is the bottom layer
S(v) = :
S" otherwise

Originally, we would assume that we were given a pointer to v in 7" when querying
a bottom-up path p in 7' starting at v. However, this pointer must have been created
by some preprocessing algorithm and must be stored somewhere. Thus, instead of
computing and storing this pointer, we can as well make the preprocessing algorithm
compute and store labels L(v),T(v),n,(v), and B(v) for v. Then a path p from v to
the root of T' crosses layers L), .., Lo. The tree crossed in layer L; is E,Lj/d(L(”)*i)h'j'
Using the formula above, we can easily compute the address of each such subtree T ;.
This proves that we can indeed achieve a speed-up of Q(D log, B).

There is a small technical detail that we have to deal with. As we have D disks, this
method might leave us with D non-full blocks, one per disk. Then the total number
of blocks would be more than [N/B|. We can collect the at most DB vertices stored
in these blocks and store them in an optimal number of blocks, at most one per disk.
Before starting the actual path traversal, we load these blocks into internal memory
with a single I/O and keep them in internal memory. This makes these vertices
accessible without any additional I/Os. Thus, the compression of the originally D

blocks into a smaller number of blocks does not cause any problems. 0

We want to note here that the method to achieve the lower bound in the proof
of Lemma 3.2 might be disputable because the blocks containing the tree are not
evenly distributed over the disks. In general, this is certainly an issue. It is of less
importance for applications such as our shortest path data structure, where we have
to store many shortest path trees. There we can try to achieve a good distribution of
the data by storing layer L; of the i-th shortest path tree on disk D(;} jymoap instead of
disk Djmeap- Of course, this heuristic does not guarantee a perfectly even distribution
of the data; but we expect this simple approach to work well in practice.

Next, we prove a matching upper bound.

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 36

LEMMA 3.3 Given a perfect d-ary tree T of size N stored in [N/B] blocks on D
parallel disks, the best achievable worst-case speed-up for the traversal of a path from

a vertex v to an ancestor w of v in T is O(D log, B).

PROOF. The number of I/Os required to traverse a given path p is no less than the
number of blocks over which the vertices of p are distributed, divided by the number
of disks. Note that, as each vertex is stored exactly once, this number of blocks is
well-defined. We show that there is a path from a leaf of T to the root of T' such
that its vertices are distributed over at least €2 (%i%) blocks. This path has length
log, N. Since we can read at most D blocks with a single I/O, this implies the claimed
worst-case speed-up of O(Dlog, B).

We can imagine each block as having a unique color. A vertex v has color c iff ¢
is the color of the block containing v. Since every vertex is stored exactly once, the
color of each vertex is unique. Now counting the number of blocks over which a path
is distributed is equivalent to counting the number of different colors appearing on
this path.

We divide T into layers of height [log, B] + 1. This divides T into subtrees of
height [log, B] + 1.

Let p' = (v,...,w) be a subpath of the worst-case path p that we are going to
construct, where v is the root of such a subtree 7" and w is a leaf of 77. We say that
p' introduces color c¢ into p, if ¢ appears on p' and no ancestor of v in T has color c.
We say that p’ is a worst path, if no path in 7" would introduce more colors than p'.

We construct the worst-case path p in 7" in a greedy way. First, we look at the
subtree T" rooted at the root of T and choose a worst path p; = (vy,...,w;) in T".
Then, we choose a child vy of w; in T" and a worst path, ps, in the subtree rooted at
this child, and so on. Finally, p is the concatenation of pi,...,pg, k = %.

We maintain a potential function ®. It represents the number of vertices that can
be colored without introducing a new color into p. Initially, ® = 0, and clearly, ® > 0
at any time.

If a subpath p; introduces ¢ > 0 new colors, we increase ® by c¢B. If p; does not

introduce a new color, then all vertices in the corresponding subtree must have been

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 37

colored with “old” colors because p; is a worst path. That is why we decrease ® by

dltosg B1+1_q dB-1 dB—B __
d—1 > d—1 > d—1 = B.

Assume that there are less than [k/2] subpaths that do not introduce new col-

B in this case, as |T'| =

ors. Then, at least [k/2] subpaths introduce new colors, and p contains at least

log; N log; N .
[m-‘ =0 (1o§3 B) different colors.

Otherwise (if there are at least [k/2] such paths), these at least [k/2] subpaths
have decreased ® by at least [k/2|B. However, at the end, ® > 0, initially ® = 0,

and each newly introduced color increases ® by B. Hence, there must be at least

logy N
logy; B

[k/2] different colors in p and, as above, p contains {2 () different colors. O

3.4.2 An Optimal Approach with Storage Blow-Up

In this section, we show how to achieve a speed-up o = ©(DB) with only constant
storage blow-up not only for perfect d-ary trees, but for arbitrary rooted trees. Note
that this means in particular that speed-up as well as storage blow-up are independent
of the maximal degree of the vertices in the tree. It is also worth mentioning that the
constants involved are small. More precisely, the speed-up is ¢ ~ DB/3, while p < 5.

We use the same proof idea as for Lemma 3.1. That is, we divide T into layers
Lo, ..., Lipn-1, this time of height A’ = DB/3. We observed already that each such
layer is a forest of rooted trees of height at most A’ = DB/3. Let Ti,...,T, be the
set of these trees for all layers of T. We show how to divide each such subtree 7; into

subtrees T; 1, ..., T, so that the following properties hold:
1. |T;;| < DB, forall1 <j<s,
2. 30 \T; ;| < 2.5|T;|, and

3. For each leaf [of T;, there is a tree T; ; such that the whole path from [to the

root of T; is contained in T; ;.

We prove the following lemma.

LEMMA 3.4 If we can divide a given rooted tree T into subtrees T; ; so that Properties

1-8 hold, this immediately translates into a blocking of T with storage blow-up at most

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 38

5 such that traversing any bottom-up path of length k in T takes at most [3k/DB|+1
I/0s.

ProoF. By Lemma 1.1, we can again use the D parallel disks as one large disk with
block size DB.

Property 1 ensures that we can store each 7; ; in a single block. Therefore, Prop-
erty 3 implies that, if we choose the right subtree 7; ;, we can read a whole leaf-to-root
path in 7; with a single I/O. In fact, with our approach, each leaf [of T; is stored
exactly once. Thus, reading the block containing I, we automatically choose the right
T; ; containing the whole path from [to the root of T;.

Each bottom-up path p of length % in T spans at most [3k/DB] + 1 layers. That
is, we can divide p into maximal subpaths p; each of which stays inside a single layer.
Each p; is a leaf-to-root path in a subtree T; or a subpath thereof. Therfore, it can
be accessed with a single I/O. Thus, reading p takes [3k/DB] + 1 1/Os.

It remains to bound the storage blow-up caused by this subdivision of 7. Storing
each subtree T; ; in a single block, we might end up with many sparsely populated
blocks because we do not have a lower bound on the sizes of these subtrees. However,
we can use the following block-merging argument to achieve a storage blow-up of at
most 5:

Initially, we store each T; ; in a single block. As long as we have at least two blocks
holding at most DB/2 vertices each, we keep merging pairs of such blocks. This works
because two such blocks together hold at most DB vertices. After merging blocks
this way, we are left with at most one block that contains at most DB/2 vertices. If
there is such a block, we check whether we can merge it with one of the more than
half full blocks. If so, we merge these two blocks.

Let By, ..., B, be the set of blocks holding the subtrees T; ; of T" after the merging.
Let B, be the possibly at most half full block. Since, by assumption, we cannot merge
B, and B,_1, they contain a total of more than DB vertices. Thus, on average, each
of them contains more than DB/2 vertices. Each of the blocks By, ..., B,_2 contains
more than DB/2 vertices, by the above construction. Hence, all blocks together

contain more than q% vertices. On the other hand, by Property 2, they hold at

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 39

most

> 25T =25 |T;
=1 =1
= 25T

vertices, so that

DB

DB’

Since [%-‘ is the minimum number of blocks to store 7, we have shown that the

storage blow-up for storing 7" this way is at most 5. O

Note that neither when dividing 7 into layers nor in the proof of Lemma 3.4, we
used the fact that T is connected. Thus, Lemma 3.4 generalizes to forests of rooted

trees, and we can state the following corollary.

COROLLARY 3.1 If we can divide a given forest F' of rooted trees into subtrees T ; so
that Properties 1-3 hold, this translates immediately into a blocking of F with storage

blow-up 5 such that traversing any bottom-up path of length k in F takes at most
[3k/DB| +1 1/0s.

It remains to show that we can divide each tree T; into subtrees T;; so that
Properties 1-3 hold. Lemma 3.5 states the existence of such a subdivision of T;. We
give a constructive proof. In this proof, we need the following two observations about
preorder numbers, where we define that u < v, for two vertices u and v of the given

tree, iff u has a smaller preorder number than v.

OBSERVATION 3.1 Let a rooted tree T, a preorder numbering of the vertices of T,
and two vertices v # w of T be given, and let w be an ancestor of v. Then w has a

smaller preorder number than v.

PRrROOF. Recall that preorder numbers are defined by choosing an Euler tour of T
starting at the root of 7" and numbering the vertices according to the order of their

first appearances on this tour.

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 40

Figure 3.2: Illustrating the proof of Observation 3.2.

The only path from the root r of T to v is via w because there is a path from r
to v via w and there is only one path between two vertices in a tree. Thus, the Euler
tour starting at r by which the preorder numbers are defined must visit w for the
first time before visiting v for the first time. Hence, w must have a smaller preorder

number than v. O

OBSERVATION 3.2 Let a rooted tree T, a preorder numbering of the vertices of T,
and three distinct vertices u,v, and w of T be given. Let u be an ancestor of w and

u<v<w. Then u is an ancestor of v.

PROOF. Assume that u < v < w and u is not an ancestor of v. Let v’ be the parent
of u and p be the lowest common ancestor of v and v. The Euler tour defining the
preorder numbers would have to use edge {u',u} for the first time to get from the
root r of T to u, in order to visit u for the first time. The only way from u to v
is via {u',u} because v is no descendant of u. That is, we have to use this edge a
second time in order to visit v for the first time. Since v < w, we visit w for the
first time after we have visited v for the first time. As w is a descendant of u, we
have to use edge {u’,u} for a third time to visit w for the first time. (See Figure 3.2
for an illustration.) That is, we use edge {u', u} at least three times in contradiction
to the fact that an Euler tour uses each tree edge exactly two times, once in each

direction. O

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 41

LEMMA 3.5 Given a tree T; of height at most DB/3, we can divide T; into subtrees
Tia,...,Tis such that Properties 1-3 hold.

Proor. If |T;| < DB, we “divide” T; into only one subtree T;, = T;, and Properties
1-3 are trivially true. So assume that |7;| > DB. In this case, we label the vertices
of T; with their preorder numbers in 7; starting with number 0. Let v, denote the
vertex of 7T; with preorder number k. We divide the vertex set of 7} into subsets
VO""’VﬂTiIﬁ]—l’ where V; = {ng,...,v(jﬂ)%fl}. For each Vj, we define a
subtree T; ; = T;(V;) of T; consisting of all vertices in V; and all their ancestors in T;.
We claim that the set of these subtrees T; ; satisfies Properties 1-3.

Property 3 is explicitly ensured by including the ancestors of each vertex of T;(V;)

into Vj. If we assume that Property 1 is true, Property 2 follows because

[Tl 555 | -1 [ITil 555 | -1
> ()< Y. DB
=0 =0
3
N ['TAQDBW DB
3
T.|—— +1) DB
< (| |2DB+)
=1.5|T;| + DB
< 2.5|T5).

It remains to prove Property 1.

Let A(V;) be the set of ancestors of V;2DB. Then Property 1 follows, if we can prove
that T;(V}) contains only vertices in A(V;) U V; because this implies that |T;(V;)| <
|A(V;)| + |V;| < DB/3 4+ 2DB/3 = DB. The bound on the size of A(V}) follows
from the fact that 7; has height at most DB/3 and each vertex of 7; has at most one
ancestor per level.

By Observation 3.1 all vertices in T;(V;) have preorder numbers at most (j +
1)28E — 1. All vertices with preorder numbers j28E through (j + 1)222 — 1 are in
Vj. So we are only interested in vertices with preorder numbers smaller than j %.
Assume that we have a vertex vy in T;(V;) which is an ancestor of some vertex v,
k < j% < [. Then, by Observation 3.2, v is an ancestor of V208 and thus in

A(Vj). This shows that each vertex in T;(V}) is either in V; or in A(Vj). O

CHAPTER 3. BLOCKING ROOTED TREES: THE STORAGE SCHEME 42

Putting things together, we have proved the following theorem.

THEOREM 3.1 Given a rooted tree T, we can store T' in al most 5D [%-‘ blocks

evenly distributed over D parallel disks so that traversing any bottom-up path of length
k in T takes at most [g—%} +1 1/0s.

Proor. This follows immediately from Lemmas 3.4 and 3.5. O

COROLLARY 3.2 Given a forest F' of rooted trees, we can store F' in at most 5D [%-‘
blocks evenly distributed over D parallel disks so that traversing any bottom-up path

of length k in F takes at most [g—%-l +1 I/0s.

Proor. This follows immediately from Corollary 3.1 and Lemma 3.5. O

Chapter 4

Labeling Rooted Trees in External
Memory

In this chapter, we describe I/O-efficient algorithms to compute certain common
labels of the vertices of rooted trees such as for instance preorder numbers. We will
use these algorithms as components of the algorithms presented in Chapters 5, 6, and
7.

We assume here that the tree 7" is given in the representation that we use in
Chapter 5. That is, each vertex v € T is represented as a pair (v, p(v)), where p(v)
is the parent of v. Here, p(v) is not a pointer to the memory location containing v’s
parent, but the name of v’s parent. This is important because we keep shuffling the
vertices of 7" around. Thus, we would have to update the pointers all the time. Using
names instead of pointers, we avoid these update operations. On the other hand, we
cannot access v’s parent right away because we do not know where it is stored. As we
will see, this does not do us any harm. For the root r of T, we set p(r) = 0, assuming,
w.l.o.g., that no vertex of 7" is named 0.

Basically this means that we are given T as a set of tree edges, which are directed
from children to parents. For the root, we can assume that it has the imaginary

vertex 0 as its parent.

43

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 44

9

1)

Figure 4.1: A circuit without cycles. Its vertices have been numbered such that
v < w, for every edge v — w. All edges are directed from left to right. Time-forward
processing evaluates this circuit in a left-to-right sweep.

4.1 Time-Forward Processing

Time-forward processing is a technique to evaluate circuits that do not contain cycles.
For such circuits, it is possible to number the nodes of the circuit so that, if node w
needs the output of node v as input, v < w. Let the nodes be numbered this way and
sorted by increasing numbers. We refer to such circuits as topologically sorted (see
Figure 4.1).

We can evaluate a topologically sorted circuit by processing the nodes in their
order of appearance. This guarantees that, whenever a node v is evaluated, the nodes
the outputs of which are required as inputs for v have been evaluated before v.

We can imagine node v as being evaluated at time v. When evaluating v, we send
v’s output forward in time to every node w that needs v’s output as input. This
motivates the name of this technique.

The first algorithm for time-forward processing due to Chiang et al. [12] has two
restrictions. Firstly, it works only for large values of m. Secondly, the fan-in of the
evaluated circuit had to be bounded by some integer d. The latter is the more serious
restriction for our application because we cannot say anything about the degrees of the
nodes in our shortest path trees. Fortunately, Arge [5, 6] removes both restrictions by
presenting an alternative and very elegant time-forward processing algorithm. This

algorithm uses a priority queue that is based on the buffer tree [5, 6]. Arge still

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 45

assumes that, for each node v of the circuit, we are explicitly given v’s indegree and
the nodes that need v’s output as input. This is reasonable when thinking exclusively
about logical circuits. Using time-forward processing to implement operations on
rooted trees, however, it will be handy to relax this assumption a little. First, we will
review Arge’s algorithm. Afterwards, we will see that, with minor modifications, this

algorithm can also handle the following important cases:

e For each node v, we are explicity given the nodes that need v’s output as input,

but not v’s fan-in.

e Each node has fan-in at most one. For each node v, we are explicitly given the
node producing v’s input. However, we do not know the vertices that need v’s

output as input.

Arge’s time-forward processing algorithm evaluates the nodes of the circuit in
their order of appearance. The first node v cannot need any input from another node
because the vertices are topologically sorted. Thus, we can evaluate node v right
away. We put its output into the priority queue, once for each node w that needs v’s
output as input. The copy of v’s output meant for w is given a time stamp (priority)
w. When we evaluate a subsequent node w of fan-in d, all nodes that produce an input
for w have been evaluated. No other nodes have time-stamped their output with w.
All entries with smaller priority in the priority queue have been used as inputs for
the nodes before w. Thus, the d entries with smallest priorities in the priority queue
are the inputs for w. We delete these d entries and obtain the necessary input values
for w. We repeat this process until all nodes in the circuit have been evaluated.

For each edge of the circuit, this algorithm performs one insert and another
deletemin on the priority queue. Thus, the total number of operations on the priority
queue is O(N), where N is the size of the circuit (nodes and edges). Arge proves the

following theorem.

THEOREM 4.1 [5, 6] A priority queue can be implemented in external memory so

that a series of N insert, delete, and deletemin operations on the priority queue takes
O(sort(N)) 1/0s.

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 46

COROLLARY 4.1 [5, 6] A topologically sorted circuit C with a total of N nodes and
edges can be evaluated with O(sort(N)) I/Os.

Let us consider the case that, for each node v, we are given the nodes that need
v’s output as input, but not v’s in-degree. Then we can produce outputs as usual.
When reading inputs, we keep deleting minima from the priority queue until we have
deleted an item with higher priority than that of the vertex that we are presently
processing. This item is put back into the queue with the same priority. This way,
we perform two additional operations per node. The total number of operations on
the queue is still O(N).

In the second special case, each node has fan-in at most one. For each node v,
we are given the node that produces the input for v. However, we do not know the
nodes that need v’s output as input. We can sort vertices by their input nodes, where
vertices with fan-in zero are assumed to have input nodes with numbers —oc. Note
that the circuit is still topologically sorted: If u produces an output for v and v
produces an output for w, then v < v < w. Thus, v will be stored before w because
u < v. Each node v puts its output into the priority queue with priority v. Let w be
a node that takes v’s output as input, u be the node evaluated immediately before w.
If v did not take v’s output as input, then w is the first node that needs the output
of v as input. By the order that the nodes are stored in, all nodes that need an input
with smaller priority than v have already been evaluated. Thus, we can keep deleting
minima from the priority queue until we delete an entry with priority v. This is the
input for w. In addition to using this entry as input for w, we store the number v
and the input in internal memory. Thus, if u took v’s output as input, then v and its
output are stored in internal memory. Therefore, when evaluating w, we can use this
information to retrieve w’s input. This does not require any operation on the priority
queue.

Using this strategy, each vertex puts one output into the queue and each entry is
deleted exactly once from the queue. Hence, the number of operations on the queue
is again O(N).

We have shown that Corollary 4.1 holds for these two slightly relaxed cases as

well.

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 47

4.2 3-Coloring a Tree in External Memory

In this section, we show how to compute a 3-coloring of a rooted tree 7' in external
memory. To do this, we generalize the approach used by Chiang et al. [12] for 3-
coloring a list. In general, 3-coloring a tree might not be the most useful operation;
but it is a basic step in the tree labeling algorithms presented in this chapter.

According to our convention, the edges of the tree are directed from children to
parents. However, it is easy to ‘turn the edges around’. This does not even have to
be done physically. Instead, we can handle edge (v, w) in our algorithm as if it was
edge (w,v). Thus, assume that our tree is represented as a set of edges directed from
parents to children.

We call an edge (v, w) a forward (resp. backward) edge, if v < w (resp. v > w),
where “<” is a total order on the vertex names. A forward (resp. backward) tree is a
maximal subtree of T’ containing only forward (resp. backward) edges. Vertices with
only backward (resp. forward) edges incident on them are considered forward (resp.
backward) trees consisting of only one vertex. (See Figure 4.4(a—c).)

Note that we have stored p(v) with each vertex v in a forward tree. Thus, we can
sort the vertices in the whole forest of forward tress by increasing parent numbers

ps(v), where

p(v) if p(v) <v and p(v) # 0 ‘

—o00 otherwise

pr(v) =

By the maximality of forward trees, different forward trees are independent of each
other. Moreover, ps(v) < v, for each vertex in a forward tree. Thus, the resulting
forest of forward trees is topologically sorted.

Analogously, we can topologically sort the forest of backward trees by sorting its
vertices by decreasing parent numbers p,(v), where
p(v) ifp(v) >v

m(v) =
+oco otherwise

Then, we use time-forward processing to 2-color forward and backward trees from the

roots to the leaves as follows:

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 48

We color forward trees using colors 1 and 2. If a vertex is the root of a forward
tree, it is colored with color 1. Otherwise, it is colored with the color that its parent
does not have. This gives a 2-coloring because the only adjacencies of vertices in the
tree are between children and parents and we make sure that a child always has a
color different from its parent’s. Denote the color assigned to a vertex v in this step
as v’s forward color c;(v). (See Figure 4.4(b).)

Backward trees are colored using colors 3 and 4. We color the root of a backward
tree with color 3 and proceed in the same way as for forward trees afterwards. Denote
the color assigned to a vertex in this step as v’s backward color c,(v). (See Figure
4.4(c).)

Each vertex is contained in a forward and a backward tree. Thus, it is assigned
a pair of colors (cf,cp) € {1,2} x {3,4}. We call two such color pairs adjacent, if it
is possible that 7' contains two adjacent vertices with these two color pairs assigned
to them. We define an adjacency graph for color pairs. This graph contains a vertex
for each color pair and an edge between adjacent color pairs. We will show that this

adjacency graph is 3-colorable. We make the following observations:

1. The target vertex of a forward edge must be the root of a backward tree. Thus,

it must have backward color 3.
2. Analogously, the target vertex of a backward edge must have forward color 1.

3. If the forward color of the source vertex of a forward edge is 1, the forward color

of the target vertex of this edge must be 2.

4. If the backward color of the source vertex of a backward edge is 3, the backward

color of the target vertex of this edge must be 4.

Figure 4.2 shows the possible color pairs assigned to vertices connected by forward
or backward edges. This results in the adjacency graph shown in Figure 4.3. The
labels beside the vertices represent a possible 3-coloring ¢ of the graph.

This 3-coloring of the adjacency graph gives us a 3-coloring of the given tree 7T'. Let

(cf,cp) be the color pair assigned to a vertex v of 7. Then we assign color ¢((cy, ¢s))

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 49

f f f f b b b b
Figure 4.2: All possible color combinations assigned to vertices connected by forward

(f) and backward (b) edges.

N E w
N

Figure 4.3: The adjacency graph derived from adjacencies in Figure 4.2. Each vertex
is labeled inside with the color pair it represents and outside with its color in a possible
3-coloring.

to v. As adjacent color pairs have different colors in the 3-coloring of the adjacency
graph, this is indeed a 3-coloring of 7T'.

Looking a little closer at the 3-coloring in Figure 4.3, we can observe that each
vertex with colors (2,z) is finally colored 2. Colors (1,z) map to z. Thus, when
2-coloring backward trees, we simply overwrite the colors of vertices v with ¢f(v) =1,
i.e., ¢(v) = ¢y(v). For vertices v with c¢f(v) = 2, we keep the color, i.e., ¢(v) = ¢s(v).
(See Figures 4.4(b—d).)

Putting pieces together, we obtain Algorithm 4.1 for 3-coloring a rooted tree. We

have shown the following lemma.

LEMMA 4.1 Gwen a rooted tree T' of size N, we can compute a 3-coloring of T with
O(sort(N)) 1/0s.

PROOF. The correctness of Algorithm 4.1 follows from the above discussion.
As for the I/O-complexity, Steps 1 and 3 clearly take O(sort(N)) I/Os. Steps

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 50

3-CoLOR(T) ¢):

Input: A rooted tree T'.
Output: A 3-coloring c of 7.

1: Sort the vertices of T' by increasing parent numbers pf(v).
Use time-forward processing to 2-color forward trees with colors 1 and 2.

Sort the vertices of T' by decreasing parent numbers py(v).

Use time-forward processing to 2-color backward trees with colors 3 and 4, over-
writing the colors of color-1 vertices and keeping the colors of color-2 vertices.

Algorithm 4.1: 3-coloring a rooted tree 7.

2 and 4 each take O(sort(N)) I/Os by Corollary 4.1. Thus, Algorithm 4.1 takes
O(sort(N)) 1/Os. O

4.3 Computing Vertex-to-Root Distances

In this section, we show how to compute, for each vertex of 7', its distance to the
root r of T (see Figure 4.5(b)). Our algorithm is a generalization of the list ranking
algorithm by Chiang et al. [12]. Algorithm 4.2 shows the pseudo-code. We prove the

following lemma.

LEMMA 4.2 Given a rooted tree T of size N, we can compute, for all vertices of T,
their distances to the root of T with O(sort(N)) 1/0Os.

PrROOF. First, we have to provide some details of Steps 2, 6, and, 8 of procedure
RECCOMPLEVELS.

Step 2 computes [(v) for each vertex v € T as follows: Let p,, = (v = vy, vo, . .., U,
vg+1 = r) be the path from v to the root r of T, i.e., v;11 = p(v;) for 1 <4 < k. Then

we compute

l(v) = Z w(v;).

=1

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY

©
(3) O O,
JOOOL e GO
®® G @
®E®O®E O,
(©) (d)

o1

Figure 4.4: Figure (a) shows an example tree T labeled with vertex numbers. Fig-

ure (b) shows the corresponding forest of forward trees labeled with colors 1 and 2

according to the 2-coloring algorithm. Figure (c) shows the forest of backward trees
labeled with colors 3 and 4 according to the 2-coloring algorithm. Figure (d) shows
the original tree 7' labeled with colors 2,3, and 4. This coloring is derived from the

two 2-colorings in figures (b) and (c).

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 02

CoMPUTELEVELS(T, 1):

Input: A rooted tree T" with root 7.
Output: For each vertex v of T its distance {(v) to the root of 7.

1: Assign weights w(v) = 1 to the vertices of 7. For the root r, w(r) = 0.
{These weights denote the length of the path between v and p(v) in T.}

2: | + RECCOMPLEVELS(T, w)

RECCOMPLEVELS(T, w):

1: if |T| < M then

2: Load 7 into internal memory, compute the levels of its vertices in internal
memory, and write [to disk afterwards.

3: else

4: 3-CoLor(T,c)

5. Choose I = {v € T : ¢(v) = ¢} as an independent vertex set of 7.

{Let c¢1,co,c3 be the three colors of the 3-coloring. n(¢;) is the number of
vertices with color ¢; in 7. Then we choose ¢ € {c1, ¢2, 3} such that n(c') =

max{n(c1),n(cz),n(cs)}.}

6: Bridge out the independent set. This results in a modified tree 7" and modified
weights w'.

7. RecCompLEVELS(T",w',1)
8: Reintegrate bridged-out elements and compute their levels.

9: end if

Algorithm 4.2: Computing for each vertex its distance to the root.

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 93

Figure 4.5: Figure (a) shows the example tree T of Figure 4.4(a) rearranged such that
the children of each vertex are sorted by increasing vertex numbers from left to right
because this is the order of the children used when computing preorder, postorder,
and levelorder numbers. Figures (b) through (e) show the same tree with vertices
labeled with their distances to the root of T, subtree sizes, preorder, postorder, and
levelorder numbers, respectively.

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY o4

If we are given the original tree T', then w(v) = 1 for each v € T. Thus, I(v) is indeed
the distance from v to r (number of edges between v and r). So assume that we have
done some recursive calls to RECCOMPLEVELS, and the given tree is not the original
tree. In Step 6, we will make sure that p! is a subpath of the path p, from v to r in
the original tree. The weight of each vertex v; € p! will be one more than the number
of vertices in p, between v; and v;;1. Thus, the sum of the weights on p] is the length
of p, in this case as well.

In Step 6, bridging out means that, for each vertex v € I, we make the parent
p(v) of v the parent of each child w of v. In addition, we set w'(w) = w(w) + w(v).
Since [is an independent set, p(v) and all children w of v cannot be in I. Thus, all
children w of v are indeed in 7" and p(v) is their parent in 7".

Now, w(v) was one more than the number of previously bridged-out vertices be-
tween v and p(v). Analogously, w(w) was one more than the number of previously
bridged-out vertices between w and v. Now we bridge out one additional vertex
between w and p(v), namely v. Thus, w'(w) = w(v) + w(w) is one more than the
bridged-out elements between w and p(v).

In Step 8, p(v) & I for each v € I. Thus, the recursive call to RECCOMPLEVELS
returns the proper value /(p(v)). That is, we can compute /(v) = I(p(v)) + w(v).

Now let us analyze the 1/O-complexity of COMPUTELEVELS. Step 1 of CoMm-
PUTELEVELS requires a single scan over the vertices of T'. Thus, COMPUTELEVELS
takes O(scan(N)) I/Os plus the I/Os performed by RECCOMPLEVELS.

In procedure RECCOMPLEVELS, we execute only Step 2, if |T| < M. This re-
quires two scan operations: one to read 7" into internal memory and one to write the
distances to external memory. Thus, Step 2 takes O(scan(N)) I/Os.

If |T| > M, we execute Steps 4 through 8. Step 4 takes O(sort(N)) 1/Os by
Lemma 4.1. Step 5 does not take any computation or I/Os at all because we can
count, the number of vertices colored with each color while executing Step 4. In Step
6 we decide whether v € I by looking at its color.

Step 6 can be implemented with O(sort(N)) 1/Os as follows: Let ¢’ be the color of
the vertices in the independent set. Sort the vertices of T" by the “C” relation which

is defined as v C w iff

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 95

1. ¢(v) # ¢ and ¢(w) = ¢,
2. ¢(v) = c(w) # ¢ and p(v) < p(w), or
3. ¢(v) =c(w) =¢ and v < w.

This creates two lists of vertices. The first one contains all vertices of T” sorted by
their parents in 7. The other one contains all vertices in I sorted by vertex numbers.
We scan these two lists simultaneously in order to compute w'(v) = w(v) + w(p(v))
for each vertex v in 7" with p(v) € I. The details of these two scans are as follows:
We start both scans at the heads of the lists. Let v be the current vertex in V (17)

and w be the current vertex in I. There are three cases.

1. If p(v) = w, we set w'(v) = w(v) + w(w) and p'(v) = p(w) and advance to the

next vertex in V/(77).

2. If p(v) < w, v’s parent cannot be in I. If it were, we would have reached Case
1 and advanced to the next vertex in V(7") before. Thus, we set w'(v) = w(v)

and p'(v) = p(v) and advance to the next vertex in V(7”).

3. If p(v) > w, there is no vertex v’ after v in V(7") with p(v') < w because V(T")
is sorted by increasing parent names. Therefore, we advance to the next vertex

in 1.

In Step 7, we apply RECCOMPLEVELS recursively to a tree 7'. The size of T" is
IT'| < 2|T'| because |I| > 3|T| (we have chosen the most popular color ¢).

In Step 8, we apply the same technique as in Step 6 to compute (v) = w(v) +
l(p(v)), for each vertex v in I. This time, we sort the vertices of 7" by increasing
vertex numbers and the vertices of I by increasing parent numbers. The correctness
of this technique and the O(sort(N)) I/O-bound follow analogously to those for Step
6.

We have shown that, except for the recursive call in Step 7, procedure REC-

CoMPLEVELS takes O(sort(N)) 1/Os. We obtain the following recurrence for the

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY o6

I/O-complexity Z(N) of RECCOMPLEVEL:

O(scan(N)) itN <M

I(N) <
O(sort(N)) + Z(3N) if N> M.

Assume that Z(N') < ¢- sort(N') for all N' < N. For N' < M and an appropriately

chosen constant c, this is true. Then,
, 2
IZ(N) < - sort(N) + ¢ - sort (51\7)

2
< - sort(N) + 3¢ sort(N)

< c- sort(N) (for ¢ > 3).

That is, Z(N) = O(sort(N)).

This basically concludes the proof. However, there is a small technical detail that
we have to deal with. Storing the vertices in 7" and I consecutively as we do, we
must have a way to recognize the last vertex of 7”. This can only be done by storing
the size of T" explicitly, for each recursive call. That is, we have to maintain all these
tree sizes on a stack. There are O(log N) recursive calls and thus O(log N) subtree

sizes to be maintained on this stack. Using an optimal external-memory stack, this

takes O(*2X) = o(sort(N)) I/Os in total. Thus, the claimed I/O bound still holds.

As COMPUTELEVELS takes only O(scan(N)) I/Os in addition to those performed

by RECCOMPLEVELS, the I/O-complexity of COMPUTELEVELS is O(sort(N)). O

COROLLARY 4.2 Given a forest F' of rooted trees of total size N, we can compute,

for each vertex v of F, its distance to the root of the tree in F containing v with

O(sort(N)) 1/0s.

Proor. This follows immediately from Lemma 4.2 because none of the techniques
relies on the fact that the tree is connected. The only important property is that each

vertex has only one parent. This is true in a forest as well. O

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY o7

COMPUTESUBTREEWEIGHTS(T), S):

Input: A rooted tree T'.
Output: For each vertex v € T, the weight W (v) of T'(v).

1: COMPUTELEVELS(T,)

2: Use time-forward processing to compute, for each vertex v in T,

W(v) « w(v) + Z W (u),

ueC(v)

where C'(v) ={w € T : p(w) = v}.

Algorithm 4.3: Computing subtree weights.

4.4 Computing Subtree Sizes or Weights

Given a rooted tree T, we define subtrees T'(v) for all vertices of v. T'(v) consists of
all descendants of v, inclusive. We want to compute |7'(v)| for all vertices of 7'

Let a weight function w : T'— R be given. We define subtree weights

u€T (v)

Computing |T'(v)| reduces to computing W (v), where w(v) = 1 for all vertices v in
T.

LEMMA 4.3 Given a rooted tree T of size N and a weight function w: T — RT, we
can compute, for all vertices v of T, the weights W (v) of the subtrees T'(v) of T with
O(sort(N)) 1/Os.

COROLLARY 4.3 Given a rooted tree T' of size N, we can compute, for all vertices v
of T, the sizes of the subtrees T'(v) of T with O(sort(N)) 1/0s.

PROOF. Let us analyze the number of 1/Os performed by Algorithm 4.3. Step 1
takes O(sort(N)) I/Os by Lemma 4.2. Step 2 takes O(sort(N)) I/Os by Corollary
4.1. Thus, Algorithm 4.3 takes O(sort(N)) I/Os.

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY o8

Now let us prove the correctness of Algorithm 4.3. T'(v) consists of v itself and
the maximal subtrees rooted at the children of v. Therefore, W (v) is the sum of
the weights of the subtrees T'(w) rooted at v’s children w plus w(v). That is, our

algorithm is correct. O

4.5 Computing Preorder, Postorder, and Level-

order Numbers

Preorder, postorder, and levelorder (or BF'S) numbers are probably the most popular
labels to define an order to visit the the vertices of a given rooted tree T. We will

show how to compute these three particular numberings with O(sort(N)) I/Os.

4.5.1 Preorder and Postorder Numbers

Preorder (resp. postorder) numbers of the vertices of a given rooted tree T of size N
can be defined as follows. (Usually, one uses an Euler tour to define these numbers;
but our definition provides the idea how to compute these numbers for free):

Assign numbers 1 through N (sometimes also 0 through N — 1) to the vertices of
T such that

1. No two vertices have the same number,
2. The numbers in each maximal subtree T'(v) are contiguous, and

3. The root v of each maximal subtree 7'(v) has the smallest (resp. greatest) num-
ber in T'(v).

See Figures 4.5(d) and 4.5(e) for an example. We denote the preorder (resp. postorder)
number of v by n,(v) (resp. np(v)). Algorithms 4.4 and 4.5 compute these numbers
for all vertices of T. They use labels ¢(v) to define an order on the children of each
vertex. By default, we choose ¢(v) = v. In Chapter 6, we will use these labels to

ensure some special properties of the computed preorder numbers.

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 99

CoMPUTEPREORDERNUMBERS(T):

Input: A rooted tree 7T'.

Output: For each vertex v of T' its preorder number n,(v).

1: S < COMPUTESUBTREESIZES(T')

2:

Use time-forward processing from the root to the leaves to compute n,(v) for all
v as follows:

if v = r then
np(r) =1
else if v is the leftmost child of p(v) then
np(v) = np(p(v)) +1
else
w ¢ left sibling of v
np(v) = ny(w) + S(w)
end if

Algorithm 4.4: Computing preorder numbers.

CoMPUTEPOSTORDERNUMBERS(T'):

Input: A rooted tree T'.

Output: For each vertex v of T its postorder number np(v).

1: S < COMPUTESUBTREESIZES(T)

2:

Use time-forward processing from the root to the leaves to compute n,(v) for all
v as follows:

if v = r then
np(r) = [T
else if v is the rightmost child of p(v) then
np(v) = np(p(v)) — 1
else
w ¢ right sibling of v
np(v) = np(w) — S(v)
end if

Algorithm 4.5: Computing postorder numbers.

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 60

LEMMA 4.4 Given a rooted tree T of size N, we can compute, for all vertices v of T',
their preorder (resp. postorder) numbers with O(sort(N)) I/Os.

PROOF. Let us analyze Algorithm 4.4. The correctness and I/O-complexity of Algo-
rithm 4.5 follows by symmetry.

First, we prove the correctness of Algorithm 4.4. We start by proving that each
vertex v is the vertex with smallest number n,(v) in its subtree T'(v). For a leaf
this is trivially true. Consider an internal vertex v with children wy, ..., w; from
left to right. By induction hypothesis, wy, ..., w, have the smallest numbers in their
respective subtrees T'(wy),...,T(wg). Furthermore, n,(w;) = n,(v) + 1, ny(w;) =
np(wi—1) + S(wi—1), and S(w;—1) > 0, for 1 < i < k. Thus, n,(v) < n,(w;), for
1 <4< k. As every vertex u # v in T'(v) must be contained in one of the subtrees
T (w;), we have n,(u) > n,(w;) > ny(v). Hence, v has the smallest number in 7'(v).

Next, we prove that the vertices in a subtree T'(v) have contiguous numbers and
no number occurs more than once. Again, this claim is trivially true for the leaves
of T. Consider an internal vertex v with children wy,...,w; again. By induction
hypothesis, the nodes in T'(w;) are numbered n,(w;) through n,(w;) + S(w;) — 1,
for 1 < i < k. For1l < i <k, ny(wit1) = ny(w;) + S(w;). This implies that the
vertices of T'(wy),...,T(wg) have contiguous numbers and no number occurs more
than once. The numbers that occur are n,(w:) through ny(w;) + X5, S(w;) — 1. v
has been assigned number n,(v) = n,(w;)—1. Thus, all vertices of T'(v) are numbered
contiguously and no number is used more than once. If we choose the root of 7" as
the vertex v, this immediately implies that the numbers assigned to the vertices of T’
are 1 through N. The details for the time-forward processing in Step 2 are as follows:

First, we sort the vertices of 7" by the “<” relation defined as v < w iff one of the

following is true:
1. I(v) < l(w),

2. I(v) = l(w) and p(v) < p(w), or

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 61

This ensures that the vertices are stored in top-down order. The children of any
vertex are stored consecutively. The first vertex stored is the root r of T" because
it is the only vertex at the top level. We assign preorder number 1 to it and send
this number to r’s children. For the currently processed vertex, we store its parent,
preorder number, and subtree size in internal memory. When processing the next
vertex w, we test whether p(v) = p(w). If so, we compute n,(w) = ny(v) + S(v)
because v is w’s left sibling. Otherwise, w is the leftmost child of p(w). Then we use
ny(p(w)) to compute n,(w) = ny(p(w)) + 1. ny(p(w)) is retrieved from the priority
queue.

Now let us analyze the I/O-complexity of this algorithm. By Corollary 4.3, Step
1 takes O(sort(N)) I/Os. Step 2 takes O(sort(N)) 1/Os, by Corollary 4.1. O

The following observation follows immediately from the definition of the “<”

relation.

OBSERVATION 4.1 Let v and w be two children of a verter u with q(v) < q(w). Then

v has a smaller preorder number than w.

4.5.2 Levelorder Numbers

There are different definitions of levelorder numbers. The least strict definition just
defines levelorder numbers as an assignment of number 1 through N to the vertices of
T such that vertices at higher levels have smaller numbers than those on lower levels.
This version can easily be computed by first computing the levels of all vertices of
T, sorting the vertices by increasing levels, and numbering them in their order of
appearance. This takes O(sort(N)) I/Os.

We are interested in computing a more restrictive version of levelorder numbers.
Let v and w be two vertices with levelorder numbers n;(v) < n;(w). Let v' be a child
of v and w' be a child of w. Then we require that n;(v') < n(w’). This basically
means that we draw 7" in the plane and number the vertices level by level from left
to right (see Figure 4.5(f)). This still leaves us some freedom about the embedding
of the tree. However, once it is embedded, the numbers are well-defined. The next

lemma states that we can compute levelorder numbers with O(sort(NN)) I/Os.

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 62

COMPUTELEVELORDERNUMBERS(7'):

Input: A rooted tree 7.

Output: For each vertex v of T, its levelorder number n;(v).

1: n, < COMPUTEPREORDERNUMBERS(T)
{This computes labels I(v) as part of the computation. Thus, we can use them
in the next step.}

2: Sort the vertices of T by ‘<’, where v < w, iff (v) < I(w) or I(v) = I(w) and
np(v) < ny(w).

3: Scan the vertex list of 7"and number the vertices of T" in their order of appearance.

Algorithm 4.6: Computing levelorder numbers.

LEMMA 4.5 Given a rooted tree T of size N stored in [N/B] blocks evenly distributed
over D parallel disks, we can compute, for each vertex v of T, its levelorder number
with O(sort(N)) I/0s.

PRrOOF. By Lemma 4.4, Step 1 takes O(sort(N)) I/Os. Step 2 takes O(sort(N)) I/Os
as well. Step 3 just scans the vertex list of 7" and numbers the vertices. This takes
O(scan(N)) 1/Os. Thus, Algorithm 4.6 takes O(sort(N)) 1/Os. Next, we prove the
correctness of Algorithm 4.6.

In Step 2, we sort the vertices of T primarily by increasing distance to the root.
Thus, all vertices at a level [in T appear before all vertices at another level I" > [.
Thus, they will have smaller levelorder numbers than the vertices at level ['.

If v and w are vertices at the same level and n;(v) < ny(w), then v < w. Thus,
ny(v) < ny(w) because [(v) = I(w). All descendants v’ of v have greater preorder
number than v. The vertices in 7'(v) are numbered consecutively. Thus, n,(v) <
n,(v') < ny(w) for all vertices v' in T'(v). Analogously, n,(w) < n,(w'), for all
descendants w' of w. Since I(v) = l(w), I(v") = I(w") for all children v of v and w’ of w.

Moreover, n,(v') < n,(w) < ny(w'). Thus, v < w', and therefore n;(v') < my(w'). O

CHAPTER 4. LABELING ROOTED TREES IN EXTERNAL MEMORY 63

4.6 Lower Bounds

In this section, we show that, except for 3-coloring, all labels computed in this chapter
require Q(perm(N)) I/Os to compute them.

We can consider a list as a special rooted tree. If we let the tail of the list be the
root, then list ranking reduces to computing preorder numbers, levelorder numbers,
or distances to the root without any additional computation or I/O. If we let the head
of the list be the root, then list ranking reduces to computing postorder numbers or
subtree sizes without any additional computation or I/O.

Chiang et al. [12] have shown a lower bound of Q(perm(N)) I/Os for list ranking.

Thus, we can conclude the following lemma.

LEMMA 4.6 Computing distances to the root, subtree sizes, preorder, postorder, and

levelorder numbers takes Q) (perm(N)) 1/0Os.

Note that, for all practical cases, sort(N) = perm(N). See [12] for an estimate
of the minimum N such that perm(N) < sort(NN), for practical values of M and B.
This calculation shows that, in practice, there can really be no problem instance with
large enough N.

We summarize the results of this chapter in the following theorem.

THEOREM 4.2 Given a rooted tree T’ of size N, it is possible to compute a 3-coloring
of T, distances to the root, subtree sizes |T'(v)|, preorder, postorder, and levelorder
numbers for all vertices of T with O(sort(N)) I/Os. Except for 3-coloring, these
labelings require Q) (perm(N)) 1/Os to compute them.

Chapter 5

Blocking Rooted Trees: The
Algorithm

In this chapter, we present an O(sort(IN)) algorithm to block rooted trees in the way
described in Chapter 3. In fact, it will not block the tree precisely as described in
that chapter. It will use the same ideas, but will also be sensitive to the structure of
the given tree. This way, we may achieve a better storage blow-up than predicted by

the worst-case estimation of Theorem 3.1.

5.1 Framework of the Algorithm

Initially, we assume that the tree is given in the way as in our shortest path data
structure. That is, we are given pairs (v,p(v)), where v is the name of a vertex in
T and p(v) is a pointer to the pair (w,p(w)) representing v’s parent w. If v is the
root of T, then p(v) = null. Since our algorithm keeps moving the vertices of T
around, these pointers are a little inconvenient. Hence, the first step of our algorithm
replaces the pointer p(v) by the name of v’s parent. For the root, we replace null by
0, assuming, w.l.o.g., that no vertex is named 0.

After arranging the vertices in the right way, however, we have to replace these
vertex names by pointers again. Otherwise, we would not be able to traverse bottom-

up paths quickly. We would have to search our data structure for a copy of the parent

64

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 65

TREEBLOCKING(T):

Input: A tree T represented as a list of pairs (v, p(v)) striped across D disks.
Output: The tree T blocked for fast path traversals.

1: MAKEEDGELIST(T)
{Replace parent pointers by parent names.}

2: | + CoMPUTELEVELS(T)
{Compute the distance to the root, for each vertex of T.}

3: n, < COMPUTEPREORDERNUMBERS(T ()

4: s < COMPUTESUBTREELABELS(T, [, n,)
{Here, subtrees are the trees that result from cutting 7 into layers. We assign
unique labels to all subtrees.}

5: Sort vertices by increasing labels s(v) and n,(v).

6: CONSTRUCTSUBTREES(T', [, n,, s)
{Construct the subtrees T; ; of all subtrees T;. This concludes the actual blocking
algorithm.}

7: MAKEPARENTPOINTERS(T)
{Replace parent names by parent pointers again.}

Algorithm 5.1: The general framework of the blocking algorithm.

of the current vertex. This would require many I/Os if the parent does not happen
to be in the same block. Even if the parent was in the same block, we would at least
have to search the block. This would not require any additional I1/Os, but would still
require much unnecessary computation.

The replacement of parent pointers by vertex names basically leaves us with a set
of edges directed from children to parents.

Algorithm 5.1 shows the pseudo-code of procedure TREEBLOCKING, which blocks
the given tree. Observe that, instead of computing preorder numbers in each subtree
separately, as we do in Section 3.4.2, we use preorder numbers computed in the whole
tree T for the construction. The next observation states that this gives the same

result.

OBSERVATION 5.1 Let T; be a subtree of T, and let the vertices of T; be sorted by

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 66

(b)

@

Figure 5.1: Figure (a) shows a rooted tree 7" with an Euler tour £ (dotted curve).
Figure (b) shows the shaded subtree T; with an Euler tour &;. &; is constructed from
£ as in the proof of Observation 5.1.

their preorder numbers ny(v) in T. Then there exists a preorder numbering n,(v) of
T; such that, sorting the vertices of T; by n,(v), they are stored in the same order as

when sorted by n,(v).

PROOF. Let r; be the root of T;. Consider the Euler tour £ of T" defining the numbers
ny(v). We construct an Euler tour &; of 7; from £ as follows: Remove all vertices not
in 7T; from €. Merge resulting adjacent copies of the same vertex into a single copy.
Intuitively, this means that we cut £ at the root r; of T; and at the leaves of T;. At
r; we leave &; open, so that r; is the new start and endpoint of the tour, At each leaf
[of T; with parent p(l), we make edge (I,p(l)) the successor of edge (p(l),l) on the
tour (see Figure 5.1). We use &; to define the preorder numbers n;,(v).

It remains to show that, if n,(v) < n,(w) for two vertices v, w € T;, then ny(v) <
n;,(w). If ny(v) < ny(w), v had its first appearance before w’s first appearance on £.
Since v and w are both vertices of T}, they are both in &;. v has its first appearance

before w’s first appearance in &; as well. Hence, n;,(v) < n(w). O

In Step 5 of Algorithm 5.1, we sort the vertices primarily by subtree labels and
only secondarily by preorder numbers. Thus, a change of preorder numbers could
only affect the order of the vertices in the same subtree. By Observation 5.1, the
order of the vertices in each subtree remains unchanged.

The next theorem states the main result of this chapter.

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 67

THEOREM 5.1 Given a rooted tree T, we can store T in al most 5D [%-‘ blocks

evenly distributed over D parallel disks so that traversing any bottom-up path of length
k in T takes at most [3k/DB|+1 1/0s. Blocking T this way takes O(sort(N)) 1/0Os.

ProOOF. The speed-up and storage blow-up follow from Theorem 3.1.

For the construction, we use Algorithm 5.1. The correctness of Algorithm 5.1
follows from Lemmas 4.2, 4.4, 5.1, 5.2, 5.3, and 5.4.

By the same lemmas, all steps, except Step 6, take O(sort(NN)) I/Os. Step 6 takes
O(scan(N)) I/Os. Thus, Algorithm 5.1 takes O(sort(NN)) I/0Os. O

The next sections provide the details of Steps 1, 4, 6, and 7. In all stated I/O-
bounds stated, N denotes the number of vertices in 7. This is important, as the

blocked version of 7" may contain multiple copies of many vertices of T'.

5.2 MAKEEDGELIST

Procedure MAKEEDGELIST replaces parent pointers in 7" by vertex numbers. As
mentioned before, this basically transforms 7" into a list of edges directed from children
to parents. The only exception is the entry (r,0) produced by this procedure, where
r is the root of 7. We will keep this entry nevertheless because it makes subsequent
steps easier.

Algorithm 5.2 shows the code of procedure MAKEEDGELIST. The following

lemma states its correctness and bounds the number of I/Os that it performs.

LEMMA 5.1 Algorithm 5.2 produces an edge-list representation of T with O(sort(N))
1/0s.

PROOF. Step 1 and 3 take O(scan(NN)) I/Os. Step 2 takes O(sort(N)) I/Os. We
assume that deallocating disk space is possible with a constant number of I/Os. Then
Step 4 takes O(1) I/Os. Thus, the I/O-complexity of Algorithm 5.2 is O(sort(N)).
Let us prove its correctness. If adr(v) = p(v') in Step 3, we set p(v') = v because
p(v') points to v’s address. After that we are done with vertex v’. Thus, we can

proceed to the next vertex in T". If adv(v) < p(v'), we go to the next vertex v in 7.

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 68

MAKEEDGELIST(T):

Input: A rooted tree T represented as a list of vertices with pointers to their parents.

Output: 7', represented as a list of edges directed from children to parents.

1: Make a copy 7" of T.
2: Sort the vertices of 7' by increasing parent addresses.

3: Scan T and 7" simultaneously to determine the parents of the vertices in 7"
{v is the current vertex in 7. v’ is the current vertex in 7". p(v') is a pointer to
a vertex address. adr(v) is v’s address.}
if adr(v) < p(v') then
Advance to the next vertex in 7T'.
else

{If adr(v) = p(v').}
p(v") < v. Advance to the next vertex in T".
end if

4: Discard T and return 7" as the modified version of 7.

Algorithm 5.2: Transforming parent pointers into parent numbers.

As p(v') is a proper address in T, we will find it using our strategy. Then we will
have the case adr(v) = p(v') again. The case adv(v) > p(v') cannot occur. Assume
that we have this case. As p(v') points to a proper address in 7', there exists a vertex
v" that is stored at this address. This vertex must have been the current vertex at
some point during the scan of 7. Then we must have advanced from v” to the next
vertex in T because adr(v”) < adr(v). This happens only if adr(v”) < p(v*), for some
vertex v* stored before v’ in 7”. That is, p(v*) > adr(v") = p(v'), in contradiction to
the order by which 7" is sorted. Thus, Algorithm 5.2 is correct. O

5.3 MAKEPARENTPOINTERS

Procedure MAKEPARENTPOINTERS replaces, for each copy of a vertex v of T, the
name of the parent w = p(v) of v by a pointer to a copy of w. We do this locally in
each block. That is, as long as there is a copy of p(v) in the same block as the currently
considered copy of v, we set the pointer to this copy. Procedure CONSTRUCTSUB-

TREES ensures that each subtree T; ; of T is stored in a single block. Thus, by giving

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 69

preference to local copies of p(v), we guarantee that we need only one I1/O to traverse
a bottom-up path in any 7;;. Algorithm 5.3 shows the pseudo-code of procedure
MAKEPARENTPOINTERS.

LEMMA 5.2 Algorithm 5.3 replaces parent names by pointers to the parents with
O(sort(N)) 1/0s.

PROOF. Let us first prove the correctness of Algorithm 5.3. The replacement of local
parent in Step 1 can be done in internal memory. We simply assume that we use a
correct internal-memory algorithm to do this. For all non-local parents, we create a
list L of “queries”. A query is a parent name p(v) that we want to replace plus an
address where we want to replace it. Step 5 answers these queries. Its correctness
follows for the same reasons as the correctness of Step 2 in Algorithm 5.2. Step 7
writes the answers to the queries in L to the addresses where these queries came
from. Again, the arguments for the correctness of Step 7 are similar to those for the
correctness of Step 2 in Algorithm 5.2. Thus, Algorithm 5.3 is correct.

Let us analyze its I/O-complexity. |L| < |T'| = |T"|. By Theorem 3.1, |T'| = O(N).
Thus, Steps 1, 2, 5, and 7 take O(scan(N)) 1/Os. Steps 3, 4, and 6 take O(sort(N))
I/Os. Step 8 takes O(1) I/Os. Thus, Algorithm 5.3 takes O(sort(N)) I/Os. O

5.4 COMPUTESUBTREELABELS

Procedure COMPUTESUBTREELABELS labels each vertex v of 7' with a number that
uniquely identifies the subtree T; containing v. In particular, we label all vertices in
T; with the preorder number of the root of 7;. Since each preorder number appears
exactly once in 7', this label is indeed unique for 7;. Algorithm 5.4 shows the pseudo-
code of procedure COMPUTESUBTREELABELS.

LEMMA 5.3 Algorithm 5.4 labels each vertex v of T with the preorder number of the
root of the subtree T; of T containing v. This takes O(sort(N)) 1/0s.

PROOF. The only information that we need to determine the label s(v) of a vertex is
the label s(p(v)) and its own level number [(v). A vertex at level [(v) = k(DB/3) for

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 70

MAKEPARENTPOINTERS(T):

Input: A blocked rooted tree T' containing possibly several copies of the same vertex.

Output: 7 with parent names replaced by pointers to the parents. These pointers
are local to their blocks as far as possible.

1: Scan T and replace parent names by pointers to local copies of the parent:
{v is the current vertex.}

if there is a copy of p(v) in v’s block then
Make p(v) point to this copy.
else
Write the pair (adr(v),p(v)) to a list L.
end if

Scan T and make a copy 7" of T including the address in T of each copied vertex.
Sort 1" by vertex names.

Sort L by parent names p(v).

Scan T" and L simultaneously to replace, in L, parent names p(v) by the address
of p(v) in T
{v is the current vertex in L. v’ is the current vertex in 7.}
if v’ < p(v) then
Advance to the next vertex in T".

else

{If v' = p(v).}

p(v) < adr(v') (address in T, as stored with v'!). Advance to the next vertex in L.
end if

6: Sort L by addresses adr(v).

7: Scan T and L simultaneously to write pointers p(v) in L to addresses adr(v) (as
stored with p(v) in L) in 7"
{v is the current vertex in 7". v is the current vertex in L.}
if adr(v') < adr(v) then
Advance to the next vertex in L.
else
{If adr(v') = adr(v).}
p(v) « p(v'). Advance to the next vertex in T'.
end if

8: Discard 7" and L.

Algorithm 5.3: Replacing parent names by pointers to the parents.

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 71

COMPUTESUBTREELABELS(T', [, n,):

Input: A rooted tree T represented by edges directed from children to parent. The
vertices of T are labeled with their preorder numbers n,(v) and their levels {(v)
in T

Output: A list s containing the subtree labels for all vertices of 7.

1: Sort the vertices of T by increasing labels [(v) and increasing preorder numbers
np (V).
2: Compute labels s(v) using time-forward processing from the root of 7" to the
leaves:
{v is the current vertex.}
if [(v) = £BE for some k € N then
$(v) ¢ np(v)
else

s(v) < np(p(v))
end if

Algorithm 5.4: Labeling all vertices of each subtree 7; of T with a number uniquely
identifying 7;.

some k € N is the root of a subtree 7;. Thus, we choose v’s preorder number, n,(v),
as its label s(v). Every vertex of T at another level is a non-root vertex of a subtree
T; of T. Thus, it has the same label as its parent.

Step 1 takes O(sort(N)) 1/Os. Step 2 takes O(sort(IN)) 1/Os, by Corollary 4.1.
Thus, Algorithm 5.4 takes O(sort(N)) I/Os. O

5.5 CONSTRUCTSUBTREES

In this section, we show how to implement the most important part of procedure
TREEBLOCKING: the construction of the subtrees 7; ;. We claim that we can do this
with O(scan(N)) I/Os after performing Steps 1-5 of Algorithm 5.1. Algorithms 5.5,
5.6, and 5.7 show the code.

We have divided the task of blocking 7" into three major subtasks, each of which is
solved by a separate procedure. CONSTRUCTSUBTREES constructs the subtrees 7 ;

as in Lemma 3.5, more or less. It collects the vertices of the current subtree in the

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 72

CONSTRUCTSUBTREES(T', [, n, 5):

Input: A rooted tree T, the levels [, preorder numbers n,, and subtree labels s of all
vertices of T.

Output: 7', blocked for fast bottom-up traversals.

1: Create empty buffers B and B, of size DB.
{B is used for the construction of subtrees T; ;. In B,, we collect small subtrees

n,j.}
2: Scan T to create subtrees T ;:
{v is the current vertex. w is the previous vertex.}

if v is the first vertex in T or s(v) # s(w) then
{v is the first vertex of a new subtree T;.}
if B is not empty then
WRITESUBTREE(B, B,)
end if
Empty B and add v to B.
else
if B is full then
Write B to disk.
KEEPANCESTORS(v, B)
end if
Add v to B.
end if

3: Flush B:

if B is not empty then
WRITESUBTREE(B, B;)
end if

4: Flush B;:

if B, is not empty then
Write B, to disk.
end if

Algorithm 5.5: Constructing the subtrees of T'.

KEEPANCESTORS(v, B):
1: for all levels [in T; with | < [(v) do
2: Among all vertices w with I(w) = [, keep the one with maximal preorder number
ny(w) such that n,(w) < n,(v).
end for
: {All vertices that we do not explicitly keep in B are discarded.}

- W

Algorithm 5.6: Code of the KEEPANCESTORS procedure.

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 73

WRITESUBTREE(S, B;):
1: if |[B| > DB/2 then
2: Write B to disk
3: else

4 Add the content of B to B,

5. if |Bs| > DB/2 then

6: Write B, to disk

7 Empty B,

8 end if

9: end if

Algorithm 5.7: Code of the WRITESUBTREE procedure.

buffer B and relies on procedure KEEPANCESTORS. The task of this procedure is to
ensure that, each time we put the first vertex v of a new subtree 7T; ; into the buffer
B, we also put the ancestors of v in T} into B. In fact, these ancestors are already in
the buffer and we just keep them there. The task of collecting the subtrees in blocks
as described in Lemma 3.4 is carried out by WRITESUBTREE. Let us consider this
procedure first.

The block-merging process in Lemma 3.4 consists of two parts. Initially, we assume
that we put each subtree T; ; into its own (logical) block. The first part of the block-
merging merges pairs of small logical blocks (of size at most DB/2) into one until
there is at most one small logical block left. The second part merges the remaining
small logical block with another large block, if this is possible. The second part
reduces the size of the blocked tree 7" by at most one block. This is not worth the
effort. Thus, we ignore the second part of the block-merging process.

The logical blocks containing the subtrees 7; ; are given to WRITESUBTREE as the
input buffers B, one per call to WRITESUBTREE. Large logical blocks (of size greater
than DB/2) are written to disk immediately. Small logical blocks are collected in the
buffer B, until the size of B, exceeds DB/2. Then we write B to disk and empty
it. This way, we ensure that, except for the very last block written in Step 4 of
CONSTRUCTSUBTREES, every block that we write to disk has size at least DB/2.

Assume for now that KEEPANCESTORS correctly puts the ancestors of vertex v

into the buffer B. We have to show that CONSTRUCTSUBTREES decomposes each

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 74

subtree T; of T into subtrees as in Lemma 3.5 or better. Step 2 of Algorithm 5.5
solves this task.

If v starts a new subtree 7;, we flush B to disk and start constructing a new
subtree T;, with an empty buffer. Thus, we have room for DB vertices in B. That
is, if |T;| < DB, we construct only a single subtree, as in the proof of Lemma 3.5.

If v does not start a new subtree 7;, we have to distinguish two cases. If B is not
full, we add v to B. If B is full, we have to flush B and start constructing a new
subtree T; ;. We start this new subtree with v and all its ancestors in 7;. Procedure
KEEPANCESTORS ensures this. As v can have at most % ancestors, inclusive, there
is room for at least % more vertices in B. That is, we achieve a storage blow-up
that is at least as good as claimed in Lemma 3.5.

It remains to show that KEEPANCESTORS puts the ancestors of v in T} into B. Let
us consider the subtree 7" of T; consisting of the previous subtree 7; ;_; plus vertex
v and all its ancestors. The last vertex w of T;;_; and v have consecutive preorder
numbers in 7;. Thus, by Observation 3.2, all proper ancestors of v are ancestors of
w. That is, they are in T;; ;. Hence, we can construct the list of ancestors of v by
keeping the right vertices of T; ;_; in B. This is what KEEPANCESTORS does. For
each level above v, it chooses the vertex with greatest preorder number. To prove
that this really chooses the ancestors of v, we make the following observations:

(1) All ancestors of v in T; have to be in T; and at levels above v, one per level.

(2) Assume that we have chosen a vertex p at a particular level and that another
vertex ¢ is v’s ancestor at this level. p and ¢ have smaller preorder numbers than
v because they are in 7;;_; and v is not. n,(p) > n,(q) because we have chosen p
instead of ¢. That is, n,(q) < n,(p) < np(v). Then ¢ must be an ancestor of p by
Observation 3.2. This is impossible because p and ¢ are at the same level. That is,
v’s ancestors all have to be the vertices with greates preorder numbers in their levels.
Thus, our selection criterion is correct, and Algorithm 5.5 is as well.

Let us analyze the I/O-complexity of CONSTRUCTSUBTREES. We divide the
analysis into input and output operations. The only input operations are performed
when scanning 7" in Step 2 of Algorithm 5.5. Thus, we perform O(scan(N)) input

operations. The only output operations are performed in procedure WRITESUBTREE

CHAPTER 5. BLOCKING ROOTED TREES: THE ALGORITHM 75

and in Step 4 of Algorithm 5.5. Step 4 takes exactly one I/O. WRITESUBTREE writes
a block to disk, only if it is at least half full. By Theorem 3.1, the storage blow-up
is at most 5. Thus, WRITESUBTREE performs O(scan(N)) I/Os, as well. Hence,
Algorithm 5.5 takes O(scan(N)) I/Os.

Summarizing, we have shown the following lemma.

LEMMA 5.4 Procedure CONSTRUCTSUBTREES blocks the given tree with O(scan(N))
1/0s.

This concludes the proof of Theorem 5.1.

Chapter 6

Separating Embedded Planar
Graphs in External Memory

In this chapter, we present an external-memory algorithm for separating embedded
planar graphs. It is based on a planar separator algorithm due to Lipton and Tarjan
[26]. We show that our algorithm takes O(sort(IN)) I/Os, if we are given a BFS-tree
of the given graph. If no BFS-tree is given, the best known algorithms to compute
such a tree [25, 24] take Q(N) I/Os in the worst case, where N is the number of
vertices in the given graph.

It is very interesting that the existence of an I/O-efficient algorithm for breadth-
first search is still open, while there exists a trivial optimal sequential algorithm that
solves this problem in internal memory. A fair amount of research on breadth-first
search, depth-first search, and related graph traversal strategies has been done for
the PRAM model [31, 21, 1, 11, 23]; but all these algorithms do considerably more
than linear work. This seems to point out that BF'S is indeed hard in models other
than a sequential random access machine.

As BFS is the bottle-neck of our algorithm, we took a look at other separator
algorithms [22, 17, 3, 27, 20], hoping to find one that does not compute a BFS-tree
as part of the computation. All of them do, and they rely on special properties of
BFS-trees. We were not able to make any of these algorithms work with an arbitrary

spanning tree. In the last chapter, we point out how we hope to avoid computing a

76

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 77

BFS-tree or to use additional information that we are given in certain applications
to facilitate the computation of a BFS-tree. So far, however, we made only little

progress in either of these two directions.

6.1 Data Representation

Before discussing our algorithm, we have to explain how the graph and its embedding
is represented. As for the graph itself, we represent its vertex and edge sets as two
lists V(G) and E(G). Every vertex in V(G) is represented by a unique name. Every
edge {v,w} € E(G) is represented as a pair (v, w).

The embedding is represented by the order of the edges around each vertex. That
is, we augment each edge e = (v, w) to a 4-tuple (v, w,n,, n,), where n, (resp. n,)
is the position of e in the order of edges counterclockwise around v (resp. w). This
order is circular; but we can easily make it linear by choosing an arbitrary edge to
be the first one and then counting counterclockwise around the vertex. Call this first

edge the reference edge of v.

6.2 Framework of the Algorithm

In this section, we present the framework of our separator algorithm. Assume that
we are given an embedded planar graph with weights assigned to its vertices. The
sum of these weights is at most 1. The basic idea is as follows:

Let Gy, ..., Gy be the connected components of G. At most one of them can have
weight greater than % Call this component G’, if it exists. We compute a separator
S of G' that divides G’ into connected components G, ..., G}, each of weight at
most 2. If no component G’ with w(G') > 2 exists, we set S = (). Either way, every
connected component of G — S has weight at most % Now we can construct A and
B by grouping the right connected components of G — S together.

Algorithm 6.1 shows the pseudo-code of our separator algorithm. The following

theorem states the main result of this chapter.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 78

SEPARATE(G):

Input: A planar graph G as a vertex list V(G) and an edge list E(G).
Output: V(G) and E(G) such that

o all elements of the separator S C V(G) are labeled with 0,
e all edges in F(G) \ E(G — S) are labeled with oo,

e all other vertices and edges are labeled with 1, if they are in A, and with 2,
if they are in B, and

e V(G) and E(G) are sorted by increasing labels.

1: CoMPUTECONNECTEDCOMPONENTS(G)
{Label all vertices and edges of G with positive labels C(x) identifying the con-
nected components that they are part of.}

2: FINDHEAVIESTCOMPONENT(G, G')
{Compute the weights of all connected components of G and determine the com-
ponent G’ with greatest weight.}

3: if G’ has weight greater than 2 then

4: SEPARATECONNECTED(G')
{Compute a v/N-separator S of G'. That is, label all vertices in S with 0 and
all edges in E(G") \ E(G' — S) with co.}

5. CoMPUTECONNECTEDCOMPONENTS(G' — S)
{Label all vertices and edges of G' — S with positive labels identifying the
connected components that they are part of. These labels have to be different
from those assigned in Step 1.}

6: G' < FINDHEAVIESTCOMPONENT(G)
{Compute component weights again and determine the new heaviest component
G'of G- S.}

7: end if

8: COLLECTCOMPONENTS(G, G')
{Construct components A and B of weight at most 2 each. Label all vertices and
edges in A with 1. The vertices and edges in B are labeled with 2. Sort V(G)
and F(G) by increasing labels.}

Algorithm 6.1: The separator algorithm.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 79

THEOREM 6.1 Given an embedded planar graph G with N wvertices, we can compute
a V'N-separator of G with O(sort(N) + bfs(N)) I/Os, where bfs(N) is the number of
I/Os required to do breadth-first search in a planar graph with N vertices.

PROOF. Lemmas 6.1, 6.3, 6.5, and 6.4 state that procedures COMPUTECONNECT-
EDCOMPONENTS, FINDHEAVIESTCOMPONENT, SEPARATECONNECTED, and COL-
LECTCOMPONENTS do what we claim in the comments of each step in Algorithm
6.1.

Step 4 of Algorithm 6.1 labels all separator vertices with C(v) = 0. The edges in
E(G"Y\E(G'-S) = E(G)\E(G—2.S) are labeled with C(e) = co. Step 8 labels the ver-
tices and edges in A with C'(z) = 1. Vertices and edges in B are labeled with C(z) = 2.
Finally, we sort vertices and edges by increasing labels. This produces the desired
output. As for the size of the separator, note that procedure SEPARATECONNECTED
computes a v/ N-separator S of G'. That is, |S| = O(|G’|) = O(|G|) = O(V'N)
because G’ C G. Thus, Algorithm 6.1 is correct.

By Lemmas 6.1, 6.3, and 6.4, the I/O-complexity of each of the procedures Com-
PUTECONNECTEDCOMPONENTS, FINDHEAVIESTCOMPONENT, and COLLECTCOM-
PONENTS is O(sort(N)). By Lemma 6.5, the I/O-complexity of procedure SEPARATE-
CONNECTED is O(bfs(N) + sort(N)).

There is a small detail that we have to deal with. How do we pass subgraphs of
G to procedures SEPARATECONNECTED and COMPUTECONNECTEDCOMPONENTS?
The input of these algorithms are given as disk addresses and sizes of V(G) and E(G),
where G is the input of the algorithm.

Procedure FINDHEAVIESTCOMPONENT returns V(G) and E(G) sorted such that
the vertices in V(G') and the edges in E(G') will be stored consecutively. Then we
can just pass the addresses and sizes of V(G') and E(G’) to SEPARATECONNECTED.
Before calling COMPUTECONNECTEDCOMPONENTS in line 5 of Algorithm 6.1, we
sort V(G') and E(G") by increasing component labels. Then we pass the address of
the first vertex v in V/(G') with C(v) > 0 and |V(G') \ C| to CoMPUTECONNECT-
EDCOMPONENTS. We pass the address of E(G’) to COMPUTECONNECTEDCOMPO-
NENTS and exclude all edges with label C(e) = oo from the size of E(G'). These
edges are stored at the end of E(G). This preparation of the input for procedure

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 80

CoMPUTECONNECTEDCOMPONENT takes O(sort(N)) I/Os. Thus, Algorithm 6.1
takes O(bfs(N) + sort(N)) I/Os. O

COROLLARY 6.1 Given an embedded planar graph G with N vertices, we can compute
a v/ N-separator of G with O(bfs(N)) 1/0s, where bfs(N) is the number of I/Os

required to do breadth-first search in a planar graph with N wvertices.

PROOF. The previous theorem states that Algorithm 6.1 computes the desired sep-
arator with O(bfs(N) + sort(N)) 1/Os. We can run Algorithm 6.1 and Lipton and
Tarjan’s internal-memory algorithm simultaneously. Each algorithm has its own copy
of the graph. Whenever the currently running algorithm is about to perform an I/O-
operation, we stop it and start the other algorithm. This algorithm now actually
performs the I/O-operation that it wanted to perform when we stopped it the last
time. We continue its execution until it is about to perform the next I/O. Then we
switch back to the algorithm that we just stopped. This guarantees that, at a given
time, the numbers of I/Os that both algorithms have performed differ by at most
one. We use the output of the algorithm that produces its output first.

The internal-memory algorithm takes O(N) I/Os in the worst case. Thus, our
simulation of both algorithms takes O(min{bfs(N) + sort(N), N}) 1/Os.

As already mentioned, the I/O-complexity of list ranking is Q(perm(N)). Consid-
ering a list as a planar graph, list ranking reduces to breadth-first search in the list.
Thus, breadth-first search has a lower bound of Q(perm(N)) = Q(min{N, sort(N)})
I/Os.

If perm(N) = sort(N), i.e., N > sort(N), bfs(N) = Q(sort(N)). Thus, the I/O-
complexity of our simulation algorithm becomes O(min{bfs(N), N}) = O(bfs(N)).

If perm(N) < sort(N), i.e., N < sort(N), the I/O-complexity of our simulation
becomes O(N) = O(perm(N)) = O(bfs(N)). Thus, in either case, we can compute a
planar separator with O(bfs(N)) 1/Os. O

6.2.1 Computing Connected Components

The next lemma states that procedure COMPUTECONNECTEDCOMPONENTS takes
O(sort(N)) I/Os.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 81

LEMMA 6.1 Given a planar graph G with N wvertices, we can compute the connected
components of G with O(sort(N)) I/0s.

PROOF. We can use an algorithm by Chiang et al. [12] that computes the connected
components of G. This algorithm takes O(sort(N)) I/Os for sparse graphs. Here,
sparsity means that |E(G)| = O(|V(G)]). This is true for planar graphs.

However, the authors of [12] did not specify the output representation of their
algorithm. We assume that it labels the vertices of G' so that two vertices belong to
the same connected component of G iff they have the same label.

In order to ensure that Step 5 of Algorithm 6.1 does not produce the same labels
as Step 1, we first relabel each component with the name of a vertex in it. This
guarantees that each component labeled in Steps 1 or 5 has a different label.

To do this, we sort the vertex list V(G) of G by increasing component labels.
Then we scan V(G). If the current vertex v belongs to the same component as its
predecessor w, we assign a new component label C(v) = C(w) to v. Otherwise, we
define C'(v) = v. As this involves sorting V(G) once and scanning it once, this takes
O(sort(N)) 1/Os.

To label the edges of G, we copy the label from the first endpoint of each edge to
the edge itself. It suffices to consider only the first endpoint, as both endpoints are in
the same connected component. This copying is done by procedure COPYLABELS. By
the next lemma, procedure COPYLABELS takes O(sort(N)) I/Os. Hence, labeling all
vertices and edges of G with appropriate component labels takes O(sort(N)) I/Os. O

We will use procedure COPYLABELS again in this and the next chapter. We
will show that it works correctly and takes O(sort(N)) 1/Os, no matter whether we
copy the information from the first or the second endpoint of an edge. However, the
endpoint that provides the information to be copied must be known in advance for

each edge.

LEMMA 6.2 Given a graph G with N vertices. For each edge e = {v,w} of G, let

vs(e) € {v,w}. Then copying a constant amount of information from vs(e) to e, for
all edges e of G, takes O(sort(N)) 1/Os.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 82

CopPYLABELS(G):

Input:
e A planar graph G as a vertex list V(G) and an edge list E(G),

e For each edge e = {v,w}, a label vs(e) € {v,w} specifying the endpoint
from which to copy the information, and

e Names of O(1) labels that have to be copied.

Output: V(G) and E(G) with the labels copied to the edges in E(G).

1: Sort V(@) by increasing vertex names and F(G) by increasing labels vg(e).

2: Scan V(G) and E(G) simultaneously as follows:
{v is the currently processed vertex. e is the currently processed edge.}
if v < vs(e) then

Advance to the next vertex in V(G).
else

{If v = vy(e).}

Copy the specified information from v to e. Advance to the next edge in E(G).
end if

Algorithm 6.2: Copying information from vertices to edges.

The choice of vs(e) for each edge e depends on the context where we apply the

procedure. In the proof of the previous lemma, v4(e) is the first endpoint of e.

PRrOOF. Algorithm 6.2 shows the pseudo-code of COPYLABELS. Let us first prove
its correctness. If v = v,(e) in Step 2, we copy the information from v to e as desired.
After that we are done with edge e. Thus, we can proceed to the next edge in E(G).
If v < vy(e), vs(e) must be stored after v in V(G) because V(G) is sorted by increasing
vertex names. As vs(e) is in V(G), we will find it by searching forward in V(G). Then
we will have the case v = v,(e) again. The case v > v,4(e) cannot occur. Assume
that we have this case. As v' = v4(e) is in V(G), v' must have been the current
vertex at some point during the scan of V(G). Then we must have advanced from
v’ to the next vertex in V(G) because v' < v and thus v is stored after v’ in V(G).
This happens only if v’ < v,(€’), for some edge €' stored before e in V(G). That is,
vs(e') > v' = wv4(e), in contradiction to the order by which E(G) is sorted. Thus,

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 83

Algorithm 6.2 is correct.
Let us analyze its I/O-complexity. As |V(G)| = N and |E(G)| = O(N), Step 1
takes O(sort(N)) I/Os. The second step consists of two simultaneous scans. Keeping

a buffer of size DB in internal memory for each scan, these two scans take O(scan(N))
I/Os. Thus, Algorithm 6.2 takes O(sort(N)) I/0Os. O

Obviously, we can use Algorithm 6.2 to copy information from edges e to their

vertices v,(e) as well.

6.2.2 Finding the Heaviest Component

In this section, we show how to find the heaviest connected component in a graph.
We can use the following lemma in both Steps 2 and 6 of Algorithm 6.1 because, in
Step 2, S = (). That is, in Step 2, the connected components of G — S are just the

connected components of G.

LEMMA 6.3 Procedure FINDHEAVIESTCOMPONENT computes the heaviest compo-
nent of G — S with O(sort(N)) I/0Os.

PRroOOF. Algorithm 6.3 shows the pseudo-code of procedure FINDHEAVIESTCOMPO-
NENT.

Once the vertex set V(@) is sorted by increasing component labels, the vertices of
each component are stored consecutively. The vertices in the separator C' are stored
at the beginning of V(G). Thus, we can indeed scan V(G) and sum the weights of all
consecutive vertices with equal labels, in order to compute the component weights.
For the same reason, our method for computing the addresses and sizes of V(G') and
E(G") is correct.

Step 1 takes O(sort(N)) I/Os, Steps 2 and 6 together scan V(G) once. Steps
3-5 do not require any I/Os. Step 7 scans V(G) once and F(G) once. Thus, this
algorithm takes O(sort(NN)) 1/0Os. O

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 84

FINDHEAVIESTCOMPONENT(G):

Input: The vertex set V(G) and the edge set E(G) of the graph G. Vertices and
edges are labeled with component labels C(z). Two vertices or edges are in the
same component iff they have the same label. If C'(v) = 0, v is a separator vertex.
If C(e) = o0, e is not in G — S.

Output: The label and weight of the heaviest connected component G’ in G. The
sets V(G) and E(G) sorted such that the vertices (resp. edges) of G’ are stored
consecutively. The addresses and sizes of V(G') and E(G").

1: Sort V(G) and E(G) by increasing component labels C(z).

2: Scan V(G) until we find the first vertex v with C(v) > 0.
{Skip separator vertices.}

3: Wpax < 0 {The weight of the heaviest component.}
4: Chax <0 {The label of the heaviest component.}
5: w40 {The weight of the current component.}
6: Continue scanning V(G):

{v is the currently processed vertex.}

w 4+ w + w(v)
u next vertex after v in V(QG)
if C(u) # C(v) or v is the last vertex in V(G) then
if w > wmax then
Wmax W
Ciax + C(v)
end if
w0
end if

7: Scan V(G) and E(G) to compute:
e The addresses of the first vertex v with C'(v) = Chax,
e The number of vertices v with C'(v) = Cpax,
e The addresses of the first edge e with C(e) = Ciax, and

e The number of edges e with C'(e) = Cax-

Algorithm 6.3: Finding the heaviest component.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 85

6.2.3 Constructing A and B

Algorithm 6.4 shows the pseudo-code of procedure COLLECTCOMPONENTS. We

prove the following lemma.

LEMMA 6.4 Procedure COLLECTCOMPONENTS constructs sets A and B of weight at
most 2 each. This takes O(sort(N)) I/Os.

PRrOOF. Let us first prove the correctness of Algorithm 6.4. Before we call procedure
CoLLECTCOMPONENTS in Algorithm 6.1, we ensure that no connect component of
G — S has weight greater than % That is, if the heaviest component G’ of G — S has
weight w(G') > i, then 3 < w(@') < 2. We choose A = G and B=G - S -G
Then w(A4) = w(G') < 2 and w(B) < w(G) —w(A) <1— 3 = 2. Thus, our strategy
is correct in this case.

If the heaviest component G’ has weight less than %, we add the components of
G — S to A, one by one, until w(A) > 3. Before we added the last component to A,
the weight of A was less than % The last component has weight less than % Thus,
the weight of A is less than % As the weight of A is at least %, the weight of B is at
most % Thus, our strategy works in this case as well.

To see that the scan in Step 5 works, note that V(G) and E(G) are sorted by
increasing component labels. The scans in lines 2 and 4 use only local information.
Thus, Algorithm 6.4 is correct.

In either of the two cases, we scan V(G) and E(G) once. Afterwards, we sort

V(@) and E(G) once. Hence, Algorithm 6.4 takes O(sort(NN)) I/0Os. O

We have provided the framework of our algorithm. It remains to show how to
find a small separator of a connected graph. The next section is dedicated to this

problem.

6.3 Separating Connected Planar Graphs

Procedure SEPARATECONNECTED computes a / N-separator of a given connected

planar graph. It consists of two major steps. In the first step, we triangulate the

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 86

CoLLECTCOMPONENTS(G, G'):

Input: The vertex set V(G) and the edge set E(G) of the graph G. Vertices and
edges are labeled with component labels C(z). Two vertices or edges are in the
same component iff they have the same label. If C'(v) = 0, v is a separator vertex.
If C(e) = 00, eis not in G — S. V(G) and E(G) are sorted by increasing com-
ponent labels. The label C'(G’) such that all vertices and edges in the connected
component G’ have label C(z) = C(G’). The weight w(G") of G'.

Output: V(G) and E(G) such that

e all elements of the separator S C V(G) are labeled with 0,
e all edges in E(G) \ E(G — S) are labeled with oo,

e all other vertices and edges are labeled with 1, if they are in A, and with 2,
if they are in B, and

e V(G) and E(G) are sorted by increasing labels.

—

. if w(G") > 3 then

2: Scan V(G) and E(G) to relabel vertices and edges. Relabel a vertex v with 1,
if C'(v) = C(G"), with 2, if 0 < C(v) # C(G"), and with 0, if C(v) = 0. Relabel
an edge e with 1, if C'(e) = C(G"), with 2, if C(G’) # C(e) < 0o, and with oo,

if C(e) = 0.
3: else
4: Scan V(G) until we find the first vertex v with C(v) > 0.
5. Continue scanning V(G) and E(G) to relabel vertices and edges:

{v is the current vertex in V(G). e is the current edge in F(G).}

w0
while w < % do
Relabel all vertices and edges with the same label as v with 1. Add the weights of the
vertices to w.
end while
Relabel the remaining vertices in V(@) and edges in E(G) with 2. Stop relabeling edges
as soon has we find the first edge e with C(e) = oc.

6: end if
7: Sort V(G) and E(G) by increasing vertex and edge labels.

Algorithm 6.4: Constructing components A and B.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 87

SEPARATECONNECTED(G):

Input: The vertex set V(G) and the edge set E(G) of the graph G. Vertices and
edges are labeled with the same positive component label.

Output: V(G) and E(G) such that all vertices in the separator S of G have com-
ponent label C'(v) = 0. All edges in F(G) \ E(G — S) have component label
C(e) = 0.

1: Scan V(@) to check whether there is a vertex v with w(v) > 5. Label the first
such vertex with C'(v) = 0, if it exists.

2: if there is no vertex v with w(v) > 3 then

3: G’ + TRIANGULATE(G)
{Compute a triangulation G’ of G. All edges in F(G’) \ E(G) are marked.}
4: SEPARATETRIANGULATION(G')
{Compute a v/N-separator S of G'. Label all vertices in S with component
label 0.}
5. Scan E(G") to remove all marked edges.
{This produces G again.}

6: end if

7: Use procedure COPYLABELS to label all edges that have at least one endpoint in
C with C(e) = oc.

Algorithm 6.5: Separating an embedded connected planar graph.

given graph G. In the second step, we compute a v/ N-separator of this triangulation,
which is also a separator of G.

The pseudo-code of procedure SEPARATECONNECTED is shown in Algorithm 6.5.

LEMMA 6.5 Given an embedded planar graph G with N wvertices, procedure SEPA-
RATECONNECTED computes a separator S of G with O(bfs(N)+ sort(N)) 1/Os. The
size of S is at most 2v/2v/N.

PROOF. If there is a vertex v with w(v) > 3, w(G —v) < 2. Thus, if we set S = {v},
all components of G — S have weight at most % Otherwise, by Theorem 7.1, pro-
cedure TRIANGULATE computes a triangulation G’ of G. By Lemma 6.6, procedure
SEPARATETRIANGULATION computes a separator S of G’ with |S| < 2¢/2v/N. As G

is a subgraph of G’, S is a separator of G as well.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 88

The edges in E(G) \ E(G — S) are exactly the edges with at least one vertex in
C. Thus, we label the right edges in Step 7.

Step 1 takes O(scan(N)) I/Os, as we scan V (G) once. By Theorem 7.1, procedure
TRIANGULATE takes O(sort(N)) I/Os. The details of this procedure are presented in
Chapter 7. Procedure SEPARATETRIANGULATION takes O(bfs(N)+sort(N)) I/Os, by
Lemma 6.6. Removing marked edges takes a single scan over F(G"). |E(G'| < 3N —6.
Thus, this scan takes O(scan(N)) I/Os. Step 7 takes O(sort(N)) I/Os, by Lemma
6.2. Hence, the I/O-complexity of Algorithm 6.5 is O(sort(N) + bfs(N)). O

It remains to provide the details of procedure SEPARATETRIANGULATION. It fol-
lows the same lines as the algorithm by Lipton and Tarjan [26]. Thus, the correctness
of our algorithm follows from that of Lipton and Tarjan’s algorithm, if we can prove
that the used external-memory techniques work. The basic idea used by Lipton and
Tarjan is as follows:

Compute a BFS-tree T of the given graph G. AsT is a BFS-tree, the two endpoints
of a non-tree edge in G are at most one level apart. Therefore, the removal of a
complete level from T separates the upper part from the lower part.

We compute the level [; closest to the root r of 7" such that the total weight of the
vertices on levels 0 through [/; exceeds % Let K be the number of vertices on levels 0
through [;. Then we compute levels Iy < [and Iy > [; such that L(ly) + 2(l; — lp) <
2V K and L(ly) +2(ly — I, — 1) < 2¢/N — K, where L(l) is the number of vertices on
level /. Lipton and Tarjan proved that two such levels [y and [y exist.

Now, lp and I, cut T (and G) into three parts: levels 0 through Iy — 1, levels [o + 1
through Iy — 1, and levels I, + 1 and greater. Call these parts G, Go, and G3. By
the construction of Iy and Iy, w(G1) < 1 and w(G3) < 3. We cannot give an upper
bound on the weight of G,. However, we will construct a separator of G5 of size at
most 2(ly — lp — 1). This separator together with the vertices on levels /y and o gives

a separator of G. Its size is bounded by
L(lo) + L(ly) +2(l, — I, — 1) < 2VK + 2v/N — K < 2V2VN.

The pseudo-code of our algorithm is shown in Algorithm 6.6.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 89

SEPARATETRIANGULATION(G):

Input: The vertex set V(G) and the edge set E(G) of the triangulation G. Each
vertex v in V(G) is labeled with a component label C'(v) > 0.

Output: The vertex set V(G) and the edge set E(G). Vertices v in the separator S
of V(QG) are labeled with C'(v) = 0. The component labels of all other vertices
remain unchanged.

1: Compute a BFS-tree T of G with root r.
{We assume that this algorithm labels each vertex v of G with labels d(r,v)
(distance to the root) and p(v) (parent in T'). All edges of G are labeled as tree
edge or non-tree edge.}

2: Compute level sizes L(l) and level weights W (l):
Sort V(@) by increasing labels d(r,v).
Scan V(G) to count vertices and sum vertex weights on each level. Write these level sizes
and weights to lists L and W.

3: Compute [y and Is:

Scan W and sum level weights until the total weight exceeds % This gives us level [;.
Scan L to compute the prefix sum K = L(0) + L(1) + --- + L(ly).
Scan L backward from [; to find ly. Scan L forward from [; to find I».

4: Scan V(G) and label all vertices v with d(r,v) € {lo,ls} with C(v) = 0.

5. ¢ + ORDERCHILDREN(G,T):
{This computes labels ¢ such that, for two children w; and wy of a vertex v,
q(w1) < q(ws), if the edge {v, w, } appears between the edges {v, p(v)} and {v, ws}
counterclockwise around v.}

6: n, < COMPUTEPREORDERNUMBERS(V (G), q):

{This uses the labels in ¢ to ensure that the Euler tour defining the preorder
numbers always chooses the leftmost non-traversed child of the current vertex.}

7: SEPARATEMIDDLEPART(G, ly, l2, 1)
{Compute a separator of G5.}

Algorithm 6.6: Separating a triangulation.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 90

LEMMA 6.6 Algorithm 6.6 constructs a /N-separator of a given triangulation G with
O(bfs(N) + sort(N)) I/Os.

PROOF. Let us first prove the correctness of Algorithm 6.6. For Step 1, we use the
best known algorithm for computing a BFS-tree in external memory (e.g., [24]). We
may assume that it is correct. Step 2 first ensures that the vertices are sorted by
increasing distance to the root. That is, all vertices on the same level in 7" are stored
consecutively. Thus, counting these vertices and computing the weight of each level
can be done with a single scan of V(G). Note that the lists L and W are sorted by
increasing level numbers because V(G) is. Therfore, in Step 3, we can scan W and
sum the weights in the traversed sublist of W to compute /;. For the same reason,
the scan of L gives us K, and it takes two additional scans to compute ly and l,. As
each vertex is labeled with its distance to the root, Step 4 takes another scan.

By Lemma 6.9, procedure SEPARATEMIDDLEPART computes a separator of size
at most 2(ly — [y —1). Thus, our algorithm realizes Lipton and Tarjan’s approach and
is correct.

The output produced by procedure ORDERCHILDREN is used by procedure Com-
PUTEPREORDERNUMBERS to ensure that the Euler tour defining these preorder num-
bers always chooses the leftmost non-traversed child of a vertex. Lemma 6.7 states
that procedure ORDERCHILDREN indeed produces labels ¢(v) as in the comment of
Step 5. Observation 4.1 implies that these labels ¢(v) are sufficient to ensure that
the defining Euler tour of the preorder numbers n,(v) always chooses the leftmost
non-traversed child of a vertex. These preorder numbers are used by procedure SEP-
ARATEMIDDLEPART. To compute preorder numbers, we use Algorithm 4.4. We can
provide the right input for this algorithm because every vertex in V(G) has a pointer
to its parent p(v) in 7T

Step 1 takes O(bfs(IN)) I/Os. Step 2 takes O(sort(N)) I/Os. Steps 3 and 4 take
O(scan(N)) I/Os. By Lemmas 6.7, 4.4, and 6.9, procedures ORDERCHILDREN, COM-
PUTEPREORDERNUMBERS, and SEPARATEMIDDLEPART take O(sort(N)) I/Os.
Thus, Algorithm 6.6 takes O(bfs(N) + sort(N)) I/Os. O

Next, we present procedure ORDERCHILDREN.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 91

ORDERCHILDREN(G, T):

Input: The vertex set V(G) and the edge set E(G) of the triangulation G.

Output: Labels ¢(v) for all vertices of G such that, for two children w; and wj of a
vertex v, q(w;) < q(ws) iff wy is to the left of wo with respect to v.

1: CHANGEREFEDGE(G,T)
{Renumber the edges around each vertex v so that {v, p(v)} is the reference edge
for vertex v.}

2: Use procedure COPYLABELS to assign q(v) < npw) ({v,p(v)}).

Algorithm 6.7: Computing Labels ¢ for the vertices of G.

LEMMA 6.7 Algorithm 6.7 produces the desired labels q(v) with O(sort(N)) I/Os.

ProOF. Let w; and wsy be two children of v. w; appears to the left of ws. Then,
after the execution of procedure CHANGEREFEDGE, n,({v,w1}) < n,({v,w2}). In
Step 2, we assign q(w1) = n,({v, w1}) and q(ws) = n,({v, wa}). Thus, g(wi) < g(ws)
as desired.

By Lemmas 6.8 and 6.2, procedures CHANGEREFEDGE and COPYLABELS take
O(sort(N)) I/Os. Thus, Algorithm 6.7 takes O(sort(N)) I/0Os. O

LEMMA 6.8 Algorithm 6.8 changes the reference edge of each vertex v to {v,p(v)}.
This takes O(sort(N)) I/Os.

PROOF. In Steps 1 and 2, we create a list E’. This list is the concatenation of edge
lists E'(v), where E'(v) is the list of all edges incident on vertex v. Each list E'(v) is
sorted counterclockwise around v, starting at v’s reference edge. Let eq, ..., ex be the
list E'(v); e; be the edge {v,p(v)}. Then, in Step 3, we compute ¢ and k and store
these values with ey. In Step 4, we assign new labels n, to the edges ey, ..., ex: For
j<i,ny(i) =j+k—i+1. Forj > 1, n,(i) = j —i. This makes e; the new reference
edge and does not change the circular order of the edges around v.

E’ contains two copies of an edge e = {v,w} € E(G). One has an updated value

of n,(e). For the other copy, we updated n,(e). Step 5 ensures that these two copies

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 92

CHANGEREFEDGE(G, T):

Input: The vertex set V(G) and the edge set E(G) of the triangulation G.

Output: The edges in F(G) relabeled such that n,(ey) < mny(e1) < -++ < ny(ex),
where eg, ..., n, are the edges incident on a vertex v, counterclockwise around v,

and eg = {v,p(v)}.

1: Scan F(G) to create an edge list E':
{e = {v,w} is the current edge.}
Make two copies €' and €’ of e in E'. Let v(e') = v, ny(e') = ny(e), v(e") = w, and
ny(e") = ny(e).
2: Sort E' by increasing labels v(e) and n,(e).
3: Scan E' backward:
{e is the current edge. €' is the previously visited edge.}
if e is the first visited edge or v(e) # v(e’) then

k+0 {The number of edges incident on v(e).}

i+ 0 {The index of the edge {v(e),p(v(e))}.}
end if
if e is a tree edge and d(r,v(e)) > d(r,w) then

i+0 {e = {v(e),w}
end if

if e is the last edge with label v(e) during our traversal then
k(e) «+ k,i(e) « i
end if
E—k+1,i<i+1
4: Scan E' forward:
{e is the current edge. €' is the previous edge.}
if e is the first edge or v(e) # v(e') then
i k(e) —i(e) + 1
end if
if e is a tree edge and d(r,v(e)) > d(r,w) then
i+0 {e = {v(e), w}
end if
ny(e) « i, i+ i+1
5. Sort E' by increasing endpoints.
{For each edge {v,w}, v < w. Then {v,w} < {v/,w'} iff v < v' or v = v/ and
w<w.}
6: Scan E' and merge the two copies of each edge e € E(G):

Let €' and €” be the two copies. They are stored consecutively.
Let v(e') = v and v(e”) = w. Assign n,(e) = n,(e') and n,(e) = n,(e”).

Algorithm 6.8: Changing the reference edges for all vertices of G.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 93

SEPARATEMIDDLEPART(G, ly, l2, n,):

Input: The vertex set V(G) and the edge set E(G) of the triangulation G. Two
levels [y and I, that bound the middle part Gy of G. Preorder numbers n,(v) of
the vertices of T' (i.e., G).

Output: The vertices v in V(@) that form a separator of G5 labeled with C'(v) = 0.

1: Construct Ga:

Scan V(@) and mark all vertices v with d(r,v) < Iy or d(r,v) > ls.
Use COPYLABELS to copy the labels d(r,v), d(r,w), n,(v), and n,(w) to every edge {v, w}.
Scan E(G) and mark all edges with at least one marked endpoint. Do not mark tree edges
{v,w} with d(r,v) = lp and d(r,w) =1o + 1.
Scan V(@) and E(G) and move all unmarked edges to V(G2) and E(G2).
2: G < MAKETRIANGULATION(G, lg, 7))
{This also constructs a BFS-tree T of G. This procedure adds a vertex 7 with
w(?) = 0 and new edges to Go. We mark this vertex and these edges, in order to
remove them later.}

3: FINDTREECYCLE(G, T)
{This labels the vertices v on the tree cycle with C'(v) = 0.}

N N

4: Scan V(G) and E(G) to copy unmarked vertices and edges back to V(G) and
E(G).

{This removes all marked vertices and edges from G and reconstructs G.}

Algorithm 6.9: Separating Gj.

are stored consecutively. Step 6 “merges” them. That is, we create a single copy of
e with both n,(e) and n,(e) updated. Thus, Algorithm 6.8 is correct.

Steps 2 and 5 take O(sort(N)) I/Os because |E'| = O(N). Steps 1, 3, 4, and 6
take O(scan(N)) 1/Os. Thus, Algorithm 6.8 takes O(sort(N)) I/Os. O

It remains to provide the details of procedure SEPARATEMIDDLEPART. The idea
is to triangulate G4 and to construct a BFS-tree of the resulting triangulation. Then,
we compute a small simple cycle separator of this triangulation. Of course, this is

also a separator of Gs.

LEMMA 6.9 Algorithm 6.9 computes a separator of Go with O(sort(N)) I1/Os. The

size of the separator is at most 2(ly — Iy — 1).

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 94

PROOF. G, is the subgraph of G induced by all vertices v with ly < d(r,v) < Is.
Thus, if procedure COPYLABELS is correct, Step 1 is correct. Lemma 6.2 states the
correctness of procedure COPYLABELS. What we construct is not exactly the graph
(5. The constructed edge set contains E(G5) plus all tree edges between levels [y and
lo + 1. We will need these edges in procedure MAKETRIANGULATION.

By Lemma 6.10, procedure MAKETRIANGULATION constructs a triangulation G
and a spanning tree T of G of height I, — l;. The root of this spanning tree is 7. By
Lemma 6.11, the separator S constructed by procedure FINDTREECYCLE is a path
in T' of size at most 2(l — ly) — 1. If its length is 2(l; — lp) — 1, it must contain the
root 7 of T. However, 7 is no vertex of Gy. Thus, [S NV (Gs)| < 2(ly —lo—1). As G,
is a subgraph of G, S is a separator of Gs.

Step 4 copies all vertices and edges of G5 back into V(@) and E(G). This auto-
matically removes 7 from the separator.

Steps 1 and 4 scan lists of size O(N). This takes O(scan(N)) I/Os. By Lem-
mas 6.10 and 6.11, procedures MAKETRIANGULATION and FINDTREECYCLE take
O(sort(N)) I/Os. Thus, Algorithm 6.9 takes O(sort(N)) I/Os. O

Procedure MAKETRIANGULATION uses (G5 and the subtrees of T in G5 to con-
struct a triangulation G and a BFS-tree of G efficiently. More precisely, we add a
new vertex 7 to 1" and make all vertices on level |y + 1 children of #. This creates the
tree T. We add the corresponding edges to GG and triangulate the resulting graph.
The result is G. T is a BFS-tree of G/ [26].

We also have to embed the new edges of G properly. To triangulate the graph,
we use procedure TRIANGULATE, as presented in Chapter 7. This procedure embeds
new edges properly. Thus, we only have to deal with the tree edges between 7 and
the vertices on level [y + 1. This is what we use the additional edges in G, for.

For each vertex v in Gy with d(r,v) = [y + 1, there is an edge {v, p(v)} in E(G3).
For each such edge, we replace p(v) by 7 (the new parent of v). Basically, this adds the
desired tree edges {v,7} to G. We sort these edges by increasing preorder numbers
n,(v). Let ey, ..., e be the resulting list of edges. Then we set n;(e;) = i. We claim
that this embeds these edges properly.

Consider an edge {v,7}. With respect to v, this edge is already embedded properly

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 95

MAKETRIANGULATION(GY, ly, 1)

Input: The vertex set V(G2) of the graph G2 and an edge set E. F contains F(G»)
and all tree edges in G between vertices on levels [y and [y + 1. The level [,.
Preorder numbers (in 7°) of the vertices of Gj.

Output: The triangulation G.

1: Add 7 to V(Gy). d(r,v) < lo.
2: Add edges {v,7} for all vertices v with d(r,v) =y + 1 to E(Gs):

Scan E and move all edges {v,w} with d(r,w) =y and d(r,v) =1y + 1 to a set E'.
Sort E' by increasing preorder numbers n,(v), where d(r,v) =lo + 1.
Scan E' = (e1,...,ex), replace e; = {v;, w;} by e} = {v;,7}, where d(r,v;) = lo + 1. Set
ny(e}) = and ny, (ef) = ny; (e;). Mark e} as a tree edge.
Scan E' to append it to E = E(G2).
3: Scan V((Gy): For each vertex, d(r,v) < d(r,v) —ly. For each vertex with d(r,v) =
1, p(v) < 7.

4: G + TRIANGULATE(G>)

Algorithm 6.10: Augmenting G5 to a triangulation G.

because {v,p(v)} was. Let vy,...,v; be the vertices on level Iy + 1 sorted from
left to right in 7. Then n,(v;) < n,(v;), for i < j, because the preorder numbers
respect the embedding. Thus, e; = {v;,7}, and ey, ..., e is the order of these edges
counterclockwise around 7.

Algorithm 6.10 provides the pseudo-code of procedure MAKETRIANGULATION.

LEMMA 6.10 Algorithm 6.10 constructs the triangulation G and the spanning tree T
of G with O(sort(N)) 1/Os.

Proor. It follows from the above discussion that Algorithm 6.10 constructs and
embeds G properly. In Step 3, we update the distances to the root of all vertices and
the parents of all vertices that are now children of 7. We mark all edges between 7
and its children as tree edges. All other edges are not marked, i.e., are non-tree edges.

That is, we construct 7" properly.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 96

Step 1 takes O(1) I/Os. Step 2 involves three scans and a single sort. Thus, it
takes O(sort(N)) 1/Os. Step 3 takes O(scan(N)) I/Os. By, Theorem 7.1, Step 4 takes
O(sort(N)) I/Os. Thus, Algorithm 6.10 takes O(sort(N)) I/Os. O

6.4 Finding a Simple Cycle Separator in an Em-
bedded Triangulation

It remains to provide the details of procedure FINDTREECYCLE. The input is a
triangulation G and a BFS-tree T" of G. The idea is as follows:

Given a non-tree edge e = {v,w} of G, this edge defines a cycle ¢(e) in G. This
cycle consists of e itself and the two tree paths from v to v and from w to u, where
u is the lowest common ancestor of v and w in 7. Call this cycle e’s tree cycle. It
separates the vertices inside c(e) from those outside c(e). Lipton and Tarjan proved
that, in a triangulation G' with w(v) < %, for all its vertices, there is a non-tree edge
e such that c(e) is a separator of G' [26].

The main problem is to find the tree edge e. Lipton and Tarjan’s solution to this
problem does not easily translate into an efficient external-memory algorithm. That
is why we take another approach. The basic idea is to compute all sorts of labels
for all edges of G. Then, we scan the list of non-tree edges and use these labels to
determine, for each non-tree edge, the weights of the two regions inside and outside
the corresponding tree cycle. Once, we have found the non-tree edge e, we label the
vertices on c(e) with C'(v) = 0. Algorithm 6.11 shows the details.

LEMMA 6.11 Algorithm 6.11 computes a simple cycle separator of the triangulation
G. The size of the separator is at most 2h(T) — 1, where h(T) is the height of the
BFS-tree T' of G.

PRroOOF. The correctness of Algorithm 6.11 follows from that of procedures Com-
PUTELCA, FINDGOODEDGE, and LABELTREECYCLE. Lemmas 6.14 and 6.15 state
the correctness of procedures FINDGOODEDGE and LABELTREECYCLE.

For procedure COMPUTELCA, we use an algorithm by Chiang et al. [12]. This
algorithm answers K LCA-queries on a tree T of size N with O ((1 + %) sort(N))

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 97

FINDTREECYCLE(G, T):

Input: The vertex set V(G) and the edge set F(G) of the triangulation G. A BFS-
tree T of G.

Output: A simple cycle separator S of GG. That is, all vertices in S are labeled with
C(v) =0in V(Q).

1: COMPUTEVERTEXLABELS(G,T)
{Vertex labels needed by procedure FINDGOODEDGE in Step 5.}

2: CoMPUTELCA(G,T)
{Compute the lowest common ancestor u of v and w, for each edge {v,w} €
E(G).}
3: Use COPYLABELS to copy all labels computed for u, v, w to edge {v, w}, for all
edges in E(G). {u=LCA(v,w)}
4: CoMPUTEEDGELABELS(G,T)
{Compute additional edge labels.}

5: e « FINDGOODEDGE(G,T)
{Compute, for each non-tree edge e in FE(G), the weight of the region R;(e)
inside c¢(e) and the weight of the region Ry(e) outside c(e). Return an edge e with
w(Ry(e)) < 2 and w(Ry(e)) < 2.}

6: LABELTREECYCLE(G, T, e)
{Label all vertices on c(e) with C'(v) = 0.}

Algorithm 6.11: Finding a simple cycle separator in a triangulation G.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 98

I/Os. As there are O(NN) non-tree edges in G, K = O(N). Thus, CoMPUTELCA
takes O(sort(N)) I/Os.

By Lemmas 6.12, 6.2, 6.13, and 6.15, Steps 1, 3, 4, and 6 each take O(sort(N))
I/Os. Step 5 takes O(scan(N)) I/Os, by Lemma 6.14. Thus, Algorithm 6.11 takes
O(sort(N)) I/Os.

The size of the separator follows from the definition of a tree cycle. Such a tree
cycle consists of two paths, each of length at most h. These two paths share a vertex.

Thus, this vertex is counted twice. That is, the length of the tree cycle is at most
2h — 1. O

The vertex labels computed by procedure COMPUTEVERTEXLABELS are: pre-
order numbers n,(v), subtree weights W (v), as defined in Section 4.4, “weighted

preorder numbers”

“weighted distances to the root”

o(r,v) = > wlw),
weA(v)
where A(v) is the set of v’s ancestors, inclusive. Preorder numbers are defined to

respect the embedding.
Algorithm 6.12 shows the pseudo-code that computes these labels.

LEMMA 6.12 Algorithm 6.12 takes O(sort(N)) 1/Os.

Proor. This follows immediately from Lemmas 6.7, 4.4, and 4.3 and Corollary
4.1. O

For the edges, we will need subtree weights #(e) and certain prefix sums #)(e) of
these weights. For a non-tree edge, we define t(e) = 0. For a tree edge {v,p(v)}, we
define t(e) = W (v).

Now, let v be a vertex of G. Let eg,..., e, be the edges incident on v, counter-

clockwise around v, starting at the reference edge ey. Then, we define ¢;(eq) = 0. For

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 99

COMPUTEVERTEXLABELS(G,T):

Input: The vertex set V(@) and the edge set E(G) of the triangulation G. A BFS-
tree T of G.

Output: Vertex labels n,(v), v,(v), W(v), and 6(r,v).

1: ¢ + ORDERCHILDREN(G,T)

n, <~ COMPUTEPREORDERNUMBERS(G, T, q)

W < COMPUTESUBTREEWEIGHTS(G, 1)

Sort V(G) by increasing preorder numbers.

Scan V(G) and compute the prefix sums v,(v) = 32, (w)<n, @) W(W)-
Sort V(G) by increasing distance to the root.

Use time-forward processing to compute labels §(r, v):
o(r,r) = w(r), 8(r,v) « 6(r,p(v)) + w(v)

Algorithm 6.12: Computing vertex labels.

1 > 0, we define

tyle) =D _t(es).
j=1
Intuitively, ¢2(e;) is the weight of the subtrees of T'(v) that are to the left of ;. (T'(v)
is is defined as in Section 4.4.)

Algorithm 6.13 shows how to compute these labels.

LEMMA 6.13 Algorithm 6.13 computes labels t(e) and t)(e) with O(sort(N)) 1/0s.

PROOF. The labels t(e) computed in Step 1 match the definition of these labels. In
Steps 2 and 3, we create a collection E' of edge lists E'(v), where E'(v) contains
all edges incident on v, sorted counterclockwise around v. Then the prefix sums
computed in Step 4 match the definition of the labels #)(e). In Step 4, we have
computed ;(e), for one copy of edge e = {v,w} and #;'(e), for another copy of e.
In Step 5, we ensure that both copies are stored consecutively. Step 6 merges these
copies into one. Thus, we have labels 7 (e) and ¢;(e) stored with this single copy of

edge e.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 100

CoMPUTEEDGELABELS(G, T):

Input: The vertex set V(@) and the edge set E(G) of the triangulation G. A BFS-
tree T" of G.

Output: Edge labels ¢(e) and ¢,(e) of the edges in e in E(G).

1: Scan E(G) to compute t(e):
if e is a non-tree edge then
tle) <0
else
{e = {v,w} and d(r,v) < d(r,w)}
t(e) «+ W(w) {W (w) is already stored locally with e.}
end if

2: Scan E(G) to create an edge list E':
{e = {v,w} is the current edge.}
Make two copies €' and €” of e in E'. Let v(e') = v, ny(e') = ny(e), v(e') = w, and
Ny (€") = ny(e).
3: Sort E' by increasing labels v(e) and n,(e).

4: Scan E' to compute prefix sums #}(e):
{e = {v,w} is the current edge. €' is the previous edge.}
if e is the first edge or v(e) # v(e') then
t, <0
ty(e) « 0
else
t, «— t, + t(e)
tp(e) < tp
end if
5: Sort E' by increasing endpoints.
{For each edge {v,w}, v < w. Then {v,w} < {v',w'} iff v < v' or v = v' and
w<w.}

6: Scan E' and merge the two copies of each edge e € E(G):

Let e’ and e be the two copies. They are stored consecutively.
Let v(e') = v and v(e") = w. Assign t}(e) =t,(e') and t}'(e) =t,(e").

Algorithm 6.13: Computing edge labels.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 101

Figure 6.1: A non-tree edge e. The fat edges represent e’s tree cycle. R; is the region
inside the cycle. R is the region outside the cycle.

Steps 3 and 5 take O(sort(N)) I/Os. Steps 1, 2, 4, and 6 take O(scan(N)) 1/Os.
Thus, Algorithm 6.13 takes O(sort(N)) 1/Os. O

Next, we show how one can use the labels computed by procedures COMPUTEV -
ERTEXLABELS and COMPUTEEDGELABELS to find a non-tree edge e such that c(e)
is a separator of G.

Let e = {v,w} be a non-tree edge. We define R;(e) to be the region inside e’s
tree cycle. Ry(e) be the region outside e’s tree cycle. We claim that, using the vertex
and edge labels that we just computed, we can compute w(R;(e)) and w(Ry(e)).

Let u be the lowest common ancestor of v and w. As T is a BFS-tree and e is
non-tree edge, v # u # w: If, w.l.o.g., u = v, then v would have to be w’s parent
because v and w are only one level apart. Then, however, there would be a non-tree
edge {v,w} and a tree edge {v,w}. That is, G would not be a simple graph. Let v
be to the left of w, i.e., n,(v) < n,(w). This situation is shown in Figure 6.1.

As the preorder numbers n,(v) respect the embedding, the vertices x with preorder
numbers n,(v) < n,(z) < n,(w) are exactly the vertices in the light and medium grey
subtrees and on the tree path from u to w, excluding u. The weight of these vertices
is vy(w) — vp(v).

The weight of the vertices on the tree path from u to w, excluding w, is 6(r, w) —
§(r,u). Thus, vy(w) — vp(v) + 6(r,u) — §(r, w) is the weight of the light and medium
grey subtrees. To compute w(R;(e)), we have to add the weight of the dark grey
subtrees and subtract the weight of the light grey subtrees.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 102

FINDGOODEDGE(G, T):

Input: The vertex set V(@) and the edge set E(G) of the triangulation G. A BFS-
tree T of G.

Output: An edge e such that the the tree cycle c(e) divides G into two regions of
weight at most % each.

1: Scan E(G) to find edge e:
{¢ is the current edge.}

if ¢’ is a non-tree edge then
Compute w(R;(e)) according to equation 6.1.
Compute w(R»(e)) according to equation 6.2.
if w(Ry(e)) < 2 and w(R:(e)) < 2 then
e+ ¢
Stop scanning.
end if
end if

Algorithm 6.14: Finding an edge with a tree cycle that is a separator.

Now, the weight of the light grey subtrees is exactly ¢7(e) because t(e) = 0.
Analogously, the weight of the dark grey subtrees is ¢;(e). Thus, the weight of R, (e)

is
w(Ri(e)) = vp(w) — vp(v) +(r,u) — 0(r,w) + 1, (e) — 15 (e). (6.1)
The weight of €’s tree cycle is §(r,v) + §(r, w) — 26(r, u) + w(u). Thus, the weight of
Ry(e) is
w(Rs(e)) = w(G) — w(Ry(e)) — d(r,v) — 6(r,w) + 26(r, u) — w(u). (6.2)
All these labels are stored locally with e. Thus, we can scan E(G) and look for the

first tree edge e with w(R;(e)) < 2 and w(Ry(e)) < 2. We have shown the following

lemma.

LEMMA 6.14 Algorithm 6.14 computes a non-tree edge e with w(Ri(e)) < 2 and
w(Ry(e)) < 2. This takes O(scan(N)) 1/0s.

Finally, we have to label the tree cycle c(e), where e is the edge returned by
procedure FINDGOODEDGE. Algorithm 6.15 shows the pseudo-code of procedure
LABELTREECYCLE.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 103

LABELTREECYCLE(G, T, e):

Input: The vertex set V(@) and the edge set E(G) of the triangulation G. A BFS-
tree T of G. A non-tree edge e = {v, w}.

Output: The vertices on the tree cycle c(e) labeled with C'(e) = 0.

1: Sort V(@) by increasing labels d(r, v) and n,(v).
2: d + d(r,v)

3: Scan V(G) backward to label the vertices on the path from v to u:
{z is the current vertex. z' is the last vertex.}

if d(r,x) = d and n,(x) < np(v) then
C(z)« 0
d<—d-1
end if
if x = u then
Stop scanning. {u=LCA(v,w)}
end if

4: d + d(r,w)

5: Scan V(G) backward to label the vertices on the path from w to u:
{z is the current vertex.}

if d(r,z) = d and n,(z) < ny(w) then
C(z) «+ 0
d+<d-1
end if
if £ = u then
Stop scanning. {u = LCA(v,w)}
end if

Algorithm 6.15: Computing the tree cycle for a given edge e.

CHAPTER 6. SEPARATING EMBEDDED PLANAR GRAPHS IN E.M. 104

LEMMA 6.15 Algorithm 6.15 labels the vertices on the tree cycle c(e), for a given
edge e with C(v) = 0. This takes O(sort(N)) I/0Os.

PROOF. The correctness of Algorithm 6.15 follows immediately, if we can prove that
the ancestor of a vertex v at level d is the vertex z with d(r,z) = d and n,(z) =
mas{ny(y) : d(r,5) = d A my(y) < my(0)}

As z is an ancestor of v, ny(z) < n,(v), by Observation 3.1. Now assume that
there is a vertex y with d(r, y) = d(r, z) and n,(z) < n,(y) < ny(v). Asny(z) < np(v),
d(r,z) < d(r,v). Thus, as d(r,y) = d(r,z), y # v and n,(y) < n,(v). By Observation
3.2, x must be an ancestor of y. This is impossible because d(r,y) = d(r,z). Thus,
such a vertex y cannot exist. This proves the correctness of Algorithm 6.15.

Step 1 takes O(sort(IN)) I/Os. Steps 3 and 5 take O(scan(N)) I/Os. Thus, the
I/O-complexity of Algorithm 6.15 is O(sort(N)). O

6.5 Graph Separators and Shortest Paths

In this chapter, we presented a graph separator algorithm that followed the concepts
of Lipton and Tarjan’s approach. We followed their concepts even in that we wanted
to compute two components A and B, each of total weight at most % These two
components are not necessarily connected.

When constructing the hierarchical decomposition described in Section 2.1, this
is very inconvenient because not every vertex of a component has a path to every
separator vertex on the boundary of this component. Hence, we want the components
to be connected.

Looking at the code of Algorithm 6.1, we realize that, before constructing compo-
nents A and B in Step 8, our algorithm did already identify all connected components
of G—C. That is, in this step, we throw most of the information away. Sorting V' (G)
and E(G) in Step 8 instead of calling procedure COLLECTCOMPONENTS, we retain
this information and produce the output needed for Algorithm 2.3. This change does
not affect the running time of Algorithm 6.1.

Chapter 7

Triangulating Embedded Planar
Graphs in External Memory

In this chapter, we present an external-memory algorithm for triangulating embedded
planar graphs. This is the missing part of the separator algorithm in Chapter 6.
Beside that, such an algorithm might be of independent interest.

We assume the same data representation as in Chapter 6. See section 6.1 for
details.

7.1 Framework of the Algorithm

In this section, we present the framework of our triangulation algorithm. It divides
the problem into two parts. In the first part, we identify the faces of the given graph
G. We represent each face as a list of the vertices on its boundary, sorted clockwise
around the face. In the second part, we use this information to triangulate the faces

of G.

THEOREM 7.1 Given an embedded connected planar graph G with N wvertices, Al-
gorithm 7.1 computes an embedded triangulation G' of G. This takes O(sort(N))
1/0s.

105

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 106

TRIANGULATE(G):

Input: The vertex set V(G) and the edge set E(G) of the graph G.

Output: A triangulation G’ represented as vertex set V(G') and edge set E(G').
Edges in E(G') \ E(G) are marked.

1: F < IDENTIFYFACES(G)
{F contains the vertex lists representing the faces of G. To distinguish different
lists, vertices in the same list have the same label f(v), while vertices in different
lists have different labels. Each vertex in F' is augmented with additional in-
formation. This information is used by TRIANGULATEFACES to embed the new
edges properly.}

2: G' < TRIANGULATEFACES(G, F)
{Construct G".}

Algorithm 7.1: Triangulating a embedded planar graph.

PROOF. The correctness of Algorithm 7.1 follows immediately from that of proce-
dures IDENTIFYFACES and TRIANGULATEFACES.

By Lemmas 7.1 and 7.8, procedures IDENTIFYFACES and TRIANGULATEFACES
take O(sort(N)) I/Os. Thus, procedure TRIANGULATE takes O(sort(N)) I/Os. O

The next two sections provide the details of procedures IDENTIFYFACES and TRI-
ANGULATEFACES.

7.2 Identifying Faces

Procedure IDENTIFYFACES computes a list F' that is the concatenation of several
vertex lists, one for each face. These vertex lists will be used by TRIANGULATEFACES
to compute the triangulation G'.

First, we define a graph G = (V(G), E(G)). For each edge {v,w} € E(G), we
add two vertices v(y,) and v(y,,) to V(G) Intuitively, v(,,.,) represents the right
side of {v,w} when walking along {v,w} from v to w; V() represents the other
side of {v,w}. For each vertex v € V(G), let {v,wp},...,{v,wx_1} be the list

of edges incident on it, counterclockwise around v. Then we add directed edges

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 107

Figure 7.1: A given graph G (black vertices and solid lines). White vertices and
dotted arrows represent the graph G for G.

~

(Vi 0)s Vwawgisnymoar))» 0 < @ < k to E(G). The resulting graph is shown in Figure 7.1.
Now each face of GG is represented by a cycle in G. Our goal is to construct a vertex

list, for each face of GG, that represents its boundary. Algorithm 7.2 shows how.

LEMMA 7.1 Algorithm 7.2 takes O(sort(N)) 1/0s.

PrRoOOF. This follows immediately from Lemmas 7.2 and 7.3. 0

LEMMA 7.2 Algorithm 7.8 constructs G with O(sort(N)) 1/Os.

PROOF. Let us first prove the correctness of Algorithm 7.3. The creation of the
vertex set V(G) in Step 1 matches the definition of G. Consider the construction of
E(G).
Steps 2 and 3 create an edge list E’'(v), for each vertex v € V. The edges in such a
list are sorted counterclockwise around v. E’ is the concatenation of these edge lists.
In Step 4, we store the first edge of the current edge list in ¢”. Then we add edges

between the vertices in V' (G) corresponding to consecutive edges in E'. When we

reach the last edge e in the current list, " is the first edge in this list. We add an

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 108

IDENTIFYFACES(G):

Input: The vertex set V(G) and the edge set E(G) of the graph G.
Output: A vertex list F' such that:

e Fach face of G is represented as a sublist F; of F'. Each such sublist is
contiguous. Its vertices have the same unique label f(v) to distinguish
them from the vertices of the other sublists.

e Let Fy = wg,...,v; be a sublist representing a face f. Then vy,..., v
are the vertices on the boundary of f. They appear in this order clock-
wise around f. v; stores labels n;(v;) = Ny, ({V(i—1)modk, vi}) and ng(v;) =
Ty, ({Uia U(H—l)modk})-

1: G + CONSTRUCTFACEGRAPH(G)

2: F' < BUILDF(G)

Algorithm 7.2: Identifying the faces of a given graph.

edge between the vertices in V(é) corresponding to €’ and e. Recall that there are
two vertices in V(G‘) corresponding to each edge. We always add edges between the
right vertices.

Steps 1, 2, and 4 scan lists of length O(N). Thus, these steps take O(sort(N))
I/Os. In Step 3, we sort a list of length O(N). Thus, Algorithm 7.3 takes O(sort(N))

I/Os. O

LEMMA 7.3 Algorithm 7.4 builds the list F' with O(sort(N)) 1/0s.

Proor. First, we show the correctness of Algorithm 7.4. In Step 1, we use the algo-
rithm by Chiang et al. [12]. (In this step, we consider the edges of G as undirected.)
Then we copy, for each edge, all information stored with its source vertex to the edge
itself. To this end, we use procedure COPYLABELS. Lemma 6.2 states the correctness
of this procedure. Sorting the edges by increasing face labels sorts all edges in E(G‘)
by the faces of G’ containing them. At the end of Step 2, we basically remove exactly

one edge per face from E(G). Now, each edge represents a vertex with a pointer to

its parent. The root points to null. Thus, we can use Corollary 4.2 to rank all lists

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 109

CONSTRUCTFACEGRAPH(G):

Input: The vertex set V(G) and the edge set E(G) of the graph G.
Output: A directed graph G with

e two vertices vy, and vy, for each edge {v,w} in E(G) and

e an edge set E(v) in E(G), for each vertex v € V(G). For a particular vertex
v, let {v,wo}, ..., {v, wk_1} be the edges in G incident on v. {v, Wit1)ymodk }
is the next edge counterclockwise around v after {v, w;}. Then E(v) contains
edges (v(wiav)’ U(Uzw(i+1)modk))7 for 0 S Z < k'

A

1: Scan E(G) and add two vertices v(y,.) and v,y to V(G), for each edge {v,w} in
E(@G). Store all information about {v, w} with these vertices.

2: Scan F(G) and create two copies e’ and e” of each edge e = {v, w}. Label ¢’ with
v(e') = v and n,(e') = ny(e) and e’ with v(e”) = w and n,(e") = ny(e). Call the
resulting edge set E'.

3: Sort E' by increasing labels v and n,,.

4: Scan E' to construct the edge set of G:
{e is the current edge. €' is the previous edge.}

if e is the first edge then
e+ e
else if v(e') # v(e) then
{e" = {v,w"}, &' = {v,w'}, and v(e') = v(e") = v.}
Add an edge (V(w v); V(v,u)) to E(G).
e e
else
{e ={v,w}, & = {v,w'} and v(e) = v(e') = v.}
Add an edge (V(w',v); V(v,w)) tO E(G).
end if
if e is the last edge then .
Let " = {v,w"} and v(e") = v. Then add an edge (V(w,v), V(v,u")) t0 E(G).
end if

Algorithm 7.3: Constructing G.

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 110

A

BUILDF(G):

Input: The vertex set V(G) and the edge set E(G) of the graph G.
Output: A vertex list F' such that:

e Each face f of G is represented as a sublist Fy of F. Each such sublist is
contiguous. Its vertices have the same unique label f(v) to distinguish them
from the vertices in the other sublists.

o Let Fy =vy,...,v; be a sublist representing a face f. Then v; stores labels
n1(“i) = nvi({v(ifl)modka Uz}) and 712(%') = nvi({vz’,v(iﬂ)modk})-

1: Compute the connected components of G.
{This labels the vertices v of G with labels f(v) that identify the connected
components in which they are contained.}

2: Make each circular component of G a list by removing one edge:

For each edge e = (v, w) in E(G), copy all information from v to e, using procedure CopPY-
LABELS.

Sort the edge set E(G) by increasing labels f(e).

Scan E(G). If e is the first edge or the predecessor €' of the current edge e has component
label f(e') # f(e), change the target vertex of e to null.

{Now we can consider E(G) as a forest of rooted trees. Every edge has been transformed

into a vertex with pointer to its parent. The root points to null.}

3: Apply Corollary 4.2 to rank all lists in E(G). Call the rank of e in its list 7(e).

4: Sort E(G) by increasing labels f(e) and decreasing ranks ().

N

5: Scan E(G) and add, for each edge (v(y,w),), the two vertices v and w to a list
F'. Label v with ny(v) = n,({v,w}) and w with n;(w) = ny({v,w}). Let
f) = f(w) = f((vww),T))-

6: Scan F’ to build F:

{v is the current vertex. w is the previous vertex.}

if v is the first vertex then
v
else if f(v) # f(w) then
Let na(w) = na(v'). Add w to F.
v v
else if v is the last vertex then
Let na(v) = na(v'). Add v to F.
else if v = w then
Let na(w) = na(v). Add w to F.
end if

Algorithm 7.4: Constructing the vertex list F'

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 111

N A

in F(G). We sort E(G) by increasing labels f(e) and decreasing ranks r(e). For the

face in Figure 7.2(a), assume that we have removed the edge between (v(2,1),(1,2))- The

resulting sublist in F(G) after Step 4 is

V(1,2)5 V(2,3)5 U(3,4)5 V(4,5)) U(5,6)» V(6,7)> U(7,8)» U(8,10)5 U(10,11)5 Y(11,12)5 V(12,13)> V(13,14),
U(14,15), U(15,14) U(14,16) 5 U(16,14), U(14,13) > U(13,17) V(17,10)> V(10,8) » U(8,9)> V(9,2) V(2,1)-

The list F” is a concatenation of vertex lists F}, one per face f of G. Let f be a face

with boundary vo, ..., vg_1. Then, F} is

(vo, 2 (v0)), (v1,m1(v1)), (v1,n2(v1)), (V2,11 (v2)), - - -,

(kal, 711(ka1)), (kah 712(ka1)), (Uo, nl(Uo))-

Step 6 now creates a list

(v1,n1(v1), n2(v1)), (v, N1 (v2), N2 (v2)), - - -,

(Uk—b n1(Uk—1), n2(Uk—1)), (Uo, ni (Uo), ng (Uo))

from F}. This is the desired list Fy. As we do this for each face, Algorithm 7.4
produces F.

Step 1 take O(sort(N)) I/Os as proved in [12]. Step 2 takes O(sort(N)) 1/Os by
Lemma 6.2. Step 3 takes O(sort(N)) I/Os by Corollary 4.2. Step 4 takes O(sort(N))
I/Os. Steps 5 and 6 scan two lists of length O(N). Thus, they take O(scan(N)) I/Os.
Hence, the I/O-complexity of Algorithm 7.4 is O(sort(N)). O

7.3 Triangulating Faces

In this section, we show how to triangulate the faces of G using the information stored
in F. First, we describe our method and show that we do not add multiple edges.
Then, we deal with the problem of embedding the new edges properly. Eventually,
we show how these methods can be implemented I/O-efficiently.

Consider a face f of G and its sublist F; in G. We triangulate f in three steps.

In the first step, we reduce f to a simple face f. We call a face simple, if each vertex

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 112

(b) (c)

Figure 7.2: Figure (a) shows a face of the given graph. The dotted edge in figure (b)
are added in the first pass of the algorithm. The second pass adds the dotted edges
in figure (c). This triangulates the face.

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 113

on its boundary is visited only once in a clockwise traversal of the boundary. Fy will
be reduced to Fj accordingly. In the second step, we triangulate f. This will not
add multiple edges in f. However, in adjacent faces f and f’, we may have added
diagonals with the same endpoints. Then we retriangulate f’ in a way that removes
multiple edges and does not introduce new multiple edges.

The first step marks the first appearance of each vertex v in Fy, while it leaves
all later appearances of v unmarked. Moreover, it appends a marked copy of the
first vertex in F; to the end of F;. For the face in Figure 7.2(a), this results in the

following list. Marked elements are printed in bold.
1,2,3,4,5,6,7,8,10,11,12,13,14, 15,14, 16, 14, 13,17, 10,8, 9, 2, 1.

We scan this list backward and remove each unmarked vertex by adding an edge
between its predecessor and its successor in the current list. Call this procedure
MAKESIMPLEFACE. For the face in Figure 7.2(a), the result is shown in Figure

7.2(b). We prove the following lemma.

LEMMA 7.4 Given the list Fy of vertices visited when traversing the boundary of a
face f once in clockwise order. Procedure MAKESIMPLEFACE creates a simple face

f by cutting triangles off f.

PROOF. The way we mark the vertices in F}, each vertex on f’s boundary has exactly
one marked copy in Fy. The first vertex has two marked copies in F); but this is only
to close the cycle. For each unmarked copy of a vertex v, we add an edge between
its predecessor and its successor in Fy. This removes this copy of v from F and
the resulting face f'. We remove all unmarked copies from F this way. Thus, the
final list F'; contains each vertex on the boundary of f only once, except for the first
vertex in Fy, which appears a second time at the end of Fj. That is, the final face f
is simple.

Each time we cut a vertex v off, we add an edge between its predecessor and its

successor in the current list. Thus, the cut-off region is a triangle. O

LEMMA 7.5 Applying procedure MAKESIMPLEFACE to all faces of G does not add
multiple edges to G.

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 114

(@ (b)

Figure 7.3: lllustrating why MAKESIMPLEFACE does not add multiple edges.

ProoF. First assume that MAKESIMPLEFACE adds multiple edges in a single face
f. Let v and w be the endpoints of two such edges (see Figure 7.3(a)). The first edge
removes u from the boundary of f. The second edge removes = from the boundary
of f. However, these two edges form a closed curve that separates = from the rest of
the face. Thus, the copy of x removed by adding the second edge must be x’s first
occurrence on the boundary. That is, it is marked and would not be removed. This
contradiction proves that MAKESIMPLEFACE does not add multiple edges in a single
face.

It remains to prove that MAKESIMPLEFACE does not add multiple edges in differ-
ent faces. Consider Figure 7.3(b). There we remove an unmarked copy of the vertex
u from the boundary of f by adding an edge {v, w}. As this copy of u is unmarked,
there must be at least one more copy of u: the marked copy. The part of the boundary
of f between the removed copy and the marked copy of u is a closed curve. Call the
enclosed region f’. Analogously, the part of the boundary of f between the marked
and the removed copy of u is a closed curve. Let it enclose region f”. Any face other
than f that has w on its boundary must be contained in f’. Any face other than f
that has v on its boundary must be contained in f”. However, there is no face that
isin f" and in f"”. Thus, there can be no face other than f that has v and w on its

boundary. That is, we cannot add an edge {v,w} in any other face than f. O

After the execution of procedure MAKESIMPLEFACE, we are left with a simple

face f . Fj is the list of boundary vertices of f . It contains a copy of the first vertex

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 115

v at the end. We remove the first two vertices and the last two vertices from Ff.
Now we add an edge between v and each of the remaining vertices in F. Call this

procedure TRIANGULATESIMPLEFACE. For our example face in Figure 7.2(b), Fy is
1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,9, 1.
We remove the first two vertices and the last two vertices:
3,4,5,6,7,8,9,10,11,12,13,14,15, 16, 17.

Then we add edges between vertex 1 and all vertices in Fy. The result is shown in
Figure 7.2(c).

LEMMA 7.6 Given a simple face f, procedure TRIANGULATESIMPLEFACE triangu-
lates f

As we deal with all faces of G independently, procedure TRIANGULATESIMPLE-
FACE may add the same diagonal {v, w} to two different faces f and f’ that have v
and w on their boundaries. It can also happen that we add a diagonal {v,w} to a
face, and {v,w} exists already in G. More generally, let fl, . fk be the faces that
contain a diagonal {v,w}. We have to remove {v,w} from k& — 1 of these faces, if
{v,w} ¢ E(G), or from all of them, if {v,w} € E(G). In the first case, we mark
{v,w} as a conflicting diagonal in fg, cen fk. In the second case, we mark it in all
faces f;. We call a face conflicting, if it has a conflicting diagonal in it. Otherwise,
we call it conflict-free.

Every diagonal d in a face f cuts f into two parts. Let vy,..., v, be the vertices
on the boundary of f. Let d = {vi,v;}. Then any other diagonal in f has both its
endpoints in one of the sets Vi (d) = {v;,...,v;} or Vo(d) = {v;,..., v, v1,...,v;}. Let
D, (d) be the set of diagonals with endpoints in V;(d); Ds(d) contains the diagonals
with endpoints in V5(d). We call a conflicting diagonal mazimal, if Di(d) = () or
Dy(d) = 0. Tt is easy to see that each conflicting face contains a maximal conflicting
diagonal.

Let f be a conflicting face. We show how to make it conflict-free. Choose a

maximal conflicting diagonal d in f. Let d’ be the edge with which d conflicts. d cuts

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 116

@ (b)

Figure 7.4: (a) A simple face f with a conflicting diagonal d. d conflicts with d’
and divides f into two parts f; and fs;. One of them, f5, is conflict-free. wu is the
third vertex of the triangle in f, with d on its boundary. (b) The triangulation of f
produced by MAKECONFLICTFREE.

f into two parts f; and fs; fo be the part that does not contain conflicting diagonals.
Let u be the third vertex of the triangle in f, that has {v, w} on its boundary. Remove
d and all diagonals in f; from f. Retriangulate the resulting subface of f by adding
diagonals between u and the boundary vertices of f;, excluding v and w. See Figure

7.4. Call this procedure MAKECONFLICTFREE.

LEMMA 7.7 Procedure MAKECONFLICTFREE makes f conflict-free.

PRrROOF. d and d' form a closed curve C. All boundary vertices of f;, excluding v
and w, are inside C'. All boundary vertices of fs, excluding v and w, are outside C.
In particular, v is outside C. Thus, before retriangulating f, there can be no edge
{u, z} in the triangulation, where z is a vertex on the boundary of f;. That is, all new
diagonals are non-conflicting. We have only retained diagonals in f,;. By the choice
of d and f,, all diagonals in f5 are non-conflicting. Thus, none of the diagonals in f

conflicts with any other diagonal in the triangulation. O

Lemma 7.7 implies that, after applying procedure MAKECONFLICTFREE to all

conflicting faces of GG, we obtain a proper triangulation of G.

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 117

Figure 7.5: Adding a diagonal e = {u,w} to a face.

What we have ignored so far is the problem of embedding diagonals properly.
Assume that we want to add a diagonal e = {u, w} as in Figure 7.5. Here, n;(u) =
ny(a), na(u) = ny(b), n1(w) = ny(c), and ny(w) = ny(d). To embed e between a and
b, we have to ensure that n,(a) < ny(e) < ny,(b), if ny(a) < ny(b), or ny(a) < ny(e),

otherwise. We ensure this by choosing n,(e) = w

, if ni(u) < no(u), or
ny(e) = no(u) + 1, otherwise. For w, the procedure is analogous. Then we have to
update na(u) = ny(e) and ny(w) = ny(e). This ensures that subsequent edges added
to the grey face are embedded properly.

Now we are ready to give the pseudo-code of procedure TRIANGULATEFACES. It

is shown in Algorithm 7.5.

LEMMA 7.8 Algorithm 7.5 constructs a triangulation G' of G with O(sort(N)) 1/0Os.

PRrROOF. The correctness of Algorithm 7.5 follows from the discussion at the begin-
ning of this section and from the correctness of procedures MAKESIMPLEFACES,
TRIANGULATESIMPLEFACES, FINDCONFLICTINGDIAGONALS, and RETRIANGULA-
TEFACES. Lemmas 7.9, 7.10, 7.11, and 7.12 state the correctness of these procedures.

By the same lemmas, all procedures take O(sort(NN)) or O(scan(N)) I/Os. Thus,
Algorithm 7.5 takes O(sort(N)) 1/Os. O

LEMMA 7.9 Algorithm 7.6 makes all faces simple and takes O(sort(N)) I/Os.

PROOF. The correctness of Algorithm 7.6 follows from Lemmas 7.4 and 7.5.

Step 1 involves two sorts and one scan of the list F'. Steps 2 and 3 just scan F.
Thus, the I/O-complexity of Algorithm 7.6 is O(sort(N)). O

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 118

TRIANGULATEFACES(G, F):

Input: The vertex set V(G) and the edge set E(G) of the graph G. The vertex list
F' as produced by IDENTIFYFACES.

Output: The vertex and edge sets of a triangulation G’ of G.

1: G" < MAKESIMPLEFACES(G, F)
{Make each face of G simple.}

2: D < TRIANGULATESIMPLEFACES(G", F)
{D is a list of diagonals that would be added to G" to triangulate the faces of
G". Each diagonal d in D is labeled with a label f(d), where f(d) is the face of
G" that contains d.}

3: FINDCONFLICTINGDIAGONALS(D, E(G"))
{This finds a maximal conflicting diagonal for each conflicting face. These diag-
onals are marked in D.}

4: G' + RETRIANGULATEFACES(G", F, D)
{Construct the final triangulation G’ of G.}

Algorithm 7.5: Triangulating faces.

LEMMA 7.10 Algorithm 7.7 triangulates the faces of G". This takes O(scan(N))
I/0s.

ProOF. The correctness of Algorithm 7.7 follows from Lemma 7.6. Algorithm 7.7
scans the list ' only once to triangulate the faces of G”. Thus, its I/O-complexity is
O(scan(N)). O

LEMMA 7.11 Algorithm 7.8 computes the mazximal conflicting diagonals of all faces
in G" with O(sort(N)) I/Os.

PROOF. Let us first prove the correctness of Algorithm 7.8. Step 1 merges D and
E(G"). That is, D is the edge set of the current triangulation of G" now. Step 2 sorts
D such that edges with the same endpoints are stored consecutively. Let dy,...,dx
be a list of such edges with endpoints v and w. Step 3 marks ds, ..., dg, but not d;.
If {v,w} & E(G"), di,...,d; are all diagonals. That is, Step 3 marks all diagonals,
except for one. If {v,w} € E(G"), then d; is this edge in E(G") by the order of D.

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 119

MAKESIMPLEFACES(G, F):

Input: The vertex set V(G) and the edge set E(G) of the graph G. The vertex list
F' as produced by IDENTIFYFACES.

Output: A new graph G” that has only simple faces. A modified list F' representing
all simple faces that still have to be triangulated.

1: Mark all first occurrences of vertices in the sublists F; of F'.

Sort the vertices in F' by increasing face labels, increasing vertex number, and increasing
original position in F. With each vertex in F', store its position before the sort.

{The tertiary key ensures that the sort is stable.}

Scan F. Let v be the current vertex and w be the previous vertex. Mark v, if f(v) # f(w)
or v # w.

Sort the vertices in F' by their stored position in F' before the last sort.

{This moves every vertex back to its original position in F.}

2: Scan I’ and append, for each sublist F, a copy of the first vertex in Fy to the
end of F}.

3: Scan F' backward to add diagonals:
{v is the current vertex. u appears before v in F. w appears after v in F.}

if v is not marked then
Add an edge e = {u,w} to G.
Compute ny(e), ny(e), n2(u), and ny (w) as described on page 117.
Remove v from F'.

end if

Algorithm 7.6: Making all faces of G simple.

Figure 7.6: Solid edges represent the face boundary and conflicting diagonals. Dotted
edges are non-conflicting. The fat edge is the first conflicting edge when traversing
the list of diagonals bottom-up. Therfore, it is maximal.

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 120

TRIANGULATESIMPLEFACES(G”, F):

Input: The vertex set V(G") and the edge set E(G") of the graph G. The vertex
list F' as produced by IDENTIFYFACES.

Output: A list of diagonals D that would be added to G” to triangulate it. Each
diagonal d in D has a label f(d) that identifies the face of G" containing d. D is
sorted by face labels. The sublist for a face f contains the diagonals added to f
in their insertion order.

1: Scan F' to triangulate the faces of G":
{v is the current vertex. w is the previous vertex.}

if v is the first vertex or f(v) # f(w) then
T v
Skip the next vertex in F'.
else if v is the second last vertex in F' then
Skip the next vertex in F.
else
Add a diagonal d = {z,v} with label f(d) = f(v) at the end of D.
end if

Algorithm 7.7: Triangulating simple faces.

dy, . ..,dy are diagonals. That is, Step 3 marks all diagonals, but not d; € E(G").
Step 4 removes the edges in E(G") from D. Obviously, Step 6 marks exactly one
conflicting diagonal per conflicting face. Why is this diagonal maximal?

Consider a face f. The diagonals added by MAKESIMPLEFACES all have one
endpoint in common. They are stored in f in the order shown in Figure 7.6. Step 6
traverses these diagonals in their order of appearance and marks the first conflicting
diagonal d as maximal (fat). As this is the first conflicting diagonal, the part of f
above d does not contain any conflicting diagonals. Thus, d is maximal.

Steps 2 and 5 take O(sort(N)) 1/Os. Steps 1, 3, 4, and 6 each scan D once. This
takes O(scan(N)) I/Os. Thus, Algorithm 7.8 takes O(sort(N)) I/Os. O

LEMMA 7.12 Algorithm 7.9 triangulates G" with O(scan(N)) I/Os. The resulting

triangulation G' does not contain multiple edges.

PROOF. Let us first prove that Algorithm 7.9 triangulates each face of G”. Assume

that the current vertex v in F is the first vertex of a sublist F; for a face f of G"; d is

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 121

FINDCONFLICTINGDIAGONALS(D, E(G")):

Input: A list of diagonals D that would be added to G” to triangulate it. Each
diagonal d in D has a label f(d) that identifies the face of G" containing d. D is
sorted by face labels. The sublist for a face f contains the diagonals added to f
in their insertion order. The edge set E(G") of the graph G".

Output: Maximal conflicting diagonals in D marked as such.

1: Scan D and E(G") to append E(G") to D. Mark all edges in D as diagonals.
With each diagonal, store its original position in D.

2: Sort D by increasing endpoints and such that edges {v, w} in E(G") are stored
before diagonals {v, w}.
{For each edge d = {v,w}, v <w. Then, d = {v,w} < d = {V,w'} iff v <V’ or
v=2andw < w orv=1v,w=w,disan edge in E(G"), and d' is a diagonal.}

3: Scan D to mark conflicting diagonals:
{d is the current edge. d' is the previous edge.}
if d={v,w}, d ={V,w'}, v="1"and w = w' then

Mark d as conflicting.
end if

4: Scan D to remove all edges in E(G") from D.

5: Restore D’s original order.
{This can be done by sorting D by the positions saved in Step 1.}

6: Scan D to mark maximal conflicting diagonals:
{d is the current diagonal. d' is the previous diagonal.}

if d is the first diagonal in D or f(d') # f(d). then
found_maximal + false

end if

if d is conflicting and found_maximal = false then
Mark d as maximal.

found_maximal <+ true
end if

Algorithm 7.8: Computing maximal conflicting diagonals.

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 122

RETRIANGULATEFACES(G”, F, D):

Input: The embedded graph G” represented as its vertex and edge set. The vertex
list F' representing the boundaries of the faces of F'. The list of diagonals added
to G" by procedure TRIANGULATESIMPLEFACES. Maximal conflicting diagonals
in D are marked as such in D.

Output: An embedded triangulation G’ of G".

1: Scan F' and D simultaneously to triangulate G":
{v is the current vertex in F. v is the previous vertex. d is the current diagonal
in D. d' is the previous diagonal. The scan is driven by D.}

if d is the first diagonal or f(d) # f(d') then
T
conflicting « false {We assume that the current face is conflict-free.}
Advance by two positions in F.
end if
if d is a maximal conflicting diagonal then
x v
conflicting + true {The current face is conflicting.}
Advance by one position in F.
end if
Add edge {z,v} to G".
Compute n,(€), ny(€), na(u), and ni(w) as described on page 117.
if d is the last diagonal in D with label f(d) then
if conflicting then
Advance by one position in F.
else
Advance by two positions in F'.
end if
end if

2: Return G”".

Algorithm 7.9: Computing the final triangulation.

CHAPTER 7. TRIANGULATING EMBEDDED PLANAR GRAPHS 123

the first diagonal in D that belongs to the triangulation of f. Let v = vy, v1,v2, ...,V
be the vertices in Fy. dy, ..., dy_4 are the diagonals in f.

First, we set © < vy and advance to vy. If f does not contain a conflicting
diagonal, we add diagonals dy = {vg, v2},d1 = {wvo,vs},...,dx_s = {vo, vk_2} to G".
After adding dj_,, which is the last diagonal of this face, we advance by two positions
in F. That is, we skip vy_1 and vi. Now v points to the first vertex of the next face,
and d points to the first diagonal of that face.

If f contains a conflicting diagonal, let d, be the marked maximal conflicting
diagonal. We add diagonals dy = {vg,ve},di = {vo,v3},...,dg—1 = {vo,vg41} to
G". When we find d,, the current vertex is v,4o. We advance by one position in F'
and add diagonals d, = {vg41,Vg13}, i1 = {Vg11, Vgrs)s -+, Ay = {Vg41,V6-1} (ome
new diagonal per old diagonal). Then, we advance by one position in F, i.e., skip vj.
Again, v points to the first vertex of the next face, and d points to the first diagonal
of the next face.

It is easy to see that the added diagonals triangulate f. It remains to prove that the
resulting triangulation G' does not contain multiple edges. If a face is conflict-free,
our algorithm adds the same diagonals as procedure TRIANGULATESIMPLEFACES.
Thus, this face remains conflict-free. If the face is conflicting, we argue as follows:
In Figure 7.6, v = vp, W = Vgy2, and u = vgy1. On the other hand, u is the third
vertex of the triangle uvw in the conflict-free part of f. That is, by making v, the
common endpoint of all diagonals d;, we implement exactly the method of procedure
MAKECONFLICTFREE. By Lemma 7.7, this makes face f conflict-free in G'.

Algorithm 7.9 scans D and F once. As the size of these lists is O(V), this takes
O(scan(N)). O

Chapter 8
Conclusions

In this work, we presented an external-memory shortest path data structure and an
I/O-efficient algorithm to construct it.

In order to allow for I/O-efficient queries of this data structure, we developed a
method to store rooted trees in external memory such that bottom-up paths can be
traversed 1/O-efficiently.

To make the preprocessing algorithm efficient, we needed three major ingredients:
(1) a separator algorithm, (2) a single source shortest path algorithm, and (3) an
algorithm to block the shortest path trees in our data structure for fast path traversals.

For point (2), we used the currently best known single source shortest path al-
gorithm due to Crauser, Mehlhorn, and Meyer [13]. We presented an I/O-efficient
algorithm for point (3). We showed that graph separation is not harder than the more
fundamental problem of constructing a BFS-tree of a given planar graph. As part of
this proof, we developed an external-memory algorithm for triangulating embedded
planar graphs.

Unfortunately, BFS turns out to be a really hard problem in external-memory.
It is not clear whether it can be done I/O-efficiently at all. Our future work will

therefore concentrate on the following three observations:

1. Given an embedded graph G, we can construct a triangulation G’ of G. Given
a separator of the dual of G’, we can add the three boundary vertices of each

face in this separator to a set S. S is a separator of G. The dual of G' is a

124

CHAPTER 8. CONCLUSIONS 125

3-regular graph, i.e., extremely sparse and regular. Hopefully, BFS is easier in

such graphs.

2. In application such as geographic information systems, the graphs that we are
dealing with are in fact triangulated point sets. It might help to use the geomet-
ric information provided this way to compute a BFS-tree of the given graph.
For instance, one can compute a monotone spanning tree of the graph with
O(scan(N)) 1/Os using the technique in [32, 33]. Then one could try to patch
this tree into a BFS tree.

3. Lipton and Tarjan’s separator algorithm requires a BFS-tree to ensure that
removing a complete level from this tree indeed separates the upper part of
the tree from the lower part. We can define a “relaxed BFS-tree” of a graph
G as a spanning tree such that each level of £ vertices is spanned by at most
max{k, v/2v/N} non-tree edges. When removing this level from the tree, we also
remove one vertex per edge spanning this level from the graph. This guarantees
that removing these vertices from the tree separates the upper part from the
lower part. The size of the separator is at most 4v/2v/N = O(v/N). That is,
in the worst case this approach computes a separator of twice the size of the
worst-case separator computed by Lipton and Tarjan’s algorithm. We hope that
computing a relaxed BFS-tree is easier than computing a BFS-tree, possibly

using randomization.

For the shortest path preprocessing algorithm, even the internal-memory separator
algorithm run in external memory is good enough; but an I/O-efficient separator
algorithm is of interest in its own right.

Finally, we want to mention some open questions that immediately come to mind
when reading all the previous chapters thoroughly: Can the tree-blocking approach
be generalized to hierarchical directed acyclic graphs (HDAGs)? Does it help, if we
restrict ourselves to planar HDAGs? As we have seen, for offline traversals of trees,
it does not matter very much whether these traversals are top-down or bottom-up;
but it makes a difference whether or not they modify the stored data. If they do, all

copies of the modified tree vertex have to be updated. Is it possible to store trees

CHAPTER 8. CONCLUSIONS 126

in a way such that we can achieve a speed-up better than O(log, DB) for modifying
offline traversals?

In the motivation for developing I/O-efficient algorithms, the increasing popularity
of parallel computation is quoted. Therefore, parallel solutions for the problems
considered in this work would be of interest. Having efficient BSP-, BSP*-, or CGM-
algorithms (see [34] for the definition of the BSP-model, [8, 9, 10] for the BSP*-
model, and [14] for the CGM-model), we could use the simulation of such algorithms
on EM-BSP, EM-BSP*, or EM-CGM machines as proposed by Dehne, Dittrich, and
Hutchinson [15]. Although it is not included in this thesis, we have shown already
that our optimal blocking scheme for offline bottom-up traversals in rooted trees can
easily be modified to allow for efficient (with regard to I/O and communcation) fully

parallelized path traversals on an EM-BSP machine.

Appendix A
Deutsche Zusammenfassung

Die vorliegende Arbeit beschiftigt sich mit dem Problem, Graphen mit v/N-Se-
paratoren fiir die schnelle Berechnung kiirzester Wege zwischen Knoten in diesen
Graphen vorzuverarbeiten. Wir stellen eine External-Memory-Version der Kiirzeste-
Wege-Datenstruktur von Djidjev [16] vor.

Diese Datenstruktur kann zum Beispiel in geographischen Informationssystemen
Anwendung finden, da in diesem Anwendungsgebiet solch riesige Datenmengen ver-
arbeitet werden, dafl oft nur ein kleiner Bruchteil der Daten in den Hauptspeicher des
Computers paflt. Der Rest ist auf Festplatte gespeichert und muf} in den Hauptspei-
cher geladen werden, wenn er benotigt wird. In solchen Szenarien ist der Flaschenhals
der Berechnung nicht die eigentliche Berechnung, sondern der Datentransfer zwischen
Hauptspeicher und Externspeicher. Deswegen ist es sinnvoll, Algorithmen zu entwik-
keln, die die Anzahl der I/O-Operationen minimieren, méglicherweise sogar auf Ko-
sten etwas hoheren Rechenaufwandes oder Speicherbedarfs.

In Abschnitt 1.2 stellen wir die Spielregeln fiir den Entwurf I/O-effizienter Al-
gorithmen vor. Diese werden uns durch die I/O-Modelle von Aggarwal und Vitter
[2] und Vitter und Shriver [35] gegeben. In diesen Modellen nehmen wir an, daf
Berechnungen im Hauptspeicher kostenlos sind, und wir versuchen die Anzahl der
I/O-Operationen, die unser Algorithmus ausfithrt, zu minimieren. Der wichtigste
Parameter dieser Modelle ist die Blockgrofle B des externen Speichermediums. Die

Ubertragung eines Blockes bendtigt eine I/O-Operation.

127

APPENDIX A. DEUTSCHE ZUSAMMENFASSUNG 128

Das angestrebte Ideal ist nun, wenn man einen RAM-Algorithmus A mit Laufzeit
T4(N) hat, einen External-Memory-Algorithmus A" mit I/O-Komplexitit Z4 (N) =
O(T4(N/B)) oder besser zu finden. In Kapitel 2 stellen wir eine nach diesem Mafstab
optimale External-Memory-Version der Kiirzeste-Wege-Datenstruktur in [16] vor. Al-
lerdings ist der vorgestellte Konstruktionsalgorithmus nicht optimal.

Die Datenstruktur und der Konstruktionsalgorithmus benutzen effiziente Losun-
gen fiir bestimmte Teilprobleme. Fiir die Datenstruktur ist dies eine Methode, Kiir-
zeste-Wege-Baume so im Externspeicher zu speichern, dafl die Traversierung eines
Pfades von einem beliebigen Knoten in einem solchen Baum zur Wurzel des Baumes
wenige [/O-Operationen erfordert. Wir entwickeln eine solche optimale Methode in
Kapitel 3. “Optimal” heifit hier, daf der auf diese Weise gespeicherte Baum 7" O(|T|)
Speicherplatz ben6tigt und die Traversierung eines Pfades der Linge K in T O(K/B)
I/O-Operation erfordert.

Fiir den Konstruktionsalgorithmus benétigen wir die folgenden Zutaten:
1. einen Single-Source-Shortest-Paths-Algorithmus,
2. einen Separator-Algorithmus fiir eingebettete planare Graphen und

3. einen Algorithmus, der die Kiirzeste-Wege-Baume in der Datenstruktur ent-

sprechend der Methode aus Kapitel 3 speichert.

Als Single-Source-Shortest-Path-Algorithmus benutzen wir eine External-Memo-
ry-Version von Dijkstras Algorithmus, die von Crauser, Mehlhorn und Meyer [13]
entwickelt wurde. Dieser Algorithmus ist nicht optimal und der Grund, warum der
Konstruktionsalgorithmus in Kapitel 2 nicht I/O-optimal ist. Allerdings sind keine
besseren Losungen bekannt. Die Berechnung kiirzester Wege scheint ein extrem hartes
Problem in Bezug auf I/O-Komplexitit zu sein. Selbst fiir Breitensuche, die als
Spezialfall der Berechnung kiirzester Wege aufgefafit werden kann, existieren keine
wirklich guten Losungen.

Breitensuche ist auch der Flaschenhals in unserem Separator-Algorithmus, den
wir in Kapitel 6 vorstellen. Genauer zeigen wir, da8 man mit O(sort(N)) I/0O-

Operationen einen v/ N-separator in einem eingebetteten planaren Graphen berechnen

APPENDIX A. DEUTSCHE ZUSAMMENFASSUNG 129

kann, wenn man einen BFS-Baum gegeben hat. Anderenfalls braucht die Berechnung
O(bfs(N)) I/O-Operationen, wobei bfs(IN) die zur Berechnung eines BFS-Baums eines
planaren Graphen benétigte Anzahl von I/O-Operationen ist. Unter Verwendung
der besten bekannten Algorithmen fiir Breitensuche [25, 24] ist bfs(N) = Q(N) im
schlechteste Fall.

Ein Teilschritt unseres Separatoralgorithmus ist die Triangulierung des gegebenen
Graphen. In Kapitel 7 stellen wir einen Algorithmus fiir dieses Problem vor.

In Kapitel 5 stellen wir einen I/O-effizienten Algorithmus vor, der die Kiirzeste-
Wege-Baume unserer Kiirzeste-Wege-Datenstruktur entsprechend der Methode aus
Kapitel 3 speichert.

Die Algorithmen in den Kapiteln 5, 6 und 7 verwenden verschiedene géngige Mar-
kierungen wie Preorder-Nummern u.a. fiir die Knoten in Wurzelbaumen. In Kapitel
4 entwickeln wir praktisch optimale Algorithmen, die diese Markierungen berechnen.

Kapitel 8 gibt einen Ausblick auf interessante offene Fragen fiir zukiinftige For-
schung, die im Zusammenhang mit den Ergebnissen dieser Arbeit stehen. Das Haupt-
augenmerk liegt hier auf der Suche nach einer Moglichkeit, die Berechnung eines

BFS-Baums in unserem Separator-Algorithmus zu umgehen.

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

A. Aggarwal and R.J. Anderson. A random NC algorithm for depth first search.
Combinatorica, 8(1):1-12, 1988.

Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting
and related problems. Communications of the ACM, pages 1116-1127, September
1988.

Ljudmil Aleksandrov and Hristo Djidjev. Linear algorithms for partitioning em-
bedded graphs of bounded genus. SIAM Journal of Discrete Mathematics, 9:129—
150, 1996.

B. Alpern, L. Carter, E. Feig, and Selker. The uniform memory hierarchy model
of computation. Algorithmica, 12:72-109, 1994.

Lars Arge. The buffer tree: A new technique for optimal I/O-algorithms. In
Proceedings of the Workshop on Algorithms and Data Structures, volume 955 of
Lecture Notes in Computer Science, pages 334-345, 1995.

Lars Arge. Efficient FExternal-Memory Data Structures and Applications.
PhD thesis, Department of Computer Science, University of Aarhus, Aarhus/
Denmark, February 1996.

Lars Arge, Mikael Knudsen, and Kirsten Larsen. A general lower bound on the
I/O-complexity of comparison-based algorithms. In Proceedings of the Workshop
on Algorithms and Data Structures, volume 709 of Lecture Notes in Computer
Science, pages 83-94, 1993.

130

BIBLIOGRAPHY 131

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Baumker and W. Dittrich. Fully dynamic search for an extension of the
BSP model. In Proceedings of the ACM Symposium on Parallel Algorithms and
Architectures, pages 233-242, 1996.

A. Baumker, W. Dittrich, and F. Meyer auf der Heide. Efficient parallel algo-
rithms: c-optimal multisearch for an extension of the BSP model. In Proceedings

of the Annual European Symposium on Algorithms, pages 17-30, 1995.

A. Baumker, W. Dittrich, and A. Pietracaprina. The deterministic complexity of
parallel multisearch. In Proceedings of the Scandinavian Workshop on Algorithms
Theory, pages 404-415, 1996.

Joseph Cheriyan, Ming-Yang Kao, and Ramakrishna Thurimella. Scan-first
search and sparse certificates: An improved parallel algorithm for k-vertex con-
nectivity. SIAM Journal on Computing, 22(1):157-174, February 1993.

Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar-
ren Erik Vengroff, and Jeffrey Scott Vitter. External-memory graph algorithms.
In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms,
January 1995.

Andreas Crauser, Kurt Mehlhorn, and Ulrich Meyer. Kiirzeste-Wege-Berechnung
bei sehr groflen Datenmengen. In Otto Spaniol, editor, Promotion tut not: In-
novationsmotor “Graduiertenkolleq”, volume 21 of Aachener Beitrdige zur Infor-

matik. Verlag der Augustinus Buchhandlung, 1997.

Frank Dehne, Andreas Fabri, and Andrew Rau-Chaplin. Scalable parallel com-
putational geometry for coarse grained multicomputers. International Journal
on Computational Geometry, 6(3):379-400, 1996.

Franke Dehne, Wolfgang Dittrich, and David Hutchinson. Efficient external
memory algorithms by simulating coarse-grained parallel algorithms. In Pro-
ceedings of the 9th ACM Symposium on Parallel Algorithms and Architectures,
pages 106-115, 1997.

BIBLIOGRAPHY 132

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

Hristo N. Djidjev. Efficient algorithms for shortest path queries in planar di-
graphs. In Proceedings of the 22nd Workshop on Graph-Theoretic Concepts in
Computer Science, Lecture Notes in Computer Science, pages 151-165. Springer
Verlag, 1996.

Hristo N. Djidjev. Partitioning graphs with costs and weights on vertices: Al-
gorithms and applications. volume 1284 of Lecture Notes in Computer Science,
pages 130-143. Springer Verlag, 1997.

Hristo N. Djidjev, Grammati E. Pantziou, and Christos D. Zariolagis. On-line
and improved algorithms for dynamic shortest paths. In Proceedings of the 12th
Symposium on Theoretical Aspects of Computer Science (STACS °95), volume
900 of Lecture Notes in Computer Science, pages 193-204. Springer-Verlag, 1995.

Esteban Feuerstein and Alberto Marchetti-Spaccamela. Dynamic algorithms for
shortest paths in planar graphs. Theoretical Computer Science, 116:359-371,
1993.

Hillel Gazit and Gary L. Miller. A parallel algorithm for finding a separator in
planar graphs. In Proceedings of the 28th Symposium on Foundations of Com-
puter Science, pages 238-248, 1987.

Hillel Gazit and Gary L. Miller. An improved parallel algorithm that computes
the BF'S numbering of a directed graph. Information Processing Letters, 28:61—
65, 1988.

Michael T. Goodrich. Planar separators and parallel polygon triangulation. In
Proceedings of the 24th ACM Symposium on Theory of Computing, pages 507—
516, 1992.

Torben Hagerup. Planar depth-first search in O(logn) parallel time. SIAM
Journal on Computing, 19(4):678-704, August 1990.

M.V. Kameshwar and Abhiram Ranade. I/O-complexity of graph algorithms. In
10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

BIBLIOGRAPHY 133

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

Vijay Kumar and Eric J. Schwabe. Improved algorithms and data structures
for solving graph problems in external memory. In Proceedings of the 8th IEEE
Sumposium on Parallel and Distributed Computing, October 1996.

Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar
graphs. SIAM Journal on Applied Mathematics, 36(2):177-189, 1979.

Gary L. Miller. Finding small simple cycle separators for 2-connected planar
graphs. Journal of Computer and System Sciences, 32:265-279, 1986.

M.H. Nodine, M.T. Goodrich, and J.S. Vitter. Blocking for external graph search-
ing. Algorithmica, 16(2):181-214, August 1996.

M.H. Nodine and J.S. Vitter. Paradigms for optimal sorting with multiple disks.
In Proceedings of the 26th Hawaii International Conference on Systems Sciences,
January 1993.

Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. IEEE
Computer, 27(3):17-28, 1994.

Justin R. Smith. Parallel algorithms for depth-first searches I. planar graphs.
SIAM Journal on Computing, 15(3):814-830, August 1986.

Roberto Tamassia and Franco P. Preparata. Dynamic maintenance of planar
digraphs, with applications. Algorithmica, 5:509-527, 1990.

Roberto Tamassia and Jeffrey S. Vitter. Parallel transitive closure and point lo-
cation in planar structures. SIAM Journal on Computing, 20(4):708-725, August
1991.

Leslie G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103, August 1990.

J.S. Vitter and E.A.M. Shriver. Algorithms for parallel memory I: Two-level
memories. Algorithmica, 12(2-3):110-147, 1994.

BIBLIOGRAPHY 134

[36] J.S. Vitter and E.A.M. Shriver. Algorithms for parallel memory II: Hierarchical
multilevel memories. Algorithmica, 12(2-3):148-169, 1994.

