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ABSTRACT
In this paper, we develop improved cache-oblivious data
structures for two- and three-sided planar orthogonal range
searching. Our main result is an optimal static structure for
two-sided range searching that uses linear space and sup-
ports queries in O(logB N + T/B) memory transfers, where
B is the block size of any level in a multi-level memory hier-
archy and T is the number of reported points. Our structure
is the first linear-space cache-oblivious structure for a planar
range searching problem with the optimal O(logB N +T/B)
query bound. The structure is very simple, and we believe
it to be of practical interest.

We also show that our two-sided range search structure
can be constructed cache-obliviously in O(N logB N) mem-
ory transfers. Using the logarithmic method and fractional
cascading, this leads to a semi-dynamic linear-space struc-
ture that supports two-sided range queries in O(log2 N +
T/B) memory transfers and insertions in O(log2 N · logB N)
memory transfers amortized. This structure is the first
(semi-)dynamic structure for any planar range searching
problem with a query bound that is logarithmic in the num-
ber of elements in the structure and linear in the output
size.

Finally, using a simple standard construction, we also
obtain a static O(N log2 N)-space structure for three-sided
range searching that supports queries in the optimal bound
of O(logB N+T/B) memory transfers. These bounds match
the bounds of the best previously known structure for this
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problem; but our structure is much simpler, simple enough,
we believe, to be of practical interest.
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F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Design, Theory

Keywords
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1. INTRODUCTION
The memory systems of modern computers are becoming

increasingly complex; they consist of a hierarchy of several
levels of cache, main memory, and disk. The access times
of different levels of memory often vary by orders of mag-
nitude, and, to amortize the large access times of memory
levels far away from the processor, data is normally trans-
ferred between levels in large blocks. Thus, it is important
to design algorithms that are sensitive to the architecture
of the memory system and have a high degree of locality in
their memory-access patterns.

When working in the traditional RAM model of compu-
tation, one assumes a flat memory system with uniform ac-
cess time; therefore, algorithms for the RAM model often
exhibit low memory-access locality and are thus inefficient
in a hierarchical memory system. Although a lot of work
has recently been done on algorithms for a two-level mem-
ory model, introduced to model the large difference between
the access times of main memory and disks, relatively little
work has been done in models of multi-level memory hier-
archies. One reason for this is the many parameters used
in such models to describe the different levels of memory in
the hierarchy. The cache-oblivious model was introduced as
a way of obtaining algorithms that are efficient in arbitrary
memory hierarchies without the use of complicated multi-
level memory models.

In this paper, we develop improved cache-oblivious data
structures for two- and three-sided planar orthogonal range



searching. General (four-sided) planar orthogonal range
searching is the problem of storing a set S of N points in
the plane so that all T points lying in an axis-parallel query
rectangle Q = [xl, xr] × [yb, yt] can be reported efficiently.
In three-sided range searching, every query satisfies yt = ∞;
in two-sided range searching, every query satisfies yt = ∞
and either xl = −∞ or xr = ∞.

1.1 Model of Computation
In the two-level I/O-model (or external-memory model),

introduced by Aggarwal and Vitter [3], the memory hierar-
chy consists of an internal memory of size M and an arbi-
trarily large external memory partitioned into blocks of size
B. An I/O, or memory transfer, transfers one block between
internal and external memory. Computation can occur only
on data present in internal memory. The complexity of an
algorithm in this model (an external-memory algorithm) is
measured in terms of the number of memory transfers it
performs, as well as the amount of external memory it uses.

In the cache-oblivious model, introduced by Frigo et al.
[24], algorithms are described in the RAM model, but are
analyzed in the two-level I/O-model. It is assumed that,
when an algorithm accesses an element that is not stored in
internal memory, the relevant block is automatically trans-
ferred into internal memory. If the internal memory is full,
an optimal paging strategy replaces the ideal block in inter-
nal memory based on the future accesses of the algorithm.
Often, it is also assumed that M > B2 (the tall-cache as-
sumption). So, informally, cache-oblivious algorithms run in
the I/O-model, but cannot make use of M and B. Because
an analysis of a cache-oblivious algorithm in the two-level
model must hold for any block and main memory size, it
holds for any level of an arbitrary memory hierarchy [24].
As a consequence, a cache-oblivious algorithm that is op-
timal in the two-level model is optimal on all levels of an
arbitrary multi-level hierarchy.

1.2 Previous Results
Range searching has been studied extensively in the RAM

model; refer, for example, to a recent survey [2] for a dis-
cussion of results. In the I/O-model, the B-tree [9, 23] sup-
ports one-dimensional range queries in the optimal bound of
O(logB N + T/B) memory transfers and uses linear space.

In two dimensions, Θ(N logB N

log logB N
) space is necessary to ob-

tain an O(logB N +T/B) query bound [8, 21]. The external
range-tree structure [8] achieves these bounds. If only lin-

ear space is used, then Θ(
p

N/B +T/B) memory transfers,
as achieved by the kd-B tree [26, 29], are needed to answer
a query. Three-sided (and thus two-sided) queries, on the
other hand, can be answered in O(logB N + T/B) memory
transfers using the external priority search tree [8], which
uses linear space. This structure can also be updated in
O(logB N) memory transfers. Refer to recent surveys [4,
30] for further results in the I/O-model and in hierarchical
memory models.

In the cache-oblivious model, Frigo et al. [24] developed
efficient algorithms for sorting, Fast Fourier Transform, and
matrix multiplication. Subsequently, a number of other re-
sults have been obtained in this model [1, 5, 6, 7, 10, 11,
12, 13, 14, 17, 18, 19, 20, 28], among them several cache-
oblivious B-tree structures with O(logB N) search and up-
date bounds [12, 13, 14, 20, 28]. Several of these structures
also support one-dimensional range queries in O(logB N +

T/B) memory transfers [13, 14, 20] (but at an increased
update cost of O(logB N + 1

B
log2

2 N) = O(log2
B N) amor-

tized memory transfers). A key ingredient in all the cache-
oblivious B-tree structures is the so-called van-Emde-Boas
layout for storing a balanced constant-degree tree of size
O(N) in memory so that any root-to-leaf path can be tra-
versed cache-obliviously inO(logB N) memory transfers [27].

In [17], an algorithm for batched planar orthogonal range
searching was developed. This algorithm answers a set of
O(N) queries in O(N

B
logM/B

N
B

+ T/B) memory transfers,
where T is the combined size of the answers. For online pla-
nar orthogonal range searching, Agarwal et al. [1] were the
first to develop efficient cache-oblivious structures. They de-
veloped a cache-oblivious version of a kd-tree that uses linear
space and answers range queries in the plane in O(

p
N/B +

T/B) memory transfers. Point insertions and deletions take

O
` log2 N

B
logM/B N

´
= O(log2

B N) memory transfers amor-
tized. The structure can be extended to d dimensions. They
also developed a cache-oblivious version of a two-dimensional
range tree that answers planar range queries in O(logB N +
T/B) memory transfers, but using O(N log2

2 N) space. The
central part of this structure is an O(N log2 N)-space struc-
ture for answering three-sided range queries in O(logB N +
T/B) memory transfers. The analysis of the range tree
structure (or rather, the structure for three-sided queries)

requires that B = 22c

, for some non-negative integer con-
stant c. Subsequently, Arge et al. [6] developed cache-
oblivious structures for planar orthogonal range counting—
that is, for counting the points in the query range rather
than reporting them—which answer queries in O(logB N)
memory transfers. They developed both an O(N log2 N)-
space and a linear-space structure, but the latter assumes
that bit manipulations of pointers and counters are allowed.
Using the first structure, they developed a cache-oblivious
structure for three-sided range searching with bounds match-
ing the structure of Agarwal et al. [1], but without any as-
sumptions about B. Using this structure, they obtained an
improved structure for general (four-sided) queries that an-
swers queries in O(logB N + T/B) memory transfers and

uses O(N
log2

2 N

log2 log2 N
) space, without making any assump-

tions about B. To the best of our knowledge, there is cur-
rently no (semi-)dynamic structure that can answer queries
in O(log N + T/B) memory transfers and can be updated
in O(logc n) memory transfers, for any constant c.

1.3 Our Results
In this paper, we develop improved cache-oblivious data

structures for two- and three-sided range searching in the
plane. Our main result, described in Section 2, is an op-
timal static structure for two-sided range searching that
uses linear space and supports queries in O(logB N + T/B)
memory transfers. The structure is the first linear-space
cache-oblivious structure for a planar range searching prob-
lem with the optimal O(logB N + T/B) query bound. The
structure is very simple, consisting of a linear layout (se-
quence) of the point set S and a search tree over this se-
quence. Every query is answered by scanning a subsequence
of the layout whose length is O(T ). The search tree is used
to locate the start position of this subsequence. We believe
that the structure will be of practical interest.

We also show that our two-sided range searching struc-
ture can be constructed cache-obliviously in O(N logB N)



memory transfers. As described in Section 4, using the log-
arithmic method and fractional cascading, this leads to a
semi-dynamic linear-space structure that supports two-sided
range queries in O(log2 N +T/B) memory transfers and in-
sertions in O(log2 N · logB N) memory transfers amortized.
This structure is the first (semi-)dynamic cache-oblivious
structure for any planar range searching problem with a lin-
ear output cost and logarithmic overhead per query. As al-
ready mentioned above, the only previously known dynamic
structure that reports the T points contained in a given
query in O(T/B) memory transfers had a query overhead of

O(
p

N/B). The only previous cache-oblivious range search
structure that achieves a logarithmic query bound, while
performing a linear number of memory transfers in the out-
put size, is static; it seems impossible to make it dynamic
using the logarithmic method, while maintaining a logarith-
mic query bound.

Finally, using a simple standard construction described in
Section 3, we also obtain a static O(N log2 N)-space struc-
ture for three-sided range searching that supports queries in
O(logB N +T/B) I/Os. These bounds match the bounds of
the best previously known structure [6], but our structure
is much simpler. It consists of a binary tree, where each in-
ternal node stores two two-sided range search structures for
the points in its descendant leaves. Every three-sided query
can then be answered by answering two two-sided queries.
In particular, our solution does not require the complicated
counting structure of [6]. We believe that our structure is of
practical interest.

2. STATIC TWO-SIDED PLANAR RANGE
SEARCHING

In this section, we describe a simple linear-space cache-
oblivious structure for storing a set, S, of N points in the
plane such that two-sided range queries can be answered
in optimal O(logB N + T/B) memory transfers. For sim-
plicity, we assume that no two points in S have the same
x-coordinate.

Our structure consists of two parts: a sequence L of length
O(N), called the layout of S, that stores the points in S,
possibly with duplication; and a balanced binary search tree
Y on a subset of the y-coordinates of the points in S, laid out
in memory using the van-Emde-Boas layout [27]. Each leaf
of Y stores a pointer into L. A query (−∞, xq] × [yq, +∞)
is performed by searching for yq in Y , following a pointer
from a leaf in Y into L, and scanning forward in L until
a point with x-coordinate greater than xq is found. The
search in Y incurs O(logB N) memory transfers, and we
show in Section 2.1 that O(T ) points are scanned in L to
answer the query. So the total query cost is O(logB N +
T/B) memory transfers. In Section 2.2, we discuss how L
can be constructed in O(N logB N) memory transfers. This
proves the main result of this section:

Theorem 1 There exists a linear-space cache-oblivious data
structure that answers two-sided range queries on a set of
N points in the plane in O(logB N + T/B) memory trans-
fers. The structure can be constructed cache-obliviously in
O(N logB N) memory transfers.

2.1 The Layout

2.1.1 Si-Sparseness
The construction of the layout L is based on the follow-

ing idea: Consider storing the points in S in a sequence
S0, sorted by their x-coordinates. Every two-sided range
query (−∞, xq] × [yq, +∞) such that yq is less than the y-
coordinates of all points in S can be answered by scanning
through S0, and reporting the read points, until a point
with x-coordinate greater than xq is encountered. Since
every point that is read is also reported, the scan takes
O(1 + T/B) memory transfers. The same strategy works
for greater values of yq if we report a point that is read only
if its y-coordinate is greater than yq. As long as we scan
only O(T ) points, the query bound remains O(1 + T/B).
However, we need to deal with queries that would scan too
many points.

Assume that we are willing to scan through αT points, for
some α > 1, when answering a query with output size T . We
call a query S0-dense if we scan at most αT points in S0 to
answer it; otherwise we call it S0-sparse. Consider the min-
imum y-coordinate y1 such that there is an S0-sparse query
(−∞, xq] × [yq, +∞) with y-coordinate yq = y1. Let S1 be
the x-sorted sequence of all points in S with y-coordinates
at least y1. Observe that there are no S0-sparse queries
with y-coordinates less than y1; that is, we can answer any
query with y-coordinate yq < y1 efficiently by scanning S0.
Queries with yq ≥ y1 can be answered by scanning S1 be-
cause all points that may be in the query range have y-
coordinates at least y1 and are thus stored in S1. Since
some of these queries may be S1-sparse, we iterate the pro-
cess, finding the lowest y-coordinate y2 such that there is an
S1-sparse query with yq = y2 and constructing a sequence
S2 that contains all points with y-coordinates at least y2.
In the same fashion, we construct sequences S3, S4, . . . , Sk

and y-coordinates y3, y4, . . . , yk until |Sk| = O(1). Note that
y1 < y2 < · · · < yk. Figure 1(a) illustrates this construction.

The main problem with the above idea is that, if we
define the layout L to be the concatenation of sequences
S0, S1, . . . , Sk, it may use more than linear space, since the
total size of sequences S0, S1, . . . , Sk is Θ(N2) in the worst
case; refer to Figure 1(b).

2.1.2 Reducing the Space Requirements
In order to reduce the space requirements to linear, we

modify the above construction to ensure that every sequence
Si is identical to the next sequence Si+1 in as large a suffix
as possible, while guaranteeing that any query (−∞, xq] ×
[yq, +∞) with yq = yi+1 is Si+1-dense. Then, instead of
storing all of Si in L, we only store the prefix Li of Si that
is different from Si+1. Thus, the layout L consists of the
concatenation of sequences L0, L1, . . . , Lk, where Lk = Sk.

More formally, to define the layout L, we apply the follow-
ing iterative process, starting with S0 = S and y0 = −∞:
For the current sequence Si, we find the lowest y-coordinate
yi+1 > yi such that there is an Si-sparse query with y-
coordinate yi+1. Let xi+1 be the maximal x-coordinate such
that the query (−∞, xi+1] × [yi+1, +∞) is Si-sparse. Then
we define Li to be the prefix of Si containing all points with
x-coordinates at most xi+1, and Ri to be the suffix of Si

containing all points with x-coordinates greater than xi+1.
Thus, Si = Li ◦ Ri. Let L′

i be the subsequence of Li con-
taining all points with y-coordinates at least yi+1. Then we
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Figure 1: (a) The construction of sets S0, S1, . . . Sk using the iterative process described in Section 2.1.1 with
α = 2. The three figures show sets S0, S1, and S2 and queries (−∞, x1] × [y1, +∞), (−∞, x2] × [y2, +∞),
and (−∞, x3] × [y3, +∞) that are sparse with respect to these sets and have minimal y-coordinates among
all such queries. In each figure, the crosses represent points in S that do not belong to the current set Si,
squares represent points that are scanned by the query, and solid squares represent points that are actually
reported. (b) Defining L to be the concatenation of sequences S0, S1, . . . , Sk results in the use of Θ(N2)
space: The first shown query is S0-sparse and leads to the creation of a sequence S1 of size N −1; the second
shown query is S1-sparse and leads to the creation of a sequence S2 of size N − 2. This continues, creating
N sequences of total size Θ(N2).

define Si+1 = L′
i◦Ri. This process continues until we obtain

a sequence Sk of constant size; for this sequence, we define
Lk = Sk and Rk = ∅. The layout L is the concatenation of
sequences L0, L1, . . . , Lk (refer to Figure 2).

Observation 1 For 0 ≤ i ≤ k, Si = Li ∪ Li+1 ∪ · · · ∪ Lk.

Observation 2 Every sequence Li, 0 ≤ i < k, contains at
least α−1

α
|Li| points that are not in Si+1.

Proof. Sequence Si+1 is the concatenation of L′
i and Ri.

Ri does not contain any points from Li. L′
i contains at

most |Li|/α points from Li because the query (−∞, xi+1]×
[yi+1, +∞) is Si-sparse.

Using Observation 2, we can prove that layout L uses
linear space.

Lemma 1 Layout L uses at most α
α−1

N = O(N) space.

Proof. For every subsequence Li in L, we charge the space
required to store Li to the points in Li that are not in Si+1.
By Observation 2, there are at least α−1

α
|Li| such points in

Li, that is, we charge each such point for α/(α−1) points in
Li. Since every point p is charged only in the last sequence
Li that contains p, every point is charged only once. Thus,
every point in S is charged at most α/(α − 1); the space
bound follows.

2.1.3 Range Queries
To answer two-sided range queries using layout L, we cre-

ate a balanced binary search tree Y over the y-coordinates
y0, y1, . . . , yk and lay it out using the van-Emde-Boas lay-
out [27]; we let the leaf of Y containing yi store a pointer to
the beginning of Li in L.

To answer a range query (−∞, xq]× [yq, +∞), we search
Y to find the leaf containing the maximal y-coordinate yi

that satisfies yi ≤ yq. Then we follow the pointer from this
leaf into L and scan forward until we encounter a point p′

with x-coordinate xp′ > xq or we reach the end of L; we
report every point p we read that satisfies yp ≥ yq and has

an x-coordinate xp greater than the x-coordinate of the last
reported point.

As we prove below, this simple procedure answers a query
in O(logB N + T/B) memory transfers. By stopping the
scan as soon as we see the first point p′ with xp′ > xq, we
ensure that we report only points in the x-range (−∞, xq]; as
we will see, this condition also ensures that we inspect only
O(T ) points. The condition for reporting points ensures
that we report only points in the y-range [yq, +∞) and that
every point is reported only once.

Lemma 2 The layout L and search tree Y can be used to
answer any two-sided range query in O(logB N+T/B) mem-
ory transfers, where T is the number of reported points.

Proof. We first prove that the above procedure correctly
answers any two-sided range query. It is obvious that the
procedure never reports a point that is not in the query
range, nor does it output any point twice because the x-
coordinates of reported points are strictly increasing. Thus,
we only have to prove that the procedure does not miss a
point in the query range.

Assume for the sake of contradiction that there exists a
point p in the query range that is not reported, and assume
that we start the scan of L at the first element of sequence
Li. We may fail to report p for three reasons: (1) p 6∈ Si,
that is, p is not in Li ∪Li+1 ∪ · · · ∪Lk. (2) p is stored after
the position where we terminate the scan. (3) We report a
point p′ with xp′ > xp, but there is no occurrence of p in L
between the first element of Li and p′.

First assume that p 6∈ Si (Case 1). By Observation 1, we
have L0 ∪ L1 ∪ · · · ∪ Lk = S and Li ∪ Li+1 ∪ · · · ∪ Lk =
Si. Thus, there must exist a sequence Lj , j < i, such that
p ∈ Lj . Choose j maximally so. Since p 6∈ Sj+1, we have
yp < yj+1 ≤ yi. On the other hand, we start the scan
of L at the first element of Li because yi ≤ yq < yi+1.
Since p is in the query range, we have yp ≥ yq, that is,
yp ≥ yq ≥ yi ≥ yj+1 > yp. This is the desired contradiction.

In both, Cases 2 and 3, we encounter a point p′ with
xp′ > xp before we encounter p for the first time. For Case
3, this is true by definition. In Case 2, we terminate the scan
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Figure 2: The construction of sequences S0, S1, . . . , Sk, L0, L1, . . . , Lk and R0, R1, . . . , Rk using the iterative
process described in Section 2.1.2 with α = 2. (In this example, k = 3.) The points in the light grey regions
constitute sequences L0, L1, L2, L3. The points in the dark grey regions constitute sequences R0, R1, R2, R3;
note that R2 = R3 = ∅. For i = 0, 1, 2, 3, Si = Li ◦ Ri. In each figure, the query (−∞, xi+1] × [yi+1, +∞)
defining Li and Ri is shown in bold. The layout L is the concatenation of sequences L0, L1, L2, L3.

because we encounter a point p′ with xp′ > xq. However,
since p is in the query range, we have xp ≤ xq, that is,
xp < xp′ . Next we show that we have to encounter a copy
of point p before encountering a point p′ with xp′ > xp,
thereby proving that Cases 2 and 3 cannot occur.

So assume that we encounter some point p′ with xp′ > xp

before encountering p for the first time. Since the points in
each sequence Li are sorted by x-coordinates, p′ must belong
to some sequence Lh, h ≥ i, and the first occurrence of p
must be in some sequence Lj with j > h. By Observation 1,
Lh+1 ∪Lh+2 ∪ · · · ∪Lk = Sh+1. Hence, p ∈ Sh+1 = L′

h ◦Rh.
Since p′ ∈ Lh and xp < xp′ , p 6∈ Rh because Sh = Lh ◦ Rh

and Sh is sorted by x-coordinates. Hence, p ∈ L′
h. However,

since L′
h ⊆ Lh, this implies that p ∈ Lh, a contradiction.

Having proved that the query procedure correctly answers
any two-sided range query, it remains to bound the number
of memory transfers it incurs. Since the search for yq in Y
incurs O(logB N) memory transfers, it suffices to show that
the query procedure scans only O(T ) consecutive points in
L, which incurs O(1 + T/B) memory transfers.

Since the query starts scanning at the first element of Li,
the query scans all points in sequences Li, Li+1, . . . , Lj−1,
for some j ≥ i, and finally terminates the scan after reading
a prefix Pj of sequence Lj . First observe that the query is Si-
dense, that is, if we were to answer the query on Si, we would
scan a set S′ of K ≤ αT points, which is exactly the set of
points in Si that have x-coordinates no greater than xq.
Next observe that all the points we scan in L are contained
in S′ because, by Observation 1, Li ∪ Li+1 ∪ · · · ∪ Lk = Si

and all scanned points have x-coordinates no greater than
xq. Finally, by Observation 2, every sequence Li contains
at least α−1

α
|Li| points that do not occur in any subsequent

sequence Lj . Hence, K ≥
Pj−1

h=i
α−1

α
|Lh| + |Pj |, that is,Pj−1

h=1 |Lh|+ |Pj | ≤ α
α−1

K. Since K ≤ αT , we scan no more

than α2

α−1
T = O(T ) points in L.

2.2 Construction of the Layout
In this section, we describe an efficient algorithm for con-

structing the layout L described in Section 2.1. Our algo-
rithm uses a sweep-line approach: Starting at −∞, we sweep
a horizontal line upwards across the plane, while maintain-
ing the invariant that, by the time the sweep line reaches
a y-coordinate y with yi ≤ y < yi+1, we have constructed
sequences L0, L1, . . . , Li−1 and Si. Every time the sweep
line reaches a point p, we check whether there is a query
(−∞, xq]× [yq, +∞) with yq = yp that is Si-sparse. This is

equivalent to detecting whether there exists an x-coordinate
xq such that less than 1/α of the points in Si with x-
coordinates at most xq are above the sweep line. If there
is such a query, then yp = yi+1 and we need to construct
Li and Si+1. To do so, we let q be the point with yq =
yp and with maximal x-coordinate xq such that the query
(−∞, xq]× [yq, +∞) is Si-sparse. Then we scan through Si

until we encounter the first point with x-coordinate greater
than xq, while copying all scanned points to L and remov-
ing all points with y-coordinates less than yq from Si. The
copied points constitute sequence Li, and the resulting se-
quence is Si+1.

It is easy to see that, ignoring the cost of testing for ev-
ery point p ∈ S whether there is an Si-sparse query with
bottom boundary yp, the sweep uses O(|L|/B) = O(N/B)
memory transfers: When constructing Li and Si+1, we scan
and copy |Li| points, and, by Lemma 1, L0◦L1◦· · ·◦Lk = L
contains O(N) points. Below we describe a data structure
on S that allows us to check, using O(1) memory transfers,
whether there is an Si-sparse query (−∞, xq]×[yq, +∞) with
yq = yp. If there is such a query, we can use the structure to
find the point q with yq = yp and maximal x-coordinate xq

such that the query (−∞, xq] × [yq, +∞) is Si-sparse; this
takes O(logB N) memory transfers. The structure needs to
be updated each time the sweep line reaches a point in S
and each time a point is removed from Si. We show that
this can be done using O(logB N) memory transfers per up-
date. This leads to an O(N/B+N · logB N) = O(N logB N)
construction algorithm.

To describe our data structure, we need a few definitions.
Every point in S can be in one of three different states w.r.t.
the current set Si and the current sweep line: dead, if it is
not in Si; useful, if it is in Si and above the sweep line; or
useless, if it is in Si and below the sweep line. We refer
to the useful and useless points as alive. In other words,
a query whose bottom boundary is on the sweep line scans
only alive points and outputs all useful points it scans. For
any subsequence S′ of Si, we define u(S′) and w(S′) to be
the number of useful and useless points in S′, respectively.
We define the surplus of S′ as s(S′) = (α− 1)u(S′)−w(S′).
A query is S0-dense if the surplus of the prefix of S0 scanned
by the query is non-negative.

With these definition, we can now define our data struc-
ture. It is a balanced binary tree T over the points in S,
sorted by their x-coordinates. Each point in T is marked
as dead, useful or useless. At any time during the sweep,
the alive (useful and useless) points constitute Si; initially,



all points in T are marked as useful. Each internal node v
in T represents the subsequence Sv of Si consisting of the
alive points in the subtree rooted at v. Node v stores two
labels: the surplus s(v) = s(Sv) of Sv and a tolerance t(v),
which is the minimum surplus of any prefix of Sv; initially,
s(v) = (α − 1)|Sv| and t(v) = α − 1. Below we will show
how to update s(v) and t(v) as the sweep line moves up-
wards and points get marked as useless or dead. The struc-
ture of the tree T itself remains static, and T is laid out
in memory using the van-Emde-Boas layout; we can thus
traverse a root-to-leaf path in T using O(logB N) memory
transfers [27].

To see how T can be used to determine whether there
is an Si-sparse query (−∞, xq] × [yq, +∞) with yq = yp

when reaching a point p, that is, to determine whether there
is an x-coordinate xq such that less than 1/α of the alive
points with x-coordinates at most xq are useful, we need
the following observation.

Observation 3 When the sweep line is at point p, a query
(−∞, xq] × [yq, +∞) with yq = yp is Si-sparse if and only
if the subsequence of Si scanned when answering the query
has negative surplus.

Proof. Let S′ be the prefix of Si that is scanned when an-
swering the query (−∞, xq] × [yq, +∞) on Si. The query
reports exactly the points in S′ that are useful. The surplus
of S′ is negative if and only if (α− 1)u(S′) < w(S′), that is,
αu(S′) < u(S′) + w(S′) = |S′|. Thus, the surplus of S′ is
negative if and only if the query is Si-sparse.

Since the tolerance of the root of T is the minimum sur-
plus of any prefix of Si, Observation 3 states that there is an
Si-sparse query if and only if the root has negative tolerance,
which can be checked using a single memory access.

If we detect that there is an Si-sparse query when reaching
p, that is, if the root has negative tolerance, we can find the
point q with yq = yp and maximal x-coordinate xq such
that the query (−∞, xq] × [yq, +∞) is Si-sparse as follows:
We traverse a root-to-leaf path in T while maintaining the
cumulative surplus s∗ of the prefix of Si represented by all
subtrees to the left of the traversed path; initially, s∗ = 0. At
a node v with left child l and right child r, we test whether
s∗ + s(l) + t(r) is negative. If it is, we add s(l) to s∗ and
proceed to r; otherwise, we proceed to l. Then we report
the point q whose y-coordinate is yp and whose x-coordinate
is the x-coordinate of the point in the leaf reached by this
procedure.

Lemma 3 When the sweep line is at point p, we can use T
to determine in O(1) memory transfers whether there is an
Si-sparse query (−∞, xq]× [yq, +∞) with yq = yp. If so, it
takes O(logB N) memory transfers to find the point q with
yq = yp and maximal x-coordinate xq such that the query
(−∞, xq]× [yq, +∞) is Si-sparse.

Proof. The complexity bounds follow immediately from the
above discussion and the fact that we traverse a single root-
to-leaf path to find q. To prove that the reported point, q′,
is indeed q, we need to prove that q′ is the rightmost point
such that the prefix of Si ending at q′ has negative surplus
(Observation 3). To do so, it suffices to prove that, for
every visited node v, the longest prefix of Si with negative
surplus ends with an element in Sv. We do so by induction:

For the root, the claim is trivial. So assume that the claim
holds for the current node v, and let l and r be its two
children. It suffices to prove that we continue the search at
r if and only if there is a prefix of Si with negative surplus
that ends with an element in Sr. To do so, we observe that
s∗ + s(l) + t(r) is the minimum surplus of any prefix of Si

ending with a point in Sr. Indeed, t(r) = minp′∈Sr tp′ and,
for every point p′ ∈ Sr, the prefix of Si ending at p′ has
surplus s∗ + s(l) + tp′ , where tp′ is the surplus of the prefix
of Sr that ends at p′. This implies that there exists a prefix
of Si with negative surplus that ends with an element in Sr

if and only if s∗ + s(l) + t(r) is negative.

What remains to show is how T can be updated using
O(logB N) memory transfers when the status of a point p
changes from useful to useless, because the sweep line passes
p, or when the status of p changes from useless to dead,
because p is removed from Si.

Lemma 4 Tree T can be updated in O(logB N) memory
transfers after a status change of a single point.

Proof. When a point p in a leaf l of T changes its status
from useful to useless, the surplus of each of l’s ancestors
decreases by α: α−1 for the loss of a useful point, and 1 for
the gain of a useless point. When p changes its status from
useless to dead, the surplus of each ancestor increases by
1 because it loses a useless descendant. Thus, the relevant
surplus values can easily be updated in O(logB N) memory
transfers by traversing the path from l to the root.

Similarly, only nodes on the path from the root to l change
their tolerance values t(v) when p changes its status. The
tolerance of a node v with left child l and right child r is
t(v) = min(t(l), s(l) + t(r)). Hence, we can also update the
tolerances of the relevant nodes as we traverse the path from
l to the root.

During the construction of the layout L, we perform an
update and a query on T whenever the sweep line passes
a point in S. When constructing Si+1 from Si, we also
perform one update on T per point in Si \ Si+1. Thus, in
total, we answer N queries and perform 2N updates on T to
construct L. This costs O(N logB N) memory transfers in
total. Since the rest of the construction of L uses O(N/B)
memory transfers, and since the search tree Y can easily be
constructed in O

`
N
B

logB N
´

memory transfers, we obtain

Lemma 5 The layout L and the search tree Y for a set of
N points in the plane can be constructed in O(N logB N)
memory transfers.

Lemma 5, along with Lemmas 1 and 2, proves Theorem 1.

3. STATIC THREE-SIDED PLANAR
RANGE SEARCHING

By combining our linear-space structure for two-sided ran-
ge queries with a standard construction, we obtain a simple
O(N log2 N)-space structure for three-sided queries. Our
three-sided structure consists of a balanced binary base tree
T with the N points in S stored at the leaves, sorted by their
x-coordinates. T is laid out in memory using the van-Emde-
Boas layout, so that a root-to-leaf path can be traversed
cache-obliviously in O(logB N) memory transfers [27]. For



each internal node v in T , let Sv be the points from S stored
in the subtree rooted at v. We store the points in Sv in two
secondary structures, Lv and Rv, associated with v. Lv

is a structure for answering two-sided queries of the form
(−∞, xq] × [yq, +∞) (with the x-opening to the left); Rv

is a structure for answering two-sided queries of the form
[xq, +∞)× [yq, +∞) (with the x-opening to the right).

Since each point from S is stored in two linear-space sec-
ondary structures on each of the O(log2 N) levels of T ,
our structure uses O(N log2 N) space in total. To con-
struct our structure, we sort the points in S; build T and
the sets Sv, for all nodes v ∈ T , bottom-up; and finally
build the two structures Lv and Rv from Sv, for every node
v ∈ T . Sorting the points in S requires O

`
N
B

logM/B
N
B

´
memory transfers [24]. The construction of T and of the
sets Sv requires O(N/B) memory transfers per level of T ,
O

`
N
B

log2 N
´

memory transfers in total. Finally, since the
total size of all secondary structures at each level is O(N),
the construction of all secondary structures associated with
nodes of T takes O(N logB N)·O(log2 N) memory transfers,
by Theorem 1.

To answer a three-sided range query [xl, xr]× [yb,∞), we
search down T , using O(logB N) memory transfers, to find
the first node v such that xl is contained in the subtree
rooted at the left child l of v and xr is contained in the
subtree rooted at the right child r of v. Then we query Rl

with the query range [xl, +∞) × [yb, +∞) and Lr with the
query range (−∞, xr]× [yb, +∞). By Theorem 1, this costs
O(logB N +T/B) memory transfers. The correctness of this
procedure is obvious. This proves

Theorem 2 There exists a cache-oblivious data structure
that uses O(N log2 N) space to store N points in the plane
and answers three-sided range queries in O(logB N + T/B)
memory transfers. The structure can be constructed using
O(N logB N · log2 N) memory transfers.

4. SEMI-DYNAMIC TWO-SIDED PLANAR
RANGE SEARCHING

Using the so-called logarithmic method [15, 25], we can
support insertions into our two-sided structure. We parti-
tion the set S of points into log2 N disjoint subsets such that
the i’th subset Si is either empty or of size 2i. Then we con-
struct a two-sided structure on each set Si, using Theorem 1.
We answer a query by querying each of the log2 N structures
and combining the answers. If Ti is the number of points

reported from Si, this takes
Plog2 N

i=0 O(logB 2i + Ti/B) =
O(logB N · log2 N + T/B) memory transfers in total. We
perform an insertion by finding the first empty subset Sk,
collecting all points in sets S0, S1, . . . , Sk−1, and forming Sk

from the inserted point and the
Pk−1

j=0 2j = 2k − 1 collected
points from these sets. Then we discard all structures on
sets S0, . . . , Sk−1 and construct a structure for the new set
Sk. By Theorem 1, this takes O(2k logB 2k) memory trans-
fers. If we divide the construction cost among the 2k points
moved to Sk, each of them has to pay for O(logB N) trans-
fers. Since a point never moves from a set with higher index
to a set with lower index, we charge every point at most
O(log2 N) times. The amortized cost of an insertion is thus
O(logB N · log2 N) memory transfers.

The O(logB N · log2 N + T/B) query bound can be im-
proved to O(log2 N + T/B) using fractional cascading [22].

First recall that the two-sided structure for Si consists of
a sequence Li of points from Si and a search tree Yi on a
sorted sequence of y-coordinates of a subset of the points in
Si; each element in this sequence has a pointer to a point in
Li. The logB N -term in the query bound is a result of the
search in the search trees Yi; after the search, a query on Si

is answered by scanning O(Ti) consecutive points in Li. In
the following, we describe how to avoid the search in Yi. In
fact, we will not need a search tree at all, and we will from
now on use Yi to denote the sequence of y-coordinates that
would normally be stored in Yi.

Given log2 N + 1 sorted sequences, Y0, Y1, . . . , Ylog2 N , of

elements (y-coordinates) such that |Yi| ≤ 2i, our problem
is to find in each sequence Yi the largest element that is no
greater than a query element yq. To do so efficiently, we aug-
ment each sequence Yi with some extra elements to obtain a
sequence Y ′

i . More precisely, starting with Y ′
log2 N = Ylog2 N ,

we repeat the following process for i = log2 N − 1, log2 N −
2, . . . , 0: We sample every 4’th element from Y ′

i+1 and add
all sampled elements to Yi. The result is Y ′

i . In addition, we
augment every element y ∈ Yi ⊆ Y ′

i with a pointer to the
largest element y′ ∈ Y ′

i \ Yi such that y′ ≤ y, and we aug-
ment every element y′ ∈ Y ′

i \Yi with two pointers, one to the
largest element y ∈ Yi such that y ≤ y′ and one to the copy
of y′ in Y ′

i+1. It is easy to prove by induction that the size
|Y ′

i | of Y ′
i is bounded by |Yi|+|Y ′

i+1|/4 ≤ 2i+2·2i+1/4 = 2·2i.
Given sequences Y0, Y1, . . . , Yk and Y ′

k+1, we can construct
sequences Y ′

0 , Y ′
1 , . . . , Y ′

k iteratively, starting with Y ′
k : For

i = k, k − 1, . . . , 0, we simultaneously scan Y ′
i+1 and Yi to

obtain the samples from Y ′
i+1 and merge them with the

elements in Yi. This produces Y ′
i . The pointers for the

elements in Y ′
i can easily be computed during this merge

process. Overall, the construction of Y ′
0 , Y ′

1 , . . . , Y ′
k requiresPk

i=0O((|Yi| + |Y ′
i+1|)/B) =

Pk
i=0O(2i/B) = O(2k/B)

memory transfers.

Lemma 6 Given sequences Y0, Y1, . . . , Yk and Y ′
k+1, the

augmented lists Y ′
0 , Y ′

1 , . . . , Y ′
k can be constructed cache-

obliviously in O(2k/B) memory transfers.

Given sequences Y ′
0 , Y ′

1 , . . . , Y ′
log2 N , the largest element

yi ∈ Yi, for each 0 ≤ i ≤ log2 N , that is no greater than
a query element q can be found efficiently as follows: First
we scan Y ′

0 to find the largest element y′0 ∈ Y ′
0 that is no

greater than q. Then we repeat the following process for
i = 0, 1, . . . , log2 N − 1: If y′i ∈ Yi, then yi = y′i; other-
wise, we find yi by following the pointer from y′i to the next
smaller element yi ∈ Yi. Then we find the largest element
y′′i ∈ Y ′

i \ Yi that is no greater than y′i. If y′i ∈ Y ′
i \ Yi,

y′′i = y′i; otherwise, y′i stores a pointer to this element. Ele-
ment y′′i stores a pointer to its occurrence in Y ′

i+1. Since we
sampled every 4’th element in Y ′

i+1, y′i+1 is among the four
elements in Y ′

i+1 that follow y′′i and can thus be identified
by inspecting these elements. The total cost of this pro-
cedure is O(log2 N) memory accesses because |Y ′

0 | = O(1)
and, for i = 0, 1, . . . , log2 N−1, we follow a constant number
of pointers and scan a constant number of elements in Y ′

i+1.
All that remains is to describe how to maintain the Y ′

i -
sequences during insertions. Recall that we perform an in-
sertion by finding the first empty sequence Sk and then con-
structing a new two-sided structure, consisting of sequences
Lk and Yk, on the inserted point and the 2k − 1 points in
S0, S1, . . . , Sk−1. This requires O(2k logB 2k) memory trans-



fers. After the construction of Lk and Yk, we need to update
the sequences Y ′

0 , Y ′
1 , . . . , Y ′

k . (Sequences Y ′
k+1, . . . , Y

′
log N re-

main unchanged). Given Y ′
k+1, we can do so in O(2k/B)

memory transfers, by Lemma 6. (Note that Y0, Y1, . . . , Yk−1

are empty.) Using the same charging argument as at the
beginning of this section, we then obtain

Theorem 3 There exists a linear-space cache-oblivious data
structure that answers two-sided range queries on a set of N
points in the plane in O(log2 N + T/B) memory transfers
and supports insertions in O(logB N ·log2 N) memory trans-
fers amortized.

5. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we have presented a simple static linear-

space structure for answering two-sided range queries cache-
obliviously in the optimal number of memory transfers. We
have also demonstrated that, using this structure, we can ob-
tain a structure for three-sided range searching that matches
the space and query bounds of the best previous structure
for this problem, but is much simpler. Based on our static
structure for two-sided range searching, we have also ob-
tained the first semi-dynamic (insertion-only) structure for
a planar range searching problem with a logarithmic query
bound and polylogarithmic update bound.

The question whether there is a linear-space structure for
three-sided range searching with the optimal query bound
remains open. In order to make our semi-dynamic struc-
ture fully dynamic, it would be necessary to make our static
structure support deletions directly. In order to obtain an
optimal logarithmic term in the query bound of the semi-
dynamic structure, the number of structures in the logarith-
mic method would have to be reduced to O(logB N). While
this is possible in the I/O-model, it is open how to achieve
this (or a similar property) cache-obliviously.

After the submission of this paper, Brodal [16] discov-
ered that our static structure for two-sided range search-
ing can be constructed in O

`
N
B

logM/B
N
B

´
memory trans-

fers. This implies an improved amortized insertion bound of
O

`
1
B

logM/B
N
B
· log2 N

´
= O(log2

B N) for the semi-dynamic
structure for two-sided queries and an improved construc-
tion bound of O

`
N
B

logM/B
N
B

log2 N
´

for the static struc-
ture for three-sided queries.
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