
I/O-Efficient Strong Connectivity and Depth-First Search
for Directed Planar Graphs

Lars Arge∗

Department of Computer Science
Duke University

Durham, NC 27708
USA

large@cs.duke.edu

Norbert Zeh†

Faculty of Computer Science
Dalhousie University
Halifax, NS B3H 2Y5

Canada
nzeh@cs.dal.ca

Abstract

We present the first I/O-efficient algorithms for the fol-
lowing fundamental problems on directed planar graphs:
finding the strongly connected components, finding a
simple-path2

3-separator, and computing a depth-first span-
ning (DFS) tree. Our algorithms for the first two prob-
lems performO(sort(N)) I/Os, where N= V + E and
sort(N) = Θ((N/B) logM/B(N/B)) is the number of I/Os re-
quired to sort N elements. The DFS-algorithm performs
O(sort(N) log(N/M)) I/Os, where M is the number of ele-
ments that fit into main memory.

1. Introduction

Recently, external-memory graph algorithms have re-
ceived considerable attention, because massive graphs arise
naturally in a number of applications such as web modeling
and geographic information systems (GIS). When working
with massive graphs, the I/O-communication, and not the
internal memory computation, is often the bottleneck. Effi-
cient external-memory (or I/O-efficient) algorithms can thus
lead to considerable runtime improvements.

Even though a large number of I/O-efficient graph algo-
rithms have been developed, a number of fundamental prob-
lems on general graphs remain open. For planar graphs, on
the other hand, significant progress has been made recently.
A large number of fundamental problems onundirectedpla-
nar graphs have been solved I/O-efficiently [3, 4, 7, 10, 14];

∗Supported in part by the National Science Foundation through ESS
grant EIA–9870734, RI grant EIA–9972879, CAREER grant CCR–
9984099, ITR grant EIA–0112849, and U.S.-Germany Cooperative Re-
search Program grant INT–0129182.

†Supported in part by the National Science Foundation through grant
CCR–9984099. This work was done while a postdoctoral fellowat Duke
University.

for directedplanar graphs, an important first step has been
taken with the recent development of an I/O-efficient al-
gorithm for topologically sorting planar directed acyclic
graphs (along with algorithms for a few other problems) [5].

In this paper, we develop the first I/O-efficient algo-
rithm for the fundamental problem of computing a depth-
first spanning tree of a planar directed graph. Even though
the algorithm is non-optimal, it constitutes a major im-
provement over previous (trivial) algorithms. To obtain
this algorithm, we develop I/O-optimal algorithms for com-
puting the strongly connected components of a planar di-
rected graph and for finding a simple-path2

3-separator of a
strongly connected planar graph. These algorithms may be
of independent interest. Our results are a big step towards
completely understanding the I/O-complexity of fundamen-
tal problems on planar graph.

I/O-Model and previous work. We work in the standard
two-level I/O-model with one (logical) disk [2]. This model
defines the following parameters:

N = number of vertices and edges in the graph
(N = V +E);

M = number of vertices/edges that fit into memory;

B = number of vertices/edges that fit into a disk block.

We assume that 2B2 ≤ M < N.1 An Input/Outputopera-
tion (or I/O for short) transfers one block of consecutive
elements between disk and internal memory. The mea-
sure of performance of an algorithm is the number of I/Os
it performs. The number of I/Os needed to readN con-
tiguous items from disk isΘ(scan(N)) = Θ(N/B). The
number of I/Os required to sortN items isΘ(sort(N)) =

1Often, it is assumed only that 2B≤M; but sometimes, as in this paper,
the very realistic assumption is made that the memory is large enough to
hold Ω(B2) elements.

Θ((N/B) logM/B(N/B)) [2]. For all realistic values ofN, B,
andM, scan(N) < sort(N) � N; so the difference in run-
ning time between an algorithm performingN I/Os and one
performing scan(N) or sort(N) I/Os is often substantial.

Despite considerable efforts, I/O-efficient algorithms for
many fundamental problems on general graphs have yet
to be discovered—see the surveys in [16, 17]. For ex-
ample, whileΩ(min{V,sort(V)}) (which is Ω(sort(V)) in
practice) is a lower bound for the I/O-complexity of most
graph problems [7], the best known algorithms for depth-
first search performΩ(V) I/Os [6, 7, 12]. As a result,
many algorithms have been developed for special classes
of graphs. For trees, for example,O(sort(N))-I/O algo-
rithms are known for BFS- and DFS-numbering, Euler tour
computation, expression tree evaluation, topological sort-
ing, and several other problems [6, 7]. Most fundamental
problems on planarundirectedgraphs also have been solved
in O(sort(N)) I/Os [3, 4, 7, 10, 14]. Most of these algo-
rithms exploit the existence of small separators for planar
graphs. More precisely, they use that for any planar graph
G and any integerh> 0, there exists a set ofO

(

N/
√

h
)

ver-
tices whose removal partitionsG into O(N/h) subgraphs of
size at mosth. Such a set of vertices can be computed in
O(sort(N)) I/Os [14].2 For planardirectedgraphs, Arge
et al. [5] recently took an important first step with the de-
velopment of an I/O-efficient algorithm for topologically
sorting planar directed acyclic graphs. To obtain this algo-
rithm, they also develop I/O-efficient shortest-path, breadth-
first search, and ear decomposition algorithms for planar
directed graphs, which in turn use the I/O-efficient planar
separator algorithm of [14]. In spite of these developments,
the internal-memory DFS-algorithm, which performsΩ(V)
I/Os, remained the best known algorithm for depth-first
search in planar directed graphs.

Many external-memory graph algorithms have been
obtained using ideas from the corresponding PRAM-
algorithms. In some cases, it is even possible to “simulate”
a PRAM-algorithm in a standard way and obtain an I/O-
efficient algorithm (the so-calledPRAM-simulation[7]).
Relevant to this paper, Kao [11] shows how an efficient al-
gorithm for planar strong connectivity can be used in ef-
ficient PRAM-algorithms for computing a simple-path2

3-
separator for a planar directed graphG (that is, a simple di-
rected pathSso that every strongly connected component in
G−Shas size at most23N) as well as for computing a DFS-
tree ofG. However, direct simulation of these algorithms,
even given an I/O-efficient strong connectivity algorithm,
does not lead to I/O-efficient algorithms.

Our results. In this paper, we develop the first I/O-
efficient algorithm for computing a depth-first spanning

2The algorithm as described in [14] requires thatM ≥ B2 log2 B, but a
simple improvement reduces this requirement toM ≥ 2B2.

tree of a planar directed graph. The algorithm performs
O(sort(N) log(N/M)) I/Os, which is a major improvement
over theΩ(N) I/O-bound of previous (trivial) algorithms.
To obtain this algorithm, we developO(sort(N))-I/O algo-
rithms for computing the strongly connected components
of a planar directed graph and for finding a simple-path2

3-
separator of a strongly connected planar graph. These al-
gorithms are optimal and may be of independent interest.
Our algorithms utilize a host of I/O-efficient algorithms and
techniques previously developed for planar graphs.

Our strong connectivity algorithm for planar directed
graphs, presented in Section 2, computes a small vertex sep-
arator of the given graphG and derives a compressed ver-
sion Gc of G from the resulting separator decomposition.
Using a modified and I/O-efficient version of the internal-
memory strong connectivity algorithm of [8, Chapter 25],
it identifies the strongly connected components ofGc and
then uses this information to identify the strongly connected
components ofG.

Our algorithm for computing a simple-path23-separator
of a strongly connected planar graph is presented in Sec-
tion 3. It uses ideas from Kao’s PRAM-algorithm for the
same problem [11]. However, the central computation of
the algorithm is carried out in a novel and non-trivial man-
ner that exploits the sequential nature of the I/O-model.

Finally, in Section 4, we present our DFS-algorithm
for directed planar graphs. The algorithm performs
O(sort(N) log(N/M)) I/Os. It is based on a recursive parti-
tion of the graph into smaller subgraphs. At the bottom of
this recursion are the strongly connected components of the
graph. We perform DFS in these components using ideas
from the PRAM-algorithm of [11].

2. Strong Connectivity

Our algorithm for computing the strongly connected
components of a planar directed graphG = (V,E) relies on
our ability to compute small separators of planar graphs I/O-
efficiently. More precisely, we use theO(sort(N))-I/O algo-
rithm by Maheshwari and Zeh [14] to compute a setS⊆V
of O(N/B) vertices, called aseparator, whose removal par-
titions G into O

(

N/B2
)

subgraphsG1, . . . ,Gk with the fol-
lowing properties: (1) Every graphGi has size at mostB2.
(2) For every graphGi , the set∂Gi of separator vertices ad-
jacent to vertices inGi has size at mostB. We call this set
theboundaryof Gi . (3) The partition hasO

(

N/B2
)

bound-
ary sets, defined as the maximal subsets of the separatorSso
that the vertices in each subset are adjacent to the same set
of subgraphsGi [9]. To guarantee that a partition with the
last property exists, we have to assume thatG has bounded
degree; more precisely, we assume thatGhas degree at most
three. This is not a restriction because it is easy to reduce the
computation of the strongly connected components of any

(a) (b)

LF U

1 2 11

12

13 14
15

16
17

18

S V A

1
2
13
14
18

1
2
11
12
13
14
15
16
17
18

Figure 1. (a) The partition of the strongly connected compon ents of G’ into three sets F (finished),
L (live), and U (untouched). (b) The three stacks representi ng the strongly connected components
in L and their unexplored out-edges.

planar graph of sizeN to the computation of the strongly
connected components of another planar graph of degree at
most three and sizeO(N).

From the above partition ofG, we construct a graphGc

that encodes the reachability between the vertices inSsuc-
cinctly. GraphGc has vertex setS; the edge set ofGc is de-
fined so that two separator vertices are in the same strongly
connected component ofG if and only if this is true inGc.
To achieve this, we add an edge(v,w) to graphGc if and
only if this edge exists inG or v andw are on the bound-
ary ∂Gi of the same subgraphGi and there is a directed
path fromv to w in the subgraphRi of G induced by the
vertices inV(Gi) ∪ ∂Gi . GraphGc hasO(N/B) vertices
andO

(

N/B2 ·B2
)

= O(N) edges. SinceM ≥ 2B2 ≥ |Ri |,
for all 1 ≤ i ≤ k, the construction ofGc can be carried
out by loading graphsR1, . . . ,Rk into memory, one at a
time, and adding the appropriate edges toGc. This takes
O(N/B) I/Os.

Below we argue that the strongly connected components
of Gc can be computed inO(sort(N)) I/Os. In the full pa-
per, we show that the strongly connected components ofG
can be derived from the strongly connected components of
graphsGc andR1, . . . ,Rk. We also show that this can be
done by loading each graphRi into memory for a second
time and finishing the computation in main memory. Hence,
this takes anotherO(N/B) I/Os. By putting the three steps
together, we obtain the following result.

Theorem 1 The strongly connected components of a pla-
nar directed graph G with N vertices can be computed in
O(sort(N)) I/Os.

In the remainder of this section, we argue that a modified
version of the internal-memory algorithm of [8, Chapter 25]
can be used to compute the strongly connected components
of the compressed graphGc in O(sort(N)) I/Os. We explore
the edges ofGc in a depth-first manner and maintain the

strongly connected components of the graphG′ = (S,E′),
whereE′ is the set of edges that have been explored so far.
The current set of strongly connected components is parti-
tioned into three setsF , L, andU (see Figure 1a). The com-
ponents inF arefinished; that is, they are in fact strongly
connected components ofG. The components inL arelive,
meaning that they are potentially part of larger strongly con-
nected components ofG. We maintain the invariant that the
componentsC1, . . . ,Cq in L form a “path of strongly con-
nected components”; that is, for 1< i ≤ q, graphG′ con-
tains an edge(v,w) with v ∈ Ci−1 andw ∈ Ci . Finally, the
setU contains all isolated vertices ofG′. These vertices are
untouchedin the sense that no edges incident to them have
been explored up to this point.

Given the current setsF , L, andU , we choose an out-
edge(v,w) of the last componentCq in L (that is,v ∈ Cq)
as the next edge to be explored. Depending on the “loca-
tion” of vertexw, we update the current set of components
of G′: If w∈U , we add a new strongly connected compo-
nentCq+1 = ({w}, /0) to L and removew fromU . If w∈ Cq

or w∈ C ′, for some componentC ′ ∈ F , we take no further
action, since the addition of edge(v,w) to G′ does not create
or merge any strongly connected components. Ifw∈ Ci , for
i < q, we merge componentsCi, . . . ,Cq into a larger strongly
connected componentC ′

i . Finally, if componentCq does not
have any unexplored out-edges, we move it toF , as it can-
not be merged with any other strongly connected compo-
nents (because all unexplored edges with endpoints inCq

are in-edges ofCq). The correctness of the algorithm is eas-
ily established [8, Chapter 25].

In order to carry out the above algorithm I/O-efficiently,
we preprocessGc as follows: First we arrange the vertex set
Sof Gc so that the vertices in each boundary set are stored
consecutively. We also sort the adjacency list of every ver-
tex so that edges whose targets are in the same boundary set
are stored consecutively. This takesO(sort(N)) I/Os. Dur-

ing the algorithm, we label every vertex as belonging toF ,
L, orU ; initially, every vertex belongs toU . When moving
a vertexv from U to L, we time-stamp it. When movingv
from L to F as part of a finished component, we assign a la-
bel tov that identifies this component. We represent the live
componentsC1, . . . ,Cq using three stacksV , A , andS (see
Figure 1b). StackV stores all live vertices in their order of
discovery, that is, by increasing time stamps. StackA stores
their adjacency lists in the same order. Due to the prepro-
cessing, the out-edges of a vertexv∈ V that are stored onA
are ordered by the boundary sets containing their target ver-
tices. This defines a natural partition ofA into sequences of
edges whose targets are in the same boundary set. We call
these sequencesA1, . . . ,As stack segmentsand maintain the
invariant that all edges(v,w) in the last stack segmentAs

store the correct labels of their target verticesw∈ S; that is,
we do not need to accessw to determine whether it is inF ,
L, or U . We call this thestack segment invariant. Finally,
stackS stores one entry per component. The entry for com-
ponentCi “points” to the first vertex inCi on stackV , by
storing its time stamp.

Using the above representation of graphGc and its live
components, we perform the computation of the algorithm
as follows: Let(v,w) be the topmost edge on stackA . If
v is not in the last componentCq of L—that is, its time
stamptv is smaller than the time stamptq of the topmost
entry on stackS—componentCq is finished and has to be
moved toF . To do this, we perform the following com-
putation until the time stamptu of the topmost vertexu on
stackV is less thantq: We removeu from stackV , change
its label totq, and mark it as finished. Whentu < tq, we
are done labeling the vertices ofCq; so we removetq from
stackS . We repeat this procedure, moving finished com-
ponents toF , until the topmost entry on stackS has a time
stamp less than or equal totv. Now that v is in the last
componentCq of L, we proceed as follows: If vertexw is
finished, we discard edge(v,w). If w is in U , we mark it
as live, time-stamp it, and push it ontoV . We also push
the edges in the adjacency list ofw onto stackA and a new
entry withw’s time stamp onto stackS . If w is live and has
time stamptw, it is contained in some live componentCi .
We achieve the required merging of componentsCi , . . . ,Cq

by removing all entries from the top of stackS whose time
stamps are greater thantw.

In addition to maintaining the connected components
of G′ = (V,E′) after adding edge(v,w) to E′, we have to
guarantee that the stack segment invariant remains valid.
This invariant may be violated in three different ways by
the above procedure for processing the current edge(v,w):
(1) Target vertices of edges in the topmost segment of stack
A may become finished as the result of moving components
from L to F . (2) When moving a vertexx from U to L, its
adjacency list is pushed ontoA ; so a new segment becomes

the topmost stack segment. (3) Edge(v,w) was the last edge
in the current stack segment. In either of these cases, we re-
establish the invariant by loading the topmost segment of
stackA and the corresponding boundary set ofS into mem-
ory, updating the labels of the edges in the topmost stack
segment, and writing this segment back toA . This takes
O(1) I/Os, because every segment and every boundary set
has size at mostB and the vertices of every boundary set are
stored consecutively on disk.

To analyze the I/O-complexity of our algorithm, we first
count the number of I/Os we spend on maintaining the stack
segment invariant. As we have just argued, we spendO(1)
I/Os to re-establish the invariant whenever a vertex becomes
live or finished and when the last entry of a stack segment
is removed fromA . Both events occur onlyO(N/B) times.
For the former, this is obvious, because each of theO(N/B)
vertices inS becomes live and is finished only once. To
see that the latter happens onlyO(N/B) times, observe that
every vertex inS has degree at most 3B in Gc (becauseG
has degree at most three) and, hence, every boundary set
of the partition can give rise to onlyO(B) stack segments.
Since there areO

(

N/B2
)

boundary sets, this implies that
there are onlyO(N/B) stack segments. This shows that
we spendO(N/B) I/Os in total on maintaining the stack
segment invariant. Besides that, we spendO(N/B) I/Os
on stack operations, because each of theO(N/B) vertices
andO(N) edges is pushed onto and popped from a stack
exactly once, and one stack operation takesO(1/B) I/Os
amortized. We touch every vertex inS twice, once when
it becomes live and again when it becomes finished. This
takesO(1) I/Os per vertex,O(N/B) I/Os in total. Finally,
we spendO(N/B+ scan(N)) = O(N/B) I/Os on copying
the adjacency lists of all vertices to stackA . Including the
preprocessing, our algorithm hence takesO(sort(N)) I/Os
to compute the strongly connected components ofGc.

3. Finding a Directed Path Separator

Kao [11] shows that every strongly connected planar
graph has a simple-path23-separator, that is, a simple di-
rected pathS starting at a specified vertexs so that no
strongly connected component ofG−Shas size more than
2
3N. Our algorithm for computing such a separator uses
ideas of Kao’s parallel algorithm for this problem [11]; but,
in order to obtain anO(sort(N))-I/O algorithm, we exploit
the sequential nature of the I/O-model and present a novel
and non-trivial way to carry out the central computation of
Kao’s algorithm.

The high-level description of the algorithm is as follows:
First we use the shortest path algorithm of [5] to compute,
in O(sort(N)) I/Os, a directed spanning treeT of G rooted
at s. Every edgee of G that is not an edge ofT defines a
fundamental cycleconsisting of edgeeand the (undirected)

(a) (b) (c)s
P0

P′

1
P2

s′

s

xa

yb

s

xa

yb

Figure 2. The three steps of finding a simple-path separator: (a) Find a 2
3 -separating fundamental

cycle in a directed spanning tree of G. (None of the strongly c onnected components has size more
than 2

3N.) (b) Find minimal subpaths of the two paths computed in Ste p (a) so that these two paths
still form a 2

3 -separator. (c) Join these two paths using a simple path from the sink of the first path
to the source of the second path.

path inT connecting the two endpoints ofe. If G is trian-
gulated, at least one of these cycles has the property that at
most 2

3N vertices are either inside or outside the cycle [13].
We triangulateG, using an algorithm of [10], and use an
I/O-efficient version of Lipton and Tarjan’s algorithm [13],
presented in [10], to find such a cycle in the resulting graph
(see Figure 2a); this takesO(sort(N)) I/Os. The computed
cycle consists of edgee and two pathsP′

1 andP2 in T from
a vertexs′ to the two endpoints ofe. Let P0 be the path
in T from s to s′. Note that, even though the fundamental
cycle induced by edgee may no exist inG (because edgee
may not be inG), pathsP0, P′

1, andP2 exist in G (because
T ⊆G). We use the strong connectivity algorithm from Sec-
tion 2 to test, inO(sort(N)) I/Os, whetherP0∪P′

1 or P0∪P2

is a 2
3-separator ofG, that is, whether all strongly connected

components ofG− (P0∪P′
1) or G− (P0∪P2) have weight

at most23N. If one of these paths is a23-separator, we report
it as the desired separatorS; otherwise, letP1 = P0∪P′

1.

Let P1 = (s = x0, . . . ,xq) and P2 = (y0, . . . ,yr). Since
P0◦P2 is not a2

3-separator, there exists a vertexxa ∈ P′
1 so

that(x0, . . . ,xa)∪P2 is a 2
3-separator, but(x0, . . . ,xa−1)∪P2

is not. Similarly, there exists a vertexyb ∈ P2 so that
(x0, . . . ,xa)∪ (yb, . . . ,yr) is a 2

3-separator, but(x0, . . . ,xa)∪
(yb+1, . . . ,yr) is not (see Figure 2b). Below we argue
that these two vertices can be found inO(sort(N)) I/Os.
Kao [11] shows that there exists a simple pathP′ from
xa to yb in G− ((x0, . . . ,xa−1)∪ (yb+1, . . . ,yr)). We com-
pute such a pathP′ and report the pathS= (x0, . . . ,xa)∪
P′∪ (yb, . . . ,yr) as the desired simple-path23-separator (see
Figure 2c); the computation ofP′ can be carried out
in O(sort(N)) I/Os by using the shortest-path algorithm
of [5] to compute a directed spanning treeT ′ of G−
((x0, . . . ,xa−1)∪ (yb+1, . . . ,yr)) rooted atxa and then apply-
ing standard tree computations to extract the path fromxa

to yb in T ′. Since all parts of the algorithm can be carried

out in O(sort(N)) I/Os, we obtain the following theorem.

Theorem 2 For any strongly connected planar graph G
with N vertices and any vertex s∈ G, a simple path2

3-
separator of G rooted at s can be found inO(sort(N)) I/Os.

We have to show how to compute verticesxa andyb. We
find both vertices in a similar manner; so we describe only
the computation of vertexxa: We start by computing the
strongly connected components ofG− (P1 ∪P2) and con-
tracting each such componentC into a single vertexv of
weightω(v) = |C |. All vertices inP1∪P2 have weight one.
Let G′ be the resulting graph. The weight of a subgraph
of G′ is the total weight of its vertices. Vertexxa is now
the vertex inP1 so that no strongly connected component
of G′ − ((x0, . . . ,xa))∪P2) hasweight exceeding2

3N, but
graphG′− ((x0, . . . ,xa−1)∪P2) contains such a component.
Let G′′ = G′−P2.

The goal of our algorithm is to walk along pathP1, from
xq to x0, and find the first vertexxa so that one strongly con-
nected component ofG′′ − (x0, . . . ,xa−1) has weight more
than 2

3N. Sincexa is the first such vertex, this component
does in fact containxa. Hence, it suffices to compute, for
every visited vertexxi , the weight of the strongly connected
componentCi of G′′− (x0, . . . ,xi−1) that containsxi .

To perform this computation efficiently, we first charac-
terize the set of vertices inCi. First observe that every de-
scendant ofxi in P1 that can reachxi in G′′−(x0, . . . ,xi−1) is
in Ci. Let P-LOW(xi) be the lowest such descendant ofxi .3

Then componentCi contains verticesxi , . . . ,P-LOW(xi) but
no ancestor ofxi or descendant of P-LOW(xi) in P1. To

3We define the lowest or highest vertex with a certain propertyto be
the vertex with this property that is furthest away froms or closest tos,
respectively (see Figure 3); but we compare vertices and compute minima
and maxima of verticesxi w.r.t. their indicesi.

(a) (b) (c)

v

D-HIGH(v)

LD-LOW(v)

A-LOW(v)

P1

s

I-LOW(v)
= CYC(v)

RD-LOW(v)
= D-LOW(v)

v

P1

RR-HIGH(v)

RR-LOW(v)

A-LOW(v)

RD-LOW(v)

s

v

P1

wxi
x j

xk

s

Figure 3. Figures (a) and (b) illustrate the definitions of im portant vertices on path P 1. Figure (c)
illustrates the concept of left- and right-attachment and l eft- and right-reachability: Vertex v is left-
attached; vertex w is right-attached. Vertex x i is left-reachable from v; vertex x j is right-reachable
from v; and vertex x k is both.

identify the set of vertices inG′′−P1 that are inCi , we de-
fine a vertex CYC(v), for everyv∈ G′′−P1: CYC(v) is the
lowest vertexxh ∈ P1 so that there exists a directed cycle
in G′′ − (x0, . . . ,xh−1) that contains bothv andxh. In the
full paper, we show thatv∈ Ci if and only if CYC(v) ∈ Ci .
Thus, we can characterize componentCi using the follow-
ing lemma.

Lemma 1 A vertex v∈ G′′ is in Ci if and only if (i) v∈
P1 and xi ≤ v ≤ P-LOW(xi) or (ii) v ∈ G′′ −P1 and xi ≤
CYC(v) ≤ P-LOW(xi).

By Lemma 1, we can find vertexxa using the follow-
ing simple algorithm, once vertices CYC(v), v ∈ G′′ −P1,
and P-LOW(xi), xi ∈ P1, are given: We modify the weight
of every vertexxi ∈ P1 so that it represents the total weight
of xi and all verticesv∈ G′′−P1 so that CYC(v) = xi ; that
is, we computeω(xi) = 1+ ∑xi=CYC(v) ω(v). This can be
done by sorting and scanning the vertex set ofG′′. Next
we scan verticesxq, . . . ,x0 and maintain an initially empty
stackS that stores the weights of the strongly connected
components of the current graphG′′− (x0, . . . ,xi−1) that in-
clude vertices inP1. For every vertexxi , we perform the
following computation: While the vertexx j on the top of
stackS is an ancestor of P-LOW(xi), we removex j from S

and addω(x j) to ω(xi). Whenx j is a proper descendant of
P-LOW(xi), or S is empty, we check whetherω(xi) > 2

3N.
If so, we reportxa = xi ; otherwise, we pushxi onto S and
proceed toxi−1. This requiresO(q) = O(N) stack opera-
tions and hence takesO(N/B) I/Os.

We have to show how to compute vertices CYC(v), v ∈
G′′−P1, and P-LOW(xi), xi ∈ P1, in O(sort(N)) I/Os. First,
let us characterize these vertices (see Figure 3a). Since ver-
tex CYC(v) = xi can reachv in G′′− (x0, . . . ,xi−1), CYC(v)
has to be an ancestor of the lowest vertex A-LOW(v)∈P1 so

that there exists a path from A-LOW(v) to v in G′′ that has
no internal vertex inP1. We call such a path adirect path
from A-LOW(v) to xi and say that A-LOW(v) can reachv
directly. Since every ancestorxi of A-L OW(v) can reach
v in G′′ − (x0, . . . ,xi−1), CYC(v) can be characterized as
the lowest ancestorxi of A-L OW(v) so that there exists a
path fromv to xi in G′′ − (x0, . . . ,xi−1); this path may or
may not be direct. Let D-LOW(v) be the lowest ancestor of
A-L OW(v) that can be reached directly fromv. If CYC(v)
is a descendant of D-LOW(v), there has to be a pathP from
v to CYC(v) whose internal vertices that are inP1 are de-
scendants of A-LOW(v). Let D-HIGH(v) be the highest de-
scendant of A-LOW(v) that can be reached directly fromv,
and let I-LOW(v) be the lowest ancestor of A-LOW(v)
that can be reached from D-HIGH(v) through a path all of
whose internal vertices inP1 are descendants of I-LOW(v);
that is, I-LOW(v) is the lowest ancestorxi of A-L OW(v)
so that P-LOW(xi) is a descendant of D-HIGH(v). Then
CYC(v) = max(D-LOW(v), I-L OW(v)).

After extending the above definition of A-LOW(v) to
vertices v ∈ P1, the following lemma, which we prove
in the full paper, provides the characterization of vertex
P-LOW(xi), for everyxi ∈ P1.

Lemma 2 For every vertex xi ∈ P1, let xj be the vertex in
(xi+1, . . . ,A-L OW(xi)) so that A-L OW(x j) is maximized.
ThenP-LOW(xi) = max(A-L OW(xi),P-LOW(x j)).

In the rest of this section, we argue that ver-
tices P-LOW(xi), xi ∈ P1, and A-LOW(v), D-LOW(v),
I-L OW(v), and D-HIGH(v), for all v∈G′′−P1, can be com-
puted I/O-efficiently. Vertices CYC(v), for all v∈ G′′−P1,
can then be found in a single scan of the vertex set ofG′′.

Finding A-L OW(v). Note that graphG′′ − P1 is a pla-
nar DAG. We extend this DAG to a DAGG1 by adding
the vertices inP1 and their out-edges toG′′ −P1. For ev-
ery vertexv ∈ G′′ −P1, A-L OW(v) is the maximal vertex
xi that can reachv in G1. This vertex can be found, for all
v∈ G′′−P1, by processingG1 from the sources towards the
sinks. The sources forward their own identities to their out-
neighbors; every non-source vertexv chooses A-LOW(v)
as the maximal vertex received from its in-neighbors and
forwards A-LOW(v) to its out-neighbors. Using the time-
forward processing technique of [7], this computation can
be carried out inO(sort(N)) I/Os. (Details appear in the
full paper.) The application of this technique requiresG1 to
be topologically sorted; sinceG1 is planar, this can be done
in O(sort(N)) I/Os [5].

For everyxi ∈ P1, we compute vertex A-LOW(xi) as the
maximum of vertices A-LOW(v), wherev iterates over the
in-neighbors ofxi in G′′−P1. This computation can be car-
ried out, for all vertices inP1, by sorting and scanning the
vertex and edge sets ofG′′ and hence takesO(sort(N)) I/Os.

Finding P-L OW(xi). To compute P-LOW(xi), for every
xi ∈ P1, we find the vertexx j i in (xi+1, . . . ,A-L OW(xi)) so
that A-LOW(x j i) is maximized. This reduces to a range-
maxima query over the point set(x j ,A-L OW(x j)), x j ∈ P1,
with query intervalIxi = (xi ,A-L OW(xi)]; that is, we find
the point with largesty-coordinate whosex-coordinate is in
the intervalIxi . As shown in [7], these queries can be an-
swered inO(sort(N)) I/Os, for allv∈ P1. Now we define a
rooted forestF by making every vertexxi the child of ver-
tex x j i . We processF from the root towards the leaves, us-
ing standard tree computations, and compute, for every ver-
tex xi , P-LOW(xi) = max(A-L OW(xi),P-LOW(x j i)). This
takes anotherO(sort(N)) I/Os.

Finding D-L OW(v) and D-HIGH (v). The computations
of D-LOW(v) and D-HIGH(v) are similar; so we describe
only the computation of D-LOW(v). For every vertex
v ∈ G′′−P1 so that A-LOW(v) exists, we fix a direct path
Pv from A-LOW(v) to v. We call v left- or right-attached
(to P1) if path Pv leavesP1 to the left or right, respectively
(see Figure 3c). We call a vertexxi ∈ P1 that can be reached
directly fromv left-or right-reachablefrom v if there exists
a direct path fromv to xi that entersP1 from the left or right,
respectively.

We compute, for every vertexv ∈ G′′ −P1, the lowest
ancestors LD-LOW(v) and RD-LOW(v) of A-L OW(v) that
are left or right-reachable fromv, respectively (see Fig-
ure 3a). Clearly, D-LOW(v) is the lower of LD-LOW(v)
and RD-LOW(v). We deal with left- and right-attached ver-
tices separately. Since the computations are similar, we de-
scribe only how to compute LD-LOW(v) and RD-LOW(v)
for every left-attached vertexv.

LetVL be the set of left-attached vertices. If LD-LOW(v)
exists, for a vertexv ∈ VL, it can be reached by walking
alongPv from A-LOW(v) to v and then choosing the “most
clockwise” path back toP1. More precisely, at every vertex
y on the path fromv back toP1, let x be the predecessor ofy
on the path; then the next vertexzon the path is the vertex so
that edge(y,z) is the first edge after(x,y) in counterclock-
wise order aroundy so thatz can reach a vertex inP1.

Based on this observation, we can find LD-LOW(v), for
all v ∈ VL, as follows: We construct a DAGG2 that is ob-
tained by changing the directions of all edges inG′′ and then
removing all edges whose targets are inP1 or that leaveP1

to the right. For every sourcev∈ P1 of DAG G2, we define
LD-L OW(v) = v. For all sources inG′′−P1, LD-L OW(v) is
not defined. Now we process DAGG2 from the sources to
the sinks and perform the following computation, for every
vertex: Every sourcev forwards its own value LD-LOW(v)
to all its out-neighbors. For every non-source vertexv,
let u be the out-neighbor ofv in G2 that precedesv in Pv.
Then LD-LOW(v) is chosen as the label received along the
first edge(x,v) after edge(v,u) in counterclockwise order
aroundv so that there is a label being sent along edge(x,v).
(Some edges do not carry any label.) Similarly, for every
out-edge(v,w) of v, the label sent tow is chosen as the la-
bel received along the first edge(x,v) after edge(v,w) in
counterclockwise order aroundv so that there is a label be-
ing sent along edge(x,v). To carry out this computation
in O(sort(N)) I/Os, we topologically sortG2 and apply the
time-forward processing technique of [7]. (Details appear
in the full paper.)

To find RD-LOW(v), for all v ∈ VL, we make the fol-
lowing observation: LetVR be the set of vertices that are
right-reachable from vertices inVL, and let RR-LOW(v)
and RR-HIGH(v) be the lowest and highest vertices that are
right-reachable from a vertexv∈VL (see Figure 3b). Then
every vertex inVR that is a descendant of RR-HIGH(v) and
an ancestor of RR-LOW(v) is right-reachable fromv. In the
full paper, we formally prove this fact; intuitively, this fol-
lows from the planarity ofG′′. The following lemma is an
immediate consequence of this observation.

Lemma 3 RD-LOW(v) = max{w ∈ VR : RR-HIGH(v) ≤
w≤ min(RR-LOW(v),A-L OW(v))}.

Using this lemma, finding vertices RD-LOW(v) trans-
lates into a set of range-maxima queries with query intervals
Iv = [RR-HIGH(v),min(RR-LOW(v),A-L OW(v))], for all
v ∈ G′′ −P1, over the point set{(xi ,xi) : xi ∈ VR}. As ar-
gued before, these queries can be answered inO(sort(N))
I/Os [7]. The computation of vertices RR-HIGH(v) and
RR-LOW(v), for all v ∈ VL, is similar to the computation
of vertices A-LOW(v), for all v∈ G′′−P1.

Finding I-L OW(v). To compute I-LOW(v), for all v ∈
G′′−P1, we represent every vertexv∈ G′′−P1 as an inter-
val Iv = [A-L OW(v),D-HIGH(v)] and every vertexxi ∈ P1

as an intervalJxi = [xi ,P-LOW(xi)]. From the definition of
I-L OW(v), we obtain that I-LOW(v) = max{xi ∈ P1 : Iv ⊆
Jxi}. We sort the intervals by their left endpoints, in decreas-
ing order, and scan the list of intervals to simulate a sweep
from +∞ to −∞. When the sweep passes the left endpoint
of an intervalIv = [xi ,x j], we insertv into a priority queue
Q and give it priority j. When the sweep passes the left
endpoint of an intervalJxi = [xi ,x j], we use a sequence of
DELETEM IN operations to remove all vertices of priority at
most j from Q and report I-LOW(v) = xi , for each such ver-
tex. For every vertexv that remains inQ at the end of the
sweep, I-LOW(v) does not exist. This computation requires
sorting and scanning the set of intervals and involvesO(N)
priority queue operations. Using the priority queue of [1],
this takesO(sort(N)) I/Os.

4. Depth-First Search

In this section, we present an algorithm that constructs
a DFS-tree of a planar graphG in O(sort(N) log(N/M))
I/Os. More precisely, the algorithm constructs a spanning
treeT of G that can be obtained by performing a depth-first
traversal ofG and adding an edge(v,w) to T whenever the
algorithm follows edge(v,w). For an undirected graphG, a
DFS-treeT of G is any spanning tree so that graphG does
not contain any cross edges w.r.t.T; that is, there is no edge
(v,w) ∈ G so that neitherv norw is an ancestor of the other
in T. Any depth-first traversal ofT is a depth-first traversal
of G. For directed graphs, a DFS-tree may contain cross
edges, and not every depth-first traversal of a DFS-tree is a
depth-first traversal ofG. In particular, ifν is the postorder
numbering ofT defined by the traversal, then the traversal
is a depth-first traversal ofG if and only if ν(v) > ν(w),
for every cross edge(v,w). Hence, we require that a di-
rected DFS-algorithm constructsT along with a postorder
numberingν that has the above property. We call(T,ν) a
DFS-pair of G. We call a pair(T ′,ν′), whereT ′ is a sub-
tree ofG, apartial DFS-pairof G if it is a DFS-pair for the
subgraphG′ of G induced by the vertices inT ′. Theanchor
σ(v) of a vertexv∈G−T ′ is the vertexu∈ T ′ with minimal
numberν′(u) so that there is a path fromu to v in G that has
no internal vertex inT ′.

4.1. Arbitrary Directed Planar Graphs

The general idea of our algorithm for computing a DFS-
pair of a planar directed graphG is to number and sort the
strongly connected componentsC1, . . . ,Cq of G so that no
vertex inCi can reach a vertex inC j , for j < i. (In a sense,
we “topologically sort” the strongly connected components

of G.) We assume that the sources of the DFS is con-
tained in componentC1, because otherwise no vertex inC1

is reachable froms. Now we process componentsC1, . . . ,Cq

in topologically sorted order, compute a DFS-tree ofC1, and
augment it with appropriate DFS-trees of subsequent com-
ponents.

To obtain an I/O-efficient DFS-algorithm using this idea,
we cannot literally process componentsC1, . . . ,Cq one at a
time in their order of appearance; rather, we use a recur-
sive algorithm that partitions the components into two sets
C1, . . . ,Cp andCp+1, . . . ,Cq so that the components in both
sets contain approximately the same number of vertices. We
recursively compute a DFS-tree for the subgraph ofG in-
duced by the vertices in componentsC1, . . . ,Cp and then
augment it with DFS-trees of appropriate subgraphs of the
graph induced by the vertices in componentsCp+1, . . . ,Cq.

The details of our algorithm are as follows: If|G| ≤
M, we loadG into internal memory and compute a DFS-
pair (T,ν) of G using the internal-memory DFS-algorithm.
If |G| > M, but G is strongly connected, we show in
Section 4.2 that a DFS-pair ofG can be computed in
O(sort(N) log(N/M)) I/Os. If neither of these two cases
applies, we spendO(sort(N)) I/Os to compute the strongly
connected componentsC1, . . . ,Cq of G, using the strong
connectivity algorithm from Section 2. We construct a pla-
nar DAGG′ by contracting every componentCi into a sin-
gle vertexvi and spendO(sort(N)) I/Os to topologically
sort G′, using the algorithm of [5]. Now we arrange the
strongly connected components ofG in the same order as
their corresponding vertices in the topological order ofG′.
Assume w.l.o.g. thatC1, . . . ,Cq is the order of the strongly
connected components ofG at the end of this computation.
We scan componentsC1, . . . ,Cq and find the indexp so that
the difference between the sizes of graphsC1∪·· ·∪Cp and
Cp+1∪ ·· · ∪Cq is minimized. We denote the vertex set of
componentsC1, . . . ,Cp by V1 and the vertex set of compo-
nentsCp+1, . . . ,Cq by V2. Let G1 andG2 be the subgraphs
of G induced by the vertices inV1 andV2, and letẼ be the
set of edges connecting vertices inG1 with vertices inG2.
We also split graphG′ into the two subgraphsG′

1 andG′
2

induced by verticesv1, . . . ,vp andvp+1, . . . ,vq, respectively.
In total, the partition ofG into graphsG1 andG2 and edge
setẼ, as well as the partition ofG′ into subgraphsG′

1 and
G′

2, can be obtained inO(sort(N)) I/Os.

Now we use graphsG1 andG′
1 to recursively compute

a DFS-pair(T1,ν1) of G1. In order to augment(T1,ν1) to
a DFS-pair ofG, we partition graphG2 into so-calleddan-
gling subgraphs Gv, defined below, for the target verticesv
of the edges iñE. For every non-empty graphGv, we recur-
sively compute a DFS-pair(Tv,νv) and joinTv to T1 using
edge(σ(v),v), whereσ(v) is the anchor ofv. In the full pa-
per, we show how to derive the final postorder numberingν
of the resulting treeT.

To make sure that treeT is a DFS-tree ofG, we define the
dangling subgraphs as follows: Let the edgese1, . . . ,ek in Ẽ
be sorted by increasing postorder numbers of their sources.
A DFS-traversal ofG that is consistent with the partial DFS-
pair(T1,ν1) computed forG1 explores the edges iñE in this
order. Hence, we add a vertexw ∈ G2 to a dangling sub-
graphGv if v is the target of the first edge(u,v) in this order
so thatv can reachw in G2. Intuitively, the DFS would ex-
plore all vertices reachable from the target of the first edge
(that is, the vertices in the first dangling subgraph). Then
it would backtrack, explore the vertices reachable from the
target of the next edge, and so on.

Since the computation of DFS-pairs(T1,ν1) and(Tv,νv),
for the dangling subgraphsGv, is carried out recursively, all
that remains to be described is the computation of the dan-
gling subgraphs: First we sort and scan the vertex set of
componentsCp+1, . . . ,Cq and the edge set̃E to find, for ev-
ery componentCi ∈ G2, the first edgeeλ(i) ∈ Ẽ whose target
is in Ci , if any. Now we spendO(sort(N)) I/Os to topolog-
ically sort DAGG′

2 and process its vertices in topologically
sorted order to compute, for every vertexvi ∈ G′

2, the vertex
vρ(i) that can reachvi in G′

2 and so thatλ(ρ(i)) is minimized.
We sort the strongly connected components ofG2 by the la-
belsρ(i) of their corresponding verticesvi ∈ G′

2 and define
the dangling subgraphGv, for the targetv of an edgeeλ(i),
to be the subgraph ofG2 induced by the vertices in all com-
ponentsC j with ρ(j) = i. This takes anotherO(sort(N))
I/Os.

The correctness of this construction follows from the fol-
lowing two facts: (1) A vertexvi ∈ G′

2 can reach a vertex
v j ∈ G′

2 if and only if all verticesv ∈ Ci can reach all ver-
ticesw∈ C j . (2) All vertices of a componentCi are in the
same dangling subgraph.

From the above discussion, we obtain that one recur-
sive step of our algorithm takesO(sort(N)) I/Os, so that
the I/O-complexity of our algorithm is given by the recur-
renceI (N) = O(sort(N))+ I (|G1|)+ ∑Gv 6= /0 I (|Gv|). Now
recall that the recursion stops as soon as the current graph
fits into memory or is strongly connected. In the former
case, the computation can be finished inO(N′/B) I/Os,
whereN′ is the size of the current graph; below we show
that, in the latter case, the computation can be finished in
O(sort(N′) log(N′/M)) I/Os. If we recurse, then graphsG1

andG2 are of approximately the same size, unless one of
them contains a large strongly connected component. This
is sufficient to show the following theorem.

Theorem 3 Depth-first search in a planar graph G with N
vertices takesO(sort(N) log(N/M)) I/Os.

4.2. Strongly Connected and Bubble Graphs

To compute a DFS-treeT of a strongly connected planar
graphG rooted at a given vertexs, we follow ideas from the

parallel algorithm for this problem by Kao [11]. Kao’s al-
gorithm does in fact solve DFS in “bubble graphs”, defined
as follows: LetG be an embedded directed planar graph.
We call a strongly connected componentC of G a source
or sink componentif all edges with exactly one endpoint in
C are out-edges or in-edges ofC , respectively. GraphG is
a bubble graphif it has exactly one source component and
there is a facef of G so that every source or sink component
of G has at least one vertex on the boundary off .

In our algorithm, we treat strongly connected graphs
and bubble graphs differently, exploiting that we do not
need the full machinery for bubble graphs to perform DFS
in strongly connected graphs and then using the DFS-
algorithm for strongly connected graphs to deal with the
strongly connected components of bubble graphs less con-
servatively than Kao does. While this idea does not seem to
lead to an improvement of the running time of the PRAM-
algorithm, it saves a log-factor in the I/O-complexity of our
algorithm.

Strongly connected graphs. To perform DFS in a
strongly connected graph, we apply the algorithm from Sec-
tion 3 to compute a simple-path23-separatorS rooted at the
given source vertexs. We consider pathS to be a par-
tial DFS-tree ofG and compute the only possible postorder
numberingνS of S. Then(S,νS) is a partial DFS-pair ofG.
ComputingSandνS takesO(sort(N)) I/Os. Now we com-
pute dangling subgraphsGv, for all verticesv ∈ G−S that
are out-neighbors of vertices inS. These subgraphs are de-
fined w.r.t. (S,νS) in the same way as the dangling sub-
graphs of(T1,ν1) in Section 4.1. For each graphGv, we
compute a DFS-pair(Tv,νv) rooted atv and attachTv to S
using edge(σ(v),v). Similar to the algorithm in Section 4.1,
this produces a DFS-treeT of G; a postorder numberingν
so that(T,ν) is a DFS-pair is easily derived from number-
ingsνS andνv, for all graphsGv.

The two crucial observations are: (1) SinceS is a 2
3-

separator, no graphGv contains a strongly connected com-
ponent of size more than23N. (2) GraphsGv are bubble
graphs [11]. Hence, we can use the DFS-algorithm for bub-
ble graphs, outlined below, to compute DFS-pairs(Tv,νv),
for all graphsGv. The I/O-complexityIS(N) of our DFS-
algorithm for strongly connected planar graphs is there-
fore given by the following recurrence, whereIB(N,k) de-
notes the I/O-complexity of DFS in a bubble graph whose
strongly connected components have size at mostk:

IS(N) = O(sort(N))+ ∑Gv 6= /0 IB
(

|Gv|, 2
3N

)

Bubble graphs. To perform DFS in a bubble graphG,
where the sources of the DFS is contained in the source
component ofG, we start by computing asplitting compo-
nentof G, that is, a strongly connected componentC of G

so that every vertexv ∈ C can reach at leastN/2 vertices
of G, while no vertexw 6∈ C that is reachable from the ver-
tices inC can reachN/2 vertices. We use the shortest path
algorithm of [5] to compute a pathP from s to the first ver-
tex s′ in C , use the DFS-algorithm for strongly connected
planar graphs to compute a DFS-pair(TC ,νC) of C rooted
ats′, and derive a partial DFS-pair(T ′,ν′) with T ′ = P∪TC .
Then we compute the dangling subgraphsGv of T ′, com-
pute a DFS-pair(Tv,νv), for each dangling subgraphGv,
and attachTv to T ′ using edge(σ(v),v). Again, graphsGv

are bubble graphs [11], so that DFS-pairs(Tv,νv) can be
found by applying the algorithm recursively. The choice of
componentC ensures that no dangling subgraph has size
more thanN/2.

The central part of the algorithm is finding a splitting
componentC . We do this as in the parallel algorithm
of [11]: First we compress every strongly connected com-
ponentC of G into a single vertex of weight|C |. Our goal
now is to find a vertex in the resulting DAGG′ that can reach
vertices of total weight at leastN/2 and so that none of its
out-neighbors has this property. This task is trivial, once
we have computed the total weight of the vertices reachable
from every vertex inG′. The latter can be achieved using
the reachability counting algorithm of [15], after transform-
ing G′ into a planarst-graphG′′ by adding a new sinkt
of weight zero toG′ and adding an edge from every sink
of G′ to t. This is where it is important thatG is a bub-
ble graph, because it ensures that this construction does in-
deed produce a planarst-graph. The construction of graph
G′′ requires sorting and scanning the vertex and edge sets
of G′ in order to identify the sinks ofG′ and add an edge
from each such sink tot. The reachability counting algo-
rithm of [15] can be carried out inO(sort(N)) I/Os, using
the time-forward processing technique and standard range-
searching techniques. (Details appear in the full paper.)
Hence, the I/O-complexityIB(N,k) of the DFS-algorithm
for a bubble graph whose largest strongly connected com-
ponent has sizek is given by the following recurrence:

IB(N,k) ≤ O(sort(N))+ IS(k)+ ∑Gv 6= /0 IB(|Gv|, |Gv|),

where|Gv| ≤ N/2, for all Gv. Using substitution, we can
show now thatIS(N) ≤ c · sort(N)(4log3/2(N/M) − 1)

and IB(N,k) ≤ c · sort(N)(2log3/2

(

N/M) +

2log3/2

(

max
(

k, 2
3N

)

/M
))

, for some constantc > 0.
This proves the following theorem.

Theorem 4 DFS in a strongly connected planar graph G
with N vertices takesO(sort(N) log(N/M)) I/Os.

References

[1] The buffer tree: A technique for designing batched external
data structures.Algorithmica, 37(1):1–24, 2003.

[2] A. Aggarwal and J. S. Vitter. The input/output complexity of
sorting and related problems.Communications of the ACM,
pages 1116–1127, 1988.

[3] L. Arge, G. S. Brodal, and L. Toma. On external memory
MST, SSSP, and multi-way planar separators. InProceed-
ings of the 7th Scandinavian Workshop on Algorithm The-
ory, volume 1851 ofLecture Notes in Computer Science,
pages 433–447. Springer-Verlag, 2000.

[4] L. Arge, U. Meyer, L. Toma, and N. Zeh. On external-
memory planar depth first search. InProceedings of the 7th
International Workshop on Algorithms and Data Structures,
volume 2125 ofLecture Notes in Computer Science, pages
471–482. Springer-Verlag, 2001. To appear inJournal of
Graph Algorithms and Applications, 7(2), 2003.

[5] L. Arge, L. Toma, and N. Zeh. I/O-efficient algorithms for
planar digraphs. InProceedings of the 15th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, pages
85–93, 2003.

[6] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian,
and J. R. Westbrook. On external memory graph traversal. In
Proceedings of the 11th ACM-SIAM Symposium on Discrete
Algorithms, pages 859–860, 2000.

[7] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia,
D. E. Vengroff, and J. S. Vitter. External-memory graph
algorithms. InProceedings of the 6th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 139–149, 1995.

[8] E. D. Dijkstra.A Discipline of Programming. Prentice-Hall,
1976.

[9] G. N. Frederickson. Fast algorithms for shortest paths in pla-
nar graphs, with applications.SIAM Journal on Computing,
16(6):1004–1022, 1987.

[10] D. Hutchinson, A. Maheshwari, and N. Zeh. An external
memory data structure for shortest path queries.Discrete
Applied Mathematics, 126:55–82, 2003.

[11] M.-Y. Kao. Planar strong connectivity helps in parallel
depth-first search.SIAM Journal on Computing, 24:46–62,
1995.

[12] V. Kumar and E. J. Schwabe. Improved algorithms and data
structures for solving graph problems in external memory.
In Proceedings of the 8th IEEE Sumposium on Parallel and
Distributed Processing, pages 169–176, 1996.

[13] R. J. Lipton and R. E. Tarjan. A separator theorem for planar
graphs.SIAM Journal on Applied Mathematics, 36(2):177–
189, 1979.

[14] A. Maheshwari and N. Zeh. I/O-optimal algorithms for pla-
nar graphs using separators. InProceedings of the 13th An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages
372–381, 2002.

[15] R. Tamassia and J. S. Vitter. Parallel transitive closure and
point location in planar structures.SIAM Journal on Com-
puting, 20(4):708–725, 1991.

[16] J. S. Vitter. External memory algorithms and data struc-
tures: Dealing with massive data.ACM Computing Surveys,
33(2):209–271, 2001.

[17] N. Zeh. I/O-Efficient Algorithms for Shortest Path Related
Problems. PhD thesis, School of Computer Science, Car-
leton University, 2002.

