
Cache-Oblivious Range Reporting With Optimal Queries
Requires Superlinear Space

Peyman Afshani
∗

MADALGO
Dept. of Computer Science

University of Aarhus
IT-Parken, Aabogade 34

DK-8200 Aarhus N
Denmark

peyman@madalgo.au.dk

Chris Hamilton
†

Faculty of Computer Science
Dalhousie University

6050 University Avenue
Halifax, NS B3H 1W5

Canada
chamilton@cs.dal.ca

Norbert Zeh
‡

Faculty of Computer Science
Dalhousie University

6050 University Avenue
Halifax, NS B3H 1W5

Canada
nzeh@cs.dal.ca

ABSTRACT

We consider a number of range reporting problems in two
and three dimensions and prove lower bounds on the amount
of space required by any cache-oblivious data structure for
these problems that achieves an optimal query bound of
O(logB N + K/B) block transfers in the worst case, where
K is the size of the query output.

The problems we study are three-sided range reporting,
3-d dominance reporting, and 3-d halfspace range report-
ing. We prove that, in order to achieve the above query
bound or even a bound of O((logB N)c(1 + K/B)), for any
constant c > 0, the structure has to use Ω(N(log log N)ε)
space, where ε > 0 is a constant that depends on c and
on the constant hidden in the big-Oh notation of the query
bound.

Our result has a number of interesting consequences. The
first one is a new type of separation between the I/O model
and the cache-oblivious model, as I/O-efficient data struc-
tures with the optimal query bound and using linear or
O(N log∗ N) space are known for the above problems. The
second consequence is the non-existence of a linear-space
cache-oblivious persistent B-tree with worst-case optimal
1-d range reporting queries.

∗Part of this work was done while visiting Dalhousie Uni-
versity.
†Supported by a Killam Graduate Scholarship.
‡Supported in part by the Natural Sciences and Engineering
Research Council of Canada, the Canadian Foundation for
Innovation, and the Canada Research Chairs programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’09, June 8–10, 2009, Aarhus, Denmark.
Copyright 2009 ACM 978-1-60558-501-7/09/06 ...$5.00.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms

Algorithms, Design, Theory

Keywords

Memory hierarchies, cache-obliviousness, data structures,
lower bounds, range searching

1. INTRODUCTION
Range reporting is a well studied fundamental problem in

computational geometry. Given a set S of points in R
d, the

problem is to preprocess S so that, for any query range q, all
points in S ∩ q can be reported efficiently. Typical types of
query ranges include axis-aligned boxes, circles, simplices or
halfspaces. In the plane, the special case of three-sided range
reporting considers axis-aligned boxes whose top boundaries
are fixed at +∞. Dominance reporting is another impor-
tant special case: given a query point q, the problem is to
report all points in S that are dominated by q, that is, whose
coordinates are less than q’s in all dimensions.

Most previous work on this type of problems has focused
on standard models of computation such as the RAM model
or the pointer machine model. The distinguishing feature of
these models is that the access cost to a data item is inde-
pendent of the location where the item is stored in memory.
These models are useful for studying the fundamental com-
putational difficulty of a problem, but they ignore that in
reality the time to access an item can vary by up to a fac-
tor of 106 depending on its present location (disk, internal
memory, CPU cache, etc.).

Two models have emerged that have proven useful for
modelling non-uniform memory access costs: the input-
output model (or I/O model) [6] and the cache-oblivious
model [16]. The I/O model considers two levels of mem-
ory: a slow but conceptually unlimited external memory
and a fast internal memory with the capacity to hold M
data items. All computation has to happen on data in in-
ternal memory. The transfer of data between internal and
external memory happens in blocks of B consecutive data

Query type Space Query bound References/Notes

2-d three-sided N log N + K internal memory, [21]
N logB N + K/B I/O model, [10]
N log N logB N + K/B cache-oblivious, [3,4,7,11]

2-d dominance N logB N + K/B cache-oblivious, [11]

3-d dominance N log N + K internal memory, [1,20]
N logB N + K/B I/O model, [1]
N log N logB N + K/B cache-oblivious, [3]

3-d halfspace N log N + K internal memory, [2]
N log∗ N logB N + K/B I/O model, [2]
N log N logB N + K/B cache-oblivious, [3]

Table 1: A summary of related work on three-sided range reporting, 2-d and 3-d dominance reporting, and
3-d halfspace range reporting with the optimal query bound.

items; the complexity of an algorithm is the number of such
block transfers it performs.

The cache-oblivious model provides a simple framework
for building algorithms for multi-level memory hierarchies,
while using the simple two-level I/O model for the analysis.
In this model, the algorithm is oblivious of the memory hi-
erarchy and, thus, cannot initiate block transfers explicitly.
Instead the swapping of data between internal and external
memory is the responsibility of a paging algorithm, which
is assumed to be offline optimal, that is, performs the min-
imum number of block transfers for the memory access se-
quence of the algorithm. Since the memory parameters are
used only in the analysis, the analysis applies to any two
consecutive levels of the memory hierarchy. In particular, if
the analysis shows that the algorithm is optimal with respect
to two levels of memory, then it is simultaneously optimal at
all levels of the memory hierarchy. See [16] for more details
and for a justification of the optimality assumption of the
paging algorithm.

1.1 Related Work
In the I/O model, much work has focused on orthogonal

range reporting. A number of linear-space structures were
proposed that achieve a query bound of O(

p

N/B + K/B)

block transfers in two dimensions and O((N/B)1−1/d+K/B)
block transfers in d dimensions [9,17,18,19,22,24], where K
is the number of reported points. The same bounds were
obtained in the cache-oblivious model [4,8]. In 2-d, Arge et
al. [10] showed that Θ(N logB N/ logB logB N) space is suf-
ficient and necessary to obtain a query bound of O(logB N +
K/B) block transfers for orthogonal range reporting in the
I/O model. The lower bound, when applied to blocks of
size Nε, implies that achieving the optimal query bound
cache-obliviously requires Ω(N log N) space. The main tool
used to prove the upper bound is an I/O-efficient version of
McCreight’s priority search tree [21] with a query bound of
O(logB N + K/B) for three-sided queries and using linear
space.

In the cache-oblivious model, three structures were pro-
posed that achieve a query bound of O(logB N + K/B) for
three-sided queries, but using O(N log N) space. The first
one, by Agarwal et al. [4], requires that log log B is an inte-
ger. The second and third structures, by Arge et al. [7] and
Arge and Zeh [11], remove this restriction. The structure
by Arge and Zeh was obtained by combining standard tech-

niques with a linear-space structure for optimal 2-d domi-
nance queries proposed in the same paper.

For 3-d dominance reporting in the I/O model, Vengroff
and Vitter [25] presented a data structure with a query
bound of O(log(N/B) log log logB N +K/B) block transfers
and using O(N log(N/B)) space. The query bound can be
reduced to O(logB N + K/B) using a careful choice of pa-
rameters [26]. Afshani [1] showed that an optimal query
bound can in fact be obtained using linear space, raising the
question whether this result can be achieved in the cache-
oblivious model as well. In [3], we show that the optimal
query bound can indeed be achieved by a cache-oblivious
structure, but our structure uses O(N log N) space.

Halfspace range reporting in 3-d has a longer history, par-
ticularly because it can be used to solve other problems,
such as 2-d circular range reporting and 2-d k-nearest neigh-
bour searching. In internal memory, Chan described an
O(N log N)-space structure with an expected query time of
O(log N+K) [14]. Building on these ideas, Agarwal et al. [5]
obtained an O(N log N)-space structure with an expected
query bound of O(logB N+K/B) in the I/O model. Further
research led to the development of internal-memory struc-
tures with the optimal query bound in the worst case and
using O(N log log N) space [15,23]. The same improvements
can be carried over to the I/O model. Recently, Afshani and
Chan [2] described a linear-space structure with the optimal
query bound in internal memory and an O(N log∗ N)-space
structure that answers queries using O(logB N+K/B) block
transfers in the I/O model. In [3], we show how to achieve
the optimal query bound in the cache-oblivious model, using
O(N log N) space. Table 1 summarizes these results.

1.2 New Results
As discussed in the previous section, there exist linear- or

O(N log∗ N)-space structures that achieve the optimal query
bound of O(logB N +K/B) for three-sided range reporting,
3-d dominance reporting, and 3-d halfspace range reporting
in the I/O model. In contrast, the best known structures in
the cache-oblivious model use O(N log N) space. This raises
the question of whether linear-space cache-oblivious struc-
tures with the optimal query bound exist for these problems.
In this paper, we give a negative answer to this question. In
particular, we prove that any cache-oblivious data structure
for three-sided range reporting, 3-d dominance reporting, or
3-d halfspace range reporting that achieves a query bound
of O((logB N)c(1+K/B)) block transfers, for any c > 0, has

to use Ω(N(log log N)ε) space, where ε depends on c and on
the constant factor in the query bound. As a consequence
of our lower bound, it follows that there is no linear-space
cache-oblivious persistent B-tree that achieves the optimal
1-d range searching bound of O(logB N +K/B) block trans-
fers in the worst case, while such a structure is known to
exist in the I/O model.

There have been previous results showing that the cache-
oblivious model is less powerful than the I/O model. Brodal
and Fagerberg [13] established a lower bound on the amount
of main memory necessary for optimal cache-oblivious sort-
ing, while Bender et al. [12] proved that searching in the
cache-oblivious model has to cost a constant factor more
than the search bound achieved in the I/O model using B-
trees. In contrast to these results, our result establishes
a gap between the resource consumption of cache-oblivious
and I/O-efficient structures that grows with the input size.

The key to obtaining our result is the construction of a
hard point set, a set of hard queries over this point set,
and techniques to explicitly use the multi-level structure of
the cache-oblivious model. Previous lower bound proofs for
range reporting problems in the I/O model also involved
the construction of a hard point set together with a hard
query set consisting of many “sufficiently different” queries
of the same size. Combined with counting arguments, this
ensured that the point set cannot be represented in linear
space while guaranteeing a certain proximity (on disk) of the
points reported by each query. The problems we study in
this paper allow linear-space solutions in the I/O model, as
well as linear-space cache-oblivious solutions for queries of
any fixed output size. This means that previous techniques
are ineffective for our purposes. In order to force a given
point set to be hard for the problems we study, we con-
struct many queries of different sizes. Combined with the
multi-level nature of the cache-oblivious model, this allows
us to create many incompatible proximity requirements for
subsets of the point set and thereby force substantial dupli-
cation. It should be noted here that our construction of a
hard point set (as well as the proof of Lemma 3) is inspired
by a similar construction of a hard point set used by Afshani
and Chan to prove a lower bound on the shallow partition
theorem [2].

2. A LOWER BOUND FOR THREE-

SIDED RANGE REPORTING
In this section, we present the main result of our paper: a

lower bound on the space used by any cache-oblivious data
structure that supports three-sided range reporting queries
using O((logB N)c(1+K/B)) block transfers. This result is
summarized in the following theorem. The lower bounds for
3-d dominance reporting and 3-d halfspace range reporting
are discussed in Section 3 and are obtained using reductions
from three-sided range reporting to those problems.

Theorem 1. Any cache-oblivious data structure for three-
sided range reporting that achieves a query bound of at most
a(logB N)c(1+K/B) block transfers on a memory hierarchy
with block sizes up to N2δ, for a constant 0 < δ ≤ 1/2, must
use Ω(N(log log N)ε) space, where ε = δc/(3a).

Since we can prove this lower bound only by considering
block sizes up to N2δ , the lower bound can be circumvented

by using a sufficiently strong tall cache assumption that al-
lows the entire point set to fit in memory (M = ω(B1/(2δ)),
for all 0 < δ ≤ 1/2). It is reasonable, however, to assume
that M is polynomial in B, in which case the stated lower
bound holds.

Just as the lower bound proof for 4-sided range searching
in the I/O model by Arge et al. [10], our proof ignores the
cost of locating the points to be reported and proves that
the stated space bound is necessary even to ensure only that
the points to be reported by a query are stored in at most
a(logB N)c(1 + K/B) blocks.

The first step towards proving Theorem 1 is to show that
it suffices to consider the case δ = 1/2, that is, blocks that
may have size up to N .

Lemma 1. If Theorem 1 holds for δ = 1/2, it holds for
any 0 < δ ≤ 1/2.

Proof. Consider a particular choice of N , a, c, and δ
in Theorem 1, and let N ′ = N2δ and a′ = a/(2δ)c. Since
Theorem 1 holds for δ = 1/2, there exist a point set S′ of
size N ′ and a query set Q′ over S′ such that a structure
storing S′ and capable of answering the queries in Q′ using
a′(logB N ′)c(1 + K/B) block transfers, for block sizes up
to N ′, must use Ω(N ′(log log N ′)ε) space for ε = 1/(3a′ ·2c).

Now we construct a point set S of size N by making m =
N/N ′ copies S1, S2, . . . , Sm of S′, which are placed side by
side. We also construct a query set Q, which is the union of
query sets Q1, Q2, . . . , Qm, where Qi is a copy of query set
Q′ over the copy Si of S′. By the argument in the previous
paragraph, if we can answer the queries in Qi over point
set Si using a(logB N)c(1 +K/B) = a′(logB N ′)c(1+K/B)
block transfers, for block sizes up to N ′ = N2δ , the points
in Si must occupy Ω(N ′(log log N ′)ε) = Ω(N ′(log log N)ε)
space in the data structure. Therefore, since we have m =
N/N ′ copies Si, the space occupied by the entire set S is
Ω(N(log log N)ε), for ε = 1/(3a′ · 2c) = δc/3a.

By Lemma 1, it suffices to prove Theorem 1 for arbitrarily
large block sizes. Before we present the details of the proof,
we give an intuitive description of the main ideas. We re-
cursively construct a point set S and a set Q of queries over
this point set; see Figure 1(a). At the first level of recursion,
we divide the plane into a t × 2t−1-grid T , for a parameter
t to be chosen later, and place different numbers of points
into its cells. The points within each cell are arranged by di-
viding the cell into subcells and distributing the points over
these subcells. This process continues recursively as long as
each grid cell contains at least

√
N points.

The construction of the query set Q follows the recursive
construction of S. Each query at the top level comprises
a union of grid cells chosen so that each top-level query
outputs roughly the same number of points. When recursing
on a grid cell, we construct a set of queries over the subgrid in
this cell in a similar fashion. The main idea is to prove that,
by choosing the queries in Q appropriately, we can force that
there exists at least one grid cell at the top level of recursion
at least half of whose points are duplicated Ω(tε) times. The
next level of recursion ensures that again at least one of the
subcells in each of the remaining cells has at least half of
its points duplicated Ω(tε) times, and so on. By making
the recursion sufficiently deep, we can ensure that at least
a constant fraction of the points are duplicated Ω(tε) times.
Thus, by choosing t ≈ log log N , we obtain the claimed lower
bound.

2
t−12

t−1

t

t

t

2
t−1

t

t

(a)
2

t−1

(b)
2

t−1

(c)

Figure 1: (a) The recursive construction of the point set. Fat solid lines bound grid cells, dotted lines separate
subcolumns. (b) The set of queries in QT . Only one query is shown for each level of QT . (c) Queries at
recursive levels output only points from their subgrids. This figure shows only one grid column, stretched
horizontally to better show the query.

The key to forcing this type of duplication at each level of
recursion is to exploit the assumption of the cache-oblivious
model that the data structure has to be able to cope with
any block size. This allows us to choose the block size at
each level of recursion to be between K/2 and K and no

less than
√

N . Any data structure capable of coping with
this block size must answer the query using a(logB N)c(1 +
K/B) ≤ 3a/2c = O(1) block transfers. This completely
eliminates the potential benefit of the dependence of the
query bound on the size of the point set and on the output
size of the query and allows us to place very stringent con-
straints on the layout (in memory) of the points contained
in each query.

We divide the details of the proof into two parts. In Sec-
tion 2.1, we discuss precisely the construction of the point
set S and query set Q and prove that, if we can force the
duplication claimed above in one cell of each of the subgrids
at each level of recursion, Theorem 1 follows. In Section 2.2,
we discuss how to achieve this duplication at each level of
recursion.

2.1 The Point Set and Query Set
To define the point set S, we construct a t × 2t−1-grid T ,

for a parameter t := (log log N)/4. This parameter remains
fixed throughout the construction. We refer to the grid cell
in row i and column j as Tij . Every column of T is di-
vided into t subcolumns, which also splits each cell Tij into
t subcells Tijk, for 1 ≤ k ≤ t. We now place 2i−1N1 points
into each cell in row i, where N1 = N/(22t−1 − 2t−1). The
points in cell Tij are placed into subcell Tiji. This is illus-
trated in Figure 1(a). Observe that this ensures that each
column of the grid receives (2t − 1)N1 points. Since there
are 2t−1 columns, the total number of points in the grid
is (22t−1 − 2t−1)N1 = N . The layout of the points within
each cell is now obtained by applying the same procedure
recursively to the set of points assigned to each cell. The
recursion stops when the smallest cell in the current grid
receives at most

√
N points.

The query set Q is constructed by following the recursive
construction of S. For the top-level grid T , we construct
a set QT of queries consisting of t levels. Level i contains
2i−1 queries, the kth of which is the union of all grid cells

Ti′j′ satisfying 0 < i′ ≤ i and (k − 1)2t−i < j′ ≤ k2t−i;
see Figure 1(b). It is easily verified that every query in QT

has output size Θ(2tN1) = Θ(N/2t) (between N12
t−1 and

N1(2
t −1) to be precise). Note that, even though we specify

these queries as unions of grid cells, that is, effectively, as
four-sided queries, we can move their top boundaries to infin-
ity without changing the set of points they report. To com-
plete the construction of the query set Q, we apply the same
construction recursively to the subgrids in each cell, adding
a query set QT ′ to Q, for each such subgrid T ′. Again, we
can move the top boundary of each query in QT ′ to infinity
to make it three-sided without changing the set of points
it reports. Indeed, this does not change the set of points
from T ′ reported by the query, and the staggered layout of
the points in each grid column into x-disjoint subcolumns
ensures that there are no points in S that belong to the x-
range of T ′ but are outside its y-range. This is illustrated
in Figure 1(c).

The following lemma now provides the framework we use
to prove Theorem 1.

Lemma 2. Assume that the following is true for any sub-
grid T ′ of T containing N ′ points and its corresponding
query set QT ′ :

If each query in QT ′ can be answered using at
most a(logB N)c(1 + K/B) block transfers, for
a block size B = Θ(N ′/2t), then there exists a
cell C′ in T ′ at least half of whose points are
duplicated Ω(tε) times, for ε = 1/(3a · 2c).

Then any cache-oblivious data structure achieving a query
bound of at most a(logB N)c(1 + K/B) block transfers for
queries over S requires Ω(Ntε) = Ω(N(log log N)ε) space.

Proof. Consider a subgrid T ′. By setting the block size
to a value B = Θ(N ′/2t) as in the lemma, we know there
exists a cell C′ at least half of whose points are duplicated
Ω(tε) times. Let |C′| be the number of points in C′. Then
|C′| ≥ N ′/4t. We call the points in C′ accounted for. By
recursing on the other grid cells of T ′, we can account for a
subset of the points in those grid cells (by using a different
block size corresponding to the numbers of points in those
grid cells). We claim that, if there are at least r′ levels of

recursion inside each grid cell of T ′, the number of points

in T ′ that are not accounted for is at most N ′(1− 4−t)r′+1.
For r′ = 0, the claim follows because the cells of T ′ other
than C′ contain at most N ′′ = (1 − 4−t)N ′ points in total.
For r′ > 0, we observe that, by the induction hypothesis,
the r′ levels of recursion inside those grid cells leave at most

(1 − 4−t)r′

N ′′ = (1 − 4−t)r′+1N ′ points unaccounted for.
Now, if there are at least r :=

√
log N levels of recursion

inside each cell of the top level grid T , at most

N(1 − 4−t)r+1 ≤ Ne−(r+1)/4t ≤ N/e

points in T are unaccounted for. Of the (1 − e−1)N points
that are accounted for, at least half are duplicated Ω(tε)
times, which requires them to use Ω(Ntε) space. It remains
to show that there are at least

√
log N levels of recursion in

each cell of T .
Since the recursion stops when the size of the grid cells

falls below
√

N , the number of recursion levels in each cell
of T is at least

log4t

N√
N

=
(log N)/2

2t
=

log N

log log N
>
p

log N,

for N sufficiently large. This completes the proof.

2.2 Forcing Duplication in at Least One Cell
By Lemma 2, it suffices to consider the top-level grid T

and prove that the queries in QT force it to contain at least
one cell at least half of whose points are duplicated Ω(tε)
times. The same argument then applies to any subgrid T ′ in
the recursive construction. Note that every grid cell b in the
ith row of T is contained in exactly one level-i query in QT ;
we denote this query by qb. Further, recall that every query
in QT has an output size between N12

t−1 and N1(2
t−1). By

choosing a block size of B = N12
t−1 ≥

√
N , we ensure that

every query outputs between B and 2B points and, hence,
must be answerable using α = 3a · 2c block transfers.

Now consider a layout of the points in T in memory, assign
a unique colour to each memory block, and define the colour
set C(p) of a point to be the set of colours of all blocks
containing p. By the definition of the block size, for every
colour γ, there are at most B = N12

t−1 points p ∈ T such
that γ ∈ C(p). Furthermore, since we assume that any query
q ∈ QT can be answered using α block transfers, there exists
a set F (q) of at most α colours for each query q ∈ QT such
that every point p ∈ q satisfies C(p) ∩ F (q) 6= ∅. We say
that query q is α-coloured and call F (q) the fixed colour set
of query q to indicate that query q is allowed to inspect only
blocks in F (q) to report its output. We make no assumption
about the structure of F (q), only that the data structure has
to decide once and for all which α blocks to query in order
to answer query q.

Next our goal is to find a column of T at least one of
whose cells has to contain many points that are duplicated
Ω(tε) times. We say that a point p in a cell Tij is killed
by a cell Ti′j , i′ < i, if F (qT

i′j
) ∩ C(p) 6= ∅. For a se-

quence of cells Ti1,j , Ti2,j , . . . , Tir,j in the same column, with
i1 < i2 < · · · < ir, we say that cell Tik,j is alive if at most
half of its points are killed by cells Ti1,j , Ti2,j , . . . , Tik−1,j .
Our goal is to find a long sequence of cells in the same
column that are all alive. Intuitively, such a sequence of
alive cells has the property that the blocks accessed to an-
swer queries including only the top cells contain at most

half of the points in the bottom cells. Thus, a query includ-
ing the bottom cells needs to access new blocks in order to
retrieve the contents of those cells. To keep such a query
α-colourable, however, it also needs to copy the contents of
the top cells into those blocks, thus causing the points in the
top cells to be duplicated. First we show that we can always
find a sequence of Ω(t) alive cells. Then we prove that at
least half of the points in at least one cell of this sequence
have to be duplicated Ω(t1/α) times.

Lemma 3. There exists a column in T containing a se-
quence of Ω(t) alive cells.

Proof. Let h be a constant to be chosen later, and con-
sider the subgrid Th of T consisting of the rows with num-
bers 1, h + 1, 2h + 1, First we bound the number of
points in row ih + 1 killed by cells in rows jh + 1, for
0 ≤ j < i. Level jh + 1 of the query set QT contains 2jh

queries. Hence, the total number of queries at levels jh + 1
with 0 ≤ j < i is

Pi−1
j=0 2jh < 2(i−1)h+1. The fixed colour

set of each such query contains at most α colours, and there
are at most N12

t−1 points with the same colour. Hence, less
than X := αN12

t−12(i−1)h+1 points have a colour belonging
to at least one of the fixed colour sets of these queries. As
each cell in row ih + 1 contains N12

ih points, this means
that less than X/(N12

ih/2) = 2α2t−h cells are killed in row
ih + 1. There are 2t−1 cells in row ih + 1. Thus, less than a
4α/2h fraction of the cells in row ih + 1 are killed by rows
jh + 1 with 0 ≤ j < i.

Now choose h = ⌈log(8α)⌉. Then at least half of the cells
in each row of Th are alive. This implies that Th contains
at least one column at least half of whose cells are alive.
Since Th has ⌊t/h⌋ = Ω(t) rows, this column —and, hence,
the corresponding column of T—contains a sequence of Ω(t)
alive cells.

Now observe that at least half of the points in each alive
cell in a sequence as in Lemma 3 are alive. Thus, to prove
our claim that there exists one cell in T at least half of whose
points are duplicated Ω(t1/α) times, it suffices to prove that
all alive points in at least one of the cells of this sequence
are duplicated that often. We do exactly this to prove the
following lemma.

Lemma 4. Grid T contains at least one cell at least half
of whose points are duplicated Ω(t1/α) times.

Proof. Consider a column C of T with a sequence of
r = Ω(t) alive cells b1, b2, . . . , br in the same column. By
Lemma 3, such a sequence exists. For 1 ≤ i ≤ r, let pi

be an alive point in bi that has the minimum number of
colours among all alive points in bi. The sequence of points
p1, p2, . . . , pr has the following properties:

(i) For all 1 ≤ i ≤ r, there exists a query qi = qbi
contain-

ing points p1, p2, . . . , pi, but not pi+1, pi+2, . . . , pr.

(ii) For all 1 ≤ j < i ≤ r, C(pi) ∩ F (qj) = ∅. This is true
because point pi is alive.

Next we prove a lower bound on the size of the colour set
C(pi) of the point pi with the greatest number of colours
among points p1, p2, . . . , pr. Let ℓ(α, f) be the length r of
the shortest sequence that forces at least one of the points
p1, p2, . . . , pr to have at least f colours if each of the queries
q1, q2, . . . , qr is α-coloured. We prove that ℓ(α, f) ≤ fα.

Since r = Ω(t), this implies that some point pi has Ω(t1/α)

colours, that is, is duplicated Ω(t1/α) times. However, pi is
the point in bi with minimum duplication among all alive
points in bi, and at least half of the points in bi are alive.
Thus, at least half of the points in bi are duplicated Ω(t1/α)
times. It remains to prove that ℓ(α, f) ≤ fα.

Our central claim is that ℓ(α, f) satisfies the following
recurrence relation.

ℓ(α, f) ≤

8

>

<

>

:

1 f = 1

f α = 1

ℓ(α, f − 1) + ℓ(α − 1, f) otherwise

The two base cases are fairly obvious: A sequence of length
one suffices to ensure that there is a point with at least one
colour. If α = 1, all points in a query qi must have the same
colour. Since p1 is contained in all queries q1, q2, . . . , qr, a
sequence of length r forces p1 to have r colours. Hence,
ℓ(1, f) = f . For the inductive step (α > 1 and f > 1), con-
sider the longest possible point sequence p1, p2, . . . , pr and
the corresponding query sequence q1, q2, . . . , qr such that we
can α-colour each of the queries, while assigning at most
f − 1 colours to each point. If r ≤ ℓ(α, f − 1), we are done.
So assume that r > ℓ(α, f − 1), and let r′ = ℓ(α, f − 1).
α-Colouring each of the queries q1, q2, . . . , qr′ forces at least
one point pi with 1 ≤ i ≤ r′ to have at least f − 1 colours

from
Sr′

j=1 F (qj). For each query qj with r′ < j ≤ r, let q′j
be the restriction of qj to points pr′+1, pr′+2, . . . , pr. Since
query qj is α-coloured and contains point pi, and none of

the colours in C(pi) ⊆
Sr′

j=1 F (qj) belongs to C(pi′), for any

i′ > r′, query q′j is (α−1)-coloured. Since each of the points
pr′+1, pr′+2, . . . , pr receives at most f−1 colours, this implies
that r− r′ < ℓ(α− 1, f) and r < ℓ(α, f − 1)+ ℓ(α− 1, f). In
other words, in a list of length at least ℓ(α, f−1)+ℓ(α−1, f),
α-colouring all the queries forces at least one point to have
at least f colours.

It is not difficult to show that the above recurrence is in
fact an equality that solves to ℓ(α, f) =

`

f+α−1
α

´

≤ fα. We
refer the reader to Appendix A, where we prove this.

Lemmas 2 and 4 together imply Theorem 1 for δ = 1/2,
ε = 1/α, and α = 3a · 2c. By Lemma 1, this implies Theo-
rem 1 for any 0 < δ ≤ 1/2. In Appendix B, we show that
the analysis obtained in this section is the best possible for
the point set S and query set Q we have defined. Thus, in
order to prove a stronger lower bound than the one stated
in Theorem 1, it would be necessary to construct a harder
point set or set of queries.

3. FURTHER LOWER BOUNDS
In this section, we show that the proof technique from

Section 2 can be used to obtain the same lower bound as in
Theorem 1 for other range searching problems and to obtain
a lower bound on the space consumption of a cache-oblivious
persistent B-tree with worst-case optimal 1-d range queries.

3.1 3-D Dominance Reporting and Persistent
B-Trees

The following theorem establishes the same lower bound
as in Theorem 1 for 3-d dominance reporting. The proof
technique is a simple reduction that shows that any data
structure that supports 3-d dominance reporting queries can

be used to answer three-sided range reporting queries with-
out altering the query or space bound.

Theorem 2. Any cache-oblivious data structure for 3-d
dominance reporting that achieves a query bound of at most
a(logB N)c(1+K/B) block transfers on a memory hierarchy
with block sizes up to N2δ, for a constant 0 < δ ≤ 1/2, must
use Ω(N(log log N)ε) space, where ε = δc/(3a).

Proof. A simple geometric transformation reduces three-
sided range queries to 3-d dominance queries: map an input
point p = (xp, yp) ∈ S to the point φ(p) = (−xp, xp,−yp)
in R

3. Then a point p belongs to the three-sided query range
q = [l, r] × [b, +∞) if and only if φ(p) is dominated by the
point φ(q) = (−l, r,−b).

A similar reduction shows the following result.

Theorem 3. Consider a sequence of N updates on a (par-
tially) persistent cache-oblivious B-tree. If the tree supports
1-d range queries on any previous version of the tree using
at most a(logB N)c(1 + K/B) block transfers in the worst
case, for block sizes up to N2δ, where 0 < δ ≤ 1/2, then
there exists an update sequence that forces the tree to use
Ω(N(log log N)ε) space to represent all N versions of the
tree, where ε = δc/(3a).

Proof. Consider a persistent cache-oblivious B-tree T
that uses S(N) space to represent the versions of T pro-
duced by a sequence of N update operations and supports
1-d range queries on any version of the tree using at most
a(logB N)c(1 + K/B) block transfers. Using T , we can
obtain a three-sided range reporting structure with query
bound at most a(logB N)c(1 + K/B): we insert the points
one by one into the tree, in order of decreasing y-coordinates.
To answer a three-sided range reporting query q = [l, r] ×
[b, +∞), we ask a 1-d range query with query range [l, r]
on the version of T that was current at y-coordinate b. By
combining this observation with Theorem 1, we obtain the
claimed space lower bound.

3.2 Halfspace Range Reporting in Three
Dimensions

Our final result extends the technique from Section 2 to
3-d halfspace range reporting. In this case, we are not able
to obtain a general geometric transformation that provides
a reduction from three-sided range reporting in the plane
to halfspace range reporting. We can, however, distort the
point set in the proof of Theorem 1 so that each query in
the query set Q we constructed in Section 2 can be replaced
with a parabolic range query that outputs the exact same
set of points. Since parabolic range queries can be reduced
to halfspace range queries (see, e.g., [2]), this proves the
following theorem.

Theorem 4. Any cache-oblivious data structure for 3-d
halfspace range reporting that achieves a query bound of at
most a(logB N)c(1+K/B) block transfers on a memory hier-
archy with block sizes up to N2δ, for a constant 0 < δ ≤ 1/2,
must use Ω(N(log log N)ε) space, where ε = δc/(3a).

It suffices again to consider the case δ = 1/2, as the gen-
eral case, 0 < δ ≤ 1/2, then follows from Lemma 1.

Consider the grid T , the set of queries QT , and the related
notation used in Section 2. The basic idea of our construc-
tion is as follows. For every subgrid T ′ in our construc-
tion, we want to replace the three-sided range queries with

(a) (b)

G

C

T ′

(c) (d)

hi−1
O

A = (0,−bi)

pij2

row i

pij1

hi

δ

(e)

Figure 2: (a) Replacing three-sided queries with parabolic ones. The white squares are the areas where the
subgrids in each grid cell are to be placed. (b) A naively constructed query in the subgrid in cell T3,6 also
reports points in other cells (e.g., T2,6). Only the 6th column is shown. (c) Placement of a subgrid within a
grid box G that is nested inside the column box C. (d) Recursive definition of grid and column boxes for the
subgrids in the cells of a grid. (e) Incremental embedding of a subgrid T ′ inside a grid box.

parabolic ones as shown in Figure 2(a). This is easy to do
at any given level of recursion. Recall, however, that every
column of T ′ is divided into subcolumns, and every three-
sided range query over a given subgrid T ′′ in a cell of T ′

has to stay within the subcolumn of T ′ containing T ′′, in
order to prevent it from reporting points outside of T ′′; see
Figure 1(c). A naive construction of the parabolas does not
have this property, as illustrated in Figure 2(b). Instead, we
use the following construction, which extends a construction
from [2].

For every subgrid T ′ we have to construct, we are given
two boxes C and G such that G ⊆ C. We call C the column
box of T ′ and G the grid box of T ′. Our goal is to place
T ′ inside G and define parabolic range queries over T ′ that
output the same set of points from T ′ as the three-sided
range queries in QT ′ and do not intersect the boundary of C,
except at the top edge; see Figure 2(c). Intuitively, once we
have constructed a grid T ′, each of the subgrids T ′′ in its cells
is to be placed into the appropriate subcolumn in this cell,
which is represented by the grid box of T ′′. Each query in
QT ′′ has to stay within the subcolumn containing T ′′, which
is represented by the column box. The top boundary of each
column box is the top boundary of the top-level grid T .
A query will in fact leave its allocated column somewhere
above this top boundary of T , but this does not add any
output points to the query, as all points are placed within T .

This discussion implies that Theorem 4 follows if we can
prove that, given any column box C and grid box G with
G ⊆ C, we can embed T ′ inside G while ensuring that the
parabolic queries constructed over T ′ intersect only the top
edge of C. Indeed, once such an embedding has been ob-
tained, we can easily define appropriate grid and column
boxes for the subgrids to be placed into the cells of T ′, as
shown in Figure 2(d).

Lemma 5. Given a column box C and a grid box G ⊆ C,
a subgrid T ′ can be embedded inside G so that, for every
three-sided range query q ∈ QT ′ , there exists a parabolic
range query q′ that reports the same set of points as q and
intersects only the top boundary of C.

Proof. For the sake of this proof, we can assume that
each grid cell in T ′ contains exactly one point, as we can
choose to embed the subgrid represented by each such point
in a sufficiently small neighbourhood of the point without
altering the properties of the construction. We construct

T ′ row by row, placing the points in each row at the same
y-coordinate and spacing them evenly in x-direction. More
precisely, we choose the width of each column of T to be
some parameter δ to be chosen later, and we place the points
in each row in the centre of their respective columns. When
constructing row i, we assume that the points placed in rows
1 through i − 1 have been placed into a box of width δ2t−1

and height hi−1. For i = 1, this box has height h0 = 0, that
is, is a line. We evenly distribute the points in row i along
the bottom edge of this box, as shown in Figure 2(e).

Next we construct the queries at the ith level of the query
set QT . If we denote the jth point in row i by pij , each
such query q has to output points pi′j′ with 1 ≤ i′ ≤ i
and (k − 1)2t−i < j′ ≤ k2t−i, for some 0 < k ≤ 2i−1. To
construct q, let j1 = (k − 1)2t−i + 1 and j2 = k2t−i. We
construct a parabola through points pij1 and pij2 and with
a sufficiently low apex A that it contains only those points
in rows 1 through i whose x-coordinates are between those
of pij1 and pij2 (the black points in Figure 2(e)) and that
it intersects only the top boundary of C. Let bi be the
distance of A from row i. We construct such a parabola for
every query at level i in QT and define the bottom boundary
of the box containing rows 1 through i to be infinitesimally
below the apexes of these queries, that is, hi = hi−1 + bi +ε.
This ensures that none of the level-i queries outputs a point
in a row below row i. By the end of the construction, we
have placed T into a box of size δ2t−1×ht. We have to show
that, by making δ small enough, we can ensure that this box
fits inside G.

Consider a level-i query q and, to ease exposition, let us
assume that row i coincides with the line y = 0 and the
apex A of q is on the line x = 0. Let di denote half the
distance between points pij1 and pij2 defined above. Then
di = δ2t−i−1. Since the apex A = (0,−bi) of parabola q
belongs to the line x = 0, q can be described by an equation
of the form y = aix

2− bi. Since q passes through points pij1

and pij2 , we have bi = aid
2
i . To ensure that no point in rows

1 through i − 1 outside the x-range of points pij1 and pij2

belongs to q, we must have

bi + hi−1 < ai(di + δ)2,

as the distance between two points in adjacent columns is δ
and all points in rows 1 through i − 1 are at most bi + hi−1

above the apex of q. Substituting bi = aid
2
i , this gives

ai > hi−1/(2diδ + δ2).

By choosing ai = a + hi−1/(2diδ + δ2), for a sufficiently
large parameter a that depends on the ratio between the
width of G and the height of C, we simultaneously satisfy
this constraint on ai and ensure that q becomes a thin sliver
that intersects only the top boundary of C. By substituting
this into the equation for bi and replacing di with δ2t−i−1,
we obtain that bi = aδ24t−i−1 + 4t−i−1hi−1/(1 + 2t−i) <
aδ24t−i−1 + 2t−ihi−1. A choice of δ = ε/(

√
a2t−1) yields

bi < ε + 2t−ihi−1 and, thus, hi < 2ε + (2t−i + 1)hi−1. From

this, we obtain hi < ε2it+1. In particular, ht < ε2t2+1. By

choosing ε ≤ h/2t2+1, where h is the height of G, the grid
thus fits into G. (Of course, we also have to ensure that it
is not wider than G, but that is trivial.)

4. CONCLUSIONS
In this paper, we have provided another separation result

between the cache-oblivious model and the I/O model by
proving an Ω((log log N)ε) gap between the space bounds of
range reporting data structures with optimal query bounds
in the two models. While previous separation results had
been obtained (using considerable technical difficulties and
sophisticated techniques), our result is the first one that
proves a gap that grows with the input.

Nevertheless, our lower bound is far from the O(N log N)
space bound required by the currently best cache-oblivious
structures for the problems we considered. As our analysis in
Appendix B shows, the result we obtained is in fact the best
possible with the point and query sets we considered. Hence,
better lower bounds are possible only through construction
of a different point set or query set. On the other hand, it
is worthwhile to investigate whether the O(N log N) space
bound of the best known data structures for the problems
we studied can be lowered; in particular, an interesting open
question is whether O(N logε N) space suffices to achieve the
optimal query bound.

5. REFERENCES

[1] P. Afshani. On dominance reporting in 3D. In
Proceedings of the 16th European Symposium on
Algorithms, volume 5193 of Lecture Notes in
Computer Science, pages 41–51. Springer-Verlag, 2008.

[2] P. Afshani and T. M. Chan. Optimal halfspace range
reporting in three dimensions. In Proceedings of the
20th ACM-SIAM Symposium on Discrete Algorithms,
pages 180–186, 2009.

[3] P. Afshani, C. Hamilton, and N. Zeh. A general
approach for cache-oblivious range reporting and
approximate range counting. In Proceedings of the 25th
ACM Symposium on Computational Geometry, 2009.

[4] P. K. Agarwal, L. Arge, A. Danner, and
B. Holland-Minkley. Cache-oblivious data structures
for orthogonal range searching. In Proceedings of the
19th ACM Symposium on Computational Geometry,
pages 237–245, 2003.

[5] P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa,
and J. S. Vitter. Efficient searching with linear
constraints. Journal of Computer and System
Sciences, 61:194–216, 2000.

[6] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

[7] L. Arge, G. S. Brodal, R. Fagerberg, and M. Laustsen.
Cache-oblivious planar orthogonal range searching and
counting. In Proceedings of the 21st ACM Symposium
on Computational Geometry, pages 160–169, 2005.

[8] L. Arge, M. de Berg, and H. J. Haverkort.
Cache-oblivious R-trees. In Proceedings of the 21st
ACM Symposium on Computational Geometry, pages
170–179, 2005.

[9] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The
priority R-tree: A practically efficient and worst-case
optimal R-tree. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 347–358, 2004.

[10] L. Arge, V. Samoladas, and J. S. Vitter. On
two-dimensional indexability and optimal range search
indexing. In Proceedings of the 18th Symposium on
Principles of Database Systems, pages 346–357, 1999.

[11] L. Arge and N. Zeh. Simple and semi-dynamic
structures for cache-oblivious orthogonal range
searching. In Proceedings of the 22nd ACM Symposium
on Computational Geometry, pages 158–166, 2006.

[12] M. A. Bender, G. S. Brodal, R. Fagerberg, D. Ge,
S. He, H. Hu, J. Iacono, and A. López-Ortiz. The cost
of cache-oblivious searching. In Proceedings of the 44th
IEEE Symposium on Foundations of Computer
Science, pages 271–282, 2003.

[13] G. S. Brodal and R. Fagerberg. On the limits of
cache-obliviousness. In Proceedings of the 35th ACM
Symposium on Theory of Computing, pages 307–315,
2003.

[14] T. M. Chan. Random sampling, halfspace range
reporting, and construction of (≤ k)-levels in three
dimensions. In Proceedings of the 39th IEEE
Symposium on Foundations of Computer Science,
pages 586–595, 1998.

[15] T. M. Chan. Random sampling, halfspace range
reporting, and construction of (≤ k)-levels in three
dimensions. SIAM Journal on Computing,
30(2):561–575, 2000.

[16] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In
Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science, pages 285–397,
1999.

[17] R. Grossi and G. F. Italiano. Efficient cross-tree for
external memory. In J. Abello and J. S. Vitter, editors,
External Memory Algorithms and Visualization, pages
87–106. American Mathematical Society, 1999.

[18] R. Grossi and G. F. Italiano. Efficient splitting and
merging algorithms for order decomposable problems.
Information and Computation, 154(1):1–33, 1999.

[19] K. V. R. Kanth and A. K. Singh. Optimal dynamic
range searching in non-replicated index structures. In
Proceedings of the International Conference on
Database Theory, volume 1540 of Lecture Notes in
Computer Science, pages 257–276. Springer-Verlag,
1999.

[20] C. Makris and A. Tsakalidis. Algorithms for
three-dimensional dominance searching in linear space.
Information Processing Letters, 66(6):277–283, 1998.

[21] E. M. McCreight. Priority search trees. SIAM Journal
on Computing, 14(2):257–76, 1985.

[22] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S.
Vitter. Bkd-tree: A dynamic scalable kd-tree. In
Proceedings of the 8th International Symposium on
Advances in Spatial and Temporal Databases, volume
2750 of Lecture Notes in Computer Science, pages
46–65. Springer-Verlag, 2003.

[23] E. A. Ramos. On range reporting, ray shooting and
k-level construction. In Proceedings of the 15th ACM
Symposium on Computational Geometry, pages
390–399, 1999.

[24] J. Robinson. The K-D-B tree: A search structure for
large dimensional dynamic indexes. In Proceedings of
the SIGMOD International Conference on
Management of Data, pages 10–18, 1981.

[25] D. E. Vengroff and J. S. Vitter. Efficient 3-D range
searching in external memory. In Proceedings of the
28th ACM Symposium on Theory of Computing, pages
192–201, 1996.

[26] J. S. Vitter. External memory algorithms and data
structures: dealing with massive data. ACM
Computing Surveys, 33(2), 2001. Updated version at
http://www.cs.purdue.edu/~jsv/Papers/

Vit.IO_survey.pdf

APPENDIX

A. A CLOSED FORM FOR ℓ(α, f)
In this appendix, we obtain a closed form for the mini-

mum length ℓ(α, f) of any point sequence p1, p2, . . . , pr with
corresponding queries q1, q2, . . . , qr as in Lemma 4 such that
at least one point pi has to have f colours if each query qj

is to be α-coloured.
To this end, given a sequence p1, p2, . . . , pr of points and a

sequence of queries q1, q2, . . . , qr such that query qi reports
points p1, p2, . . . , pi, we consider an assignment of colour sets
C(pi) and F (qj) to the points and queries. We say the as-
signment is valid if

(i) For every query qj and every point pi with 1 ≤ i ≤ j,
we have C(pi) ∩ F (qj) 6= ∅ and

(ii) For every query qj and every point pi with i > j, we
have C(pi) ∩ F (qj) = ∅.

This just reflects the conditions we imposed on the colour
sets of alive points in Lemma 4. We call this assignment
of colours to points and queries an (α, f)-colouring if the
maximal number of colours assigned to any point is f and
the maximal number of colours assigned to any query is α.
We say a point sequence is (α, f)-colourable if there exists
a valid (α, f)-colouring of the point sequence and its corre-
sponding query sequence. The shortest sequence such that
α-colouring all queries forces at least one point to have f
colours is the shortest sequence that is (α, f)-colourable but
not (α, f −1)-colourable. The next lemma provides a closed
form for the length ℓ(α, f) of such a sequence.

Lemma 6. The minimum length of any point sequence
that is (α, f)-colourable but not (α, f − 1)-colourable is

ℓ(α, f) =

f + α − 1

α

!

.

Proof. Let L(α, f) be the maximum length of an (α, f)-
colourable sequence. Consider a point sequence p1, p2, . . . , pr

of length r = L(α, f − 1). We may add a new point pr+1 to
the end of this sequence and give it a new unique colour γ.
By adding this colour to the colour set of each of the points
p1, p2, . . . , pr and setting F (qr+1) = {γ}, we obtain a valid
(α, f)-colouring of the sequence p1, p2, . . . , pr+1 and its cor-
responding query sequence. Now consider appending to this
a sequence pr+2, pr+3, . . . , ps of length L(α− 1, f) such that
the colour sets assigned to the points and queries in this
sequence are pairwise disjoint from the colour sets assigned
to the points and queries in the original sequence. This se-
quence by itself is (α−1, f)-colourable. By adding the colour
γ to the colour set of each query qj with r + 2 ≤ j ≤ s, we
obtain a valid (α, f)-colouring of the concatenation of the
two sequence. This proves that L(α, f) ≥ L(α, f − 1) +
L(α − 1, f) + 1.

Adding a single point to the end of a sequence of length
L(α, f) forces at least one point in the sequence to have f +1
colours if every query is to receive at most α colours. Hence,
ℓ(α, f + 1) = L(α, f) + 1. Substituting this into the above
inequality yields

ℓ(α, f) − 1 ≥ ℓ(α, f − 1) + ℓ(α − 1, f) − 2 + 1

ℓ(α, f) ≥ ℓ(α, f − 1) + ℓ(α − 1, f).

Combining this with the inequality for ℓ(α, f) from Lemma 4
yields the recurrence relation ℓ(α, f) = ℓ(α, f − 1) + ℓ(α −
1, f). Substituting the closed form from our hypothesis into
this recurrence relation yields

ℓ(α, f) = ℓ(α, f − 1) + ℓ(α − 1, f)

=

f + α − 2

α

!

+

f + α − 2

α − 1

!

=

f + α − 1

α

!

.

The two base cases of ℓ(1, f) = f and ℓ(α, 1) = 1 are easily
verified as well. Thus, the closed form is correct by induc-
tion.

B. TIGHTNESS OF THE LOWER BOUND
In this appendix, we argue that the lower bound in The-

orem 1 is tight for the point set S and query set Q we con-
structed. We do this by showing that there exists a layout
of S that uses O(N(log log N)ε) space and allows each of the
queries in Q to be answered by accessing at most α + K/B
blocks for any B.

Using the recurrence relation for ℓ(α, f) from Lemma 6,
we can immediately show that ℓ(α, f) =

Pα
i=0 ℓ(i, f − 1).

We use this property to define a layout for S.

The layout. Let f be the smallest integer such that ℓ(α, f+

1) > t; that is, f = O(t1/α) = O((log log N)ε). We make f
copies of S and show that, using these f copies, any query in
Q with output size K can be answered by accessing at most
α+K/B blocks. In the first copy of S, we layout the cells in
the first ℓ(α, f) rows of T in column-major order, followed
by the cells of the next ℓ(α − 1, f) rows, which are also in

Copy 1 Copy 2

G1

G0

G2

G3

G0,0

G0,1

G0,2

G1,0

G1,1

G0,3

G1,2

G2,0

G2,1

G3,0

Copy f

(a)

Copy 1 Copy 2S

(b)

Figure 3: (a) An O(N (log log N)ε)-space layout for point set S. (b) Answering a query on the first two levels
of the layout. The dark portion of the query in each copy of S can be answered by scanning a subsequence
of the column-major layout of the respective group. The light portion is answered using subsequent copies
of S.

column-major order, and so on. We refer to these groups
of rows as G0, G1, . . . , Gα. This layout is illustrated in Fig-
ure 3(a). The points in each cell are arranged by applying
this strategy recursively. Note that, by the choice of f , these
row groups cover all the rows of T .

The second copy of S now considers subgroups Gi,j of the
row groups Gi in the first copy. Group Gi contains ℓ(α−i, f)
rows, which we divide into subgroups Gi,0, Gi,1, . . . , Gi,α−i

consisting of ℓ(α− i, f −1), ℓ(α−1−1, f −1), . . . , ℓ(0, f −1)
rows, respectively. The cells in each row group are again laid
out in column-major order; see Figure 3(a). The points in
each grid cell are laid out recursively by dividing the groups
of rows in the subgrids of those cells in the same fashion.

The third copy now divides the row groups of the second
copy into subgroups of size ℓ(·, f − 2), and so on until the
last copy has row groups of size ℓ(·, 1), which ensures that
the rows of the top-level grid and of each subgrid are stored
in x-sorted order; see Figure 3(a).

Answering queries. Since this layout has the same struc-
ture for each subgrid T ′ in our construction of point set S,
it suffices to discuss how we answer the queries in QT . Con-
sider a query q at level i of QT . Its bottom boundary coin-
cides with the bottom boundary of the ith row of T . Now let
0 ≤ j1 ≤ α be maximal such that i1 =

Pj1
j=1 ℓ(α−j+1, f) ≤

i, that is, the last row, i1, of the first j1 groups in the first
copy of S is not below row i. The cells in each of the groups
G0, G1, . . . , Gj1−1 that belong to q are stored consecutively,
and we simply scan the appropriate subsequence of cells in
each group to report its points. This requires j1 + K1/B
block transfers, where K1 is the number of reported points.
If i1 = i, this reports all the points in q, and we are done.
So assume that i > i1.

In this case, we use the layout of the rows in group Gj1

in the second copy of S. Let 0 ≤ j2 ≤ α− j1 be maximal so
that i2 = i1 +

Pj2
j=1 ℓ(α − j1 − j + 1, f − 1) ≤ i, that is, the

last row of the first j2 row groups of Gj1 is not below row i.
Then we can again scan the appropriate portion of each of
these groups to report the points in these groups that belong

to q, which requires j2 + K2/B block transfers, where K2

is the number of reported points. If i > i2, we continue to
the subgroups of Gj1,j2 in the third copy, and so on. This
procedure succeeds in reporting all points of q at the latest
when reaching the fth copy of S, as each row of T is stored
by itself in x-sorted order in this copy. Figure 3(b) shows
the groups reported in the first two copies of S in the layout
for an example query.

Assume now that our query inspects the first r copies of
S before terminating. Then the query cost is

Pr
h=1(jh +

Kh/B) =
Pr

h=1 jh + K/B. It is easily verified, however,
that, for all 1 < h ≤ r, we have jh ≤ α −Ph′<h jh′ . Thus,
Pr

h=1 jh ≤ α, and the query accesses at most α + K/B
blocks.

