
Improved Space Bounds for Cache-Oblivious Range Reporting

Peyman Afshani∗ Norbert Zeh†

Abstract

We provide improved bounds on the size of cache-
oblivious range reporting data structures that achieve
the optimal query bound of O(logB N + K/B)
block transfers. Our first main result is an
O(N

√
logN log logN)-space data structure that

achieves this query bound for 3-d dominance reporting
and 2-d three-sided range reporting. No cache-oblivious
o(N logN/ log logN)-space data structure for these
problems was known before, even when allowing a

query bound of O(log
O(1)
2 N + K/B) block transfers.1

Our result also implies improved space bounds for
general 2-d and 3-d orthogonal range reporting. Our
second main result shows that any cache-oblivious 2-d
three-sided range reporting data structure with the
optimal query bound has to use Ω(N logε N) space,
thereby improving on a recent lower bound for the
same problem. Using known transformations, the lower
bound extends to 3-d dominance reporting and 3-d
halfspace range reporting.

1 Introduction

Range searching is one of the most fundamental prob-
lems in computational geometry. Given a set S of N
points in R

d, the task is to preprocess S so that all points
in a query region can be counted (range counting) or re-
ported (range reporting) efficiently. Approximate range
counting asks for an approximation of the number, K,
of points in the query range that is no less than K and

∗Faculty of Computer Science, Dalhousie University, Halifax,
NS B3H 1W5, Canada. Email: peyman@madalgo.au.dk. This
research was done while the first author was a postdoctoral
fellow at the MADALGO Center for Massive Data Algorithmics,
Department of Computer Science, Aarhus University, Denmark
and was supported in part by the Danish National Research
Foundation and the Danish Strategic Research Council.

†Faculty of Computer Science, Dalhousie University, Halifax,
NS B3H 1W5, Canada. Email: nzeh@cs.dal.ca. This research
was supported in part by NSERC and the Canada Research
Chairs programme and was done while the second author was
on sabbatical at the MADALGO Center for Massive Data Algo-
rithmics, Department of Computer Science, Aarhus University,
Denmark.

1Linear-space data structures with a query bound of
O
(

(N/B)1−1/d + K/B
)

block transfers do exist [6, 9], where d
is the dimension.

no greater than (1 + ε)K, for some ε > 0. Typical
range searching problems are expressed in more specific
terms depending on the shape of the query: simplices,
halfspaces, circles, and axis-aligned boxes give rise to
simplex range searching, halfspace range searching, cir-
cular range searching, and orthogonal range searching
problems, respectively; see Figure 1.

Most previous work on range searching focused on
internal memory models of computation, such as the
RAM model or the pointer machine model. While
these models are useful for studying the fundamental
computational complexity of a problem, they ignore
that modern computers are equipped with memory
hierarchies whose access times vary by factors of up to
106 depending on the memory level currently holding
the accessed data item. Among the models proposed
to capture these varying access costs in real memory
hierarchies, the input-output model (or I/O model) [7]
and the cache-oblivious model [14] are the most widely
accepted ones.

In the I/O model, the computer is equipped with
two levels of memory: a slow but conceptually unlimited
external memory and a fast internal memory with
capacity M . All computation happens on data in
internal memory. Data is transferred between internal
and external memory in blocks of B consecutive data
items. The complexity of an algorithm is the number of
such block transfers it performs.

The cache-oblivious model provides a simple frame-
work for designing algorithms for multi-level memory
hierarchies. In this model, the algorithm is oblivious of
the details of the memory hierarchy but is analyzed in
the I/O model, assuming the block transfers necessary
to bring the data accessed by the algorithm into memory
are performed by an offline optimal paging algorithm,
that is, one that performs the minimum number of block
transfers for the data access sequence of the algorithm.
Since the algorithm is designed without reference to M
or B, the analysis can be applied to any two levels of a
multi-level memory hierarchy. In particular, if the anal-
ysis shows that the algorithm incurs an optimal number
of block transfers with respect to two levels of the mem-
ory hierarchy, it does so simultaneously at all levels. See
[14] for a more detailed discussion of the model.

In this paper, we focus mostly on cache-oblivious

simplex halfspace circular orthogonal 3-sided dominance

Figure 1: The different query types shown in two dimensions.

solutions to two important special cases of orthogonal
range reporting: 2-d three-sided range reporting consid-
ers query boxes with one side fixed at infinity; 3-d dom-
inance reporting considers query boxes whose “bottom-
left” vertex is the point (−∞,−∞,−∞). Both problems
have been studied extensively, as their solutions can be
used as building blocks for general orthogonal range re-
porting data structures. Here we provide a new cache-
oblivious 3-d dominance reporting data structure and a
new lower bound on the size of any query-optimal cache-
oblivious 2-d three-sided range reporting data structure.
Since 2-d three-sided range reporting reduces to 3-d
dominance reporting (see Appendix D), both results ap-
ply to both problems.

1.1 Previous Work. Our discussion of previous
work focuses mostly on 2-d three-sided range report-
ing and 3-d dominance reporting. A number of related
results are mentioned briefly in Table 1.

In the pointer machine model, a classical result
by McCreight provides a linear-space data structure
that achieves the optimal query bound of O(logN +
K) for 2-d three-sided range reporting [18]. Optimal
results with the same space and query bounds for 3-d
dominance reporting and 3-d halfspace range reporting
were obtained much more recently [1, 2, 16].

In the I/O model, Arge et al. [10] presented a
linear-space data structure that achieves the optimal
query bound of O(logB N + K/B) block transfers for
2-d three-sided range reporting; their data structure is
an I/O-efficient version of McCreight’s data structure.
For 3-d dominance reporting, a linear-space data struc-
ture by Afshani [1] achieves the optimal query bound
of O(logB N + K/B) block transfers. For 3-d half-
space range reporting, Afshani and Chan [2] presented
an O(N log∗ N)-space data structure with the optimal
query bound of O(logB N +K/B) block transfers.

In contrast to these (nearly) linear-space query-
optimal data structures in the pointer machine and I/O
models, the size of the best cache-oblivious data struc-
tures with the optimal query bound for 2-d three-sided
range reporting [5, 6, 8, 11], 3-d dominance reporting [5]
and 3-d halfspace range reporting [5] is O(N logN), de-

spite many attempts to improve on this bound. In-
terestingly, at least part of this logarithmic (or almost
logarithmic) gap is a genuine phenomenon: Afshani
et al. [4] proved that any cache-oblivious data struc-
ture with the optimal query bound for these problems
requires Ω(N logε logN) space. While this proves that
range reporting is harder in the cache-oblivious model
than in the I/O model, it does not answer the ques-
tion whether the O(N logN) space bound is the best
possible.

1.2 New Results. In this paper, we make two im-
portant steps towards closing the gap between the
space upper and lower bounds for query-optimal cache-
oblivious range reporting data structures. In Section 2,
we present a cache-oblivious data structure for 3-d dom-
inance reporting that uses O(N

√
logN log logN) space

and achieves the optimal query bound of O(logB N +
K/B) block transfers. Using a standard reduction, this
implies the same space and query bounds for 2-d three-
sided range reporting. In Section 3, we prove an im-
proved lower bound of Ω(N logε N) space for any cache-
oblivious 2-d three-sided range reporting data structure
that achieves a query bound of O(logB N +K/B) block
transfers (our result is in fact slightly stronger and holds
also for Las-Vegas randomized data structures; see Sec-
tion 3). Using the same transformations as in [4], this
implies the same lower bound for 3-d dominance report-
ing and 3-d halfspace range reporting. Table 1 summa-
rizes these results and also mentions some consequences
for general 2-d and 3-d orthogonal range reporting.

Similar to previous results for 3-d dominance re-
porting [1, 5], our upper bound construction is based
on shallow cuttings [17]. Using one shallow cutting,
it is easy to obtain a linear-size data structure that
achieves a query bound of O(logB N+K/B) block trans-
fers, for all queries of output size K = Θ(K ′), where
K ′ is fixed. By constructing logN shallow cuttings,
for K ′ ∈ {2i : 1 ≤ i ≤ logN}, we cover all output
sizes. Since one shallow cutting uses Θ(N) space in the
worst case, this approach uses Θ(N logN) space in the
worst case. The need to store logN shallow cuttings
is the main obstacle in obtaining an o(N logN)-space

Query type New bound Best previous bound References

2-d three-sided and O(N
√
logN log logN) O(N logN) [5, 6, 8, 11]

3-d dominance Ω(N logε N) Ω(N logε logN) [4]

2-d orthogonal O(N log3/2 log logN) O(N log2 N) [5, 6, 8, 11]

3-d orthogonal O(N log7/2 log logN) O(N log4 N) [5]

3-d halfspace — O(N logN) [5]
Ω(N logε N) Ω(N logε logN) [4]

Table 1: A comparison of our new space bounds with previous space bounds for cache-oblivious range reporting
data structures with the optimal query bound of O(logB N +K/B) block transfers.

data structure based on this idea. Our contribution
is to show how to store the logN shallow cuttings in
O(N

√
logN log logN) space while still allowing efficient

access to each shallow cutting. A previous method to
obtain a space bound of O(N logN/ log logN) is to com-
bine range trees with the linear-space 2-d dominance
reporting data structure of Arge and Zeh [11], which
results in suboptimal—albeit polylogarithmic—query
bounds of O(logε2 N+logB N+K/B) block transfers for
2-d three-sided range reporting and O(log1+ε

2 N+K/B)
block transfers for 3-d dominance reporting. Our data
structure is the first o(N logN/ log logN)-space data
structure with a polylogarithmic query bound and in
fact achieves the optimal query bound.

To prove our new lower bound, we use the general
framework of the earlier Ω(N logε logN) lower bound by
Afshani et al. [4]. We define a hard point set by placing
clusters of points in the plane and arranging the points
in each cluster recursively. Then we construct a set
of queries that ensure that, at each level of recursion,
the points in at least one cluster are duplicated “a
lot” in a query-optimal data structure. By applying
this argument to each level of recursion, we prove that
a constant fraction of the points are duplicated “a
lot”. The difference to the construction in [4] is the
use of a different point set in combination with a new
argument to prove duplication at each level of recursion.
This argument is at the same time simpler and more
powerful than the argument used in [4] and allows
us to increase the duplication from Ω(logε logN) to
Ω(logε N). We also argue that this argument is “tight”
in the sense that no other point set can guarantee a
duplication lower bound greater than Ω(logε N) using
the framework of [4]. In fact, we conjecture that it
is possible to construct cache-oblivious O(N logε N)-
space data structures with the optimal query bound
for 3-d dominance reporting and 2-d three-sided range
reporting.

2 3-D Dominance Reporting

In this section, we prove the following result.

Theorem 2.1. There exists a cache-oblivious data
structure that uses O(N

√
logN log logN) space to store

a set S of N points in R
3 and supports 3-d dominance

reporting queries over S using O(logB N +K/B) block
transfers.

Using standard reductions (see, e.g., [5]), this im-
plies the following corollary.

Corollary 2.1. There exist cache-oblivious data
structures that support 2-d three-sided range report-
ing queries, 2-d orthogonal range reporting queries,
and 3-d orthogonal range reporting queries using
O(logB N + K/B) block transfers and respectively use

O(N
√
logN log logN), O(N log3/2 N log logN), and

O(N log7/2 N log logN) space to store N points.

As many earlier range searching data structures [13,
17, 19], our 3-d dominance reporting data structure
is based on shallow cuttings. In the context of 3-d
dominance reporting, a shallow K-cutting is a collection
of O(N/K) 3-d dominance query ranges, called cells,
such that each contains O(K) points and, for every 3-d
dominance query q containing at most K points, there
exists a cell completely containing q [1].

The following construction of a 3-d dominance
reporting data structure using shallow cuttings is fairly
standard: Let C0, C1, . . . , Ct be shallow cuttings, where
t := ⌈logN⌉ and Ci is a shallow 2i-cutting for the point
set S. For every 0 ≤ i ≤ t and every cell C ∈ Ci, we
store the conflict list ∆C of C, where the conflict list
∆R of a region R is the set of points in S contained
in R. To answer a 3-d dominance reporting query q, we
find a 2-approximation K ′ of the output size K, locate
a cell C ∈ Ci that contains q, where i := ⌈logK ′⌉,
and finally inspect all points in ∆C and report those
that are contained in q. The approximation K ′ of the

output size can be obtained using O(logB(N/K)) block
transfers using the cache-oblivious (1 + ε)-approximate
3-d dominance counting data structure of [5]. Finding
a cell C ∈ Ci containing the query q reduces to point
location in a planar straight-line subdivision of size
O(N/2i) = O(N/K) [1, 16]. Thus, the cell C can be
found using O(logB(N/K)) block transfers if we store
this subdivision using the cache-oblivious planar point
location data structure of [12]. Finally, assuming the
points in the conflict list of each cell of Ci are stored
consecutively, reporting the points in q ∩S by scanning
the points in ∆C takes O(1 + |∆C |/B) = O(1 +K/B)
block transfers, and the total query bound is O(logB N+
K/B) block transfers.

The approximate dominance counting data struc-
ture of [5] uses linear space, as do the point location
data structures for the shallow cuttings C0, C1, . . . , Ct.
Storing the conflict lists of the shallow cutting cells
naively, however, uses O(N logN) space. Here we show
how to store them in O(N

√
logN log logN) space, while

still allowing each conflict list ∆C to be retrieved using
O(logB N + |∆C |/B) block transfers. Since the query
procedure inspects one shallow cutting cell, this proves
Theorem 2.1.

A simple idea to reduce the space needed to store
the conflict lists is to exploit the nesting of cells: For
a set of cells C1 ⊇ C2 ⊇ · · · ⊇ Ck (see Figure 2(a)),
we can store the points of each conflict list ∆Ci

con-
secutively without duplication by storing the point lists
∆Ck

,∆Ck−1
\∆Ck

, . . . ,∆C1
\∆C2

consecutively. By it-
self, this idea is not very useful, as it can be shown that,
in the worst case, most pairs of non-disjoint cells are not
nested. In order to make this strategy effective, we use
a second idea: we cut each cell into a constant number
of boxes. This requires us to assemble the conflict list
of a shallow cutting cell from the conflict lists of O(1)
boxes, but one may hope that the boxes have much
better nesting properties if the partition into boxes is
chosen appropriately. Our data structure is based on
these two ideas but is slightly more involved, as we do
not know how to guarantee good nesting properties for
all the boxes. Instead, our data structure can be seen
as partitioning the boxes into two sets: one with good
nesting properties, while the other one can be stored in
space-efficient data structures that allow the conflict list
of a query box to be retrieved efficiently.

Let C∗ := C0 ∪ C1 ∪ · · · ∪ Ct be the collection of all
shallow cutting cells. We partition C∗ into two subsets
S (sample) and R (remainder). The cells in S contain a
small number of points (o(N logN)); thus, we can afford
to build linear-size data structures for each cell in S. To
store the cells in R, we “clip” each cell C in R using
cells in S; see Figure 2(e). The points in the intersection

between C and the cells in S used to clip C are reported
by using the data structures built on these cells in S.
The remaining portion of C, called the “tip” of C in
what follows, needs to be stored explicitly. As it turns
out, we can ensure good nesting properties for almost
all tips, which allows the tips to be stored in o(N logN)
space. By combining this with the o(N logN) space
required to store the cells in S, we obtain an o(N logN)
space data structure to store the cells in C∗.

We divide the detailed discussion of our data struc-
ture into two parts. In Section 2.1, we define the sets S
and R and construct data structures on them that allow
the conflict list of each shallow cutting cell C ∈ C∗ to
be retrieved using O(logB N + |∆C |/B) block transfers.
In Section 2.2, we show that, with the right choice of
parameters in the construction of S and R, the size of
the resulting data structure is O(N

√
logN log logN).

2.1 Data Structure. Let 0 < p < 1 be a parameter
to be chosen later to minimize the size of the data struc-
ture. We obtain the set S by sampling each element of
C∗ independently at random with probability p; the set
R is defined as R := C∗ \ S. For each cell C ∈ S, we
build three 2-d dominance reporting data structures on
the projections of the points in ∆C on the xy-, xz-, and
yz-planes, respectively. To discuss the way we represent
the cells in R, we need to introduce some notation.

Every cell C ∈ C∗ corresponds to a dominance query
with a query point (x, y, z), which we call the apex of C.
We say a cell C1 with apex (x1, y1, z1) x-clips another
cell C2 with apex (x2, y2, z2) if x1 < x2, y1 > y2,
and z1 > z2. We define the terms “y-clips” and “z-
clips” analogously. See Figures 2(b)–2(d). Note that,
if neither C1 nor C2 clips the other, one is contained in
the other. For a partition of C∗ into two sets S and R,
we say a cell C1 ∈ S maximally x-clips a cell C2 ∈ R
if C1 x-clips C2 and there is no cell in S that x-clips
C2 and has a larger intersection with C2 than C1. In
this case, we denote C1 by µx(C2). The cells µy(C2)
and µz(C2) that maximally y- and z-clip C2 are defined
analogously, if they exist. The tip of a cell C ∈ R is
defined as Ĉ := C \ (µx(C) ∪ µy(C) ∪ µz(C)). This is
illustrated in Figure 2(e).

In our data structure, every cell C ∈ S stores
pointers to its 2-d dominance data structures, while
every cell C ∈ R stores pointers to µx(C), µy(C),
and µz(C), as well as to a place in memory where
the conflict list of its tip Ĉ is stored. Retrieving the
conflict list of a cell C ∈ S reduces to a (degenerate) 2-d
dominance query on one of the 2-d dominance reporting
data structures ofC. Using the 2-d dominance reporting
data structure of [11], this takes O(logB N + |∆C |/B)
block transfers. For a cell C ∈ R, we retrieve the

x

y

z

C1

C2

C3

(a)
x

y

z

C1
C2

(b)
x

y

z
C1

C2

(c)
x

y

z
C1

C2

(d)
x

y

z

Ĉ

µx(C)

µy(C)

µz(C)

(e)

Figure 2: (a) Three nested cells. (b) C1 x-clips C2. (c) C1 y-clips C2. (d) C1 z-clips C2. (e) The tip of a cell C
and the cells that maximally clip C in the three dimensions.

conflict lists of C ∩ µx(C), C ∩ µy(C), C ∩ µz(C), and

Ĉ and ensure that we report every point only once (it
is easy to test, e.g., whether a point in C ∩ µy(C)
is also contained in the box C ∩ µx(C) and, thus,
has already been reported and should not be reported
again). Retrieving the points in C ∩ µx(C), C ∩ µy(C),
and C ∩ µz(C) reduces to answering 2-d dominance
reporting queries on the yz-projection of ∆µx(C), the xz-
projection of ∆µy(C), and the xy-projection of ∆µz(C)

and, thus, takes O(logB N + |∆C |/B) block transfers
using the 2-d dominance reporting data structures of
µx(C), µy(C), and µz(C). The points in ∆Ĉ can be
retrieved using O(1+|∆Ĉ|/B) block transfers if we store
these points consecutively. Our goal, therefore, is to
store the conflict lists of all tips space-efficiently while
storing the points in each tip’s conflict list consecutively.

Let R̂ := {Ĉ : C ∈ R} be the set of all tips of cells
in R. Our approach for storing the tips in R̂ makes
use of a directed graph G, which we call the clipping
graph of R̂. The vertex set of G is the set of tips
in R̂. (Slightly abusing notation, we do not distinguish
between a vertex in G and its corresponding tip.) There
is an edge from Ĉ1 to Ĉ2 in G if and only if C1 clips
C2 and Ĉ1 ∩ Ĉ2 6= ∅. The weight of a vertex Ĉ is the
number of points in ∆Ĉ . The following lemma shows
how the clipping graph captures the nesting properties
of the tips.

Lemma 2.1. If there is no edge between Ĉ1 and Ĉ2

in G, then Ĉ1 ∩ Ĉ2 = ∅, Ĉ1 ⊆ Ĉ2 or Ĉ2 ⊆ Ĉ1.

Proof. Assume Ĉ1 and Ĉ2 are non-disjoint, but there
is no edge between Ĉ1 and Ĉ2 in G. This implies
that neither C1 nor C2 clips the other. Thus, w.l.o.g.
C1 ⊆ C2. We show that this implies that Ĉ1 ⊆ Ĉ2.
Assume the contrary. Then w.l.o.g. the x-ranges of
Ĉ1 and Ĉ2 are non-disjoint but neither contains the
other. If µx(C2) ∩ Ĉ1 = ∅, the x-range of Ĉ2 contains
the x-range of Ĉ1; if µx(C2) contains Ĉ1, then Ĉ1 and
Ĉ2 are disjoint. Thus, µx(C2) intersects Ĉ1 but does

not contain it. Since C1 ⊆ C2 and µx(C2) x-clips
C2, this implies that µx(C2) also x-clips C1, which in
turn implies that µx(C2) ∩ C1 ⊆ µx(C1) ∩ C1. Since,
however, µx(C1) ∩ C1 and Ĉ1 are disjoint, this implies
that µx(C2)∩C1 and Ĉ1 are also disjoint, that is, µx(C2)
and Ĉ1 are disjoint, a contradiction. �

To store the tips in R̂, our goal is to partition R̂
into a small number of subsets that can each be stored
in linear space. We obtain this partition using a partial
t-colouring of G. A t-colouring of a graph G assigns one
of t colours to each vertex of G so that no two adjacent
vertices receive the same colour. A partial t-colouring
of G is a t-colouring of a subgraph H of G; the vertices
in V (G)\V (H) do not receive any colour. For a partial
t-colouring of G, let V0 be the set of vertices of G that
are not assigned a colour, and let w(V0) be the total
weight of these vertices.

Lemma 2.2. Given a partial t-colouring of the clipping
graph G of R̂ that leaves a set V0 of vertices uncoloured,
the conflict lists of the tips in R̂ can be stored in
tN+w(V0) space while storing the points in each conflict
list consecutively.

Proof. Storing the conflict list of each tip in V0 explicitly
uses w(V0) space for all tips in V0. The tips of a given
colour form an independent set in G. Thus, it suffices
to show that the conflict lists of an independent set I
in G can be stored in N space. By Lemma 2.1, each
pair of tips in I is either disjoint or one is contained in
the other. Thus, if we add a box B0 that contains all
tips in I, as well as all points in S, the nesting of the
resulting set of boxes I ′ := I ∪ {B0} defines a tree T
where Ĉ1 is the parent of Ĉ2 if Ĉ2 ⊆ Ĉ1 and there is
no box Ĉ3 in I ′ with Ĉ2 ⊆ Ĉ3 ⊆ Ĉ1. We associate each
point in S with the smallest box in I ′ (node in T) that
contains it. Then we order the nodes of T in postorder
and store the sets of points associated with the nodes
in this order. Clearly, each point is stored only once,
and the points contained in each box Ĉ in I ′ are stored

consecutively because this is exactly the set of points
associated with the descendants of Ĉ in T , inclusive. �

2.2 Space Analysis. We have already argued that
the data structure described in Section 2.1 allows the
retrieval of the conflict list of a shallow cutting cell C
using O(logB N + |∆C |/B) block transfers. Thus, to
prove Theorem 2.1, it suffices to prove that, with the
right choice of the parameter p, the data structure uses
O(N

√
logN log logN) space.

First consider the cells in S. The 2-d dominance
reporting data structure of [11] uses linear space. Thus,
storing three such data structures per cell in S uses
O(pN logN) expected space, as the cells in C∗ contain
O(N logN) points in total and each cell is included in
S with probability p.

Next we show how to obtain a partial t-colouring of
the clipping graph G of R̂ with t := (12/p) log2 logN
and such that the expected weight of the uncoloured
vertices is O(N). By Lemma 2.2, this implies that the
tips in R̂ can be stored in O((N/p) log2 logN) expected
space. By summing the space bounds for storing the
cells in S and the tips in R̂, we obtain that our data
structure uses O(pN logN +(N/p) log2 logN) expected
space. For p := log logN/

√
logN , this gives an expected

space bound of O(N
√
logN log logN). In particular,

there exists a partition of C∗ into subsets S and R
for which our data structure uses O(N

√
logN log logN)

space. This proves Theorem 2.1.
To obtain the desired partial t-colouring of G, we

first remove all vertices of in-degree greater than d :=
(3/p) log logN from G and add them to V0. Let G0 be
the subgraph of G induced by the remaining vertices.
We repeat the following t times: Let Gj−1 be the input
graph of the jth iteration. We construct a subset I ′j
of the vertices of Gj−1 by sampling each vertex with
probability 1/2d and define Ij to be the subset of
vertices in I ′j that have no in-neighbours in I ′j . We
assign colour j to the vertices in Ij and define Gj to be
the subgraph of Gj−1 obtained by removing the vertices
in Ij . After the last iteration, we add all vertices of Gt

to V0. This procedure produces a partial t-colouring of
G because each set Ij is an independent set. It remains
to bound the expected weight of V0.

Lemma 2.3. The expected weight of the vertices in V0

is O(N).

Proof. The vertices in V0 can be divided into two
subsets: the vertices of in-degree greater than d in G and
the vertices of Gt. We show that the expected weight
of each of these two sets is O(N).

To bound the weight of all vertices of in-degree
greater than d, it suffices to prove that the probability

that a vertex ofG has in-degree greater than d is at most
3/ logN . Indeed, since the total weight of all vertices in
G is O(N logN), this implies that the expected weight
of the vertices of in-degree greater than d is O(N). So
consider a cell C ∈ R, and let C∗

x(C), C∗
y(C), and C∗

z (C)
be the lists of cells in C∗ that x-clip, y-clip, and z-clip C,
respectively. Assume further that the cells in these lists
are sorted by decreasing x-, y-, and z-coordinates of
their apexes, respectively. Let ix, iy, and iz be the
positions of µx(C), µy(C), and µz(C) in C∗

x(C), C∗
y(C),

and C∗
z (C), respectively. For Ĉ to have in-degree greater

than d in G, we must have ix > k, iy > k or iz > k, for
k := d/3 = log logN/p. By the definition of µx(C), we
have ix > k if and only if none of the first k elements of
C∗
x(C) is included in S, which happens with probability

(1 − p)k. The same holds for iy and iz. Thus, the

probability that Ĉ has in-degree greater than d in G is
at most 3(1− p)k ≤ 3/ logN .

To bound the weight of the vertices in Gt, we
prove that E[w(Gj) | w(Gj−1) = X] ≤ (1 −
1/4d)X and, hence, E[w(Gj)] ≤ (1− 1/4d)E[w(Gj−1)].
This implies that E[w(Gt)] ≤ (1 − 1/4d)tw(G0) =
(1 − 1/4d)4d log lognw(G0) = O(w(G0)/ logN). Since
w(G0) = O(N logN), this shows that the expected
weight of Gt is O(N).

So assume that w(Gj−1) = X . The probability that
a vertex x ∈ Gj−1 belongs to I ′j is 1/2d. Since x has
in-degree at most d, the probability that at least one in-
neighbour of x belongs to I ′j is at most d · 1/2d = 1/2.
Thus, the probability that x belongs to I ′j and none of
its in-neighbours belongs to I ′j—that is, the probability
that x belongs to Ij—is at least 1/2 ·1/2d = 1/4d. Since
this is true for every vertex of Gj−1, the expected weight
of Ij is at least X/4d, that is, the expected weight of Gj

is at most (1− 1/4d)X , as claimed. �

3 Lower Bounds

The main result in this section is the following.

Theorem 3.1. Let f(·, ·) be a monotonically increasing
function,2 and 0 < δ ≤ 1/2 a constant. Any cache-
oblivious data structure capable of answering 2-d three-
sided range reporting queries using f(logB N,K/B)
block transfers in the worst case, for every block size
B ≤ N2δ, must use Ω(εN logε N) space in the worst
case, where ε := 1/(3f(δ−1, 1)).

At the end of this section, we extend this result
to other, related problems, as well as to Las-Vegas
randomized data structures.

2We call a function f(·, ·) monotonically increasing if it is
monotonically increasing in both its arguments.

To prove Theorem 3.1, we consider a cache-oblivious
data structure D to be a collection of memory cells,
each of which stores a point in the point set S. For
a given block size B, the data structure decides how
to group the cells into blocks of size B. We call the
resulting collection of blocks a B-cover of S. We say
a subset of the blocks in this B-cover covers a query
q if every point in q belongs to at least one of these
blocks. The cost of a query q for block size B is the
minimum number of blocks in the B-cover required to
cover q. Note that this model ignores the cost to locate
a set of blocks covering q and that we do not make any
assumptions about how the B-covers for different values
of B relate to each other. Thus, our framework can be
viewed as applying the indexability model of [15] to a
range of different block sizes. The following lemma from
[4] shows that it suffices to prove Theorem 3.1 for the
case δ = 1/2, that is, for arbitrarily large block sizes
B ≤ N . For the sake of completeness, the proof is
included in Appendix A.

Lemma 3.1. ([4]) If Theorem 3.1 holds for δ = 1/2,
then it holds for any 0 < δ ≤ 1/2.

The proof of Theorem 3.1 is divided into two parts.
In Section 3.1 we construct a set S0 of m points and a
query set Q0 over S0 and prove that any data structure
that can answer the queries in Q0 using α = O(1)
block transfers, for an appropriate block size B, has to
duplicate at least one point in S0 at least m1/(2α) times.
In Section 3.2 we present arguments based on a recursive
application of the result in Section 3.1 that show how
to boost the number of points with duplication roughly
m1/(2α) to Ω(N), as long as m = Θ(logN/ log logN).
In this recursive construction, f(logB N,K/B) will be
bounded by α := f(2, 1) = O(1), so we obtain the lower
bound stated in Theorem 3.1.

The general framework is the same as in [4], but
there are two major differences. First, we use a different
point set S0 in Section 3.1 and apply a simpler and
yet more powerful argument to prove the existence
of a point in S0 with high duplication. Second, the
argument in Section 3.2 is independent of the specific
point set used in Section 3.1. Thus, if the point set in
Section 3.1 could be replaced with a point set that has
better duplication properties, this would automatically
improve our lower bound. As we show in Section 3.4,
however, the point set S0 constructed in Section 3.1
is the worst possible point set as far as enforcing
duplication of a single point is concerned. In the same
section, we argue that the recursive construction in
Section 3.2 also cannot be improved by more than
a constant factor. Together, these two observations
imply that the lower bound in Theorem 3.1 is the

strongest possible bound that can be obtained using the
framework used here and in [4].

3.1 Duplicating One Point. Let t := 2k, for some
integer k, and m := 2t−1. In this section, we construct
a set S0 of m points and a set Q0 of three-sided queries
over S0 such that any (α log t)-cover C0 (i.e., a B-cover
with block size B := α log t) that covers every query
in Q0 using at most α = O(1) blocks must duplicate
at least one point in S0 at least m1/(2α) times. The
duplication of a point p in C0 is the number of blocks of
C0 that contain p.

To construct such a point set S0, let R be a
rectangular region into which the points in S0 are to
be placed. We define a perfect binary tree T with t
leaves. This tree has 2t−1 nodes representing the points
in S0, and we do not distinguish between nodes of T and
points in S0. We distribute the leaves of T evenly along
the main diagonal of R. Every non-leaf node of T has
the same x-coordinate as its leftmost descendant leaf
and the same y-coordinate as its rightmost descendant
leaf. This construction is illustrated in Figure 3(a). The
query set Q0 contains one three-sided query qℓ per leaf
ℓ of T . This query has ℓ as its top-right corner and
the same left boundary as R. Observe that this query
contains exactly those points in S0 that are ancestors of
ℓ in T , including ℓ itself.

Lemma 3.2. Let C0 be an (α log t)-cover C0 of S0 that
covers every query in Q0 using at most α blocks. Then
at least one point in S0 has duplication m1/(2α) in C0.

Proof. Assume no point in S0 has duplication greater
than d. We identify a query qℓ ∈ Q0 that cannot be
covered using less than ⌈log t/β⌉ blocks in C0, where
β := ⌈log(αd log t)⌉. Since every query in Q0 can
be covered using at most α blocks, this implies that
α ≥ log t/β and, hence, d ≥ t1/α/(2α log t), which is no
less than m1/(2α), as long as t is not too small.

In the following, we call two points in S0 neighbours
if there exists a block in C0 that contains both of them.
We construct a set of ⌈log t/β⌉ points p0, p1, . . . in S0

that appear along the path from a leaf ℓ of T to the
root and such that no two of these points are neighbours.
Since the query qℓ ∈ Q0 contains these points, this query
cannot be covered using less than ⌈log t/β⌉ blocks in C0.

The first point p0 we choose is the root of T . Given
points p0, p1, . . . , pi, we choose the next point pi+1 as
follows. If the subtree of T with root pi has height
less than β, pi is the last point we choose. Otherwise,
we consider the set of descendants of pi at distance β
from pi in T . There are 2β ≥ αd log t such descendants.
Since the at most d blocks containing pi contain at
most αd log t points, there are at most αd log t − 1

ℓ

(a) (b)

Figure 3: (a) The point set S0. The tree T is shown as
solid edges. The query qℓ corresponding to the leaf ℓ is
shown in grey. The solid points are contained in qℓ, the
hollow ones are not. (b) The rectangles Rp associated
with the points in S0 are delimited by solid lines. Their
x-disjoint subrectangles R′

p are shown as grey boxes.

neighbours of pi, and at least one descendant at distance
β from pi must be the root of a subtree of T containing
no neighbours of pi. We choose pi+1 to be such a
descendant, thereby ensuring that none of the points
pi+1, pi+2, . . . chosen from the subtree with root pi+1 is
a neighbour of pi. Since the height of T is log t and we
choose one point pi for every β levels in T , the number
of chosen points is ⌈log t/β⌉, as desired. �

3.2 Duplicating A Constant Fraction of the

Points. To prove Theorem 3.1, we apply the argument
from the previous section recursively. We define a point
set S and a query set Q as follows. We start with a
rectangular region R and a number NR := N of points
to be placed into R. For a rectangle R′ with NR′ points
to be placed into R′, we distinguish whether NR′ <√
N logN or NR′ ≥

√
N logN . If NR′ <

√
N logN ,

we call R′ a basic rectangle and place the NR′ points
arbitrarily into R′. If NR′ ≥

√
N logN , we place a

scaled and translated copy of S0 into R′ and apply the
same scaling and translation to Q0 to obtain a query
set QR′ over the set of points we place into R′. Next,
we associate a rectangular region Rp with every point
p ∈ S0. This rectangle is chosen so that p dominates
all points in Rp; see Figure 3(b). Finally, we choose a
subrectangle R′

p ⊆ Rp, for each point p ∈ S0, such that
these subrectangles are pairwise x-disjoint. We obtain
the set of points in R′ by replacing each point p ∈ S0

with a set of NR′

p
:= NR′/m points placed into R′

p. This
set is obtained by applying this procedure recursively
to R′

p.
The above construction ensures that every query

q ∈ QR′ contains only points in R′. Indeed, such a
query can contain only points in the x-range of R′ and

the x-disjointness of the subrectangles of each non-basic
rectangle ensures that the only points in S contained in
the x-range of R′ are the points in R′ itself.

Next we provide two lemmas that together establish
Theorem 3.1. The first one shows that, for every
cache-oblivious data structure with a query bound of
f(logB N,K/B) for the queries in Q, every non-basic
rectangle R′ has to have a subrectangle R′

p whose points
have high average duplication. The second lemma shows
that this is enough to prove a high average duplication
for a constant fraction of the points in S. Throughout
this section, we define α := f(2, 1) = O(1).

Lemma 3.3. Assume the number m of points in S0 is
at most logN . Then, for every cache-oblivious data
structure D with query bound f(logB N,K/B) for the
queries in Q, and for every non-basic rectangle R′ in the
recursive construction of S, there exists a subrectangle
R′

p of R′ whose points have average duplication at least

m1/(2α)/α in D.

Proof. Let N ′′ := NR′/m be the number of points in
each subrectangle of R′, and let BR′ := N ′′ log t be the
output size of each query in QR′ ⊆ Q. Since NR′ ≥√
N logN and m ≤ logN , we have BR′ ≥

√
N and

BR′ ≥ K, for every query in QR′ . Thus, the BR′ -cover
C defined by D must cover every query q ∈ QR′ using
at most f(logBR′

N,K/BR′) ≤ f(2, 1) = α blocks. We
prove that there exists a subrectangle R′

p of R′ whose

points have average duplication at least m1/(2α)/α in C.
Since the number of blocks in C containing a point r ∈ S
is a lower bound on the number of times r is stored in D,
this implies that the average duplication of the points
in R′

p in D is also at least m1/(2α)/α.
Our strategy is to transform C into an (α log t)-cover

C0 of S0 that covers every query in Q0 using at most
α blocks and such that the duplication of any point
p ∈ S0 in C0 is at most α times higher than the average
duplication of the points in R′

p in C. By Lemma 3.2,
there exists a point p ∈ S0 that is duplicated at least
m1/(2α) times in C0. Thus, the average duplication of
the points in the corresponding rectangle R′

p in C is at

least m1/(2α)/α.
We construct C0 as follows. For every block X ′ ∈ C,

we construct a block X ∈ C0 by including the point p
in X if and only if X ′ contains at least N ′′/α points
from R′

p. Since |X ′| = BR′ = N ′′ log t, there can be at
most α log t rectangles R′

p contributing at least N ′′/α
points to X ′ and, hence, X contains at most α log t
points. Thus, C0 is an (α log t)-cover of S0.

Next we show that every query qℓ ∈ Q0 can be
covered using at most α blocks in C0. Let q′ℓ be the
query in QR′ corresponding to qℓ, let X ′

1, X
′
2, . . . , X

′
k,

k ≤ α, be a set of blocks in C that cover q′ℓ, and

let X1, X2, . . . , Xk be the corresponding blocks in C0.
Every rectangle R′

p contained in q′ℓ contributes N ′′

points to the output of q′ℓ. Since these points are
contained in X ′

1 ∪ X ′
2 ∪ · · · ∪ X ′

k, there exists a block
X ′

i containing at least N ′′/k ≥ N ′′/α points from R′
p.

The corresponding block Xi ∈ C0 contains the point
p ∈ S0. Since a point p ∈ S0 belongs to qℓ if and only if
the rectangle R′

p is contained in q′ℓ, this shows that the
blocks X1, X2, . . . , Xk cover qℓ.

Finally, consider the average duplication d̄p of the
points in a subrectangle R′

p in C. This number is

d̄p := Dp/N
′′, where Dp :=

∑
r∈Rp

d′r and d′r is the
duplication of point r ∈ S in C. If a block X ∈ C0
contains the point p, its corresponding block X ′ ∈ C
contains at least N ′′/α points of R′

p. Hence, the
duplication of p in C0 is dp := |{X ′ ∈ C : |X ′ ∩ R′

p| ≥
N ′′/α}|. Since we can rewrite Dp as Dp =

∑
X′∈C

|X ′∩
R′

p|, we have dp ≤ ⌊Dp/(N
′′/α)⌋ ≤ αd̄p. �

By applying Lemma 3.3 to every non-basic rectan-
gle R′ in the construction of S, we can ensure that Ω(N)
points in S have average duplication at least m1/(2α)/α
in D and, hence, that D has size Ω(Nm1/(2α)/α), as
long as the recursion is deep enough. The following
lemma states this formally. Its proof is nearly identical
to the proof of a similar lemma in [4] and is given in
Appendix B.

Lemma 3.4. Assume the parameter m in the construc-
tion of S is at most logN/(3 log logN), let D be a data
structure storing the points in S, and assume every non-
basic rectangle R′ in the construction of S has a sub-
rectangle whose points have average duplication at least
d in D. Then D has size Ω(dN).

If we choose the parameter t in the definition
of S0 to be the largest power of 2 no greater
than logN/(6 log logN), we have logN/(6 log logN) ≤
m < logN/(3 log logN). By Lemma 3.3, this
shows that every non-basic rectangle R′ has a
subrectangle whose points have average duplication
Ω((logN/(6 log logN))1/(2α)/α) = Ω(log1/(3α) N/α).
By Lemma 3.4, this implies that the size of any data
structure with query bound f(logB N,K/B) for the

queries in Q requires Ω((N/α) log1/(3α) N) space. This
proves Theorem 3.1.

3.3 Extensions. The following two results extend
Theorem 3.1 to randomized data structures and to
related problems. The proofs are given in Appendices C
and D, as they are similar to proofs given in [3].

Theorem 3.2. Let f(·, ·) be a monotonically increas-
ing function, and 0 < δ ≤ 1/2 a constant. Any

cache-oblivious data structure constructed by a ran-
domized algorithm and capable of answering 2-d three-
sided range reporting queries using f(logB N,K/B) ex-
pected block transfers, for every block size B ≤ N2δ,
must use Ω(εN logε N) expected space, where ε :=
1/(41f(δ−1, 1)).

Corollary 3.1. Let f(·, ·) be a monotonically increas-
ing function, and 0 < δ ≤ 1/2 a constant. Any cache-
oblivious 3-d dominance reporting or 3-d halfspace range
reporting data structure constructed by a randomized al-
gorithm and with expected query bound f(logB N,K/B),
for every block size B ≤ N2δ, must use Ω(εN logε N)
expected space, where ε := 1/(41f(δ−1, 1)).

3.4 Tightness of the Lower Bound. In this sec-
tion, we argue briefly that the result in Theorem 3.1 is
the best possible using the general framework used here
and in [4], up to the dependence of ε on f(·, ·). Thus,
if our space lower bound of Ω(N logε N) is not tight,
a completely different approach is needed to prove a
stronger lower bound. We conjecture in fact that the
lower bound is tight.

To show that the result in Theorem 3.1 is best
possible, recall that the proof relies on first showing that
we can ensure a high duplication for at least one point
in a point set of size m and then boosting the number of
duplicated points to a constant fraction using a recursive
construction that replaces every point with N/m points.

The proof of Lemma 3.4 in Appendix B reveals
that a recursion depth of at least m is required for
this boosting strategy to succeed. Since the recursion
depth is at most logm N , this places an upper bound of
roughly logN/ log logN on m. As we argue next, we
also cannot prove a duplication bound greater than mε

for any point in the point set, that is, we cannot show
a duplication higher than logε N for a constant fraction
of the points. To prove this, we show how to convert
any data structure D of size O(N logc N), for some
constant c, into a data structure that duplicates every
point at most Nε times. The resulting data structure
has the same size as the original data structure, and
its query bound is only O(1/ε) times higher than for
the original data structure. Thus, for constant ε, the
space and query bounds change by only a constant
factor, while reducing the duplication of every point to
at most Nε.

Since D has size O(N logc N), there are
O(N1−ε logc N) points that are duplicated more
than Nε times. We remove these points from the
data structure and store them in a new data structure
of the same type as D. This data structure has
size O(N1−ε log2cN) and, hence, contains at most
O(N1−2ε log2c N) points that are duplicated more than

Nε times. Again, we remove these points and store
them in a new data structure. After repeating this 1/ε
times, we are left with 1/ε data structures of total size
O(N logcN) and each with the same query bound as
the original data structure D. Every point is stored
in only one data structure and is stored at most Nε

times in this data structure. Since range reporting is
decomposable, we can now answer range queries by
querying each data structure in turn, which takes at
most 1/ε times longer than using D.

References

[1] P. Afshani. On dominance reporting in 3D. In Proceed-

ings of the 16th European Symposium on Algorithms,
volume 5193 of Lecture Notes in Computer Science,
pages 41–51. Springer-Verlag, 2008.

[2] P. Afshani and T. M. Chan. Optimal halfspace range
reporting in three dimensions. In Proceedings of the

20th ACM-SIAM Symposium on Discrete Algorithms,
pages 180–186, 2009.

[3] P. Afshani, C. Hamilton, and N. Zeh. Cache-oblivious
range reporting with optimal queries requires superlin-
ear space. Discrete and Computational Geometry. To
appear.

[4] P. Afshani, C. Hamilton, and N. Zeh. Cache-oblivious
range reporting with optimal queries requires superlin-
ear space. In Proceedings of the 25th ACM Symposium

on Computational Geometry, pages 277–286, 2009.
[5] P. Afshani, C. Hamilton, and N. Zeh. A general ap-

proach for cache-oblivious range reporting and approx-
imate range counting. Computational Geometry: The-

ory and Applications, 43(8):700–712, 2010.
[6] P. K. Agarwal, L. Arge, A. Danner, and B. Holland-

Minkley. Cache-oblivious data structures for orthogo-
nal range searching. In Proceedings of the 19th ACM

Symposium on Computational Geometry, pages 237–
245, 2003.

[7] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Communica-

tions of the ACM, 31(9):1116–1127, 1988.
[8] L. Arge, G. S. Brodal, R. Fagerberg, and M. Laustsen.

Cache-oblivious planar orthogonal range searching and
counting. In Proceedings of the 21st ACM Symposium

on Computational Geometry, pages 160–169, 2005.
[9] L. Arge, M. de Berg, and H. J. Haverkort. Cache-

oblivious R-trees. In Proceedings of the 21st ACM

Symposium on Computational Geometry, pages 170–
179, 2005.

[10] L. Arge, V. Samoladas, and J. S. Vitter. On two-
dimensional indexability and optimal range search
indexing. In Proceedings of the 18th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems, pages 346–357, 1999.
[11] L. Arge and N. Zeh. Simple and semi-dynamic

structures for cache-oblivious planar orthogonal range

searching. In Proceedings of the 22nd ACM Symposium

on Computational Geometry, pages 158–166, 2006.
[12] M. A. Bender, R. Cole, and R. Raman. Exponential

structures for efficient cache-oblivious algorithms. In
Proceedings of the 29th International Colloquium on

Automata, Languages and Programming, volume 2380
of Lecture Notes in Computer Science, pages 195–207.
Springer-Verlag, 2002.

[13] T. M. Chan. Random sampling, halfspace range
reporting, and construction of (≤ k)-levels in three
dimensions. SIAM Journal on Computing, 30:561–575,
2000.

[14] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-
machandran. Cache-oblivious algorithms. In Proceed-

ings of the 40th IEEE Symposium on Foundations of

Computer Science, pages 285–297, 1999.
[15] J. M. Hellerstein, E. Koutsoupias, and C. H. Papadim-

itriou. On the analysis of indexing schemes. In Pro-

ceedings of the 16th ACM Symposium on Principles of

Database Systems, pages 249–256, 1997.
[16] C. Makris and A. Tsakalidis. Algorithms for three-

dimensional dominance searching in linear space. In-

formation Processing Letters, 66(6):277–283, 1998.
[17] J. Matoušek. Reporting points in halfspaces. Compu-

tational Geometry: Theory and Applications, 2(3):169–
186, 1992.

[18] E. M. McCreight. Priority search trees. SIAM Journal

on Computing, 14(2):257–276, 1985.
[19] E. A. Ramos. On range reporting, ray shooting, and

k-level construction. In Proceedings of the 15th ACM

Symposium on Computational Geometry, pages 390–
399, 1999.

A Proof of Lemma 3.1

Consider a particular choice of N , f , and δ in Theo-
rem 3.1, and let N ′ := N2δ and f ′(x, y) := f(x/(2δ), y).
Since we assume Theorem 3.1 holds for δ = 1/2, there
exists a point set S′ of size N ′ and a query set Q′ over S′

such that any data structure achieving a query bound
of f ′(logB N ′,K/B), for the queries in Q′ and all block
sizes B ≤ N ′, needs to use Ω(εN ′ logε N ′) space to
store S′, where ε := 1/(3f ′(2, 1)) = 1/(3f(δ−1, 1)).

Now we construct a point set S := S1∪S2∪· · ·∪Sn,
where n := N/N ′ and each Si is a translated copy of the
point set S′. We choose the translation vectors so that
the rightmost point in Si is to the left of the leftmost
point of Sj , for all 1 ≤ i < j ≤ n. Next we define
a query set Q := Q1 ∪ Q2 ∪ · · · ∪ Qn, where Qi is a
translated copy of the query set Q′; the query q ∈ Qi

corresponding to a query q′ ∈ Q′ contains exactly those
points in Si corresponding to the set of points in S′

contained in q′.
Since Si is a copy of S′ and Qi is a copy of Q′, a

data structure capable of answering every query in Qi

using f ′(logB N ′,K/B) = f(logB(N
2δ)/(2δ),K/B) =

f(logB N,K/B) block transfers, for every B ≤ N ′ =
N2δ, needs to use Ω(εN ′ logε N ′) = Ω(εN ′ logε N) space
to store the points in Si. Since this is true for every
subset Si of S, any data structure capable of answering
the queries in Q using f(logB N,K/B) block transfers,
for all B ≤ N2δ, needs to use Ω(εnN ′ logε N) =
Ω(εN logε N) space to store S.

B Proof of Lemma 3.4

To bound the size of D by Ω(dN), it suffices to construct
a set of Ω(N) points with average duplication d. To
construct this set of points, we apply the following
recursive selection process, starting with R′ = R. By
the assumption of the lemma, each non-basic rectangle
R′ has a subrectangle R′

p whose points have average
duplication at least d in D. We add the points in R′

p

to the set of selected points and recurse on all other
subrectangles of R′ unless the subrectangles of R′ are
basic rectangles. This clearly results in a set of selected
points with average duplication at least d.

To prove that we select Ω(N) points, we view this
selection process as proceeding in iterations. Initially,
no points are selected. In the ith iteration, we consider
all rectangles R′ at depth i in the recursive construction
of S (counting iterations starting with 0 and defining the
depth of the top-level rectangle R to be 0) and whose
points are not selected. For each such rectangle R′, we
select a subrectangle R′

p of R′ and add the points in R′
p

to the set of selected points.
Since every subrectangle of a rectangle R′ contain-

ing NR′ points contains NR′/m points, each iteration
selects a 1/m fraction of the points not selected before
this iteration. Thus, as long as less than N/2 points
are selected, each iteration selects at least N/2m new
points. In particular, after at most m iterations, the
number of selected points is at least N/2. Next we show
that the recursion depth in the construction of the point
set S is at least m, thereby allowing for the m iterations
of this selection process necessary to select at least N/2
points.

Since the recursion stops when each rectangle at the
current level of recursion contains at most

√
N logN

points and every subrectangle of a non-basic rectangle
R′ containing NR′ points contains NR′/m points, the
recursion depth in the construction of the point set S is

logm
N√

N logN
≥ logmN1/3 =

logN

3 logm

≥ logN

3 log logN
≥ m,

for N sufficiently large and because m ≤ logN
3 log logN . This

completes the proof.

C Extension of the Lower Bound to Las-Vegas

Data Structures

While Las-Vegas data structures are not considered
in [4], the journal version [3] does show that the lower
bound of [4] also holds for Las-Vegas data structures.
The argument presented in this section is a combination
of the techniques in [3] for dealing with randomization in
the data structure and the arguments from Section 3.1
to enforce duplication of a point in S0.

In a randomized data structure, both the construc-
tion algorithm and the query procedure have access to a
sequence of random bits. The random bits used during
the construction influence the shape of the data struc-
ture, while the random bits used by the query procedure
influence which blocks are read to answer a given query.
In a Las-Vegas data structure, the random bits may in-
fluence the costs of individual queries, but the answer
provided by a query must always be correct. To prove
Theorem 3.2, it suffices to prove it for δ = 1/2. As
before, Lemma 3.1 then extends the result to smaller
values of δ.

The randomness in the query procedure can be
eliminated using the following argument. A random-
ized query procedure for a data structure D would make
random choices in selecting the blocks to cover a given
query q. However, since we ignore the cost of selecting
the blocks to cover a query q, we essentially consider
an omnipotent query algorithm that always selects the
minimum number of blocks in D to cover q. Random-
ness in the query procedure cannot reduce this number
of blocks for a fixed data structure D.

As a model of randomness in the construction of the
data structure, we assume that the construction algo-
rithm uses a finite number, b, of random bits. Depend-
ing on the values of these b bits, the algorithm con-
structs one of n := 2b data structures D1,D2, . . . ,Dn.
The expected size of the constructed data structure D
is the average size of D1,D2, . . . ,Dn. A query q has ex-
pected cost f(logB N,K/B) on D if, for every block size
B ≤ N , the average number of blocks in the B-covers
C1, C2, . . . , Cn defined by D1,D2, . . . ,Dn that are needed
to cover q is f(logB N,K/B).

To prove Theorem 3.2, we consider the point set
S and the query set Q constructed in Section 3.2 and
mimic the proof of Theorem 3.1. To prove Theo-
rem 3.1, we first showed that every rectangle R′ has
a subrectangle whose points have average duplication
Ω(m1/(2α)/α) = Ω(log1/(3α) N/α) in D. By Lemma 3.4,
this implied Theorem 3.1. This proof was based on
the fact that every query q ∈ QR′ can be covered
with at most α blocks in the BR′ -cover of S defined
by D. For Las-Vegas data structures, we need to argue
more carefully because the query bound of such a data

structure holds only in the expected sense and, hence,
there may be no data structure among D1,D2, . . . ,Dn

whose BR′ -cover can cover every query in QR′ with at
most α blocks. Nevertheless, we can show that, for
every non-basic rectangle R′ in the recursive construc-
tion of S, there are at least n/2 data structures among
D1,D2, . . . ,Dn such that, for each such data structure
Di, the points in some subrectangle of R′ have average
duplication Ω(m1/(40α)/α) = Ω(log1/(41α) N/α) in Di.
This suffices to show that the total size of the data struc-
tures D1,D2, . . . ,Dn is Ω((nN/α) log1/(41α) N), that is,

their average size is Ω((N/α) log1/(41α) N).
First we need to extend Lemma 3.2 to partial

(α log t)-covers of S0. A partial (α log t)-cover C0 is a
collection of blocks of size α log t that do not necessarily
contain all points of S0. However, if such a partial
(α log t)-cover C0 covers a query q, then there exists a
collection of blocks in C0 containing all points in q.

Lemma C.1. For a partial (α log t)-cover C0 of S0 that
covers at least 3t/4 of the queries in Q0 using at most α
blocks, at least one point in S0 has duplication at least
m1/(5α) in C0.

Proof. Assume no point in S0 has duplication greater
than d in C0, and let β := ⌈log(4αd log t)⌉. We show
that there exists a query qℓ ∈ Q0 that can be covered
using at most α blocks but not using less than log t/(4β)
blocks. This implies that α ≥ log t/(4β) and, hence,
d ≥ t1/(4α)/(8α log t), which is no less than m1/(5α), as
long as t is not too small.

As in the proof of Lemma 3.2, we call two points
in S0 neighbours if there exists a block in C0 containing
both points. LetKi be the number of points at distances
0, β, . . . , (i − 1)β from the root of the tree T used to
define the point set S0, and let Li be the number of
points at distance iβ from the root. We have Ki <
2(i−1)β+1 and Li = 2iβ > 2β−1Ki ≥ (2αd log t)Ki.
Since no point has more than αd log t neighbours, this
implies that at least half the points on level iβ have
no neighbours on levels 0, β, . . . , (i− 1)β. We call these
points on level iβ exposed. Our goal is to show that there
exists a root-leaf path in T that corresponds to a query
qℓ covered by at most α blocks in C0 and visits at least
log t/(4β) exposed points. Since no two exposed points
on this path are neighbours, this implies that it takes
at least log t/(4β) blocks in C0 to cover qℓ, as claimed.

So consider a random root-leaf path in T . Since at
least half the points on each level iβ are exposed and
the height of T is log t, the expected number of exposed
points visited by this path is at least log t/(2β). On the
other hand, no root-leaf path visits more than log t/β
exposed points. This implies that at least t/3 root-leaf
paths in T visit at least log t/(4β) exposed points. Since

at least 3t/4 queries in Q0 can be covered using at most
α blocks in C0, this implies that there exists a leaf ℓ of
T such that the query qℓ can be covered using at most
α blocks in C0 and the path from ℓ to the root of T
visits at least log t/(4β) exposed points. This finishes
the proof. �

Using Lemma C.1, we can now prove the following
equivalent of Lemma 3.3.

Lemma C.2. For every non-basic rectangle R′, there
exists a set D ⊆ {D1,D2, . . . ,Dn} of at least n/2 data
structures such that, for every Di ∈ D, the points
in some subrectangle of R′ have average duplication
Ω(m1/(40α)/α) in Di.

Proof. As in the proof of Lemma 3.3, let N ′′ := NR′/m
be the number of points in each subrectangle of R′, and
let BR′ := N ′′ log t be the output size of every query
q ∈ QR′ . Consider the BR′ -covers C1, C2, . . . , Cn of S
defined by D1,D2, . . . ,Dn. We say a query q ∈ QR′

is cheap for Ck if q can be covered using at most
8f(logBR′

N,K/BR′) = 8α blocks in Ck, and expensive
otherwise. Since the average number of blocks in
C1, C2, . . . , Cn needed to cover a query q ∈ QR′ is at
most α, q is cheap for at least 7n/8 of the BR′ -covers
C1, C2, . . . , Cn.

Next we say a BR′ -cover Ck is good if at least
3t/4 queries in QR′ are cheap for Ck. Since each
query is cheap for at least 7n/8 of the BR′ -covers
C1, C2, . . . , Cn, at least n/2 of these BR′ -covers are good.
We prove that, for each good BR′ -cover Ck, there exists
a subrectangle R′

p of R′ whose points have average

duplication Ω(m1/(40α)/α) in Ck and, hence, in Dk.
Since there are n/2 good BR′ -covers, this proves the
lemma.

Similar to the proof of Lemma 3.3, our strategy is to
turn a good BR′ -cover Ck of S into a partial (8α log t)-
cover C0 of S0 that covers at least 3t/4 queries in S0 us-
ing at most 8α blocks and such that the duplication of a
point p in C0 is at most 8α times higher than the average
duplication of the points in R′

p in Ck. By Lemma C.1,
there exists a point p ∈ S0 that has duplication at
least m1/(40α) in C0 (replacing α with 8α in the lemma).
The points in the corresponding rectangle R′

p have aver-

age duplication at least m1/(40α)/(8α) = Ω(m1/(40α)/α)
in Ck.

We construct C0 as follows. For every blockX ′ ∈ Ck,
we construct a block X ∈ C0. This block X contains a
point p ∈ S0 if and only if X ′ contains at least N ′′/(8α)
points from the subrectangle R′

p. The same arguments
as in the proof of Lemma 3.3 show that every block
X ∈ C0 contains at most 8α log t points and that the
duplication of a point p in C0 is at most 8α times higher

than the average duplication of the points in R′
p in Ck.

Thus, it suffices to prove that C0 covers at least 3t/4
queries in Q0 using at most 8α blocks. In particular,
we prove that this is true for every query qℓ ∈ Q0

corresponding to a cheap query q′ℓ ∈ QR′ , of which there
are at least 3t/4.

So consider a query qℓ ∈ Q0 corresponding to a
cheap query q′ℓ ∈ QR′ , let p be a point contained in qℓ,
let X ′

1, X
′
2, . . . , X

′
h, h ≤ 8α, be a set of blocks in Ck that

cover q′ℓ, and let X1, X2, . . . , Xh be the corresponding
blocks in C0. Since R′

p contains N ′′ points and these
points are contained in X ′

1 ∪X ′
2 ∪ · · · ∪X ′

h, there exists
a block X ′

i containing at least N ′′/h ≥ N ′′/(8α) points
from R′

p. The corresponding block Xi contains the
point p. Since this is true for every point p contained
in qℓ, this shows that the set of blocks X1, X2, . . . , Xh

covers qℓ. �

Using Lemma C.2, we can now prove that the
average size of the data structures D1,D2, . . . ,Dn—
that is, the expected size of D—is Ω((N/α)m1/(40α)) =

Ω((N/α) log1/(41α) N). To this end, we view each data
structure Dk as storing a separate copy Sk of the point
set S, and we consider n copies R′

1, R
′
2, . . . , R

′
n of each

rectangle R′ in the recursive construction of S, one per
copy Sk of S. We call a rectangle R′

k accounted for if
there exists a rectangle R′′

k ⊇ R′
k such that the points

in R′′
k have average duplication Ω(m1/(40α)/α) in Dk.

We call a point p ∈ Sk accounted for if it is contained
in a rectangle R′

k that is accounted for. Thus, the
average duplication of all accounted-for points in Sk

in Dk is Ω(m1/(40α)/α). Our goal is to show that the
total number of accounted-for points in S1, S2, . . . , Sn

is Ω(nN), which proves that the total size of the data
structures D1,D2, . . . ,Dn is Ω((nN/α)m1/(40α)), that
is, their average size is Ω((N/α)m1/(40α)), as desired.

Consider all non-basic rectangles R′ at depth i in
the recursive construction of S that have more than
3n/4 unaccounted-for copies among R′

1, R
′
2, . . . , R

′
n, and

let Ni be the total number of points in these rectan-
gles R′. By Lemma C.2, at least n/2 of the copies
R′

1, R
′
2, . . . , R

′
n of such a rectangle R′ have subrectangles

whose points have average duplication Ω(m1/(40α)/α).
Hence, there must be at least n/4 copies of R′ that
are unaccounted for and have an accounted-for sub-
rectangle. Since every subrectangle of R′ contains
NR′/m points, this shows that there are at least (n/4) ·
(Ni/m) = nNi/(4m) points that are accounted for by
rectangles at depth i+1 but not by rectangles at depth i.
Now we consider two cases.

If there exists a recursion depth i such that
Ni ≤ N/2, the boxes at this depth with at least n/4
accounted-for copies contain at least N/2 points. Thus,

the number of accounted-for points in S1, S2, . . . , Sn is
at least (n/4) · (N/2) = nN/8.

If Ni > N/2, for every recursion depth i, every
level of recursion introduces nNi/(4m) > nN/(8m)
accounted-for points that were unaccounted for at the
previous level. In Appendix B, we showed that the
construction of S has at least m levels of recursion.
Thus, the total number of accounted-for points is at
least m · nN/(8m) = nN/8 in this case, as well. Since
we obtain a lower bound of Ω(nN) accounted-for points
in both cases, the proof is finished.

D Extension of Lower Bound to Other Range

Reporting Problems

The lower bounds of Theorems 3.1 and 3.2 extend
to 3-d dominance reporting and 3-d halfspace range
reporting using reductions provided in [4]. In particular,
we map the point set S and query set Q constructed
in Section 3.2 to sets φ(S) := {φ(p) : p ∈ S} and
φ(Q) := {φ(q) : q ∈ Q} such that φ(p) ∈ φ(q) if and
only if p ∈ q. Thus, any 3-d dominance reporting or 3-d
halfspace range reporting data structure that achieves a
query bound of f(logB N,K/B) for the queries in φ(Q)
over φ(S) must obey the space lower bound stated in
Theorem 3.1 or 3.2 depending on whether the query
bound holds in the worst or expected case. This proves
Corollary 3.1. It remains to provide the mapping φ(·).

3-d dominance reporting. For 3-d dominance
reporting, the mapping is obtained straightforwardly
using a general reduction that allows any 3-d dominance
reporting data structure to be used as a 2-d three-sided
range reporting data structure. We map every point
p = (xp, yp) ∈ S to the point φ(p) := (xp,−xp, yp)
and every query q = [l, r]× (−∞, y] to the query range
φ(q) := (−∞, r] × (−∞,−l] × (−∞, y]. It is easy to
verify that φ(p) ∈ φ(q) if and only if p ∈ q.

3-d halfspace range reporting. There is no gen-
eral reduction from 2-d three-sided range reporting to
3-d halfspace range reporting. However, a reduction
that works for the point set S and query set Q con-
structed in Section 3.2 is sufficient. The construction we
use is essentially identical to the one provided in [4]. We
use the fact that there exists a general reduction from
2-d parabolic range reporting to 3-d halfspace range re-
porting [2]; in 2-d parabolic range reporting, each query
range is bounded from above by a parabola of the form
y = a(x − xp)

2 + yp, where a ≤ 0 and p = (xp, yp) is
the apex of the query. Thus, it suffices to construct a
point set φ(S) in the plane and a set φ(Q) of parabolic
queries such that p ∈ q if and only if φ(p) ∈ φ(q), for all
p ∈ S and q ∈ Q. The result from [4] we require here is

the following.3

Lemma D.1. Given two rectangles R′ ⊆ E(R′), an
m × n grid of subrectangles of R′, and a set QR′ of
three-sided queries over this set of subrectangles, each
subrectangle R′′ of R′ can be replaced with a subrectangle
φ(R′′) ⊆ R′ and each query q ∈ QR′ can be replaced with
a parabolic query φ(q) such that

(i) The x-ranges of the subrectangles φ(R′′) are dis-
joint,

(ii) A query φ(q) either contains a subrectangle φ(R′′)
or is disjoint from it,

(iii) A query φ(q) contains a subrectangle φ(R′′) if and
only if q contains R′′, and

(iv) Every query φ(q) intersects only the bottom edge of
E(R′).

To construct the sets φ(S) and φ(Q), where the
queries in φ(Q) are parabolic queries over φ(S), we
follow the recursive construction of S and Q and re-
place each rectangle R′ and its corresponding query set
QR′ with a corresponding rectangle φ(R′) and query
set φ(QR′). We start with the top-level rectangle R
and define φ(R) := R and E(R) := R. For a non-basic
rectangle R′ with enclosing rectangle E(R′) ⊇ R′, we
first define the set of subrectangles of R′ and the set of
queries in QR′ as in Section 3.2. These subrectangles
are a subset of the cells of a t × m grid. We replace
each subrectangle R′

p of R′ with a rectangle φ(R′
p) and

each query q ∈ QR′ with a query φ(q) using Lemma D.1.
Next we allocate NR′/m points to each rectangle φ(R′

p).

If NR′/m <
√
N logN , we place the points allocated to

a subrectangle φ(R′
p) arbitrarily into φ(R′

p). Otherwise,
we recursively apply this construction to each subrect-
angle φ(R′

p) with enclosing rectangle E(φ(R′
p)) defined

to be the smallest rectangle that contains φ(R′
p) and

touches the bottom boundary of E(R′).
Now observe that a query φ(q) ∈ φ(QR′) contains

a subrectangle φ(R′
p) if and only if its corresponding

query q ∈ QR′ contains the subrectangle R′
p. Thus, φ(q)

contains a point φ(r) ∈ φ(R′) if and only if q contains
the point r ∈ R′.

The other observation we make is that a query
φ(q) ∈ φ(QR′) contains no point outside of φ(R′), just
as a query q ∈ QR′ contains only points from R′.
Indeed, the x-disjointness of the subrectangles φ(R′

p)
of each rectangle φ(R′) ensures that there are no points
of φ(S) in the x-range of φ(R′) but outside of φ(R′).

3This result is not stated as a lemma in [4], but it is exactly
what the construction in [4] proves.

Every query φ(q) ∈ φ(QR′) leaves the x-range of
E(φ(R′)) (and, hence, of φ(R′)) only below the bottom
boundary of E(φ(R′)) because it only intersects the
bottom boundary of E(φ(R′)). Since our construction
of the rectangles E(φ(R′)) ensures that their bottom
boundaries coincide with the bottom boundary of the
top-level rectangle R and there are no points in φ(S)
outside of R, this shows that no query φ(q) ∈ φ(QR′)
contains a point not in φ(R′).

Together, these two observations show that φ(r) ∈
φ(q) if and only if r ∈ q, for all r ∈ S and q ∈ Q; that is,
the mapping φ(·) we have constructed has the desired
properties.

