
A General Approach for Cache-Oblivious Range Reporting
and Approximate Range Counting

Peyman Afshani
∗

MADALGO
Dept. of Computer Science

University of Aarhus
IT-Parken, Aabogade 34

DK-8200 Aarhus N
Denmark

peyman@madalgo.au.dk

Chris Hamilton
†

Faculty of Computer Science
Dalhousie University

6050 University Avenue
Halifax, NS B3H 1W5

Canada
chamilton@cs.dal.ca

Norbert Zeh
‡

Faculty of Computer Science
Dalhousie University

6050 University Avenue
Halifax, NS B3H 1W5

Canada
nzeh@cs.dal.ca

ABSTRACT

We present cache-oblivious solutions to two important vari-
ants of range searching: range reporting and approximate
range counting. The main contribution of our paper is a gen-
eral approach for constructing cache-oblivious data struc-
tures that provide relative (1+ ε)-approximations for a gen-
eral class of range counting queries. This class includes
three-sided range counting, 3-d dominance counting, and 3-d
halfspace range counting. Our technique allows us to obtain
data structures that use linear space and answer queries in
the optimal query bound of O(logB(N/K)) block transfers
in the worst case, where K is the number of points in the
query range. Using the same technique, we also obtain the
first approximate 3-d halfspace range counting and 3-d domi-
nance counting data structures with a worst-case query time
of O(log (N/K)) in internal memory.

An easy but important consequence of our main result
is the existence of O(N log N)-space cache-oblivious data
structures with an optimal query bound of O(logB N+K/B)
block transfers for the reporting versions of the above prob-
lems. Using standard reductions, these data structures allow
us to obtain the first cache-oblivious data structures that use
near-linear space and achieve the optimal query bound for
circular range reporting and K-nearest neighbour searching
in the plane, as well as for orthogonal range reporting in
three dimensions.

∗Part of this work was done while visiting Dalhousie Uni-
versity.
†Supported by a Killam Graduate Scholarship.
‡Supported in part by the Natural Sciences and Engineering
Research Council of Canada, the Canadian Foundation for
Innovation, and the Canada Research Chairs programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’09, June 8–10, 2009, Aarhus, Denmark.
Copyright 2009 ACM 978-1-60558-501-7/09/06 ...$5.00.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms

Algorithms, Design, Theory

Keywords

Memory hierarchies, cache-obliviousness, data structures,
range searching

1. INTRODUCTION
Range searching is one of the most fundamental problems

in computational geometry. Given a set S of N points in R
d,

the task is to preprocess S so that all points in a query
region can be counted (range counting) or reported (range
reporting) efficiently. Approximate range counting asks for
an approximation of the number K of points in the query
range that is no less than K and no greater than (1 + ε)K.

Typical range searching problems are expressed in more
specific terms depending on the shape of the query: sim-
plices, halfspaces, circles, and axis-aligned boxes lead to
simplex range searching, halfspace range searching, circu-
lar range searching, and orthogonal range searching prob-
lems, respectively. Two important special cases of orthogo-
nal range searching have also been studied extensively: for
three-sided queries in the plane, one side of the bounding box
is fixed at infinity; for 3-d dominance queries, the “bottom-
left” vertex of the box is the point (−∞,−∞,−∞).

In this paper, we propose a general approach based on
shallow cuttings [33] that allows us to obtain cache-oblivious
approximate range counting structures and cache-oblivious
range reporting structures with the optimal query bound
for a wide range of problems. We also obtain the first
internal-memory structures for approximate 3-d halfspace
range counting and approximate 3-d dominance counting
that achieve the optimal query bound in the worst case.

For most of these problems, no non-trivial cache-oblivious
approximate counting structures were known before. Cache-
oblivious reporting structures with the same space and query
bounds were known only for three-sided range reporting [5,
9,13]. The structure of [9] can be seen as using some notion

of shallow cuttings for three-sided range queries but uses a
counting structure tailored specifically to orthogonal range
queries. In contrast, our approach can be used to obtain
approximate counting and reporting structures for any range
searching problem with shallow cuttings, without the need
for specialized techniques.

1.1 Model of Computation and Related Work
Most previous work on range searching has focused on

internal-memory models of computation, such as the RAM
model or the pointer machine model. An important charac-
teristic of these models is that the cost to access a data item
is independent of the memory location where it is stored.

The input-output model (or I/O model) [8] and the cache-
oblivious model [21] are the two most widely accepted mod-
els that take non-uniform memory access costs into account.
The I/O model has two levels of memory: a slow but concep-
tually unlimited external memory and a fast internal mem-
ory with capacity M . All computation has to happen on
data in internal memory. The transfer of data between inter-
nal and external memory happens in blocks of B consecutive
data items; the complexity of an algorithm is the number of
such block transfers it performs.

The cache-oblivious model provides a simple framework
for designing algorithms for multi-level memory hierarchies.
In this model the algorithm is oblivious of the details of the
memory hierarchy but is analyzed in the I/O model, assum-
ing the block transfers necessary to bring the data accessed
by the algorithm into memory are performed by an offline
optimal paging algorithm, that is, one that performs the
minimum number of block transfers for the memory access
sequence of the algorithm. Since the algorithm is designed
without reference to M or B, the analysis can be applied
to any two consecutive levels of the memory hierarchy. In
particular, if the analysis shows that the algorithm incurs an
optimal number of block transfers with respect to two lev-
els of the memory hierarchy, then it does so simultaneously
at all levels of a multi-level memory hierarchy. See [21] for
more details and for a justification for assuming an offline
optimal paging algorithm.

Our discussion of previous work starts with a review of the
most relevant work in internal memory and then moves on
to results obtained in the I/O model and the cache-oblivious
model.

Internal memory. In internal memory, linear-space struc-
tures with the optimal query bound of O(log N + K) are
known for three-sided range reporting [34], 3-d dominance
reporting [1, 30], and 3-d halfspace range reporting [3], as
well as for a number of related problems; K denotes the
number of points in the query range. Using standard re-
ductions, the results for halfspace range reporting imply the
same results for circular range reporting and 2-d K-nearest
neighbour searching.

Exactly counting the number of points in a query range
seems significantly harder than reporting if the query bound
is to be independent of K. For three-sided range count-
ing, Chazelle [19] obtained a linear-space structure with
query time O(log N), which also immediately implies an
O(N log N)-space structure with query time O(log2 N) for
3-d dominance counting. For exact halfspace range count-
ing, Matoušek [31] obtained a linear-space structure with a

query bound of O(N2/3), and this is conjectured to be the

best possible. As a result, much effort has been put into
obtaining approximate halfspace range counting structures
with polylogarithmic query bounds.

Aronov and Har-Peled [14] presented a general technique
that can be used to construct an approximate range counting
structure from a range emptiness structure; the obtained
structure provides a correct approximation of the number of
points in the query range with high probability. The cost
of this transformation is an increase of the space bound by
a factor of log N and an increase of the query bound by a
factor of log N log log N .

For halfspace range searching, linear-space range empti-
ness structures with O(log N) query time have been known
for a while (see, e.g., [29]). Thus, the technique by Aronov
and Har-Peled provides an O(N log N)-space approximate
halfspace range counting structure with O(log2 N log log N)
query time. Kaplan and Sharir [28] improved the query
time by a log log N factor using an interesting combinatorial
lemma regarding the overlay of lower envelopes in a random-
ized incremental construction (see also [26,27]). As Aronov
and Har-Peled, they could guarantee correctness only with
high-probability. Later, Aronov and Har-Peled showed in
an updated version of their paper [15] that an O(log2 N)
query time can be obtained using O(N log N) space with-
out applying the overlay lemma. Har-Peled and Sharir [24]
showed that a worst-case query time of O(log N log log N)

can be achieved using O(N logO(1) N) space. This was im-
proved by Afshani and Chan [2], who presented a linear-
space structure with the same worst-case query bound, as
well as another linear-space structure that uses the overlay
lemma to achieve the optimal query time of O(log(N/K))
in the expected case.

The fact that the overlay lemma is a crucial component
of Afshani and Chan’s optimal data structure has a number
of limiting implications: the method does not generalize to
other problems, unless a similar overlay lemma is proved for
each such problem; a non-trivial modification of the over-
lay lemma would be required to use it in models such as
the I/O or cache-oblivious model; and, finally, it cannot be
used to obtain a worst-case query bound. The other meth-
ods discussed above have similar shortcomings in that they
are tailored to internal-memory models or to specific prob-
lems. For example, many of the log N-factors in the above
complexity bounds are the result of applying Chernoff-type
inequalities and cannot easily be reduced to logB N in the
I/O model or the cache-oblivious model.

I/O model and cache-oblivious model. In the I/O
model, much work has focused on orthogonal range report-
ing. A number of linear-space structures have been proposed
that achieve a query bound of O(

p

N/B +K/B) in 2-d and

O((N/B)1−1/d + K/B) in d dimensions [11, 22, 23, 25, 36,
38]. In [12], Arge et al. showed how to achieve a query
bound of O(logB N + K/B) for three-sided range report-
ing in the plane using linear space. They also showed that
Θ(N logB N/ logB logB N) space is sufficient and necessary
to achieve a query bound of O(logB N+K/B) block transfers
for four-sided range reporting. For 3-d dominance reporting,
a data structure by Afshani [1] achieves the optimal query
bound of O(logB N + K/B) using linear space. This struc-
ture also yields an orthogonal range reporting data structure
that uses O(N log3 N) space and achieves the same query
bound. In [6], Agarwal et al. provided a number of results

Query type Space Query bound References/Notes

3-d halfspace N log N log2 N log log N Aronov, Har-Peled [14] (MC)

(previous) N log N log2 N Aronov, Har-Peled [15] (MC)

N log N log2 N Kaplan, Sharir [26,27,28] (MC)

N logO(1) N log N log log N Har-Peled, Sharir [24] worst case

N log N log log N Afshani, Chan [2] worst case

N log(N/K) Afshani, Chan [2] (LV)

3-d halfspace N log(N/K) worst case

(new) N logB(N/K) worst case, I/O & cache-oblivious model

3-d dominance N logB(N/K) worst case, I/O & cache-oblivious model

(new)

MC = Monte Carlo (result is obtained with high probability)

LV = Las Vegas (query bound is expected)

Table 1: A comparison of our results on approximate range counting with previous work.

on halfspace range reporting in three and higher dimensions.
The result most relevant to our work is an O(N log N)-space
structure with an optimal query bound of O(logB N +K/B)
block transfers. Recently, Afshani and Chan [3] improved on
this result by providing an O(N log∗ N)-space structure with
query bound O(logB N + K/B).

Much less is known about cache-oblivious range searching
structures. Orthogonal range reporting queries in R

d can be
answered using O((N/B)1−1/d + K/B) block transfers [5,
10]. Cache-oblivious range reporting structures with query
bound O(logB N log log N + K/B) and using O(N log N)
space are easily obtained for three-sided, halfspace, and dom-
inance queries using existing techniques. Thus, the inter-
esting questions are whether cache-oblivious structures for
these problems exist that achieve the optimal O(logB N +
K/B) query bound and how much space is necessary to
achieve this bound.

For three-sided queries, structures with the optimal query
bound of O(logB N+K/B) and using O(N log N) space were
proposed in [5, 9, 13]. The structure by Arge and Zeh [13]
was obtained using a standard reduction to 2-d dominance
queries, for which the paper presented a linear-space struc-
ture with optimal query bound. The structure by Arge et
al. [9] can be seen as being based on some notion of shal-
low cuttings for three-sided range searching combined with
a specialized 2-d dominance counting structure. For the
remaining problems, such as 3-d dominance reporting and
3-d halfspace range reporting, as well as their approximate
counting versions, no non-trivial results were known in the
cache-oblivious model.

In [4], we make progress towards answering how much
space is required to achieve the optimal query bound. In
particular, we show that a cache-oblivious data structure
that achieves the optimal query bound for three-sided range
reporting, as well as for 3-d halfspace range reporting and
3-d dominance reporting, must use Ω(N(log log N)ε) space.

1.2 New Results
In this paper, we obtain the first cache-oblivious data

structures with the optimal query bound of O(logB N +
K/B) block transfers for 3-d halfspace range reporting, 3-
d dominance reporting and, as a consequence, for circular
range reporting, 2-d K-nearest neighbour searching, and 3-d
orthogonal range reporting. All our structures, except the

3-d orthogonal range reporting structure, use O(N log N)
space. Using a standard transformation, our 3-d dominance
structure also provides a new O(N log N)-space structure
with optimal query bound for three-sided range reporting,
thereby matching the previous results obtained in [5, 9, 13].
These results are fairly easy to obtain using standard con-
structions based on shallow cuttings, once the output size K
of a query can be efficiently determined or at least approxi-
mated.

Our main technical contribution, therefore, is a general
framework for constructing cache-oblivious structures for
the approximate counting versions of the above problems.
These structures use linear space and provide guaranteed
(1 + ε)-approximate answers in the optimal O(logB(N/K))
query bound in the worst case. This is in contrast to previ-
ous results even in internal memory, where the optimal query
bound was not achieved in the worst case before, even using
superlinear space. The only previous structure with the op-
timal query bound, by Afshani and Chan [3], achieves this
bound only in the expected case. Thus, our construction
also provides new worst-case optimal structures for approxi-
mate halfspace range counting and approximate dominance
counting in the pointer machine model.1 Table 1 compares
our results with previous work.

The main tool used in our data structures is shallow cut-
tings, which can be obtained for a general class of problems,
albeit using a randomized construction [7]. The use of shal-
low cuttings in problems related to range searching is by
now fairly standard; however, our results are obtained by
combining them with other standard techniques in a novel
way that proves powerful enough to achieve the above series
of new results.

2. PRELIMINARIES
We provide a framework for constructing an approximate

range counting structure for any range searching problem
which, through application of duality or other techniques,
can be translated into the following type of “aboveness re-
porting problem”. Let F be a collection of continuous and

1It is easy to verify that we use only operations available
on a pointer machine equipped with the necessary algebraic
operations to compute intersections of curves and determine
the side of a curve a point is on.

totally defined algebraic functions f : R
2 → R of constant

degree. Each such function defines a continuous surface in
R

3 consisting of points (x, y, f(x, y)), and we do not dis-
tinguish between a function and the surface it defines. We
say that function f passes below point q = (xq, yq, zq) if
f(xq, yq) < zq. Our goal is to preprocess F so that, given
any query point q, we can efficiently count (approximately)
how many functions in F pass below q. Since we assume
that this counting query is an alternative representation of
a range counting query, we refer to counting the functions
that pass below a query point as range counting throughout
this paper.

The arrangement of F is a subdivision of R
3 into 0-, 1-,

2-, and 3-cells, which are maximal connected sets of points
contained in 3, 2, 1, or 0 functions in F , respectively. We
define the level of a point q to be the number of functions
in F that pass below q. The k-level or (≤ k)-level of F is
the closure of the set of points in R

3 that have level k or at
most k, respectively. The 0-level of F is also known as the
lower envelope of F . Any k- or (≤ k)-level is a collection C
of cells. Its complexity |C| is defined as the number of cells
in C.

A shallow cutting for the (≤ k)-level of F is a collection
C of disjoint cells that cover the (≤ k)-level of F and have
the property that every cell C ∈ C intersects O(k) functions
in F ; the set of these functions is the conflict list ∆C of C.
W.l.o.g., we can assume that every cell in C intersects the
(≤ k)-level of F (otherwise, we can obtain a smaller cutting
for the (≤ k)-level by removing all cells from C that do not
intersect this level). Under this assumption, we can add
all functions that pass below a cell C ∈ C to ∆C without
increasing the size of ∆C by more than k. This ensures that,
for every point p ∈ C, all the functions that pass below p
are included in ∆C .

For our approximate range counting framework to be ap-
plicable, the set of functions, F , has to satisfy the following
conditions:

(i) For every k, there exists a shallow cutting C for the
(≤ k)-level of F consisting of O(|F|/k) cells.

(ii) Given a query point q and a shallow cutting C for the
(≤ k)-level of F , there exists a cache-oblivious data
structure that finds a cell in C that contains q or reports
that no such cell exists. We denote this data structure
as the point location structure L(C) of C and require
that it uses O(|C|) space and supports queries using
O(logB |C|) block transfers.

(iii) Consider the 2-d arrangement A formed by projecting
shallow cuttings for a number of (≤ k)-levels onto the
xy-plane. Then there exists a cache-oblivious point
location data structure for A with O(logB |A|) query
bound and with space complexity polynomial in |A|.

By using results by Agarwal et al. [7], it is possible to
replace (i) with a weaker condition that implies (i):

(i′) The lower envelope of every subset F ′ ⊂ F has com-
plexity O(|F ′|).

For the problems we are interested in—3-d halfspace range
searching and 3-d dominance searching—shallow cuttings
satisfying condition (i) exist [1, 33]. In addition, for these
problems, the functions in F can be decomposed into linear

functions, which implies that condition (iii) can be satisfied
using the cache-oblivious planar point location structure by
Bender et al. [16]; condition (ii) can be satisfied using the
same structure through projection of the cells into the xy-
plane [1,18]. We discuss this in more detail in Section 3.4.

3. APPROXIMATE RANGE COUNTING
This section presents the main result of our paper: a gen-

eral framework for constructing cache-oblivious approximate
range counting structures for any range searching problem
that satisfies the conditions discussed in Section 2. The fol-
lowing theorem states this precisely.

Theorem 1. For a set F of N functions satisfying con-
ditions (i)–(iii), there exists a cache-oblivious data structure
that uses linear space and supports (1+ε)-approximate range
counting queries using O(logB(N/K)) block transfers in the
worst case, where K is the actual value of the count.

Throughout this paper, we use q to refer to a particular
query point, and K to denote the number of functions in F
that pass below q. Our goal is to compute a number K′ that
satisfies K ≤ K′ ≤ (1+ ε)K. The first step towards proving
Theorem 1 is to show that the difficult part of the problem
is to obtain any constant-factor approximation of K.

Lemma 1. Consider a set F of N functions satisfying
conditions (i)–(iii), and assume there exists a linear-space
cache-oblivious data structure D that supports c-approximate
range counting queries over F using O(logB(N/K)) block
transfers, where c is an arbitrary constant and K is the ac-
tual value of the count. Then there exists a cache-oblivious
data structure that uses linear space and supports (1 + ε)-
approximate range counting queries using O(logB(N/K))
block transfers.

Proof. To obtain a linear-space structure that supports
(1+ε)-approximate range counting queries over F , we use D,
as well as shallow cuttings Ci, for 0 ≤ i ≤ ⌈log N⌉; Ci is a
shallow cutting for the (≤ 2i)-level of F . Each cutting Ci is
represented using its point location structure L(Ci). Every
cell C ∈ Ci stores a constant-size list ∆′

C ⊆ ∆C such that,
for any query point q ∈ C and a sufficiently small constant δ,
an approximation of K to within an additive error of δ|∆C |
can be obtained from the level of q in ∆′

C . Such a constant-
size sublist of ∆C can be obtained using techniques in VC-
dimension: the VC-dimension of a set system defined by
a set of algebraic functions of constant degree is constant
(see, e.g., [32]), which implies that there is a subset ∆′

C of
∆C as stated above whose size depends only on δ and is thus
constant [39].

The size of the data structure is clearly linear: D uses
linear space; the total size of all shallow cuttings Ci is linear;
and, hence, their point location structures L(Ci) use linear
space, and storing a constant-size list for each cell in each
cutting Ci also uses linear space.

Now consider a query point q. We use D to obtain a
constant-factor approximation K′ of K. The shallow cutting
Ci with i = ⌈log K′⌉ contains q, and we can use L(Ci) to find
the cell C ∈ Ci that contains q. Since the size of ∆C is O(K),
it now suffices to approximate K to within an additive error
of δ|∆C |, for a sufficiently small δ, and we can obtain such an
approximation by computing q’s level in ∆′

C , which we do by
comparing q against every function in ∆′

C . The query on D

uses O(logB(N/K)) block transfers; the query on L(Ci) uses
O(logB |Ci|) = O(logB(N/K)) block transfers; and scanning
the constant-size list ∆′

C adds O(1) block transfers to the
query cost. This completes the proof.

By Lemma 1, it suffices to obtain a constant-factor ap-
proximate range counting structure for F . We split its con-
struction into three parts. We say that a query q is poly-
nomial or polylogarithmic if K ≥ Nα or K ≥ logα N , re-
spectively, for some constant α > 0. The first step is to
obtain a structure for polynomial queries that uses sublin-
ear space and achieves the query bound stated in Lemma 1.
Using this structure, we can obtain a structure for polylog-
arithmic queries. By applying this construction a second
time, the structure for polylogarithmic queries can be made
to support arbitrary approximate range counting queries.
Next we discuss these three steps in detail.

3.1 A Structure for Polynomial Queries
In this section, we prove that we can achieve the desired

query bound for polynomial queries using sublinear space,
as stated in the next lemma. This is crucial to ensure that
the space bound of our structure for polylogarithmic queries
is linear.

Lemma 2. For a set F of N functions satisfying con-
ditions (i)–(iii), there exists a cache-oblivious data struc-

ture that uses O(
√

N) space and supports approximate range
counting for polynomial queries using O(logB(N/K)) block
transfers in the worst case, where K is the actual value of
the count.

Let c be an integer constant such that the conflict list
of any cell C in a shallow cutting for the (≤ k)-level of F
has size less than 2ck. By the definition of a shallow cutting,
such a constant exits. To obtain a structure as in the lemma,
we construct a shallow cutting Ci for the (≤ N/2i)-level of F ,
for each 1 ≤ i ≤ c+2δ log N , where δ is a constant to be cho-
sen later. Let Ai be the 2-d arrangement obtained by pro-
jecting the cells of Ci into the xy-plane. Next we construct
arrangements A∗

0,A∗

1 , . . . ,A∗

t , where t = ⌊log(2δ log N)⌋.
Arrangement A∗

i is obtained by overlaying arrangements
A1,A2, . . . ,Ac+2i . Since |Cj | = O(2j), the total number of

cells in cuttings C1, C2, . . . , Cc+2i is O(22i

). Since the bound-
ary of each cell in each cutting Cj is an algebraic curve of con-

stant degree, this implies that A∗

i has size polynomial in 22i

.
In particular, the size of the largest arrangement A∗

t —and,
thus, the total size of all arrangements A∗

0,A∗

1, . . . ,A∗

t — is

polynomial in 22t

= N2δ .
For each arrangement A∗

i , we store a point location struc-
ture as in condition (iii). These structures are stored con-
secutively in memory, in order of increasing i. For each face
f of each arrangement A∗

i , we store the list of cells of cut-
tings C1, C2, . . . , Cc+2i that project onto f . If more than one
cell from a cutting Cj projects onto f , we store only the
highest one. Hence, each face of A∗

i stores a list of length
c + 2i = O(2i).

The point location structure for each arrangement A∗

i has
size polynomial in |A∗

i |, and the list associated with each
cell of A∗

i has size O(2i) = O(log N). Thus, by the bound
on the total size of these arrangements obtained above, the
resulting data structure uses space polynomial in N2δ , and
we can choose δ small enough to bound the space used by
the structure by O(

√
N).

To answer a query using the constructed data structure,
we start from i = 0 and find the face f of A∗

i that contains
the projection of the query point q. Next, we inspect the
c + 2i cells that were projected onto f and test for each
whether it contains q. If all inspected cells contain q, we
either increase i by one and iterate this procedure or, if i = t,
report that K is too small, and the query fails. If at least one
of the tried cells does not contain q, we output K′ = |∆C |,
where C is the “smallest” cell that projected onto f and
contains q; more precisely, C belongs to a shallow cutting
Cj such that q ∈ Cj and q 6∈ Cj+1.

Now, as long as K ≥ N1−δ ≥ N/22⌊log(2δ log N)⌋

= N/22t

,
the choice of constant c implies that q 6∈ Cc+2t , and the
query does not fail. Moreover, we have N/2j+1 ≤ K ≤
K′ = |∆C | = O(N/2j) in this case, that is, the value K′ we
report is a constant-factor approximation of K.

To bound the cost of a successful query, we observe that
i ≤ ⌈log j⌉ when the query terminates. We can assume
that this is an equality, as the cost of the query is lower if
the query terminates earlier. The combined size of the first
i0 := log log B − a arrangements A∗

i , for some constant a,
is O(B). Thus, these structures can be queried using O(1)
block transfers, and the query cost is O(1) when i ≤ i0. For
i > i0, we observe that 2i−1 < j ≤ 2i, which implies that

22i−1

< 2j ≤ 22i

and, thus, 22i

= O((N/K)2). The query
cost for the case i > i0 is therefore bounded by

i
X

i′=i0

O(logB 22i
′

+ 2i′/B) = O(logB 22i

+ 2i/B)

= O(logB(N/K)).

For an unsuccessful query, a similar analysis shows that
the query fails after O(logB Nδ) block transfers, which is
O(logB(N/K)), as K < N1−δ in this case.

3.2 A Structure for Polylogarithmic Queries
In this section, we present the second building block of our

final structure, a linear-space structure for answering poly-
logarithmic approximate range counting queries, as summa-
rized in the following lemma. Note that the query bound
of our structure is O(logB N), not O(logB(N/K)). This is
sufficient for the purposes of our final structure discussed in
Section 3.3.

Lemma 3. For a set F of N functions that satisfy con-
ditions (i)–(iii), there exists a cache-oblivious data struc-
ture that uses O(N) space and supports approximate range
counting for polylogarithmic queries using O(logB N) block
transfers in the worst case.

We prove Lemma 3 by constructing a structure that ap-
plies Lemma 2 recursively. We start with a shallow cutting C
for the (≤ N1−δ)-level of F . In the memory layout, we rep-
resent F using the structure from Lemma 2, followed by the
point location structure L(C) for C, which in turn is followed
by structures representing the cells of C. Each such struc-
ture representing a cell C ∈ C is constructed by recursively
applying this construction to ∆C . The recursion stops as
soon as we obtain conflict lists of size at most logτ N , for
some constant τ .

To answer a query with a query point q, we use L(C)
to decide whether q is contained in C and, if so, determine
the cell C ∈ C that contains q. If q ∈ C, we recurse on

the structure representing ∆C or report a failure if we are
already at the last level of recursion in the structure. If
q 6∈ C, then q is a polynomial query and can be answered
using the structure from Lemma 2.

Correctness. First assume that the query does not fail. If
q belongs to a cell C of C, then ∆C contains all functions in
F that pass below q, and an inductive argument shows that
recursing on ∆C produces the desired approximation of K.
If q 6∈ C, then q is a polynomial query, and Lemma 2 shows
that we obtain the desired approximation of K in this case
as well.

If, on the other hand, the query fails, this means that q
is contained in the shallow cutting used at the last level of
recursion. Since each cell of this cutting has a conflict list
of size at most logτ N , this means that K ≤ logτ N . Thus,
for K > logτ N , the query procedure does not fail.

Analysis. It remains to analyze the space and query bounds
of our structure. Let S(N) be its space complexity for a
set of N functions. Since C is a shallow cutting for the
(≤ N1−δ)-level of F , C has O(Nδ) cells, each with a conflict
list of size O(N1−δ). Since we do not recurse on conflict lists
of size logτ N or less, this implies that S(N) is bounded by
the following recurrence.

S(x) ≤
(

axδS(x1−δ) + O(
√

x) x > logτ N

O(1) x ≤ logτ N
,

for an appropriate constant a > 0. After i steps of recursion
applied to S(N), we have

S(N) ≤ aiN1−(1−δ)i

S(N (1−δ)i

) + O(aiN1−(1−δ)i/2).

For i = log(1−δ)(log logτ N/ log N) = O((log log N)/δ), we
obtain

S(N) = O

„

aO((log log N)/δ) N

logτ N
S(logτ N)

+aO((log log N)/δ) N

logτ/2 N

«

.

By choosing τ large enough, we obtain S(N) = O(N) be-
cause S(logτ N) = O(1). The query bound obeys the recur-
rence

Q(N) =

(

Q(N1−δ) + O(logB N) N > B

O(1) N ≤ B
,

since S(B) = O(B) and, hence, the entire recursive structure
for a conflict list of size B fits in O(1) blocks. This recurrence
is easily seen to yield Q(N) = O(logB N). This completes
the proof.

3.3 The Final Structure
In this section, we combine Lemmas 2 and 3 to obtain a

linear-space structure that supports constant-factor approx-
imate range queries with the optimal query bound, for any
query range. By Lemma 1, this implies Theorem 1.

Lemma 4. For a set F of N functions satisfying condi-
tions (i)–(iii), there exists a cache-oblivious data structure
that uses linear space and supports approximate range count-
ing queries using O(logB(N/K)) block transfers in the worst
case.

Proof. Our final structure consists of the following com-
ponents. We compute shallow cuttings C1 and C2 for the
(≤ logτ N)-level and for the (≤ log N)-level of F , respec-
tively. We represent F using two structures, one for poly-
nomial queries and one for polylogarithmic queries, and we
store point location structures L(C1) and L(C2) for the two
shallow cuttings C1 and C2. For every cell C ∈ C1, we repre-
sent ∆C using a structure for polylogarithmic queries. For
every cell C ∈ C2, we simply store the list of functions in
∆C contiguously.

By Lemmas 2 and 3, the structures representing F use
O(N) space in total. The structure representing each cell C
in C1 has size O(|∆C |) = O(logτ N), and the number of cells
in C1 is O(N/ logτ N). Thus, the representation of C1 uses
linear space. Similarly, the conflict list of each cell C in C2

can be stored in O(log N) space, and there are O(N/ log N)
such cells. Hence, the space consumption of the entire struc-
ture is linear.

To answer a query, we query the structure for polynomial
queries on F and report the answer if this query succeeds.
This takes O(logB(N/K)) block transfers, by Lemma 2. If
the query fails, we have K < N1−δ . Hence, logB N =
O(logB(N/K)), and it suffices to achieve a query bound
of O(logB N) in this case. To do so, we first query L(C2)
to decide whether q ∈ C2. This takes O(logB N) block
transfers. If q ∈ C2 (which means K = O(log N)), the
query also returns a cell C ∈ C2 such that q ∈ C, and
we spend another O((log N)/B) block transfers to scan ∆C

and determine K exactly. If q 6∈ C2, we have log N < K.
We query L(C1) to decide whether q ∈ C1. If so, then
log N < K = O(logτ N) and the query returns a cell C ∈ C1

that contains q. We query the polylogarithmic structure rep-
resenting ∆C , which takes O(logB N) block transfers and
produces a constant-factor approximation of K because q
is polylogarithmic for ∆C . Finally, if q 6∈ C1, then q is
polylogarithmic for F , and we can use the polylogarithmic
structure of F to obtain a constant-factor approximation of
K using O(logB N) block transfers. Since the query bound
is O(logB(N/K)) in all cases, this finishes the proof of the
lemma.

3.4 Applications
By verifying that halfspace range counting and dominance

counting satisfy conditions (i)–(iii), we obtain the following
result as an immediate consequence of Theorem 1.

Theorem 2. There exist cache-oblivious data structures
that use linear space and respectively support approximate 3-
d halfspace range counting queries and approximate 3-d dom-
inance counting queries using O(logB(N/K)) block transfers
and O(log(N/K)) time in the worst case.

Proof. The dual problem to 3-d halfspace range count-
ing is to count all the planes in a set F that pass below a
query point q. It is well known that the lower envelope of
a set of N linear functions corresponds to the convex hull
of the points dual to the functions and, thus, has worst-
case complexity O(N). Therefore, the set F of planes sat-
isfies condition (i′) and, hence, condition (i). In fact, half-
space range searching was the problem used by Matoušek to
introduce the notion of shallow cuttings [33]. A structure
satisfying condition (ii) can be obtained by projecting the
cells of the given shallow cutting into the plane and pre-
processing the resulting planar straight-line subdivision for

point location queries (see [3, 17]). Using the linear-space
cache-oblivious planar point location structure by Bender et
al. [16], point location queries on this arrangement can be
answered using O(logB N) block transfers. The same struc-
ture can be used to satisfy condition (iii).

For dominance reporting, we can represent every input
point p using a range p containing all points that dominate p.
The boundary of this range is not a totally defined function.
However, a small perturbation turns the boundary of p into a
totally defined function composed of three linear functions.
This allows us to phrase a dominance query with a query
point q as identifying all such boundary functions that pass
below q. Thus, our framework can be applied to dominance
reporting as well, if we can verify conditions (i)–(iii). It is
not difficult to show, however, that the lower envelope of this
set of functions has linear complexity (see, e.g., [1]). Thus,
conditions (i′) and (i) are satisfied once again. Furthermore,
as with halfspace queries, conditions (ii) and (iii) reduce to
point location in a planar straight-line subdivision [1] and,
hence, can be satisfied using the point location structure by
Bender et al.

4. RANGE REPORTING
We can use the approximate range counting structure pro-

vided by Theorem 1 as a building block to quite easily obtain
a cache-oblivious data structure that answers range report-
ing queries for any problem that fits in our framework. This
data structure uses O(N log N) space.

Given a set F of N functions satisfying conditions (i)–
(iii), such a structure can be obtained as follows. For 0 ≤
i ≤ log N , let Ci be a shallow cutting for the (≤ 2i)-level
of F . For each cell C ∈ Ci, we store the conflict list ∆C con-
tiguously. Since Ci contains O(N/2i) cells and each cell has
a conflict list of size O(2i), the representation of each cutting
Ci uses linear space. As there are log N such cuttings, the
total space consumption is O(N log N). Finally, we add an
approximate counting structure for F as in Theorem 1, as
well as a point location structure L(Ci) for each cutting Ci.
This adds only O(N) to the total space bound.

To answer a range reporting query with query point q, we
query the counting structure to obtain a 2-approximation
K′ of K. This incurs O(logB N) block transfers. Next we
use another O(logB N) block transfers to query L(Ci), for
i = ⌈log K′⌉, and determine the cell C ∈ Ci that contains
point q. Finally, we scan the conflict list ∆C and output
all functions in ∆C that pass below q. This incurs another
O(1 + |∆C |/B) = O(1 + K/B) block transfers. The total
query cost is thus O(logB N + K/B), and we obtain the
following theorem.

Theorem 3. For a given set F of N functions satisfying
conditions (i)–(iii), there exists a cache-oblivious data struc-
ture that uses O(N log N) space and supports range reporting
queries using O(logB N + K/B) block transfers, where K is
the output size of the query.

Following the discussion in Section 3.4, this immediately
implies the following corollary.

Corollary 1. There exist cache-oblivious data struc-
tures that use O(N log N) space and support 3-d dominance
reporting and 3-d halfspace range reporting queries using
O(logB N + K/B) block transfers.

Remarks. The idea of building a hierarchy of O(log N)
shallow cuttings is a standard technique that has been used
many times in the past (see, e.g., [18,37]). Thus, the results
in this section are easy consequences of our main result (The-
orem 1). However, no cache-oblivious 3-d halfspace range
reporting or 3-d dominance reporting structures matching
the bounds in Corollary 1 were known before. This further
underlines the importance of Theorem 1.

Using equally standard techniques (see, e.g., [35]), we can
obtain further results on three-sided range reporting, circu-
lar range reporting, 2-d K-nearest neighbour searching, and
3-d orthogonal range reporting. Again, except for three-
sided range reporting, similar results were not known in the
cache-oblivious model before. While circular range reporting
queries directly translate into 3-d halfspace range reporting
queries, K-nearest neighbour queries do not; a K-nearest
neighbour query is equivalent to reporting the K lowest
planes stabbed by a vertical line ℓ. It is easily verified, how-
ever, that the hierarchy of cuttings Ci above can be used to
find these planes: we identify the cutting Ci with i = ⌈log K⌉
and use L(Ci) (which is a planar point location structure on
the xy-projection of Ci) to find the cell C ∈ Ci stabbed
by ℓ. Then we apply a linear-time selection algorithm (e.g.,
see [20, Chapter 9]) to ∆C to find the K lowest planes in
∆C stabbed by ℓ. This takes O(|∆C |/B) = O(K/B) block
transfers.

Corollary 2. There exist cache-oblivious data struc-
tures that use O(N log N) space and achieve the optimal
query bound of O(logB N + K/B) block transfers for three-
sided and circular range reporting, and for 2-d K-nearest
neighbour searching.

Corollary 3. There exists a cache-oblivious 3-d range
reporting data structure that uses O(N log4 N) space and
supports queries using O(logB N + K/B) block transfers.

5. CONCLUSIONS
In this paper, we have provided a general framework for

constructing cache-oblivious data structures for approximate
range counting and exact range reporting for range searching
problems that have shallow cuttings. This includes three-
sided range searching, for which matching results were ob-
tained before using different techniques, as well as 3-d domi-
nance searching and 3-d halfspace range searching, for which
no such cache-oblivious structures were known before.

The obtained counting structures use linear space, while
the reporting structures use O(N log N) space, which is a
log N factor away from the space needed to obtain equivalent
query complexities in internal memory or in the I/O model.
However, as we show in [4], it is in fact impossible to achieve
the optimal query bound of O(logB N+K/B) for these range
reporting problems using linear space.

Our reporting structures follow the standard framework of
cache-oblivious geometric search structures: obtain an ap-
proximation of the output size of the query and then query
the appropriate level in a multi-level reporting structure
whose levels are tailored to support different output sizes.
Since our counting structures use linear space and provide
good enough approximations of the output size, the main
challenge in obtaining more space-efficient cache-oblivious
range reporting structures is to reduce the space required
by such structures that know the output size.

6. REFERENCES

[1] P. Afshani. On dominance reporting in 3D. In
Proceedings of the 16th European Symposium on
Algorithms, volume 5193 of Lecture Notes in
Computer Science, pages 41–51. Springer-Verlag, 2008.

[2] P. Afshani and T. M. Chan. On approximate range
counting and depth. In Proceedings of the 23rd ACM
Symposium on Computational Geometry, pages
337–343, 2007.

[3] P. Afshani and T. M. Chan. Optimal halfspace range
reporting in three dimensions. In Proceedings of the
20th ACM-SIAM Symposium on Discrete Algorithms,
pages 180–186, 2009.

[4] P. Afshani, C. Hamilton, and N. Zeh. Cache-oblivious
range reporting with optimal queries requires
superlinear space. In Proceedings of the 25th ACM
Symposium on Computational Geometry, 2009.

[5] P. K. Agarwal, L. Arge, A. Danner, and
B. Holland-Minkley. Cache-oblivious data structures
for orthogonal range searching. In Proceedings of the
19th ACM Symposium on Computational Geometry,
pages 237–245, 2003.

[6] P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa,
and J. S. Vitter. Efficient searching with linear
constraints. Journal of Computer and System
Sciences, 61(2):194–216, 2000.

[7] P. K. Agarwal, A. Efrat, and M. Sharir. Vertical
decomposition of shallow levels in 3-dimensional
arrangements and its applications. SIAM Journal on
Computing, 29(3):912–953, 2000.

[8] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems.
Communications of the ACM, pages 1116–1127, 1988.

[9] L. Arge, G. S. Brodal, R. Fagerberg, and M. Laustsen.
Cache-oblivious planar orthogonal range searching and
counting. In Proceedings of the 21st ACM Symposium
on Computational Geometry, pages 160–169, 2005.

[10] L. Arge, M. de Berg, and H. J. Haverkort.
Cache-oblivious R-trees. In Proceedings of the 21st
ACM Symposium on Computational Geometry, pages
170–179, 2005.

[11] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The
priority R-tree: A practically efficient and worst-case
optimal R-tree. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 347–358, 2004.

[12] L. Arge, V. Samoladas, and J. S. Vitter. On
two-dimensional indexability and optimal range search
indexing. In Proceedings of the 18th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 346–357, 1999.

[13] L. Arge and N. Zeh. Simple and semi-dynamic
structures for cache-oblivious orthogonal range
searching. In Proceedings of the 22nd ACM Symposium
on Computational Geometry, pages 158–166, 2006.

[14] B. Aronov and S. Har-Peled. On approximating the
depth and related problems. In Proceedings of the 16th
ACM-SIAM Symposium on Discrete Algorithms, pages
886–894, 2005.

[15] B. Aronov and S. Har-Peled. On approximating the
depth and related problems, 2005.

http://valis.cs.uiuc.edu/˜sariel/research/papers/04/
depth/.

[16] M. A. Bender, R. Cole, and R. Raman. Exponential
structures for efficient cache-oblivious algorithms. In
Proceedings of the 29th International Colloquium on
Automata, Languages and Programming, volume 2380
of Lecture Notes in Computer Science, pages 195–207.
Springer-Verlag, 2002.

[17] T. M. Chan. Low-dimensional linear programming
with violations. SIAM Journal on Computing,
34:879–893, 2000.

[18] T. M. Chan. Random sampling, halfspace range
reporting, and construction of (≤ k)-levels in three
dimensions. SIAM Journal on Computing,
30(2):561–575, 2000.

[19] B. Chazelle. A functional approach to data structures
and its use in multidimensional searching. SIAM
Journal on Computing, 17(3):427–462, 1988.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press,
2nd edition, 2001.

[21] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In
Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science, pages 285–297,
1999.

[22] R. Grossi and G. F. Italiano. Efficient cross-tree for
external memory. In J. Abello and J. S. Vitter, editors,
External Memory Algorithms and Visualization, pages
87–106. American Mathematical Society, 1999.

[23] R. Grossi and G. F. Italiano. Efficient splitting and
merging algorithms for order decomposable problems.
Information and Computation, 154(1):1–33, 1999.

[24] S. Har-Peled and M. Sharir. Relative ε-approximations
in geometry, 2006. http://valis.cs.uiuc.edu/˜sariel/
research/papers/06/relative/.

[25] K. V. R. Kanth and A. K. Singh. Optimal dynamic
range searching in non-replicated index structures. In
Proceedings of the International Conference on
Database Theory, volume 1540 of Lecture Notes in
Computer Science, pages 257–276. Springer-Verlag,
1999.

[26] H. Kaplan, E. Ramos, and M. Sharir. The overlay of
minimization diagrams in a randomized incremental
construction. manuscript.

[27] H. Kaplan, E. Ramos, and M. Sharir. Range minima
queries with respect to a random permutation, and
approximate range counting. To appear in Discrete
and Computational Geometry.

[28] H. Kaplan and M. Sharir. Randomized incremental
constructions of three-dimensional convex hulls and
planar Voronoi diagrams, and approximate range
counting. In Proceedings of the 17th ACM-SIAM
Symposium on Discrete Algorithms, pages 484–493,
2006.

[29] D. Kirkpatrick. Optimal search in planar subdivisions.
SIAM Journal on Computing, 12:28–35, 1983.

[30] C. Makris and A. Tsakalidis. Algorithms for
three-dimensional dominance searching in linear space.
Information Processing Letters, 66(6):277–283, 1998.

[31] J. Matoušek. Range searching with efficient
hierarchical cuttings. Discrete and Computational
Geometry, 10(2):157–182, 1993.

[32] J. Matoušek. Geometric set systems. European
Congress of Mathematics, 2:1–27, 1998.

[33] J. Matoušek. Reporting points in halfspaces.
Computational Geometry: Theory and Applications,
2(3):169–186, 1992.

[34] E. M. McCreight. Priority search trees. SIAM Journal
on Computing, 14(2):257–276, 1985.

[35] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, 3rd
edition, October 1990.

[36] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S.
Vitter. Bkd-tree: A dynamic scalable kd-tree. In
Proceedings of the 8th International Symposium on
Advances in Spatial and Temporal Databases, volume
2750 of Lecture Notes in Computer Science, pages
46–65. Springer-Verlag, 2003.

[37] E. A. Ramos. On range reporting, ray shooting and
k-level construction. In Proceedings of the 15th ACM
Symposium on Computational Geometry, pages
390–399, 1999.

[38] J. Robinson. The K-D-B tree: A search structure for
large dimensional dynamic indexes. In Proceedings of
the SIGMOD International Conference on
Management of Data, pages 10–18, 1981.

[39] V. Vapnik and A. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and Its
Applications, 16:264–280, 1971.

