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Abstract

We present an algorithm that takes O(sort(N)) I/Os1 to compute a tree decomposition of
width at most k, for any graph G of treewidth at most k and size N . Given such a tree
decomposition, we use a dynamic programming framework to solve a wide variety of problems
on G in O(N/(DB)) I/Os, including the single-source shortest path problem and a number
of problems that are NP-hard on general graphs. The tree decomposition can also be used
to obtain an optimal separator decomposition of G. We use such a decomposition to perform
depth-first search in G in O(N/(DB)) I/Os.

As important tools that are used in the tree decomposition algorithm, we introduce flippable
DAGs and present an algorithm that computes a perfect elimination ordering of a k-tree in
O(sort(N)) I/Os.

The second contribution of our paper, which is of independent interest, is a general and
simple framework for obtaining I/O-efficient algorithms for a number of graph problems that
can be solved using greedy algorithms in internal memory. We apply this framework in order to
obtain an improved algorithm for finding a maximal matching and the first deterministic I/O-
efficient algorithm for finding a maximal independent set of an arbitrary graph. Both algorithms
take O(sort(|V |+|E|)) I/Os. The maximal matching algorithm is used in the tree decomposition
algorithm.

1 Introduction

1.1 Background and Motivation

I/O-efficient graph algorithms have received considerable attention because massive graphs arise
naturally in many applications; such as geographic information systems, web modeling, and telecom-
munications research. Recent web crawls, for example, produce graphs of on the order of 200 million
nodes and 2 billion edges [12]. When working with such large data sets, the transfer of data between

∗An abstract of this paper was presented at the 12th Annual ACM-SIAM Symposium on Discrete Algorithms [26].
†Research supported by NSERC and NCE GEOIDE.
‡Part of this work was done while the second author was a Ph.D. student at the School of Computer Science of

Carleton University.
1sort(N) = Θ((N/(DB)) logM/B(N/B)) is the number of I/Os it takes to sort N data items.
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internal and external memory, and not the internal memory computation, is often the bottleneck.
Thus, I/O-efficient algorithms can lead to considerable run-time improvements.

Recent work in web modeling uses depth-first search, breadth-first search, and the computation
of shortest paths and connected components as primitive operations for investigating the structure
of the web. While these fundamental problems are well studied in the RAM model of computation,
they remain challenging in environments where random access is expensive; all existing internal
memory algorithms for these problems exhibit a highly random memory access pattern and hence
perform poorly in such environments. Vitter [38] identifies finding I/O-optimal algorithms for the
single-source shortest path problem, and thus also for breadth-first search, as one of the most
important open problems in the area of I/O-efficient graph algorithms.

Previous efforts to solve the single-source shortest path (SSSP) problem, breadth-first search
(BFS), and depth-first search (DFS) without exploiting structural properties of the given graph
have led to algorithms that perform well on dense graphs, but whose performance breaks down on
sparse graphs. In general, it seems extremely hard to remedy this situation. However, for restricted
classes of sparse graphs, such as outerplanar or planar graphs, I/O-optimal SSSP-, BFS-, and DFS-
algorithms have been developed. One of the contributions of our paper is the development of such
algorithms for yet another class of sparse graphs: graphs of bounded treewidth. Even though the
treewidth of a graph has been introduced as a rather theoretical measure of the complexity of a
number of NP-hard problems on the graph, recent studies suggest that for instance the treewidth of
graphs produced by web crawls is bounded by a small constant. Thus, I/O-efficient algorithms for
graphs of bounded treewidth can be used in web modeling applications. From a more theoretical
point of view, it is interesting to observe that many important, well-studied graph classes have
bounded treewidth. These classes include trees; partial k-trees; series-parallel graphs; k-outerplanar
graphs; Halin graphs; control flow graphs of goto-free programs; and chordal, interval, and circular
arc graphs with maximum clique size k. Thus, our algorithms can be used to solve the problems
we study on any graph that belongs to one of these classes.

At the core of our algorithms is an I/O-efficient algorithm for computing a tree decomposition
of a graph of bounded treewidth. In internal memory, such a decomposition can be computed in
linear time [8, 11]. Together with the results of [4, 6, 8, 9, 10, 11, 16, 22, 24, 28, 33], this implies that
many NP-hard problems can be solved in linear time for graphs of bounded treewidth. However,
since a disk access is six orders of magnitude more expensive than an access to main memory, even
these specialized algorithms touch on the threshold of intractability as soon as the graphs become
too large to fit into internal memory. In this paper, we show that many of the problems solved
by these algorithms can be solved in optimal O(N/(DB)) I/Os, once a tree decomposition of the
graph is given. Thus, these problems remain tractable even if the graphs are extremely big.

1.2 Model of Computation

The difference in access time between internal and external (disk-based) memory creates a con-
siderable bottleneck as soon as data sets are too large to be held in internal memory. This I/O
bottleneck is becoming more significant as parallel computing gains popularity and CPU speeds
increase, since disk speeds are not keeping pace [35, 38]. Thus, it is important to take the number
of input/output (I/O) operations performed by an algorithm into consideration, when estimating
its efficiency. This issue is captured in the parallel disk model (PDM) [39], as well as a number of
other external memory models [17, 40]. We adopt the PDM as our model of computation for this
paper due to its simplicity and the fact that we consider only a single processor.
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In the PDM, an external memory consisting of D disks is attached to a machine with an internal
memory capable of holding M data items. Each of the disks is divided into blocks of B consecutive
data items. Up to D blocks, at most one per disk, can be transferred between internal and external
memory in a single I/O operation (or I/O for short). The complexity of an algorithm is the number
of I/O operations it performs.

In [39], it is shown that sorting N data items takes sort(N) = Θ((N/(DB)) logM/B(N/B))
I/Os; permuting them takes perm(N) = Θ(min{N, sort(N)}) I/Os; scanning the list of data items
takes scan(N) = Θ(N/(DB)) I/Os.

1.3 Previous Work

Previous work on algorithms for graphs of bounded treewidth has focused on computing a tree
decomposition for a given graph of bounded treewidth and exploiting the structural information
provided by such a decomposition in order to solve otherwise intractable problems efficiently.

In [5, 6, 7], algorithms are presented that solve a number of NP-hard problems in linear time if
the given graph has bounded treewidth and a tree decomposition of the graph is given as part of
the input. An interesting framework for solving these problems on graphs of bounded treewidth,
without computing a tree decomposition of the graph, is presented in [4]; the resulting algorithms
are based on graph reduction and take linear time, but use superlinear space.

The problem of computing a tree decomposition efficiently has been studied by a number of
authors [8, 9, 11, 28, 33], culminating in the linear-time algorithm of [8], which uses the following
result of [11]: Given a graph G of treewidth at most k and a tree decomposition of G whose width
is at most ℓ, for some constant ℓ, a tree decomposition of G whose width is at most k can be found
in linear time. Improved algorithms for graphs of treewidth at most two are presented in [9].

Parallel (PRAM) algorithms for computing a tree decomposition are proposed in [9, 10, 16, 24].
From our perspective, the most interesting algorithm is that of [10], which computes a tree decom-
position in O(log2 N) time using O(N) operations. The algorithm is a non-trivial parallelization
of the algorithm of [8]. Improved and simplified algorithms for graphs of treewidth at most two are
presented in [9, 16].

We are not aware of any results on computing tree decompositions of graphs or solving NP-
hard problems on graphs of bounded treewidth I/O-efficiently. However, the outerplanar embedding
algorithm of [25] can be used to obtain tree decompositions of width two for outerplanar graphs,
in O(sort(N)) I/Os. The parallel tree decomposition algorithm of [10] can be combined with the
PRAM-simulation technique of [14], to obtain an algorithm that takes O(sort(N) log2 N) I/Os to
compute a tree decomposition of width at most k, for a graph of treewidth at most k.

The most I/O-efficient SSSP-algorithm for general undirected graphs with non-negative edge
weights [23] takes O(|V |+ (|E|/B) log2(|V |/B)) I/Os. A recent result of [31] shows that for graphs
with minimal edge weight w and maximal edge weight W , the SSSP-problem can be solved in

O
(

√

(|V ||E|/B) log2(W/w) + sort(|V |+ |E|)
)

I/Os. For sparse graphs with a bounded range of

edge weights, this greatly improves on the result of [23]. Breadth-first search can be seen as the
single-source shortest path problem with unit weights on the edges of G. The best known BFS-

algorithm for undirected graphs [29] takes O
(

√

|V ||E|/B + sort(|V |+ |E|)
)

I/Os; the best known

DFS-algorithm [13] takes O((|V |+ |E|/B) log2 |V |) I/Os.
O(sort(|V |)) I/O algorithms for BFS and DFS in outerplanar graphs are presented in [25]. The

same paper proves Ω(perm(|V |)) I/O lower bounds for outerplanar embedding, BFS and DFS.
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Recently, an O(sort(|V |)) I/O algorithm for the single-source shortest path problem on embedded
planar graphs has been proposed in [3]. The algorithm assumes that a small separator of the
graph is given. Together with two recent algorithms for computing such a separator and a planar
embedding of a planar graph [27], this gives an O(sort(|V |)) I/O algorithm for the SSSP-problem
on planar graphs.

In internal memory, simple greedy algorithms can be used to compute a maximal matching
or a maximal independent set of a graph in O(|V | + |E|) time. The best known deterministic
algorithm for computing a maximal matching I/O-efficiently [1] takes O(sort(|E|) log2(V/B)) I/Os.
No deterministic algorithm for finding a maximal independent set I/O-efficiently is known. In [1],
randomized algorithms for these two problems are proposed; their I/O-complexity is O(sort(|E|))
with high probability.

A perfect elimination ordering of a chordal graph can be found in linear time using algorithms
of [32, 34, 36]. In the PRAM model, Klein [21] shows how to compute a perfect elimination ordering
in O(log2 |V |) time, using O((|V | + |E|)/ log |V |) processors. In external memory, the sequential
approaches seem unfeasible, as they use search-strategies similar to breadth-first search, while a
simulation of Klein’s approach would lead to a suboptimal I/O-complexity. We are not aware of
any results on computing a perfect elimination ordering in external memory.

1.4 Our Results

The two main contributions of our paper are an O(sort(N)) I/O algorithm for computing a tree
decomposition of a graph of bounded treewidth and a framework for deriving I/O-efficient algo-
rithms from greedy algorithms for a number of graph problems. The tree-decomposition algorithm
is an I/O-efficient version of the algorithm of [8, 11]. We identify the subproblems to be solved in
order to make the algorithm I/O-efficient and provide I/O-efficient solutions to these subproblems.
Given the tree decomposition, the dynamic programming framework required to solve the single-
source shortest path problem, depth-first search, and the NP-hard problems considered in [5, 6, 7]
on graphs of bounded treewidth can be realized in O(scan(N)) I/Os. Using our framework for
I/O-efficient greedy algorithms, we obtain improved and much simplified, deterministic algorithms
for computing maximal matchings and maximal independent sets for arbitrary graphs.

As part of our tree decomposition algorithm, we present solutions to two problems that are of less
general interest, but may nevertheless prove useful in designing I/O-efficient algorithms for other
graph problems. We present an O(scan(N)) I/O algorithm for computing a perfect elimination
ordering of a k-tree, given a tree decomposition of the graph. The second result deals with the
following generalization of series and parallel compositions used to construct series-parallel graphs:
Every series-parallel st-graph G can be constructed from a set of edges by repeated application of
series compositions and parallel compositions. We extend these operations so that it is allowed to
flip all edges in one of the two graphs before the composition. If we perform these flips explicitly,
it is easy to construct an example where Ω(N2) edge flips are necessary to construct a DAG of size
N . We introduce flippable DAGs as a technique to perform these flips implicitly, at the cost of
O(1) updates per composition. Once the final graph is constructed, we perform a post-processing
phase, which takes O(sort(N)) I/Os to determine the correct direction of each edge.
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1.5 Organization of the Paper

In Section 2, we introduce the basic terminology and review important results about tree decompo-
sitions. The description of our tree decomposition algorithm requires a good understanding of the
results on integer sequences shown in [11]. We review these results in Section 2.3. In Section 3, we
describe flippable DAGs, which we use to maintain implicit representations of path decompositions
in an I/O-efficient manner. In Section 4, we present our framework for making greedy graph algo-
rithms I/O-efficient. In Section 5, we recall the outline of the tree-decomposition algorithm of [8]
and show how to perform most of the steps of the algorithm in O(sort(N)) I/Os. In Section 6, we
present an I/O-efficient version of the algorithm of [11], which is used as a subroutine in the tree-
decomposition algorithm of [8]. Section 6 is divided into two parts. In the first part, we describe
how to test whether a graph has treewidth at most ℓ, given a tree decomposition of width k. This
part is a straightforward simulation of the testing phase of the algorithm of [11]. We describe it
in detail to gain some insight into the relationship between tree decompositions and their constant
size descriptions used in the testing phase. This information is used in the second phase, which
constructs a tree decomposition of width at most k. In order to avoid accessing the nodes of the
constructed tree decomposition at random, the second phase of the algorithm uses flippable DAGs
to represent partial path decompositions that are part of the tree decomposition. As a result, it
differs from the construction phase of the algorithm of [11], which makes use of the random access
capabilities provided by the RAM model. In Sections 7 and 8, we present two algorithms for sub-
problems to be solved as part of the algorithm described in Section 6. In Section 7, we show how to
obtain a nice tree decomposition I/O-efficiently from a given tree decomposition. In Section 8, we
show how to compute a perfect elimination ordering of a k-tree. Our SSSP- and DFS-algorithms,
and solutions to NP-hard problems are discussed in Section 9. We present concluding remarks and
discuss a few open problems in Section 10.

2 Preliminaries

2.1 Basic Concepts

We assume that the reader is familiar with basic graph theoretic concepts. A good introduction
to graph theory is given for instance in [20, 37]. In this section, we introduce the notation used in
this paper. We denote the edges of an undirected graph by unordered pairs (2-sets) {v,w}, while
we write directed edges as ordered pairs (v,w). We refer to undirected graphs simply as graphs
and to directed graphs as digraphs. For a digraph G = (V,E), we define the underlying undirected
graph as U(G) = (V, {{v,w} : (v,w) ∈ E}). We denote the set of neighbors of a vertex v in a
graph G by ΓG(v); degG(v) denotes the degree of v in G. For a digraph G, we denote the sets of
in- and out-neighbors of a vertex v by Γ−

G(v) and Γ+
G(v), respectively; the in and out-degrees of v

are denoted by deg−G(v) and deg+
G(v), respectively.

For a graph G = (V,E) and a subset X ⊆ V , we denote the subgraph (X, {{v,w} ∈ E : v,w ∈
X}) of G induced by vertex set X as G[X]. We write G−X to denote the graph G[V \X]; for a
vertex x ∈ V , we write G− x to denote the graph G− {x}.

A directed acyclic graph (DAG) is a digraph G = (V,E) that does not contain directed cycles.
We denote all vertices v with deg−(v) = 0 as sources in G and all vertices with deg+(v) = 0 as sinks
in G. An st-graph is a DAG with exactly one source s and one sink t. An st-graph is series-parallel
if it consists of a single edge (s, t) or it can be obtained from two series-parallel graphs G1 and G2
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Figure 1 Two series-parallel graphs G1 (a) and G2 (b), their series composition (c), and their
parallel composition (d).

(a)

s1 t1

(b) s2 t2

(c)

s′ = s1 t1 = s2

t′ = t2

(d)

s′ = s1 = s2 t′ = t1 = t2

with sources s1 and s2 and sinks t1 and t2 by identifying t1 with s2 (series composition; Figure 1c)
or by identifying s1 with s2 and t1 with t2 (parallel composition; Figure 1d). In this paper, we
also consider the graph consisting of a single vertex to be series-parallel, but this graph may be
combined with another graph only in a series composition.

Given an assignment ω : E → R of real weights to the edges of graph G = (V,E), we define the
weight ω(H) of a subgraph H = (W,F ) of G as ω(H) =

∑

e∈F ω(e). We call a subgraph H negative
or positive if its weight is negative or positive, respectively. Given a graph G that does not contain
negative cycles, the shortest path π(v,w) from v ∈ V to w ∈ V is the path of minimum weight
among all paths from v to w.

An independent set of a graph G = (V,E) is a set S ⊆ V such that no two vertices in S are
adjacent. An independent set is maximal if every vertex in V \ S is adjacent to a vertex in S.
A matching of a graph G = (V,E) is a set M ⊆ E of edges such that no two edges in M share
an endpoint. A matching M is maximal if every edge in E \M shares an endpoint with an edge
in M. In other words, maximal independent sets and matchings cannot be augmented to obtain
larger independent sets or matchings.

A clique in a graph G = (V,E) is a subset W ⊆ V of vertices such that {v,w} ∈ E, for all
v 6= w, v,w ∈ W . A vertex v ∈ V is simplicial if ΓG(v) is a clique. Given a cycle C = (v0, . . . , vn)
in a graph G, a chord of C is an edge {vi, vj} whose endpoints are not adjacent in C. An undirected
graph G = (V,E) is chordal if every cycle in G of length greater than three has a chord. A perfect
elimination ordering (PEO) of G is an ordering ≺ of the vertices in V such that every vertex v ∈ V
is simplicial in the graph G[{w ∈ V : v � w}]. It is well known that a graph is chordal if and only
if it has a PEO [18].

2.2 Tree Decompositions and Treewidth

The treewidth of a graph gives an indication of how far away the graph is from being a tree or
forest. The closer the graph is to being a forest, the smaller is its treewidth. As trees are among the
simplest classes of graphs, and many hard graph problems become easy on trees, the treewidth of a
graph is a good measure for the hardness of solving certain problems on this graph. The treewidth
of a graph is defined through the concept of tree decompositions.
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Figure 2 A graph G and a tree decomposition of width 3 for G.
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Given an undirected graph G = (V,E), a tree decomposition D = (X , T ) of G consists of a tree
T = (I, F ) and a collection X of sets Xi, i ∈ I, such that

(T1)
⋃

i∈I Xi = V ,

(T2) For every edge {v,w} ∈ E, there is a node i ∈ I such that {v,w} ⊆ Xi, and

(T3) For any three nodes i, j, and k such that j is on the tree path from i to k, Xi ∩Xk ⊆ Xj.

See Figure 2 for an example. To avoid confusion, we refer to the vertices of graph G as vertices and
represent them using small italic letters, while we refer to the vertices of T as nodes and represent
them using small sans serif letters. A tree decomposition is said to have width k if |Xi| ≤ k + 1,
for all i ∈ I. The treewidth of a graph G is the minimum width of all its tree decompositions.
In particular, the treewidth of G is one if and only if G is a forest. We define the treewidth of a
directed graph G to be the same as the treewidth of its underlying undirected graph.

A rooted tree decomposition is a tree decomposition with a distinguished root node. Given a
rooted tree decomposition D = (X , T ) and a node i of T , let Desc(i) be the set of descendants of node
i in T , including i; let Ti = T [Desc(i)]; let Gi = G[

⋃

j∈Desc(i) Xj]; and let Di = ({Xj : j ∈ Desc(i)}, Ti).
A rooted tree decomposition is nice if each node of T is of one of the following types: A start node
is a leaf. An introduce node i has one child j with Xi = Xj ∪ {x}, for some x 6∈ Xj. A forget node
i has one child j with Xi = Xj \ {x}, for some x ∈ Xj. A join node i has two children j and k with
Xi = Xj = Xk.

A path decomposition is a tree decomposition D = (X , T ) such that T is a path. We can
write such a path decomposition as the sequence Y = (X1, . . . ,X|I|) of sets Xi along the path T .
We define a rooted path decomposition to be a path decomposition one of whose endpoints has
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been chosen as the root. The pathwidth of a graph G is the minimum width of all possible path
decompositions of G. Given two path decompositions Y1 and Y2, we denote the concatenation of
Y1 and Y2 by Y1 ◦ Y2. This operation is allowed only if Y1 ◦ Y2 satisfies Properties T1–T3. A path
decomposition Y ′ = (X ′

1, . . . ,X
′
t) is an extension of a path decomposition Y = (X1, . . . ,Xs) if there

are indices 1 = q1 < · · · < qs+1 = t + 1 so that X ′
j = Xi, for all 1 ≤ i ≤ s and qi ≤ j < qi+1. In

other words, path decomposition Y ′ can be obtained from Y by duplicating nodes. We denote the
set of all extensions of Y by E(Y ).

2.3 Typical Sequences and Typical Lists

Next we recall the most important results from [11] on integer sequences and their typical sequences.
These sequences play an important role in the algorithm for reducing the width of a given tree
decomposition, which is presented in Section 6.

Given an integer sequence a = (a1, . . . , an), let the length of a be |a| = n, and let max(a) =
max{ai : 1 ≤ i ≤ n}. For two sequences a and b of the same length, the sum a + b of a and b is
the sequence c = (c1, . . . , cn) with ci = ai + bi, for 1 ≤ i ≤ n. For a constant λ, let a + λ be the
sequence (a1 +λ, . . . , an +λ). For two integer sequences a and b of the same length, we write a ≤ b
if ai ≤ bi, for all 1 ≤ i ≤ n.

The typical sequence τ(a) of an integer sequence a is the sequence obtained after iterating the
following operations until none of these operations is applicable:

Duplicate removal: Remove consecutive repetitions of the same element; that is, if ai = ai+1,
remove ai+1 from a.

Typical operation: If the sequence contains two elements ai and ak, i ≤ k − 2, such that for all
i ≤ j ≤ k, ai ≤ aj ≤ ak or ai ≥ aj ≥ ak, remove elements ai+1, . . . , ak−1 from a.

For instance, the sequence a = (1, 4, 4, 3, 5, 7, 8, 8, 6, 4, 1) has the typical sequence τ(a) = (1, 8, 1).
To obtain τ(a), first remove the second 4 and the second 8 (duplicate removal); then delete entries
4, 3, 5, 7 between the first 1 and the 8 and entries 6, 4 between the 8 and the last 1 (typical oper-
ations). Bodlaender and Kloks [11] show that the typical sequence of an integer sequence is well
defined, i.e., the order in which the above operations are applied is irrelevant.

Lemma 1 (Bodlaender/Kloks [11]) If the elements in sequence a are non-negative integers and
max(a) = k, then |τ(a)| ≤ 2k + 1 and max(τ(a)) = k.

An extension of an integer sequence a = (a1, . . . , an) is a sequence a∗ = (a∗1, . . . , a
∗
m) such that

there are indices 1 = t1 < t2 < · · · < tn+1 = m + 1 so that for all 1 ≤ i ≤ n and ti ≤ j < ti+1,
ai = a∗j . Let E(a) be the set of all extensions of a.

Lemma 2 (Bodlaender/Kloks [11]) If a∗ ∈ E(a), then τ(a∗) = τ(a).

For two sequences a and b, the ringsum of a and b is the set a⊕ b = {a∗ + b∗ : a∗ ∈ E(a)∧ b∗ ∈
E(b) ∧ |a∗| = |b∗|}.

Lemma 3 (Bodlaender/Kloks [11]) Let a and b be two integer sequences and c ∈ a⊕ b. Then
there exists an integer sequence c′ ∈ a⊕ b with τ(c) = τ(c′) and |c′| ≤ |a|+ |b| − 1.

8



For two sequences a = (a1, . . . , am) and b = (b1, . . . , bn), let the concatenation of a and b be the
sequence a ◦ b = (a1, . . . , am, b1, . . . , bn).

Lemma 4 (Bodlaender/Kloks [11]) For two sequences a and b, τ(a ◦ b) = τ(τ(a) ◦ τ(b)).

A split of a sequence a = (a1, . . . , an) is a pair of sequences b and c such that b = (a1, . . . , af )
and either c = (af , . . . , an) or c = (af+1, . . . , an). In the former case, the split is of type one; in the
latter case, it is of type two.

An (integer) list is a list [a] =
(

a(1), a(2), . . . , a(n)
)

, where each a(i) is an integer sequence.

• The length of a list is the number of sequences in the list.

• For a list [a] =
(

a(1), . . . , a(n)
)

, max[a] = max
{

max
(

a(i)
)

: 1 ≤ i ≤ n
}

.

• Two lists [a] and [b] have the same length in the strong sense if they have the same length

and
∣

∣

∣a(i)
∣

∣

∣ =
∣

∣

∣b(i)
∣

∣

∣, for all 1 ≤ i ≤ n.

• For two lists [a] and [b] of the same length in the strong sense, we write [a] ≤ [b] if a(i) ≤ b(i),
for all 1 ≤ i ≤ n.

• For two lists of the same length in the strong sense, [a] + [b] denotes the list
(

a(1) + b(1), . . . ,

a(n) + b(n)
)

.

• The typical list of a list [a] is the list τ [a] =
(

τ
(

a(1)
)

, . . . , τ
(

a(n)
))

.

• The extension set of a list [a] is the set E[a] =
{

[b] =
(

b(1), . . . , b(n)
)

: ∀1≤i≤nb(i) ∈ E
(

a(i)
)}

.

• The ringsum of two lists [a] and [b] of the same length is the set [a]⊕ [b] =
{(

c(1), . . . , c(n)
)

:

∀1≤i≤nc(i) ∈ a(i) ⊕ b(i)
}

.

All of the above results on integer sequences extend to integer lists.

3 Flippable DAGs

In the tree decomposition algorithm of Section 6, we have to perform the following operation
repeatedly: Given two path decompositions Y1 and Y2 of two graphs G1 and G2, which possibly
share vertices, construct a path decomposition Y of the graph G = G1 ∪ G2 by “stretching” Y1

and Y2 appropriately so that they have the same length and then unioning the sets along path
decompositions Y1 and Y2 in a pairwise manner. Since this stretch operation is expensive, and we
have to perform it many times, we do not perform it explicitly. Instead, we represent Y1 and Y2

as series-parallel st-graphs G1 and G2 and construct a new series-parallel st-graph representing Y
from G1 and G2. Once we have performed the last merge, we apply a post-processing procedure
that extracts the path decomposition represented by the final DAG.

It may also be necessary to “turn Y2 around” before constructing Y , because Y1 and Y2 are
“oriented in opposite directions.” Given that Y1 and Y2 are represented as series-parallel st-graphs,
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this can be done efficiently if we have an efficient way to flip all edges in G2. Similar to the stretching
of path decompositions, it is expensive to flip all edges in G2 explicitly. Hence, we need a technique
to perform these flips implicitly. After the final graph G has been constructed, we perform a mop-up
procedure that chooses the final direction for every edge. The resulting graph is then input into
the procedure for extracting the final path decomposition.

In this section, we describe a representation of series-parallel st-graphs that allows the edges of
a graph G to be flipped by updating only O(1) information stored at the source and sink of G. We
also describe an O(sort(N)) I/O mop-up procedure that chooses the final direction for every edge
in G, after all compositions and edge flips have been performed.

Formally, we denote a series-parallel st-graph G as the quadruple G = (V,E, s, t), where s is
the source and t is the sink of G. The flip of G is the graph G⊳ = (V,E⊳, t, s), where E⊳ = {(w, v) :
(v,w) ∈ E}.

Let G be a pair G = (U(G), γ) representing the graph G′ = (V,E ∪ E⊳), where γ : E ∪ E⊳ →
{blue, red} × {blue, red} is a coloring of the edges of G and G⊳ with pairs of colors. Note that
the function γ can be conveniently represented by storing colors γ((v,w)) and γ((w, v)) with edge
{v,w} ∈ U(G). Given a pair c = (c1, c2) of colors, we define c(1) = c1 and c(2) = c2. This defines
two functions γ(1) and γ(2), where γ(1)(e) = c1 and γ(2)(e) = c2, for any edge e with γ(e) = (c1, c2).
For a color c ∈ {blue, red}, we define c̄ to be its opposite color; that is, if c = blue, then c̄ = red,
and vice versa. We say that coloring a vertex v with color c selects an edge e incident to v if either
e = (u, v) and γ(2)(e) = c or e = (v,w) and γ(1)(e) = c.

A flippable DAG is a pair G = (U(G), γ) as described above, with the following properties:

(F1) Let e = (v,w) ∈ E, and let e⊳ = (w, v) ∈ E⊳ be its flip. Then coloring v or w with a

color c ∈ {red, blue} selects exactly one of e and e⊳. In particular, γ(1)(e⊳) = γ(2)(e) and

γ(2)(e⊳) = γ(1)(e).

(F2) Let E(v, c) be the set of edges in G′ that are incident to v and selected by coloring v with
color c. Then either E(v, c) ⊆ E or E(v, c) ⊆ E⊳.

(F3) Given a vertex r ∈ V , a color c ∈ {red, blue}, and a spanning tree T of U(G), let γ(r, c, T ) :
V → {red, blue} be a coloring of the vertices in G, defined as follows: Choose r to be the root
of tree T , and define (γ(r, c, T ))(r) = c. For every other vertex v with parent p(v) in T , let

(γ(r, c, T ))(v) =

{

γ(2)(p(v), v) if (γ(r, c, T ))(p(v)) = γ(1)(p(v), v)

γ(1)(v, p(v)) if (γ(r, c, T ))(p(v)) = γ(2)(v, p(v))
.

Then for any two spanning trees T1 and T2 of U(G), any two vertices v,w ∈ V , and any two
colors c1 and c2 so that (γ(v, c1, T1))(w) = c2, γ(v, c1, T1) = γ(w, c2, T2).

Property (F3) implies in particular that γ(v, c, T1) = γ(v, c, T2), for any two spanning trees T1 and
T2. Thus, we refer to the unique coloring defined by coloring r with color c as γ(r, c). Next we
show that for any edge e = (v,w) ∈ E, coloring v with color (γ(r, c))(v) and coloring w with color
(γ(r, c))(w) select the same edge from the set {e, e⊳}.

Lemma 5 For any edge e = (v,w) ∈ E and any coloring γ(r, c), coloring vertex v with color
(γ(r, c))(v) selects the same edge from the set {e, e⊳} as coloring vertex w with color (γ(r, c))(w).
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Proof. Assume w.l.o.g. that r 6= w. Also assume that coloring v with color (γ(r, c))(v) selects edge
e = (v,w), and coloring w with color (γ(r, c))(w) selects edge e⊳ = (w, v); that is, (γ(r, c))(v) =
γ(1)(e) and (γ(r, c))(w) = γ(1)(e⊳). Let T1 be a spanning tree of U(G) so that γ(r, c) = γ(r, c, T1).
Note that neither v = p(w) nor w = p(v) in T1. In the former case, w would be colored with color

γ(2)(e) = γ(1)(e⊳). In the latter case, v would be colored with color γ(2)(e⊳) = γ(1)(e). Now let T2

be the tree obtained from T1 by removing edge {w, p(w)} from T1 and adding edge {v,w}. Then
(γ(r, c, T1))(v) = (γ(r, c, T2))(v), because the path from r to v is the same in T1 and T2. Hence,

(γ(r, c, T2))(w) = γ(2)(e) = γ(1)(e⊳) = (γ(r, c, T1))(w). In particular, γ(r, c, T1) 6= γ(r, c, T2), which
contradicts Property (F3).

Now let Er,c ⊆ E ∪ E⊳ be the set of edges that are selected by coloring the vertices of G as
prescribed by coloring γ(r, c). By Lemma 5, we can formally define this set as Er,c = {(v,w) ∈
E ∪E⊳ : (γ(r, c))(v) = γ(1)((v,w))}.

Lemma 6 For any vertex r ∈ V and any color c ∈ {red, blue}, either Er,c = E or Er,c = E⊳.

Proof. Consider vertex r and the set E′ of edges incident to r. By Property (F2), E(r, c) ⊆ E or
E(r, c) ⊆ E⊳. Assume w.l.o.g. that E(r, c) ⊆ E. Then, by Property (F1), E(r, c̄) = E′ \ E(r, c).
On the other hand, E(r, c̄) ⊆ E or E(r, c̄) ⊆ E⊳. Hence, E(r, c) contains all edges in E incident to
r, and only those edges.

Now let T be a spanning tree of U(G). We prove by induction on the length of the path from r
to v in T that for every vertex v ∈ V , E(v, (γ(r, c))(v) contains all edges in E incident to v. We have
already considered the base case. Therefore, assume that coloring p(v) with color (γ(r, c))(p(v))
selects all edges in E incident to p(v), and assume w.l.o.g. that (p(v), v) ∈ E. Then edge (p(v), v)
is selected by coloring p(v) with color (γ(r, c))(p(v)). By Lemma 5, coloring vertex v with color
(γ(r, c))(v) also selects edge (p(v), v) ∈ E. Hence, by Property (F2), E(v, (γ(r, c))(v)) ⊆ E. Now it
follows from Property (F1) again that E(v, (γ(r, c))(v)) contains all edges in E incident to v, and
only those edges. This proves that if E(r, c) ⊆ E, then Er,c = E. A similar argument with the
roles of E and E⊳ exchanged shows that if E(r, c) ⊆ E⊳, then Er,c = E⊳.

The following corollary is an immediate consequence of Lemma 6 and Property (F1).

Corollary 1 For any vertex r ∈ V and any color c ∈ {red, blue}, Er,c = E and Er,c̄ = E⊳, or vice
versa.

Given a flippable DAG G = (U(G), γ), a vertex v ∈ G, and a color c ∈ {red, blue}, we refer to
the process of extracting the graph Gv,c = (V,Ev,c) as untangling G = (U(G), γ). Properties (F1)
and (F3) immediately suggests an algorithm to untangle G, which is shown in Algorithm 1.

Lemma 7 A flippable DAG G of size N can be untangled in O(sort(N)) I/Os.

Proof. The correctness of Algorithm 1 follows immediately from the above discussion. Computing
the spanning tree T of U(G) in Line 1 of Algorithm 1 takes O(sort(N)) I/Os [14] because G is
series-parallel, hence planar, and thus sparse under edge contraction. Before being able process
T from the root towards the leaves, all edges in T have to be directed from parents to children.
This can be done in O(sort(N)) I/Os using the Euler-tour technique and list ranking [14]. Given
that all edges are directed from parents to children, we can apply the Euler-tour technique and
list ranking again to obtain a preorder numbering of the vertices of T , which provides us with a
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Algorithm 1 An algorithm to untangle a flippable DAG G = (U(G), γ).

Procedure Untangle

Input: A flippable DAG G = (U(G), γ) representing a series-parallel st-graph G and its flip G⊳, a vertex
r ∈ G, and a color c ∈ {red, blue}.

Output: Graph Gr,c.

1: Compute a spanning tree T of U(G) and choose r to be its root.
2: Process tree T from the root towards the leaves and compute the color (γ(r, c))(v), for every vertexv ∈ V .
3: Scan E ∪ E⊳ and add every edge (v, w) with γ(1)((v, w)) = (γ(r, c))(v) to Er,c.
4: Return the graph Gr,c = (V, Er,c).

topological ordering of the vertices of T . We sort the vertices of T by their preorder numbers and
then use time-forward processing [2] to realize Step 2. Hence, Step 2 takes O(sort(N)) I/Os. Step
3 can be realized as follows: We sort the vertices by preorder numbers and the edges in E ∪E⊳ by
the preorder numbers of their sources. Then we scan the sorted edge and vertex sets to extract the
edges matching the condition stated in Line 4. This takes O(sort(N)) I/Os.

4 I/O-Efficient Greedy Algorithms

In this section, we describe a simple technique to obtain I/O-efficient algorithms for certain graph
problems that can be solved using greedy algorithms in internal memory. Using this technique, we
obtain simple deterministic O(sort(|V | + |E|)) I/O algorithms for finding a maximal matching or
maximal independent set of an arbitrary graph. The algorithm for finding a maximal matching is
used as part of the tree decomposition algorithm presented in Section 5.

Let us define precisely what we mean by “certain” graph problems. A vertex-labeling algorithm
is an algorithm A that computes a function λ : V → X. We call A single-pass if it computes
λ by visiting every vertex v ∈ V exactly once and assigns a label λ(v) to v during this visit.
We call A local if it computes λ(v) in O(sort(k)) I/Os from the labels λ(u1), . . . , λ(uk) of those
neighbors u1, . . . , uk of v that have been labeled before visiting v. We call A presortable if there is
an O(sort(|V |+ |E|)) I/O algorithm that establishes an order so that A produces a correct result
if it visits the vertices of G in this order. We consider graph problems that can be solved using
presortable local single-pass vertex-labeling algorithms.

Theorem 1 Every graph problem P that can be solved using a presortable local single-pass vertex-
labeling algorithm can be solved in O(sort(|V |+ |E|)) I/Os.

Proof. We use Algorithm 2 to solve problem P. Let A be a presortable local single-pass vertex-
labeling algorithm that solves problem P. Since A is local and the ordering ≺ is chosen so that
algorithm A solves problem P correctly if processing the vertices of G in this order, the label λ(v) of
every vertex v ∈ V can be computed from the labels λ(u1), . . . , λ(uk) of its in-neighbors u1, . . . , uk

in G′. This establishes the correctness of Algorithm 2.
As algorithm A is presortable, Line 1 of Algorithm 2 takes O(sort(|V |+ |E|)) I/Os. The edges

of G can easily be directed in O(sort(|V |+ |E|)) I/Os, once every edge {v,w} has been “informed”
about the numbers ν(v) and ν(w) assigned to its endpoints v and w in Line 1. To transfer this
information to all edges {v,w} ∈ E, we sort the vertices in V by their names (not their numbers
ν(v)), choose one endpoint for every edge, and sort the edges by their chosen endpoints. Then a
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Algorithm 2 A framework for I/O-efficient greedy algorithms.

Procedure IOGreedy

Input: A graph G = (V, E) and a labeling problem P that can be solved using a presortable local single-
pass vertex-labeling algorithm A.

Output: The labeling λ : V → X of the vertices of G that would be computed by algorithm A.

1: Establish an order ≺ of the vertices of graph G so that algorithm A produces a correct result if it visits
the vertices in V in this order, sort the vertices of G in this order, and number the vertices of G in their
order of appearance.

2: Replace every edge {v, w} ∈ E by a directed edge (v, w), v ≺ w; let G′ be the resulting DAG.
3: for all vertices v ∈ V , in their order of appearance do
4: Let Γ−

G′(v) = {u1, . . . , uk}; compute λ(v) from λ(u1), . . . , λ(uk).
5: end for

single scan of the vertex and edge sets of G is sufficient to inform every edge about the preorder
number of its chosen endpoint. We sort the edges again, this time by their endpoints that were
not chosen in the previous pass, and scan the vertex and edge sets again, in order to inform every
edge about the preorder number of its second endpoint. At the end of this step, we sort the
vertices in V by their numbers ν(v) and the directed edges (v,w) by the numbers ν(v) of their
source vertices. After the DAG G′ has been prepared in this manner, the loop in Lines 3–5 takes
O(sort(|E|)) I/Os: Assuming that every vertex v has labels λ(u1), . . . , λ(uk) at its disposal, where
Γ−

G′(v) = {u1, . . . , uk}, computing labels λ(v), v ∈ V , takes O(sort(
∑

v∈V |Γ−
G′(v)|)) = O(sort(|E|))

I/Os, by the locality of algorithm A. We can use time-forward processing [2] to provide every vertex
v ∈ V with this information. This takes O(sort(|V |+ |E|)) I/Os because only O(1) information is
sent along every edge of G′.

Next we apply Theorem 1 in order to obtain deterministic O(sort(|V | + |E|)) I/O algorithms
for finding maximal independent sets and maximal matchings.

4.1 Computing a Maximal Independent Set

In order to compute a maximal independent set S of a graph G = (V,E) in internal memory, we
can use the following simple algorithm: Process the vertices in an arbitrary order; when a vertex
v ∈ V is visited, add it to S if none of its neighbors is in S. Translated into a vertex-labeling
problem, we wish to compute the characteristic function χS : V → {0, 1} of S, where χS(v) = 1
if v ∈ S, and χS(v) = 0 if v 6∈ S. Also note that if S is initially empty, then any neighbor w of
v that is visited after v cannot be in S at the time when v is visited. Hence, it is sufficient for v
to inspect all its neighbors that are visited before v, in order to decide whether or not v should be
added to S. With these modifications, we obtain a vertex-labeling algorithm that is presortable,
since the order in which the vertices are visited is unimportant; local, since only previously visited
neighbors of v are inspected to decide whether v has to be added to S and a single scan of their
labels is sufficient to decide whether at least one of them is in S; and single-pass. The correctness
of the algorithm is obvious. Hence, we obtain the following result.

Theorem 2 Given an undirected graph G = (V,E), a maximal independent set of G can be found
in O(sort(|V |+ |E|)) I/Os.
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4.2 Computing a Maximal Matching

Finding a maximal matching is not quite as straightforward as computing a maximal independent
set, because it is an edge-labeling problem: Compute the characteristic function χM : E → {0, 1} of
a maximal matching M. We can easily transform this problem into a vertex-labeling problem be-
cause there exists a natural bijection between the maximal matchings of a graph G = (V,E) and the
maximal independent sets of the graph G′ = (E, {{e, e′} : edges e and e′ share an endpoint in G}).
However, graph G′ may have size Ω(|V |2), even if |E| = O(|V |). (As an example, consider a
wagon wheel, which is even planar.) Our goal is to construct a subgraph G′′ = (E,E′′) of G′

with E′′ = O(|E|) and describe a vertex-labeling problem of G′′ whose solution corresponds to a
maximal matching of G. We begin with a description of graph G′′.

Given graph G = (V,E), we number the edges of G in their order of appearance in E. Then we
define e1 < e2 if e1 has a smaller number than e2 in this numbering. For every vertex v ∈ V with
incident edges e1 < · · · < eq, we add edges {ei, ei+1}, 1 ≤ i < q, to E′′. We denote the resulting
path from e1 to eq in G′′ by Pv. Every vertex e ∈ G′′ has at most two in-edges and at most two
out-edges, one in-edge and one out-edge per endpoint of edge e ∈ G. Hence, |E′′| = O(|E|), as
desired. We have to describe a vertex-labeling problem of G′′ whose solution corresponds to a
maximal matching of G and which can be solved by a presortable local single-pass algorithm.

Every vertex e ∈ G′′ is contained in two paths Pv and Pw in G′′, one per endpoint of edge
e = {v,w} ∈ G. A subset M ⊆ E is a maximal matching of G if and only if the characteristic
function χM : E → {0, 1} of M has the following two properties:

(M1) For every path Pv , v ∈ V ,
∑

e∈Pv
χM(e) ≤ 1.

(M2) For every edge e = {v,w} ∈ G,
∑

e∈Pv∪Pw
χM(e) ≥ 1.

Property (M1) expresses the fact that M is a matching, i.e., that every vertex has at most one
incident edge in M. Property (M2) expresses the maximality of M, i.e., the fact that every edge
not in M shares an endpoint with an edge in M. We compute function χM using Algorithm 3.
This algorithm is presortable, as it uses the ordering of the edges in E used to construct G′′; it
is obviously single-pass; and its localilty follows from the way labels λ(e) are computed. All that
remains to be shown is that the algorithm is correct.

Theorem 3 Given an undirected graph G = (V,E), a maximal matching M ⊆ E of G can be
computed in O(sort(|V |+ |E|)) I/Os.

Proof. In order to prove the correctness of Algorithm 3, we have to show that the labeling χM(e)
constructed by the algorithm has Properties (M1) and (M2). Since the algorithm processes the
vertices of G′′ sorted by the “<” relation, it is easily verified that σ(Pv , e) =

∑{χM(e′) : e′ ∈
Pv and e′ < e} and σ(Pw, e) =

∑{χM(e′) : e′ ∈ Pw and e′ < e}. This immediately implies
that labeling χM has Property (M2) because the algorithm sets χM(e) = 1 unless σ(Pv, e) +
σ(Pw, e) ≥ 1. In both cases, Property (M2) holds. Property (M1) holds because χM(e) = 1 implies
that σ(Pv, ev) = 0 and σ(Pv , e

′) = 1, for all e′ ∈ Pv , e ≤ e′. Hence, χM(e′) = 0, for all e′ ∈ Pv \{e}.
The same argument shows that χM(e′) = 0, for all e′ ∈ Pw \{e}, if χM(e) = 1. The I/O-complexity
follows from Theorem 1.

14



Algorithm 3 Computing a maximal matching.
Procedure MaximalMatching

Input: An undirected graph G = (V, E).
Output: A maximal matchingM⊆ E of G.

1: Construct a graph G′′ = (E, E′′) as described in the text and label every edge {e, e′} ∈ E′′ with the
name of the endpoint shared by edges e and e′ in G (i.e., with the vertex v so that {e, e′} ∈ Pv).

2: Sort the vertex set E of G′′ by the relation “<” defined on the edges of G.
3: for every vertex e ∈ E, in their order of appearance do
4: Compute a label λ(e) = (χM(e), σ(Pv, e), σ(Pw , e)) of vertex e, where σ(P, e) =

∑{χM(e′) : e′ ∈
P and e′ ≤ e}: Let e = {v, w}, and let ev and ew be the neighbors of e on paths Pv and Pw so that
ev < e and ew < e. If ev does not exist, assume that ev is a dummy vertex with λ(ev) = (0, 0, 0).
The same assumption holds for ew. Then let χM(e) = 1 if σ(Pv, ev) + σ(Pw , ew) = 0, and χM(e) = 0
otherwise. Let σ(Pv, e) = σ(Pv, ev) + χM(e) and σ(Pw, e) = σ(Pw , ew) + χM(e).

5: end for
6: Scan E and extract label χM(e) from label λ(e), for every edge e ∈ E.

5 Computing a Tree Decomposition of Width k

Our algorithm for computing a tree decomposition of width at most k for a graph G = (V,E) of
treewidth at most k is based on the algorithm of [8]. We first recall this algorithm and then show
how to perform each of its steps in O(sort(N)) I/Os. Before describing the algorithm, however,
we need to introduce some terminology. For some threshold d to be defined later, a vertex is said
to be of low degree if its degree is at most d; otherwise, the vertex is of high degree. A vertex is
friendly if it is of low degree and has at least one neighbor of low degree. The improved graph G′

of a graph G is obtained by adding an edge {v,w} to G, for every pair of vertices v and w that
have at least k + 1 common neighbors of low degree in G. If the treewidth of G is at most k, the
treewidth of G′ cannot be greater than k. A vertex of G is I-simplicial if it is simplicial in G′, of
low degree in G, and not friendly in G (i.e., all its neighbors are of high degree).

The algorithm of [8] is based on the following fact, which is proved in [8]: For an appropriately
chosen d, a graph G of treewidth at most k contains either a sufficient number of friendly vertices or
a sufficient number of I-simplicial vertices, where “a sufficient number” means “a constant fraction.”
If there is a suffficient number of friendly vertices, a maximal matching of G contains at least αN
edges, for some constant 0 < α < 1. Hence, a graph G′ of treewidth at most k and with at most
(1 − α)N vertices can be obtained by contracting the edges in a maximal matching of G. Given
a tree decomposition D′ of width at most k for G′, which can be computed recursively, a tree
decomposition D′′ of width at most 2k + 1 for G can be obtained by re-expanding the edges in the
matching. In order to obtain a tree decomposition D of width at most k for G, the algorithm of [8]
applies an algorithm of [11] to G and D′′. If the number of friendly vertices is too small, G contains
at least βN I-simplicial vertices, for some constant 0 < β < 1. Let G∗ be the graph obtained by
removing all I-simplicial vertices of G from the improved graph of G. Graph G∗ has treewidth at
most k and at most (1− β)N vertices, so that a tree decomposition of width at most k for G∗ can
be computed recursively. Since the neighborhood of every I-simplicial vertex v is a clique in G∗,
there has to be a node iv ∈ D∗ so that ΓG(v) ⊆ Xiv . Hence, a tree decomposition D of width at
most k for G can be obtained from D∗ by identifying such a node iv, for every I-simplicial vertex
v, and adding a new node jv with Xjv = ΓG(v) ∪ {v} and an edge {iv, jv} to D∗.
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Algorithm 4 Computing a tree decomposition.
Procedure TreeDecomposition

Input: A graph G = (V, E) and a constant k ∈ N.
Output: A tree decomposition D = (X , T ) of width at most k for G, or the answer that the treewidth of

G is greater than k.

1: if |G| ≤M then
2: Use the algorithm of [8] to compute a tree decomposition of G.
3: else
4: if |E| > k|V | − 1

2k(k + 1) then
5: Output that the treewidth of G is greater than k.
6: else
7: if there are at least |V |/(4k2 + 12k + 16) friendly vertices in G then
8: Find a maximal matchingM⊆ E of G. (Theorem 3)
9: Contract the edges inM and call the resulting graph G′ = (V ′, E′).

10: Recursively compute a tree decomposition D′ = (X ′, T ′) of width at most k and size O(N) for
G′.

11: if the treewidth of G′ is greater than k then
12: Output that the treewidth of G is greater than k.
13: else
14: Compute a tree decomposition D′′ = (X ′′, T ′) of G by expanding the edges of M. The width

of D′′ is at most 2k + 1.
15: Apply Algorithm 5 to G and D′′, in order to compute a tree decomposition D = (X , T ) of width

at most k and size O(N) for G. (Theorem 6)
16: end if
17: else
18: Compute the improved graph G′ of G, put all I-simplicial vertices into a set SL, and compute a

graph G∗ = G′ − SL. (Lemma 8)
19: if there is an I-simplicial vertex of degree at least k + 1 (Lemma 8) then
20: Output that the treewidth of G is greater than k.
21: else
22: if |SL| < c2|V | then
23: Output that the treewidth of G is greater than k.
24: else
25: Recursively compute a tree decomposition D∗ = (X ∗, T ∗) of width at most k and size O(N)

for G∗.
26: if the treewidth of G∗ is greater than k then
27: Output that the treewidth of G is greater than k.
28: else
29: For each v ∈ SL, find a node iv ∈ I∗ such that ΓG(v) ⊆ X∗

iv
, add a node jv to I∗, make it

adjacent to iv, and let X∗
jv

= ΓG(v)∪{v}; letD = (X , T ) be the resulting tree decomposition
of width at most k. (Lemma 9)

30: end if
31: end if
32: end if
33: end if
34: end if
35: end if
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The details of the algorithm are presented in Algorithm 4. The maximal degree d for low-degree
vertices is defined using two constants 0 < c1, c2 < 1, which are chosen arbitrarily but satisfy the
following condition:

c2 =
1

4k2 + 12k + 16
− c1k

2(k + 1)

2
.

In particular, d = max(k2 + 4k + 4, ⌈2k/c1⌉). Then c1 is an upper bound on the fraction of high-
degree vertices in G; constant c2 provides a lower bound on the fraction of vertices that are removed
from G before calling the algorithm recursively. The correctness of Algorithm 4 is shown in [8]. The
lemmas cited in parentheses after each step in the algorithm show how to realize this particular
step in O(sort(N)) I/Os. All other steps take O(sort(N)) I/Os, using sorting and scanning, and
are fairly straightforward. In [8], it is shown that the subgraphs G′ and G∗ passed to recursive calls
of the algorithm in Lines 10 and 25 have size at most (1− c2)N . Hence, the I/O-complexity of the
algorithm is I(N) = I((1− c2)N) +O(sort(N)) = O(sort(N)), and we obtain the following result.

Theorem 4 Given a graph G = (V,E) with N vertices and a constant k ∈ N, Algorithm 4
takes O(sort(N)) I/Os to decide whether G has treewidth at most k and, if so, compute a tree
decomposition D = (X , T ) of width at most k and size O(N) for G.

The next two lemmas show how to realize Steps 18, 19, and 29 of Algorithm 4. The algorithm
used to realize Step 15 is discussed in Section 6.

Lemma 8 The improved graph G′ = (V,E′) of a graph G = (V,E) as well as all I-simplicial
vertices of G can be computed in O(sort(N)) I/Os.

Proof. The proof is a straightforward adaptation of the internal memory algorithm for this problem,
presented in [8]. We include it for completeness.

First we identify all vertices of low degree. In particular, we compute the adjacency lists of all
vertices of G and then extract all vertices of low degree. The latter can be done in a single scan of
the computed adjacency lists. The former can be done in O(sort(N)) I/Os by scanning the edge
set of G, creating two directed edges (v,w) and (w, v), for every edge {v,w} ∈ E, and sorting the
resulting list of directed edges.

Now assume that there exists an ordering < defined on the vertices of G (e.g., the natural order
defined by a numbering of the vertices). For each low-degree vertex u with neighborhood ΓG(u),
we create a list L(u) = {(v,w, u) : {v,w} ⊆ ΓG(u) ∧ v < w}. From the edge set of G, we create
a list L′ = {(v,w,—) : {v,w} ∈ E ∧ v < w}. Let L be the concatenation of list L′ and lists L(v).
Note that |L| = O(N) because for fixed k, every low-degree vertex has constant degree. We sort
L lexicographically, where the symbol “—” is assumed to be less than any vertex of G. In order
to obtain the edge set E′ of the improved graph, we add an edge {v,w} to E, for every pair of
vertices v and w such that there is no triple (v,w,—) in L and there are at least k + 1 triples
(v,w, u1), . . . , (v,w, uk′ ) in L. For every triple (v,w, u) ∈ L, we add an entry (u, v,w) to a new list
S if the entry (v,w,—) is in L or there are at least k +1 triples (v,w, u1), . . . , (v,w, uk′ ) in L. This
computation can be carried out in a single scan of list L.

List S contains the edges in G′ that connect the neighbors of every low-degree vertex in G. We
sort S lexicographically. Since the neighborhood of every low-degree vertex is of constant size, it
takes a single scan of list S to identify those low-degree vertices whose neighborhoods in G′ are
cliques; we add all these vertices to the list SL of I-simplicial vertices.
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As we sort and scan lists of linear size a constant number of times, this whole computation can
be carried out in O(sort(N)) I/Os.

Given lists S and SL, as described in the proof of Lemma 8, we can decide whether there exists
an I-simplicial vertex of degree at least k + 1 by scanning these two lists (Step 19).

Lemma 9 Given a tree decomposition D∗ = (X ∗, T ∗) of width at most k and size O(N) for the
graph G∗ = G′ − SL, a tree decomposition D = (X , T ) of width at most k and size O(N) for the
improved graph G′ of G, and thus for G, can be computed in O(sort(N)) I/Os.

Proof. Again, the computation described in [8] can easily be carried out in an I/O-efficient manner.
Let T ∗ = (I∗, F ∗). For every I-simplicial vertex u with ΓG(u) = {v1, . . . , vl}, v1 < v2 < · · · < vl,
we create a tuple (v1, . . . , vl, u) and add it to a list L. For every node i ∈ I∗ and every subset
{x1, . . . , xl} ⊆ Xi, we create a tuple (x1, . . . , xl, i), x1 < x2 < · · · < xl, and add it to L. The
resulting list has size O(N): there are at most N I-simplicial vertices; the tree T ∗ has O(N) nodes;
and |Xi| = O(1), for all i ∈ I∗. We sort list L lexicographically, where we assume that i < v, for
every node i ∈ I∗ and every vertex v ∈ V . As a result, every set of I-simplicial vertices with the
same neighborhood is preceded by a tuple corresponding to a tree node i whose associated set Xi

contains this neighborhood. We scan list L to create another list S containing pairs (iv, v), where v
is an I-simplicial vertex and iv is a node of T ∗ such that ΓG(v) ⊆ Xiv . For every I-simplicial vertex
v, we add a new node jv to I∗, a set X∗

jv
= ΓG(v)∪{v} to X ∗, and an edge {iv, jv} to T ∗; the result

is the desired tree decomposition D = (X , T ).
In the course of this procedure, we sort and scan lists of linear size a constant number of times.

Hence, the whole computation takes O(sort(N)) I/Os.

6 Improving the Tree Decomposition

In this section, we present an algorithm that solves the following problem: Given a graph G =
(V,E), a tree decomposition D = (X , T ) of width k for G, and a constant ℓ < k, test whether the
treewidth of G is at most ℓ and, if so, compute a tree decomposition E = (Y, U) of width at most
ℓ for G. This algorithm is used in Step 15 of Algorithm 4. It is based on the internal memory
algorithm of [11] and consists of two phases. The first phase applies dynamic programming to the
given tree decomposition D, in order to decide whether graph G has treewidth at most ℓ. This
phase is a straightforward simulation of the testing phase of the internal memory algorithm using
the time-forward processing technique of [14]. The second phase uses the information produced by
the first phase to construct a tree decomposition of width at most ℓ for graph G. The details of
this phase differ considerably from those of the internal memory algorithm, as we have to avoid the
random memory access pattern of that algorithm. Our algorithm for this phase carefully combines
the time-forward processing technique and flippable DAGs to achieve this.

In Section 6.1, we recall the necessary details of the testing phase of the algorithm of [11].
This lays the foundation for the description of our algorithm for the construction phase, which we
present in Section 6.2. In order for the testing phase to produce information that can be used by
the construction phase, we describe an augmented version of the testing phase at the beginning of
Section 6.2.

18



6.1 Bounded Treewidth Testing

The algorithm we describe assumes that the given tree decomposition D = (X , T ) is nice. In
Section 7, we describe an O(sort(N)) I/O algorithm for transforming any tree decomposition into
an equivalent nice tree decomposition; hence, this is not a restriction. Recall that the nodes in
a nice tree decomposition can be of four different types: start, join, forget, and introduce nodes.
The algorithm computes a full set of characteristics FS (i), for every node i ∈ T . This set contains
constant-size descriptions (characteristics) of a constant number of tree decompositions of Gi that
are optimal in the sense that for every tree decomposition F of width at most ℓ for G, there exists
a tree decomposition F ′ whose characteristic is in FS (i) and which is “better” than F in a sense
formalized in [11]. It follows immediately that G has treewidth at most ℓ if and only if the set
FS (r) computed for the root r of T is non-empty. To compute these full sets of characteristics, the
algorithm processes T from the leaves towards the root. For every leaf i, set FS (i) is computed in
a brute-force manner. For every internal node i, this set is computed from the sets computed for
its childen.

To describe the algorithm rigorously, we need some more terminology. A tree decomposition
(path decomposition) of the subgraph Gi rooted at node i is called a partial tree decomposition
(path decomposition) rooted at node i. Given a partial path decomposition Y = (Y1, . . . , Yr)
rooted at node i, the restriction of Y is the path decomposition Z = (Z1, . . . , Zr) of the graph
G[Xi], where Zj = Yj ∩Xi, for 1 ≤ j ≤ r. The interval model of Y is the list Z ′ = (Zq1 , . . . , Zqt)
obtained by removing consecutive duplicates from Z; that is, Zqs 6= Zqs+1, for 1 ≤ s < t, and
Zj = Zqs , for qs ≤ j < qs+1. (Assume that qt+1 = r + 1.) Given a partial path decomposition
Y = (Y1, . . . , Yr) with interval model Z = (Zq1, . . . , Zqt), the list representation of Y is the pair

(Z, [Y ]), where [Y ] =
(

Y (1), Y (2), . . . , Y (t)
)

and Y (s) = (Yqs , . . . , Yqs+1−1), for 1 ≤ s ≤ t. Given

the list representation (Z, [Y ]) of Y , the list of Y is defined as [y] =
(

y(1), y(2), . . . , y(t)
)

, where

y(s) = (|Yqs |, . . . , |Yqs+1−1|), for 1 ≤ s ≤ t. The characteristic of Y is the pair C(Y ) = (Z, τ [y]),
where τ [y] is the typical list of [y].

A tree decomposition is non-trivial if for any two adjacent nodes i and j in the tree, Xi 6= Xj.
A leaf i of a tree decomposition is maximal if there is a vertex v ∈ Xi that is not contained in any
other set Xj. In particular, a leaf i is maximal if and only if there is a vertex v ∈ Xi that is not
contained in Xj, where j is the only neighbor of i in the tree. A tree decomposition is minimal if
it is non-trivial and all its leaves are maximal. Intuitively, the number of nodes in a minimal tree
decomposition cannot be reduced by pruning redundant leaves and merging neighbors that store
the same sets. It is is easily verified that each graph of treewidth ℓ has a minimal tree decomposition
of width ℓ; hence, we can restrict our attention to minimal tree decompositions when trying to find
a tree decomposition of width ℓ for G. The following lemmas are useful in bounding the amount
of computation performed per node of T as well as the amount of data sent along the edges of T ,
which is the factor that determines the I/O-complexity of our algorithm.

Lemma 10 (Bodlaender/Kloks [11]) The number of nodes in a minimal tree decomposition of
an N -vertex graph is at most (2N − 1)2.

Lemma 11 (Bodlaender/Kloks [11]) The number of nodes in a minimal path decomposition
of an N -vertex graph is at most 2N + 1.
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The restriction of a partial tree decomposition E rooted at node i is defined in a manner analo-
gous to the restriction of a partial path decomposition. The trunk of a partial tree decomposition is
the tree obtained from its restriction by recursively removing all non-maximal leaves and replacing
each path whose internal vertices have degree 2 by a single edge.

Lemma 12 (Bodlaender/Kloks [11]) The size of the trunk of a partial tree decomposition is
at most 2k.

Every edge e in the trunk represents a path of edges in the tree decomposition. Note that such
a path is a path decomposition Ye of the graph induced by its nodes. The filled trunk is the tree
obtained by replacing every edge e in the trunk with its corresponding path decomposition Ye. Let
Ze be the interval model of the path decomposition Ye, for every edge e ∈ T ; then the tree model
of E is the pair (T , (Ze)e∈T ), where T is the trunk of E . The trunk representation of E is the triple
(T , (Ze)e∈T , ([Ye])e∈T ), where (Ze, [Ye]) is the list representation of Ye, for every e ∈ T . Finally,
the characteristic of E is the triple (T , (Ze)e∈T , (τ [ye])e∈T ), where (Ze, τ [ye]) is the characteristic
of path decomposition Ye, for every e ∈ T .

Lemma 13 (Bodlaender/Kloks [11]) The characteristic of a partial tree decomposition has
constant size.

The full set of characteristics FS (i) of a node i in D has the following property: For every
characteristic C in FS (i), there is a partial tree decomposition rooted at i that has width at most ℓ
and characteristic C. For every partial tree decomposition F rooted at i that has width at most ℓ
and whose trunk representation is (T , (Ze)e∈T , ([Ye])e∈T ), there exists a partial tree decomposition
F ′ rooted at i and with trunk representation (T , (Ze)e∈T , ([Y ′

e ]e∈T ) whose characteristic is in FS (i)
and so that for every edge e, there are extensions [y′′e ] and [y′′′e ] of lists [ye] and [y′e] so that [y′′e ] ≤ [y′′′e ],
where (Ze, [ye]) and (Ze, [y

′
e]) are the lists of path decompositions Ye and Y ′

e , respectively.

Lemma 14 (Bodlaender/Kloks [11]) For every node i of tree decomposition D = (X , T ), there
exists a full set of characteristics of constant size.

The linear-time algorithm of [11] for testing whether a given graph with nice tree decomposition
D = (X , T ) has treewidth at most ℓ processes the tree T bottom-up and computes the full set of
characteristics for every node from the sets computed for its children; for a leaf i, the full set of
characteristics is constructed by generating all minimal tree decompositions of Gi, testing each of
them whether it has width at most ℓ, and adding its characteristic to FS (i) if this is the case. As
there are only a constant number of minimal tree decompositions to be tested, this takes constant
time. In external memory, the algorithm takes O(sort(N)) I/Os using the time-forward processing
technique of [2, 14], since we send only a constant amount of information from each node to its
parent (Lemmas 13 and 14). Thus, we obtain the following theorem.

Theorem 5 Given a graph G = (V,E), two constants k and ℓ, and a tree decomposition D =
(X , T ) of width k for G, it takes O(sort(N)) I/Os to decide whether G has treewidth at most ℓ.

Proof. This follows from [11, 14] and Lemmas 13 and 14.

In order to provide a basis for the description of the construction phase in Section 6.2, we spend
the rest of this section to describe in more detail how the full sets of characteristics are computed
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for the four different node types in a nice tree decomposition. The reader who is familiar with this
procedure may wish to skip to Section 6.2.

Start node: Generate all minimal tree decompositions F = (W,H) of width at most ℓ for the
graph G[Xi] and put their characteristics into FS (i). Compute the trunk T of F by removing
all nodes of degree 2 from H. For every trunk edge e, the interval model Ze is the sequence
Ye because F is minimal. The typical sequence for the i-th interval of Ye consists of the single

element
∣

∣

∣Y
(i)
e

∣

∣

∣. This implies that τ [ye] = [ye].

Join node: If i is a join node with children j and k, compute set FS (i) from sets FS (j) and
FS (k) as follows: First observe that Xi = Xj = Xk. Consider all pairs of characteristics
in FS (j) × FS (k) with the same tree model. Such a pair consists of two characteristics
(T , (Ze)e∈T , (τ [ae])e∈T ) ∈ FS (j) and (T , (Ze)e∈T , (τ [be])e∈T ) ∈ FS (k). For each edge e ∈ T ,

compute a list [a∗e] =
(

τ
(

a
(1)
e

)

−
∣

∣

∣Z
(1)
e

∣

∣

∣ , τ
(

a
(2)
e

)

−
∣

∣

∣Z
(2)
e

∣

∣

∣ , . . .
)

. Then compute the typical

lists τ [ce] of all lists [ce] ∈ [a∗e] ⊕ τ [be] with max[ce] ≤ ℓ + 1 and add the characteristic
(T , (Ze)e∈T , (τ [ce])e∈T ) to FS (i).

Forget node: If i is a forget node with child j and Xi = Xj \{x}, compute set FS (i) from set FS (j)
as follows: For each characteristic (T , (Ze)e∈T , (τ [ye])e∈T ) ∈ FS (j), add one characteristic
(T ∗, (Z∗

e )e∈T ∗ , (τ [y∗e ])e∈T ∗) to FS (i). To obtain this charactersitic, remove vertex x from all

sets Z
(q)
e and compute the new trunk T ∗; for every edge e ∈ T ∗, remove repetitions from the

interval model Ze and define Z∗
e to be the resulting interval model; finally, change the typical

list τ [ye] into τ [y∗e ] as described next.

Consider an interval model Ze =
(

Z
(1)
e , . . . , Z

(s)
e

)

. If vertex x is contained in some sets of Ze,

then these sets have to be consecutive; that is, x is contained in sets Z
(a)
e , . . . , Z

(b)
e , for two

indices 1 ≤ a ≤ b ≤ s. As all sets in Ze are different, the removal of x can cause at most

two pairs of consecutive sets to become equal: Z
(a−1)
e = Z

(a)
e \ {x} and Z

(b)
e \ {x} = Z

(b+1)
e .

Depending on which case applies, set Z
(a)
e , set Z

(b)
e , or both are removed from Ze to obtain

Z∗
e . Hence, there are four different cases to consider for the computation of typical list τ [ye]:

1. If |Z∗
e | = |Ze|, let τ [y∗e ] = τ [ye].

2. If Z
(a−1)
e = Z

(a)
e \ {x}, but Z

(b)
e \ {x} 6= Z + e(b+1), let

τ∗ = τ
(

τ
(

y(a−1)
e

)

◦ τ
(

y(a)
e

))

and
τ [y∗e ] =

(

τ
(

y(1)
e

)

, . . . , τ
(

y(a−2)
e

)

, τ∗, τ
(

y(a+1)
e

)

, . . . , τ
(

y(s)
e

))

.

3. If Z
(b)
e \{x} = Z

(b+1)
e , but Z

(a−1)
e 6= Z

(a)
e \{x}, compute τ [y∗e ] from τ [ye] similar to Case

2.

4. If Z
(a−1)
e = Z

(a)
e \ {x} and Z

(b)
e \ {x} = Z

(b+1)
e , let

τ1 = τ
(

τ
(

y(a−1)
e

)

◦ τ
(

y(a)
e

))

and τ2 = τ
(

τ
(

y(b)
e

)

◦ τ
(

y(b+1)
e

))

,
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and

τ [y∗e ] =
(

τ
(

y(1)
e

)

, . . . , τ
(

y(a−2)
e

)

, τ1,

τ
(

y(a+1)
e

)

, . . . , τ
(

y(b−1)
e

)

, τ2, τ
(

y(b+2)
e

)

, . . . , τ
(

y(s)
e

))

.

In the last case, if a = b, compute a single typical list τ
(

τ
(

y
(a−1)
e

)

◦ τ
(

y
(a)
e

)

◦ τ
(

y
(a+1)
e

))

and insert it at the right position into τ [y∗e ].

Introduce node: If i is an introduce node with child j so that Xi = Xj ∪ {x}, every characteristic
in FS (i) is computed from a characteristic in FS (j) and a “matching” characteristic of a
minimal tree decomposition of G[Xi]. For every minimal tree decomposition F∗ of G[Xi],
remove vertex x from all sets in the tree decomposition; the result is a tree decomposition F ′

for G[Xj]. For every characteristic C(F) in FS (j) that has the same tree model as F ′, compute
a set of characteristics C(F◦) so that F◦ is minimal and can be obtained from F or F∗ by
augmenting either of the two tree decompositions appropriately. Add every characteristic in
this set so that F◦ has width at most ℓ to FS (i). The details of this construction are as
follows:

Let F∗ be a tree-decompostion of G[Xi] with characteristic C(F∗) = (T ∗, (Z∗
e )e∈T , (τ [y∗e ])e∈T ),

let F ′ be the tree decomposition of G[Xj] obtained by removing vertex x from all sets Xi in
F∗, let C(F ′) = (T , (Ze)e∈T , (τ [y′e])e∈T ) be the characteristic of F ′, and let F be a tree de-
composition of Gj with characteristic C(F) = (T , (Ze)e∈T , (τ [ye])e∈T ) ∈ FS (j). Add all those
characteristics C(F◦) = (T ∗, (Z∗

e )e∈T ∗ , (τ [y◦e ])e∈T ∗) to FS (i) that can be derived from C(F)
and C(F∗) using the following rules and satisfy max[y◦e ] ≤ ℓ+1, for every edge e of T ∗. Since
T ∗ and Z∗

e , e ∈ T ∗, are fixed, we only describe how to derive typical lists τ [y◦e ], for all e ∈ T ∗:

1. If T = T ∗, there are a number of different typical lists τ [y◦e ], for each edge e ∈ T ∗, that
can be valid for edge e. Every combination of the possible choices of one list per edge
creates another characteristic that is added to FS (i). To determine the set of choices

for each edge e ∈ T ∗, let Ze =
(

Z
(1)
e , . . . , Z

(s)
e

)

be the interval model for edge e in F
(and F ′), let Z∗

e =
(

Z
∗(1)
e , . . . , Z

∗(t)
e

)

be the interval model for edge e in F∗, and let

τ [ye] =
(

τ
(

y
(1)
e

)

, . . . , τ
(

y
(s)
e

))

be the typical list for edge e in F . Let a ≤ b be such

that Z
∗(a)
e and Z

∗(b)
e are the first and last sets in Z∗

e , respectively, that contain vertex
x. Analogous to the discussion for a forget node, s ≤ t ≤ s + 2. Hence, there are four
cases to distinguish:

(a) If s = t, there is only one possible typical list τ [y◦e ] for edge e:

τ [y◦e ] =
(

τ
(

y(1)
e

)

, . . . , τ
(

y(a−1)
e

)

, 1 + τ
(

y(a)
e

)

, . . .

. . . , 1 + τ
(

y(b)
e

)

, τ
(

y(b+1)
e

)

, . . . , τ
(

y(s)
e

))

.

(b) If t = s + 1 and Z
∗(a−1)
e = Z

∗(a)
e \ {x}, there is more than one choice for list τ [y◦e ].

The typical list of Ye can be written as

τ [ye] =
(

τ
(

y(1)
e

)

, . . . , τ
(

y(a−2)
e

)

, τ
(

y(a)
e

)

, . . . , τ
(

y(t)
e

))

.
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Consider all possible splits of the typical sequence τ
(

y
(a)
e

)

= (y1, . . . , yr) into

two sequences τ1 = (y1, . . . , yf ) and τ2 = (yf , . . . , yr), or τ1 = (y1, . . . , yf ) and
τ2 = (yf+1, . . . , yr); add the typical list

τ [y◦e ] =
(

τ
(

y(1)
e

)

, . . . , τ
(

y(a−2)
e

)

, τ1, 1 + τ2, 1 + τ
(

y(a+1)
e

)

, . . .

. . . , 1 + τ
(

y(b)
e

)

, τ
(

y(b+1)
e

)

, . . . , τ
(

y(t)
e

))

to the set of choices for edge e.

(c) If t = s + 1 and Z
∗(b+1)
e = Z

∗(b)
e \ {x}, proceed in a manner similar to the previous

case.

(d) If t = s + 2, the typical list of Ye can be written as

τ [ye] =
(

τ
(

y(1)
e

)

, . . . , τ
(

y(a−2)
e

)

, τ
(

y(a)
e

)

, . . . , τ
(

y(b)
e

)

, τ
(

y(b+2)
e

)

, . . . , τ
(

y(t)
e

))

.

Consider all possible splits of τ
(

y
(a)
e

)

into two sequences τ1 and τ2 as in Case (b)

and all possible splits of τ
(

y
(b)
e

)

into two sequences τ3 and τ4 as in Case (c); add

the typical list

τ [y◦e ] =
(

τ
(

y(1)
e

)

, . . . , τ
(

y(a−2)
e

)

, τ1, 1 + τ2, 1 + τ
(

y(a+1)
e

)

, . . .

. . . , 1 + τ
(

y(b−1)
e

)

, 1 + τ3, τ4, τ
(

y(b+2)
e

)

, . . . , τ
(

y(t)
e

))

to the set of choices for edge e. If a = b, split τ
(

y
(a)
e

)

into three parts τ1, τ2, τ3

and replace τ
(

y
(a)
e

)

by the sequences τ1, 1 + τ2, τ3 in τ [y◦e ].

2. If T 6= T ∗, the trunk T ∗ contains a leaf a that is not a leaf of T . This leaf is the only
node in tree decomposition F∗ that stores vertex x. Let b be the neighbor of a in T ∗.

If b is a node of T , add exactly one characteristic (T ∗, (Z∗
e )e∈T ∗ , (τ [y◦e ])e∈T ∗) to FS (i);

the typical lists in this characteristic are defined as τ [y◦e ] = τ [ye], for all e ∈ T , and
τ [y◦e ] = τ [y∗e ], for e = (a, b).

If b is not a node of T , it has degree three in T ∗. Let c and d be the other two neighbors
of b in T ∗. Vertices c and d are adjacent in T . Let Zb be the set corresponding to node b

in T ∗, and let Ze′ =
(

Z
(1)
e′ , . . . , Z

(q)
e′ , . . . , Z

(s)
e′

)

be the interval model for edge e′ = (c, d)

in T , where Z
(q)
e′ = Zb. In C(F∗), this interval model is split into two parts Z∗

e1
=

(

Z
(1)
e′ , . . . , Z

(q)
e′

)

and Z∗
e2

=
(

Z
(q)
e′ , . . . , Z

(s)
e′

)

, for the two edges e1 = (c, b) and e2 = (b, d)

in T ∗. Let the typical list of e′ in T be τ [y′e] =
(

τ
(

y
(1)
e′

)

, . . . , τ
(

y
(q)
e′

)

, . . . , τ
(

y
(s)
e′

))

.

Compute all possible type-I splits of τ
(

y
(q)
e′

)

= (y1, . . . , ys) into two sequences τ1 =

(y1, . . . , yf ) and τ2 = (yf , . . . , ys). Each such split creates one characteristic to be added
to FS (i), which is defined by choosing the typical lists for all edges of T ∗ as τ [y◦e1

] =
(

τ
(

y
(1)
e′

)

, . . . , τ
(

y
(q−1)
e′

)

, τ1

)

, τ [y◦e2
] =

(

τ2, τ
(

y
(q+1)
e′

)

, . . . , τ
(

y
(s)
e′

))

, and τ [y◦e ] = τ [ye],

for e 6∈ {e1, e2}.
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6.2 Constructing a Tree Decomposition

In this section, we describe an algorithm that solves the following problem: Given a graph G =
(V,E) of treewidth at most ℓ and a tree decomposition D = (X , T ) of width k ≥ ℓ for G, compute
a tree decomposition of width at most ℓ for G. The algorithm proceeds in four phases, as sketched
in Algorithm 5. Next we describe each of these phases in detail.

6.2.1 Phase 1: An Augmented Test Algorithm

In order to facilitate subsequent phases, the testing algorithm of Section 6.1 needs to be augmented
to compute additional information.

For a node of T with one child j (i.e., a forget or introduce node), we augment every characteristic
C ∈ FS (i) with a “pointer” to the characteristic C ′ ∈ FS (j) from which C has been produced by
applying the rules described in Section 6.1. The “pointer” is realized by assigning a unique ID to
every characteristic and storing the ID of C ′ with C. A characteristic C in the full set of a join
node stores pointers to the two characteristics in the full sets of its two children from which C has
been produced.

In addition to these pointers between characteristics in the full sets of characteristics stored
at adjacent nodes, we need more detailed information about how the characteristics in the full
set of a node i are obtained from the characteristics in the full sets of its children. We represent
this information using additional pointers between elements of related characteristics. We describe
these pointers in detail for the case when i is a join node with children j and k. For introduce and
forget nodes, the pointers are computed in a similar manner.

For a join node i with children j and k, every characteristic (T , (Ze)e∈T , (τ [ye])e∈T ) ∈ FS (i) is
computed from two characteristics (T , (Ze)e∈T , (τ [ae])e∈T ) ∈ FS (j) and (T , (Ze)e∈T , (τ [be])e∈T ) ∈
FS (k). Since the tree models are the same for all three characteristics, we only have to record how
the typical lists τ [ye], e ∈ T , are derived from typical lists τ [ae] and τ [be]. Consider the computation

for a particular edge e ∈ T . Let Ze =
(

Z
(1)
e , . . . , Z

(s)
e

)

and τ [ye] =
(

τ
(

y
(1)
e

)

, . . . , τ
(

y
(s)
e

))

. Each

sequence τ
(

y
(q)
e

)

is computed from two sequences a∗ and τ
(

b
(q)
e

)

, where a∗ = τ
(

a
(q)
e

)

−
∣

∣

∣Z
(q)
e

∣

∣

∣.

In particular, τ
(

y
(q)
e

)

= τ(y◦), where y◦ ∈ a∗ ⊕ τ
(

b
(q)
e

)

; that is, y◦ = a◦ + b◦, for two sequences

a◦ ∈ E(a∗) and b◦ ∈ E
(

τ
(

b
(q)
e

))

. Let a∗ = (a1, . . . , an) and τ
(

b
(q)
e

)

= (b1, . . . , bn′). As a◦ ∈ E(a∗),

we can store for every element a◦f ∈ a◦, the index of the element ap(a◦
f
) ∈ a∗ of which a◦f is a copy.

Similarly, we can store for every b◦f ∈ b◦, the index of the element bq(b◦
f
) ∈ τ

(

b
(q)
e

)

of which b◦f is

a copy. Since y◦f = a◦f + b◦f , we define p(y◦f ) = p(a◦f ) and q(y◦f ) = q(b◦f ). Finally, every element

yh ∈ τ
(

y
(q)
e

)

corresponds to an interval of elements y◦fh
, . . . , y◦gh

in y◦ such that y◦f ≤ yh, for

fh ≤ f ≤ gh. Let r(yh) = fh. This information can easily be computed during the construction of

the characteristics in FS (i). Note that |y◦| ≤
∣

∣

∣τ
(

a
(q)
e

)∣

∣

∣ +
∣

∣

∣τ
(

b
(q)
e

)∣

∣

∣ − 1 = O(1), by Lemma 3; so

we store O(1) pointers per interval in the interval model of edge e. By Lemma 11, there are O(1)
intervals in the interval model of every edge e ∈ T and, by Lemma 12, the trunk T has O(1) edges.
Hence, we store O(1) pointers per characteristic in FS (i).
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Algorithm 5 Improving the tree decomposition.
Procedure ImproveTreeDecomposition

Input: A graph G = (V, E) with N vertices, a tree decomposition D = (X , T ) of width at most k and
size O(N) for G, and a constant ℓ ∈ N.

Output: A tree decomposition E = (Y, U) of width at most ℓ and size O(N) for G, or the answer that G
has treewidth greater than ℓ.

1: Run the testing algorithm of Section 6.1.
2: if G has width at most ℓ then
3: Process T top-down to build a tree of characteristics:

For every node i of T , choose a characteristic Ci ∈ FS (i): For the root r of T , choose an arbitrary
characteristic Cr ∈ FS (r) as the root characteristic. For a forget or introduce node i with child j,
choose Cj so that Ci has been produced from Cj during the construction of FS(i). If i is a join node
with children j and k, choose Cj and Ck so that Ci has been produced from Cj and Ck during the
construction of FS (i).

4: Compute an implicit representation of tree decomposition E = (Y, U):

Let U1, . . . , Ur be the maximal paths in U whose internal nodes have degree two in U . The implicit
representation of E consists of two parts: (1) a graph G whose connected components are flippable
DAGs representing the path decompositions induced by paths U1, . . . , Ur; (2) a “link list” L that
connects paths U1, . . . , Ur to form tree U .

5: Compute E explicitly:

Apply time-forward processing to G in order to compute all path decompositions mentioned in the
previous step; link them together to form U .

6: end if

6.2.2 Phase 2: Building a Tree of Characteristics

If G has treewidth at most ℓ, the full set of characteristics FS (r) of the root r of T is non-empty.
Every characteristic in FS (r) is obtained from tree decompositions computed for the graphs repre-
sented by the leaves of T , by appropriately merging and augmenting characteristics along the way
from the leaves of T to the root. We choose one characteristic Cr in FS (r); our goal is to construct
the tree decomposition of G represented by Cr. We accomplish the first step towards this goal by
tracing back all characteristics down to the leaves of T that were involved in the construction of Cr.
In particular, we extract one characteristic Ci per node i of T : For the root r, we choose charac-
teristic Cr arbitrarily. For every introduce or forget node i with child j, we choose characteristic Cj

as the characteristic from which characteristic Ci was computed in Phase 1 of the algorithm. For
a join node i with children j and k, we choose characteristics Cj and Ck so that Ci was computed
from Ci and Cj during Phase 1 of the algorithm. The computation of all characteristics Ci, i ∈ T ,
can be carried out in O(sort(N)) I/Os using the time-forward processing technique to process T
top-down, and using the pointers between characteristics computed in Phase 1 of the algorithm to
choose characteristics Ci, for all non-root nodes i of T .

6.2.3 The Structure of a Tree Decomposition for G

Before describing Phases 3 and 4, we discuss in this section how the characteristics chosen in Phase
2 define a tree decomposition E of width at most ℓ for G. In particular, we show how to derive for
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every node i ∈ T , a partial tree decomposition Ei rooted at i whose width is at most ℓ. The bound
on the width of Ei follows immediately, if each set Yl in the tree decomposition can be associated
with a particular entry yh in a typical sequence so that |Yl| ≤ yh, because for all these entries,
yh ≤ ℓ. Again, we discuss the four different node types separately:

Start node: If i is a start node, consider an edge e of the trunk T in the characteristic Ci, and

let Ze =
(

Z
(1)
e , . . . , Z

(s)
e

)

. Recall that the path decomposition Ye corresponding to edge e is

equal to Ze. Hence, a tree decomposition Ei of Gi can be obtained by replacing every edge e

of the trunk with the path decomposition Ze. Every typical sequence τ
(

y
(q)
e

)

consists of a

single element y1, which corresponds to the only set Y1 in the path decomposition Y
(q)
e ; that

is, y1 = |Y1|.

Forget node: For a forget node i with child j, the partial tree decomposition Ei is the same as Ej if
T = T ∗; otherwise, Ei contains one or two more nodes than Ej, as discussed below. While the
addition of nodes in the case T 6= T ∗ is not strictly necessary, it simplifies the I/O-efficient
construction of Ei, described in Sections 6.2.4 and 6.2.5.

Although tree decompositions Ei and Ej are the same if T = T ∗, the way different parts the
decomposition correspond to entries in the characteristics changes. Every path decomposition
Ye corresponding to a trunk edge e can be split into intervals, each corresponding to an entry

in τ [ye]. More precisely, if yh ∈ τ
(

y
(q)
e

)

, then for all sets Yl in the interval Yyh
corresponding

to yh, Xi ∩ Yl = Z
(q)
e and |Yl| ≤ yh. If |Ze| = |Z∗

e |, τ [y∗e ] = τ [ye], and we associate the
same intervals in Ye with the elements in τ [y∗e ] as with their counterparts in τ [ye]. Otherwise,

consider the case |Z∗
e | = |Ze| − 1 and Z

(a−1)
e = Z

(a)
e \ {x}. (The two other cases are similar.)

Then sequencesτ
(

y
(a−1)
e

)

and τ
(

y
(a)
e

)

in τ [ye] are replaced with a sequence τ(y◦) in τ [y∗e ],

where y◦ = τ
(

y
(a−1)
e

)

◦ τ
(

y
(a)
e

)

. Every entry y◦f ∈ y◦ represents the same interval of Ye

as its corresponding entry yh in τ
(

y
(a−1)
e

)

or τ
(

y
(a)
e

)

; that is, Yy◦
f

= Yyh
. Hence, for every

set Yl ∈ Yy◦
f
, |Yl| ≤ y◦f . Sequence τ(y◦) is derived from y◦ by the application of typical

operations and the removal of consecutive duplicates. Therefore, every element yk in τ
(

y
∗(a)
e

)

corresponds to an interval I(yk) of elements in y◦ such that for every element y◦f ∈ I(yk),
y◦f ≤ yk. We let Yyk

= ©y◦
f
∈I(yk)Yy◦

f
. Since for each element y◦f ≤ yk and for every set

Yl ∈ Yy◦
f
, |Yl| ≤ y◦f , it follows that for every set Yl ∈ Yyk

, |Yl| ≤ yk.

If T 6= T ∗, there is an edge e = (a, b), incident to a leaf a of T , that is not present in T ∗.
In addition, if the non-leaf endpoint b of e has degree three in T , it is not present in T ∗

either, and its two other neighbors c and d in T are connected by an edge (c, d) in T ∗. For
every edge e′ of T that is present in T ∗, the corresponding path decomposition Ye′ does not
change, neither do the associations of the elements of Ye′ with the elements of (Ze′ , τ [ye′ ]).
The only differences between tree decompositions Ei and Ej are in the path decompositions
corresponding to edges (a, b) and (c, d).

For the removed edge e = (a, b), the corresponding path decomposition Ye is no longer part of
the filled trunk of Ci; it is still part of the tree decomposition Ei, but can no longer be modified
in subsequent augmentations of Ei because only parts of the filled trunk can be involved in
these augmentations. In order to record the fact that Ye is part of Ei, we will store a link
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that records the attachment of Ye to the filled trunk of Ci. By leaving Ye unchanged and
attaching it to the filled trunk in this manner, we implicitly duplicate one endpoint x of Ye,
the one corresponding to node b. This is true because the path decomposition of every edge
in the filled trunk of Ej contains one copy of x. By detaching path decomposition Ye from the
filled trunk, one copy of x remains in the filled trunk, and another copy remains in Ye. We
could avoid this duplication, either by removing node x from Ye before detaching Ye or by
excluding node x from the path decompositions corresponding to all trunk edges incident to
b and including it only when node b disappears as the result of merging the last two edges
incident to b. The former is not feasible because we use flippable DAGs to represent the path
decompositions corresponding to the edges in the filled trunk and flippable DAGs are strictly
incremental; the latter would complicate the whole construction phase unnecessarily.

For the same reason, the replacement of edges (c, b) and (b, d) in T with edge (c, d) in T ∗

results in the duplication of the same node x that is duplicated as a result of detaching
edge (a, b). In particular, we compute Y ∗

(c,d) = Y(c,b) ◦ Y(b,d), so that Y(c,d) contains two

consecutive copies of node x. The characteristic (Z∗
(c,d), τ [y∗(c,d)]) of edge (c, d) is obtained

from characteristics (Z(c,b), τ [y(c,b)]) and (Z(b,d), τ [y(b,d)]) by computing two sequences Z◦ =
Z(c,b) ◦ Z(b,d) and y◦ = τ [y(c,b)] ◦ τ [y(b,d)], removing consecutive duplicates from Z◦, and
computing τ [y∗(c,d)] = τ [y◦]. The associations between the elements in Y ∗

(c,d) and the elements
in Z◦ and y◦ are the same as the associations between the corresponding elements in Y(c,b),
Y(b,d), Z(c,b), Z(b,d), τ [y(c,b)], and τ [y(b,d)]. The associations of the elements in Z∗

(c,d) and

τ [y∗(c,d)] with the elements of Y ∗
(c,d) are derived from the associations of the elements of Z◦

and y◦ with the elements of Y ∗
(c,d) in the same manner as described for the case T = T ∗.

Clearly, the expansion of a tree-node into two tree nodes connected by an edge does not affect
the validity or width of the tree decomposition. For all other updates, it follows from the
same arguments as in the case T = T ∗ that for every element Yl of a path decomposition Ye

and its corresponding element yh of τ [ye], |Yl| ≤ yh.

Join node: Now consider a join node i with children j and k. We are given two tree decompositions
Ej and Ek for graphs Gj and Gk, both partially represented by characteristics Cj and Ck. We
know that Gi = Gj ∪Gk. Our goal is to merge tree decompositions Ej and Ek into a new tree
decomposition Ei for Gi. Intuitively, we do this as follows: First we “stretch” the edges of
the filled trunks of Cj and Ck so that the path decompositions in Ej and Ek corresponding
to these edges contain the same number of sets. Then we identify the nodes of the filled
trunks in Ej and Ek with each other and compute for every node v with corresponding sets
Av and Bv in Ej and Ek, respectively, a new set Yv = Av ∪ Bv in Ei. Clearly, the resulting
decomposition is a tree decomposition for Gi, as every edge in Gi must be either in Gj or in
Gk. We have to bound the width of the tree decomposition. Again, we can ignore the parts of
both decompositions Ej and Ek that are not in the filled trunks because they are not involved
in any updates and thus remain valid. So let us see how the “stretching” is done:

Consider an edge e ∈ T . For the path decomposition corresponding to edge e, we have to

match up the parts of Ae and Be corresponding to the same interval Z
(q)
e ; that is, certain

entries in Ae and Be have to be duplicated so that for each interval Z
(q)
e , the number of

corresponding entries in Ae and Be is the same. Also, we have to guarantee a bound on the
width of the resulting tree decomposition.
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Consider an interval Z
(q)
e with typical sequences τ

(

a
(q)
e

)

and τ
(

b
(q)
e

)

in Cj and Ck, respec-

tively. Let a∗ = τ
(

a
(q)
e

)

−
∣

∣

∣Z
(q)
e

∣

∣

∣ = (a1, . . . , an), τ
(

b
(q)
e

)

= (b1, . . . , bn′), and τ
(

y
(q)
e

)

=

(y1, . . . , ym). Recall that τ
(

y
(q)
e

)

= τ(y◦), for some sequence y◦ ∈ a ∗ ⊕τ
(

b
(q)
e

)

; that

is, y◦ = a◦ + b◦, where a◦ and b◦ are extensions of a∗ and τ
(

b
(q)
e

)

, respectively. Let

y◦ = (y◦1 , . . . , y
◦
c ). Initally, there are paths Aah

and Bbh
associated with each entry ah ∈ a∗

and bh ∈ τ
(

b
(q)
e

)

. Next we associate paths Aa◦
f

and Bb◦
f

with elements a◦f ∈ a◦ and b◦f ∈ b◦ so

that ©c
f=1Aa◦

f
∈ E(©n

h=1Aah
) and ©c

f=1Bb◦
f
∈ E(©n′

h=1Bbh
): For every path Aah

, let Âah
be

the path consisting of only the first set in Aah
. Analogously, let B̂bh

be the path consisting
of only the first set in Bbh

. Then we define

Aa◦
f

=











Aap(a◦
f
)

f = c ∨ p(a◦f ) < p(a◦f+1)

Âap(a◦
f
)

f < c ∧ p(a◦f ) = p(a◦f+1)
,

Bb◦
f

=











Bbq(b◦
f
)

f = c ∨ q(b◦f ) < q(b◦f+1)

B̂bq(b◦
f
)

f < c ∧ q(b◦f ) = q(b◦f+1)
.

Now let κ(y◦f ) = max{|Aa◦
f
|, |Bb◦

f
|}. We define two new path decompositions Āa◦

f
and B̄b◦

f
.

First we define Āa◦
f

= Aa◦
f
, then we increase the length of Āa◦

f
to κ(y◦f ) by duplicating the

first set in Āa◦
f
. B̄b

◦
f is defined similarly. Let Āa◦

f
= (Ā1, . . . , Ār) and B̄b◦

f
= (B̄1, . . . , B̄r).

We define Yy◦
f

= (Y1, . . . , Yr), where Yl = Āl ∪ B̄l. Finally, the path decomposition associated

with every element yh is

Yyh
=







©r(yh+1)−1
f=r(yh) Yy◦

f
h < m

©c
f=r(yh)Yy◦

f
h = m

.

Clearly, the resulting tree decomposition is valid. It remains to show that for every set
Yl ∈ Yyh

, |Yl| ≤ yh. It is easily verified that for each a◦f ∈ a◦, every set in Āa◦
f

has size at

most a◦f +
∣

∣

∣Z
(q)
e

∣

∣

∣, and for each b◦f ∈ b◦, every set in B̄b◦
f

has size at most b◦f . Hence, every set

in the path decomposition Yy◦
f

has size at most a◦f + b◦f = y◦f . Now it remains to observe that

for every yh and every y◦f ∈ I(yh), y◦f ≤ yh.

Introduce node: Finally, if i is an introduce node with child j, we distinguish two cases again,
depending on whether T = T ∗ or T 6= T ∗. In the former case, we have to update the path
decompositions associated with all those trunk edges whose characteristics in Ci and Cj differ.

Consider such a trunk edge e. If |Ze| = |Z∗
e |, let τ [ye] =

(

τ
(

y
(1)
e

)

, . . . , τ
(

y
(q)
e

))

and τ [y∗e ] =
(

τ
(

y
(1)
e

)

, . . . , τ
(

y
(a−1)
e

)

, 1 + τ
(

y
(a)
e

)

, . . . , 1 + τ
(

y
(b)
e

)

, τ
(

y
(b+1)
e

)

, . . . , τ
(

y
(q)
e

))

. Then we

add the introduced vertex x to all sets in Ye corresponding to intervals Z
(a)
e , . . . , Z

(b)
e . If

|Ze| < |Z∗
e |, assume that |Z∗

e | = |Ze|+ 1 and Z
∗(a−1)
e = Z

∗(a)
e \ {x}. (The other two cases are

similar.) In this case, we obtain τ [y∗e ] from τ [ye] by splitting the typical sequence τ
(

y
(a)
e

)

into

two sequences τ1 and τ2. We associate with every element in τ1 and τ2 the same subsequence

of Ye as with the corresponding element in τ
(

y
(a)
e

)

. If the split of sequence τ
(

y
(a)
e

)

is of
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type I, let τ1 = (y1, . . . , yf ) and τ2 = (yf , . . . , yr). Then we make a copy of the first set in

the path decomposition associated with yf in τ
(

y
(a)
e

)

and associate this copy with yf in τ1.

Afterwards, we proceed as in the case |Ze| = |Z∗
e |.

If T 6= T ∗, let (a, b) be the edge to be attached to T . The path decomposition Y(a,b) is
the same as given in the tree decomposition computed for G[Xi]. If b is a node of T , the
attachment of this path decomposition to Ej is all that has to be done. Otherwise, the path
decomposition Y(c,d) has to be split into two path decompositions Y(c,b) and Y(b,c). Note that
the split is of type one; hence, we perform same set-duplication as described above for this
type of split.

It is straightforward to verify that for every element yh of a typical list and every set Yl ∈ Yyh
,

|Yl| ≤ yh.

Lemma 15 For every node i ∈ T , Ei is a tree decomposition of Gi.

Proof. We have to verify Properties T1–T3, which is easily done for Properties T1 and T3. To
prove Property T2, we use induction on the size of the tree Ti rooted at node i. If |Ti| = 1, then i is a
start node. Property T2 is obviously satisfied in this case, because Ei = F is the tree decomposition
of Gi = G[Xi] from which Ci has been derived.

If |Ti| > 1, node i is a forget, introduce, or join node. For a forget node i with child j, we start
with a tree decomposition Ej for Gj = Gi and possibly augment it by expanding a single node in Ej
into a tree of size two or three, all of whose nodes store the same sets. Hence, Ei has Property T2.

For an introduce node i with child j, we start with a tree decomposition Ej for Gj. The only
edgesof Gi not represented in Ej are those between x and its neighbors in Xi. These edges are
represented in the tree decomposition F of G[Xi] from which the tree model of Ci was derived.

Hence, all these edges must be in the sets Z
∗(q)
e of the tree model (T ∗, (Z∗

e )e∈T ∗) of F . It is easy
to verify that Ei has the same tree model as F . Thus, for every edge e = {x, v} incident to x, there
must be a set in Ei containing both x and v.

For a join node i with children j and k, Ei can be obtained by augmenting either Ej or Ek
appropriately. Since Gi = Gj ∪Gk, every edge in Gi must be either in Gj or in Gk. Hence, there is
a node in Ei containing both endpoints of the edge.

Lemma 16 The tree decomposition E = Er of G has size O(N) and width at most ℓ.

Proof. The fact that E has width ℓ follows immediately from the above discussion. In particular,
every set Yl in thefilled trunk has cardinality at most yh ≤ ℓ + 1, where Yl ∈ Yyh

. Every set that is
not in the filled trunk had cardinality at most ℓ+ 1 when it was part of the filled trunk and cannot
grow any further after its corresponding trunk edge is removed from the trunk. In order to show
that E has size O(N), we begin with some observations:

For every start node i ∈ T , it follows from Lemma 10 that |Ei| ≤ (2k + 1)2, because Ei is a
minimal tree decomposition of Gi = G[Xi].

For a forget node i with child j, |Ei| ≤ |Ej|+ 2. Equality holds if T 6= T ∗ and the neighbor b of
the removed leaf a is not a node of T ∗. Indeed, if T = T ∗, the path decomposition does not change.
If T 6= T ∗, the size of the tree decomposition increases by one as a result of the duplication of node
b before detaching path decomposition Y(a,b) from the filled trunk. If node b has degree three in T ,
the tree decomposition gains another node as a result of the duplication of node b when merging
path decompositions Y(c,b) and Y(b,d) in Ei.
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For an introduce node i with child j, |Ei| ≤ |Ej| + 4k. Indeed, if T = T ∗, only the type-I splits
we perform change the size of the tree decomposition. A type-I split leads to the duplication of the
node corresponding to the element yf shared by the two sequences resulting from the split. As we
perform at most two type-I splits per edge of T and |T | ≤ 2k, by Lemma 12, the size of the tree
decomposition increases by at most 4k in this case. (A more careful analysis shows that in fact
the size of the tree decomposition increases by at most k + 1.) If T 6= T ∗, we possibly perform a
type-I split of an edge of T and then attach the path decomposition corresponding to the attached
edge of T ∗. The type-I split increases the size of the tree decomposition by one; the attached path
decomposition has length at most 2k + 3, by Lemma 11.

For a join node i with children j and k, |Ei| ≤ |Ej|+ |Ek|. Indeed, consider an edge e in the trunk

T , and an interval Z
(q)
e along this edge. Let A, B, and Y be the path decompositions corresponding

to this interval. Then we claim that |Y | ≤ |A|+ |B| − 1. Applying this claim to all intervals in the
tree model gives the desired result.

Let a◦ and b◦ be the usual extensions of a∗ = τ
(

a
(q)
e

)

−
∣

∣

∣Z
(q)
e

∣

∣

∣, and let τ
(

b
(q)
e

)

and y◦ = a◦+ b◦.

By Lemma 3, |y◦| ≤ |a∗| +
∣

∣

∣τ
(

b
(q)
e

)∣

∣

∣ − 1. For every element ah ∈ a∗ or bh ∈ τ
(

b
(q)
e

)

, let Ah

or Bh be the corresponding path decomposition. Then
∑n

h=1 |Ah| = |A| and
∑n′

h=1 |Bh| = |B|.
For every element a◦f ∈ a◦ or b◦f ∈ b◦, let A◦

f or B◦
f be the corresponding path decomposition.

Observe that every path decompositions Ah appears exactly once in the list of path decompositions
A◦

f ; all other path decompositions A◦
f are path decompositions Âh and have size one. Hence,

∑c
f=1 |A◦

f | ≤ |A| + (c − n). Analogously,
∑c

f=1 |B◦
f | ≤ |B| + (c − n′). Finally, for every path

decomposition Y ◦
f corresponding to an element y◦f , |Y ◦

f | = max{|A◦
f |, |B◦

f |} ≤ |A◦
f | + |B◦

f | − 1.
Hence,

|Y | =
c

∑

f=1

|Y ◦
f |

≤
c

∑

f=1

(|A◦
f |+ |B◦

f | − 1)

=
c

∑

f=1

|A◦
f |+

c
∑

f=1

|B◦
f | − c

≤ |A|+ (c− n) + |B|+ (c− n′)− c

= |A|+ |B|+ (c− n− n′)

≤ |A|+ |B| − 1.

Now we claim that the tree decomposition Ei rooted at node i has size at most (2k + 1)2|Ti|.
This then implies that |E| = |Er| ≤ (2k + 1)2|Tr| ≤ 4(2k + 1)2N = O(N) because we will show in
Section 7 that we can construct a nice tree decomposition of size at most 4N , for every graph of
bounded treewidth.

The proof of the claim is by induction on |Ti|. If |Ti| = 1, i is a start node and |Ei| ≤ (2k +1)2 =
(2k + 1)2|Ti|. Otherwise, i is a join, forget, or introduce node.

If i is a forget node with child j, |Ej| ≤ (2k+1)2|Tj|, by the induction hypothesis, and |Ei| ≤ |Ej|+2.
Also, |Ti| = |Tj|+ 1. Hence, |Ei| ≤ (2k + 1)2|Ti|.

If i is an introduce node with child j, |Ej| ≤ (2k + 1)2|Tj|, by the induction hypothesis, and
|Ei| ≤ |Ej|+ 4k ≤ (2k + 1)2|Tj|+ (2k + 1)2 = (2k + 1)2(|Tj|+ 1) = (2k + 1)2|Ti|.
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Finally, if i is a join node with children j and k, |Ej| ≤ (2k + 1)2|Tj|, |Ek| ≤ (2k + 1)2|Tk|, and
|Ei| ≤ |Ej|+ |Ek| ≤ (2k + 1)2(|Tj|+ |Tk|) < (2k + 1)2|Ti|.

6.2.4 Phase 3: Constructing the Tree Decomposition Implicitly

The goal of the next two phases of the algorithm is to construct tree decomposition E = Er. First
we build an implicit representation of E . To do this, we process tree T from the leaves towards
the root; at every node i, we compute an implicit representation of Ei from the representations
computed for the partial tree decompositions rooted at its children. in Section 6.2.5, we show how
to extract E from the computed implicit representation.

Before we start describing the third phase of our algorithm, we define the implicit representation
of a tree decomposition Ei = (Yi, Ui), i ∈ T . First we concentrate on the representation of the filled
trunk of Ei. Consider a characteristic Ci = (T , (Ze)e∈T , (τ [ye])e∈T ), an edge e ∈ T , and an interval

Z
(q)
e ∈ Ze. An entry yh ∈ τ

(

y
(q)
e

)

corresponds to a path decomposition Yyh
that is part of Ei. We

represent each such path decomposition Yyh
by a flippable DAG G(yh). Entry yh stores the source

and sink of G(yh), and entry κ(yh) = |Yyh
|, and colors c(σ) and c(τ). Graph G(yh) has the following

properties:

(G1) G(yh) is a flippable DAG.

(G2) Every node α ∈ G(yh) is labeled with a triple (Lα, Rα, ρα). The integer ρα is the “stretch” of
node α; that is, in path decomposition Yyh

, the content of node α is to be duplicated over ρα

consecutive nodes. The set Lα contains all vertices x ∈ G that have to appear in all copies
of node α as well as all nodes succeeding the last copy of node α in path decomposition Yyh

,
up to the last copy of a node α′ with x ∈ Rα′ .

(G3) Let σ and τ be the source and sink of G(yh), respectively. For any στ -path p = 〈σ =
α0, α1, . . . , αk = τ〉 in G(yh),

∑k
l=0 ρ(αl) = |Yyh

|. In particular, we can define an interval
I(αl) = [a, b] for every node αl on this path, where a = 1 +

∑l−1
j=0 ρ(αj) and b =

∑l
j=0 ρ(αj).

If ραl
= 0, let I(αl) = ∅. Note that this interval is independent of the path used to compute

it.

(G4) For every set Yl ∈ Yyh
and every vertex x ∈ Yl, there exist unique nodes µ(x) and ν(x) in

G(yh) such that x ∈ Lµ(x) and x ∈ Rν(x).

(G5) For every set Yl ∈ Yyh
and every vertex x ∈ Yl, let I(x) be the smallest interval containing

I(µ(x)) and I(ν(x)). Let Yyh
= (Y1, . . . , Yr). Then Yl = {x ∈ V : l ∈ I(x)}, for 1 ≤ l ≤ r.

The portion of Ei that is not in the filled trunk can be partitioned into path decompositions. In
particular, whenever an edge (a, b) is detached from the filled trunk, we construct a flippable DAG
G((a, b)) that has Properties (G1)–(G5) w.r.t. Y(a,b). We record the attachment of Y(a,b) to the filled
trunk of the tree decomposition by storing a link record in a link list L. As a result of detaching
edges from the filled trunks at descendants of i, the portion of Ei that is not in the filled trunk is
partitioned into a set of path decompositions Ye, each represented by a flippable DAG G(e); each
such path decomposition is linked either to the filled trunk of Ei or to another path decomposition
Ye′ by a link record.

In the remainder of this section, we describe how to construct this information by processing T
bottom-up. As before, we deal with the four different node types separately:
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Start node: For a start node i, the above information can be set up easily. The filled trunk of Ei
equals Ei. For every trunk edge e with τ [ye] =

(

τ
(

y
(1)
e

)

, . . . , τ
(

y
(s)
e

))

and every 1 ≤ q ≤ s,

τ
(

y
(q)
e

)

consists of a single entry. For this entry y, the graph G(y) consists of a single node

σ = τ with Lσ = Rσ = Z
(q)
e and ρσ = 1; κ(y) = 1, c(σ) = c(τ) = red.

Forget node: If i is a forget node with child j, let Ci = (T ∗, (Z∗
e )e∈T ∗ , (τ [y∗e ])e∈T ∗) and Cj =

(T , (Ze)e∈T , (τ [ye])e∈T ) be the characteristics associated with nodes i and j, respectively.
Again, we distinguish two cases, depending on whether nor not T = T ∗. If T = T ∗, consider
the path decomposition Ye for an edge e ∈ T . If |Ze| = |Z∗

e |, τ [ye] = τ [y∗e ]. In this case, we
just copy the information of each entry yh ∈ τ [ye] to the corresponding entry in τ [y∗e ]. So

assume that |Z∗
e | = |Ze|− 1 and that there is an index a such that Z

(a−1)
e = Z

(a)
e \{x}, where

x is the forgotten vertex. (The other two cases are similar.) We write

Z∗
e =

(

Z∗(1)
e , . . . , Z∗(a−2)

e , Z∗(a)
e , . . . , Z∗(s)

e

)

.

For q < a − 1 and q > a, τ
(

y
∗(q)
e

)

= τ
(

y
(q)
e

)

. For these sequences, we just copy the labels

from every entry in τ
(

y
(q)
e

)

to the corresponding entry in τ
(

y
∗(q)
e

)

. For q = a, recall that

τ
(

y
∗(a)
e

)

= τ
(

τ
(

y
(a−1)
e

)

◦ τ
(

y
(a)
e

))

. In particular, we computed sequence τ
(

y
∗(a)
e

)

by first

constructing a sequence y◦ = τ
(

y
(a−1)
e

)

◦ τ
(

y
(a)
e

)

and then computing τ
(

y
∗(a)
e

)

= τ(y◦).

Every entry in y◦ inherits its labels from its corresponding entry in τ
(

y
(a−1)
e

)

or τ
(

y
(a)
e

)

,

respectively. We derived sequence τ
(

y
∗(a)
e

)

from y◦ by means of two operations: duplicate

removal and typical operations. As a result, every entry yh ∈ τ
(

y
∗(a)
e

)

corresponds to an

interval y◦k, . . . , y
◦
l of entries in y◦. We compute κ(yh) =

∑l
f=k κ(y◦f ), concatenate graphs

G(y◦k), . . . ,G(y◦l ) to obtain the graph G(yh), and store the source and sink of this graph with
entry yh. The concatenation of graphs G(y◦k), . . . ,G(y◦l ) is done as follows: Consider two
graphs G(y◦f ) and G(y◦f+1), and let τ and σ be the sink of G(y◦f ) and source of G(y◦f+1),
respectively. Then we add edges (τ, σ) and (σ, τ) to G(yh), compute Rτ ← Rτ \ Lσ and
Lσ ← Lσ \Rτ , and assign color (c(τ), c(σ)) to edge (τ, σ) and color (c̄(σ), c̄(τ)) to edge (σ, τ).

If T 6= T ∗, there is a leaf a of T that is not a node of T ∗. Let b be the neighbor of a in T . If
b is a node of T ∗, all we have to do is detach edge (a, b) from T . For any other trunk edge,
neither the associated path decomposition nor the characteristic of this path decomposition
changes; hence, we simply copy labels between corresponding entries in the typical lists, as
described for the case T = T ∗ and |Ze| = |Z∗

e |. The detachment of edge (a, b) involves the
computation of a flippable graph G((a, b)) that represents path decomposition Y(a,b) and the
creation of a link record that connects the copy of b in Y(a,b) to the copy that remains in T ∗;
we add this link record to the link list L. To construct graph G((a, b)), we concatenate graphs

G(y), for all typical sequences τ
(

y
(q)
(a,b)

)

in τ [ye] and all entries y in these sequences. This

concatenation is done as described for the case T = T ∗ and |Z∗
e | = |Ze| − 1 above. To add

the link between the copy of b in Y(a,b) and the copy that remains in T ∗, consider any edge e
other than (a, b) incident to b. Assume that edge (a, b) is directed from a to b, and that edge

e is directed away from b. Let y be the first entry in τ
(

y
(1)
e

)

, let σ be the source of graph

G(y), and let τ be the sink of graph G((a, b)). Then we add the link (σ, τ) to the link list L.
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If b is not a node of T ∗, let c and d be the other two neighbors of b in T . In T ∗, edges (c, b)
and (b, d) are replaced by an edge (c, d). In order to compute the information associated with
the entries of the typical lists of all trunk edges, we proceed as if b were a node of T ∗—i.e., we
detach edge (a, b) from the trunk, as described above, and leave the information associated
with the other edges unchanged—and then we compute the inforamtion associated with the
entries of typical list τ [y∗(c,d)]. Note that the characteristic of path decomposition Y ∗

(c,d) is
obtained in three steps: First concatenate interval models Z(c,b) and Z(b,d), and concatenate
τ [y(c,b)] and τ [y(b,d)]; then remove consecutive duplicates from Z(c,b) ◦ Z(b,d) and concatenate
the corresponding typical sequences in τ [y(c,b)] ◦ τ [y(b,d)]; finally, apply duplicate removals
and typical operations to each of the concatenations of typical sequences. The concatenation
of interval models Z(c,b) and Z(b,d) and of typical lists τ [y(c,b)] and τ [y(b,d)] do not require
any updates of the graphs associated with the entries in τ [y(c,b)] ◦ τ [y(b,d)]. The removal of
duplicates from Z(c,b) ◦ Z(b,d) and the resulting application of duplicate removals and typical
operations to the affected typical sequences can be handled as described above for the case
T − T ∗ and |Z∗

e | = |Ze| − 1.

In the discussion so far, we have ignored a detail that has to be taken care of when concate-
nating characteristics. The problem is that the characteristics and thus the corresponding
path decompositions may have opposite directions; that is, τ [y(c,b)] may in fact be represented
as a list τ [y(b,c)] sorted from b to c, while τ [y(b,d)] is sorted from b to d. This means that
the graphs G(yh) stored with the entries of τ [y(b,c)] represent the path decomposition Y(b,c)

directed from b to c; but we need to direct it from c to b, in order to concatenate path
decomposition Y(c,b) and Y(b,d) correctly.

Turning the interval model Z(b,c) and the typical list τ [y(b,c)] around is easy: Let Z(b,c) =
(

Z
(1)
(b,c), . . . , Z

(s)
(b,c)

)

; let τ [y(b,c)] =
(

τ
(

y
(1)
(b,c)

)

, . . . , τ
(

y
(s)
(b,c)

))

; and let τ
(

y
(q)
(b,c)

)

= (y1, . . . , yrq),

for all 1 ≤ q ≤ s. Then we define Z(c,b) =
(

Z
(s)
(b,c), Z

(s−1)
(b,c) , . . . , Z

(1)
(b,c)

)

and τ [y(c,b)] =
(

τ
(

y
(1)
(c,b)

)

, . . . , τ
(

y
(s)
(c,b)

))

, where τ
(

y
(s−q+1)
(c,b)

)

= (yrq , yrq−1, . . . , y1), for 1 ≤ q ≤ s.

In order to complete the flip of the path decomposition Y(b,c), we flip all graphs G(yh) along
edge (b, c) by changing the colors of their sources and sinks; exchanging the source and sink
pointers of every entry yh of τ [y(c,b)]; and (conceptually) exchanging sets Lα and Rα, for all
vertices α ∈ G(yh). The latter operation may be quite costly if performed explicitly, because
graph G(yh) may be large. In order to avoid this cost, we perform this exchange of sets
Lα and Rα only for the source σ and sink τ of G(yh). This is sufficient because subsequent
augmentations of graph G(yh) rely only on the correct contents of sets Lσ and Rτ , and the
extraction of the path decomposition represented by G(yh), described in Section 6.2.5, treats
sets Lα and Rα as a single set Sα = Lα ∪Rα.

Introduce node: Let i be an introduce node with child j, and let Ci = (T ∗, (Z∗
e )e∈T ∗ , (τ [y∗e ])e∈T ∗)

and Cj = (T , (Ze)e∈T , (τ [ye])e∈T ). Let x be the introduced vertex. Again, we have to distin-
guish two cases, depending on whether or not T = T ∗. If T = T ∗, consider an edge e ∈ T .

If |Ze| = |Z∗
e |, then τ [ye] =

(

τ
(

y
(1)
e

)

, . . . , τ
(

y
(s)
e

))

and τ [y∗e ] =
(

τ
(

y
(1)
e

)

, . . . , τ
(

y
(a−1)
e

)

, 1+

τ
(

y
(a)
e

)

, . . . , 1+τ
(

y
(b)
e

)

, τ
(

y
(b+1)
e

)

, . . . , τ
(

y
(s)
e

))

, for appropriate indices a and b. To update

the path decomposition represented by the graphs G(yh) along edge e, we first copy the in-

formation from each entry in τ [ye] to the corresponding entry in τ [y∗e ]. Now let yh ∈ τ
(

y
(q)
e

)

,
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a ≤ q ≤ b, and let σ and τ be the source and sink nodes stored with yh. Then we add vertex
x to sets Lσ and Rτ , thereby adding x to every set in the path decomposition represented by
graph G(yh).

Now consider the case when |Z∗
e | = |Ze|+ 1 and Z

∗(a−1)
e = Z

∗(a)
e \ {x}. (The other two cases

are similar.) In this case, τ [ye] =
(

τ
(

y
(1)
e

)

, . . . , τ
(

y
(s)
e

))

and

τ [y∗e ] =
(

τ
(

y(1)
e

)

, . . . , τ
(

y(a−1)
e

)

, τ1, 1 + τ2, 1 + τ
(

y(a+1)
e

)

, . . .

. . . , 1 + τ
(

y(b)
e

)

, τ
(

y(b+1)
e

)

, . . . , τ
(

y(s)
e

))

,

where (τ1, τ2) is a split of τ
(

y
(a)
e

)

. For all typical sequences except τ
(

y
(a)
e

)

, we proceed as

in the case |Ze| = |Z∗
e |. If (τ1, τ2) is a type-two split, there is a one-to-one correspondence

between the elements in τ1 and τ2 and the elements in τ
(

y
(a)
e

)

. We Copy the necessary

information and then add vertex x to sets Lσ and Rτ , for the source σ and sink τ of every graph

G(yh), yh ∈ τ2. If (τ1, τ2) is a type-one split, then τ
(

y
(a)
e

)

= (y1, . . . , yr), τ1 = (y1, . . . , yf ),

and τ2 = (yf , . . . , yr). For 1 ≤ h < f , we copy the information for yh from τ
(

y
(a)
e

)

to τ1.

For every elementyh in τ2, we copy the information from τ
(

y
(a)
e

)

to τ2 and add x to the sets

Lσ and Rτ associated with its source and sink. Finally, for the entry yf in τ1, we create a
new graph G(yf ) with a single node σ = τ and set Lσ ← Rτ ← Lσ′ \ {x}, ρσ ← 1, and
c(σ) = c(τ) = red, where σ′ is the source node stored with yf in τ2; we set κ(yf )← 1 in τ1.

If T ∗ 6= T , T ∗ contains one edge from a leaf a to its neighbor b that is not in T . Moreover,
node b may not be in T . If b is in T , the information stored with the edges that are in both T
and T ∗ does not change. If b is not in T , let c and d be the other two neighbors of b in T ∗. The
characteristics of path decompositions Y(c,b) and Y(b,d) are obtained from the characteristic of
path decomposition Y(c,d) using a type-one split. The necessary information stored with edges
(c, b) and (b, d) can be computed using the procedure for type-one splits described above,
excluding the addition of vertex x to the source and sink sets of the graphs associated with

the entries in the second sequence. Finally, let e = (a, b) and τ [ye] =
(

τ
(

y
(1)
e

)

, . . . , τ
(

y
(s)
e

))

.

Then τ
(

y
(q)
e

)

=
(∣

∣

∣Z
(q)
e

∣

∣

∣

)

and τ
(

y
(q)
e

)

= (y1). We define the graph G(y1) to consist of a single

node σ = τ with Lσ = Rτ = Z
(q)
e , ρσ = 1, and c(σ) = c(τ) = red; κ(y1) = 1.

Join node: Let i be a join node with children j and k. The corresponding characteristics are Ci =
(T , (Ze)e∈T , (τ [ye])e∈T ), Cj = (T , (Ze)e∈T , (τ [ae])e∈T ), and Ck = (T , (Ze)e∈T , (τ [be])e∈T ). For
every edge e ∈ T , we have to compute the information stored with τ [ye] from the information
stored with τ [ae] and τ [be].

A complication that we have to deal with is the fact that for an edge e = (v,w) in the trunk
T , τ [ae] may be sorted from v to w and τ [be] may be sorted from w to v. The same is then
true for the graphs G(ah) and G(bh) associated with the entries in these lists. If this is the
case, we flip one of the lists including all its associated graphs using the same procedure as
described for forget nodes. So we can assume for the sake of simplicity that all edge lists τ [ae]
and τ [be] are sorted in the same directed.
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Every sequence τ
(

y
(q)
e

)

is computed from two sequences τ
(

a
(q)
e

)

and τ
(

b
(q)
e

)

. Let a∗ =

(a1, . . . , an), τ
(

b
(q)
e

)

= (b1, . . . , bn′), y◦ = (y◦1 , . . . , y
◦
c ), and τ

(

y
(q)
e

)

= τ(y◦) = (y1, . . . , ym),

as defined in the description of Phase 1.

Given the pointers r(yh), for all elements yh ∈ τ
(

y
(q)
e

)

, as computed in Phase 1, the infor-

mation stored with every element yh ∈ τ
(

y
(q)
e

)

can be computed from the information stored

with the elements of y◦ similar to the processing of a forget node, as only typical operations
and duplicate removals are involved in this computation.

We describe how to compute the appropriate information for every element y◦f ∈ y◦. Recall
that every element y◦f stores two pointers p(y◦f ) and q(y◦f ) so that y◦f = ap(y◦

f
) +bq(y◦

f
). We first

construct two graphs Ga(y
◦
f ) and Gb(y

◦
f ) defined as follows: If f < c and p(y◦f ) = p(y◦f+1), then

Ga(y
◦
f ) consists of a single node σ = τ with Lσ = Rτ = Lσ′ , ρσ = 1, and c(σ) = red, where

σ′ is the source of G(ap(y◦
f
)). In this case, we set κa(y

◦
f ) = 1. If f = c or p(y◦f ) < p(y◦f+1),

then Ga(y
◦
f ) = G(ap(y◦

f
)) and κa(y

◦
f ) = κ(ap(y◦

f
)). The graph Gb(y

◦
f ) and the value κb(y

◦
f ) are

defined analogously.

To compute graph G(yh), we first compute the length of the path decomposition represented
by G(yh) and stretch the path decompositions represented by graphs Ga(yh) and Gb(yh) to
this length: The length of the path decomposition represented by graph G(yh) is κ(y◦f ) =
max{κa(y

◦
f ), κb(y

◦
f )}. Let σa be the source of Ga(y

◦
f ) and σb be the source of Gb(y

◦
f ). Then we

change ρσa and ρσb
to ρσa +(κ(y◦f )−κa(y

◦
f )) and ρσb

+(κ(y◦f )−κb(y
◦
f )), respectively. Next we

add two new vertices σ and τ and edges (σ, σa), (σa, σ), (σ, σb), (σb, σ), (τa, τ), (τ, τa), (τb, τ),
and (τ, τb) to the union of graphs Ga(yh) and Gb(yh), where τa and τb are the sinks of Ga(y

◦
f )

and Gb(y
◦
f ), respectively. We define Lσ ← Lσa ∪ Lσb

, Rσ ← ∅, Lσa ← Lσb
← ∅, Lτ ← ∅,

Rτ ← Rτa ∪Rτb
, Rτa ← Rτb

← ∅, ρσ ← 0, ρτ ← 0, and c(σ) = c(τ) = red. The new edges are
colored as follows:

c((σ, σa)) = (c(σ), c(σa)), c((σa, σ)) = (c̄(σa), c̄(σ)),

c((σ, σb)) = (c(σ), c(σb)), c((σb, σ)) = (c̄(σb), c̄(σ)),

c((τa, τ)) = (c(τa), c(τ)), c((τ, τa)) = (c̄(τ), c̄(τa)),

c((τb, τ)) = (c(τb), c(τ)), c((τ, τb)) = (c̄(τ), c̄(τb)).

Once we have applied these rules bottom-up in T , tree decomposition E is represented as a collection
of path decompositions. Each such path decomposition is either part of the filled trunk and hence
represented by a graph G(yh); or it is not part of the filled trunk, in which case it is represented
by a graph G(e) that was constructed whon detaching edge e from the filled trunk. In order to
avoid having to deal with the trunk of E in a specialized manner in Phase 4 of the algorithm,
we decompose it into path decompositions by detaching its edges bottom-up and using the same
procedure as for a forget node to construct the graph G(e) corresponding to the detached edge e.
Note that each detachment introduces one extra node into the tree decomposition. Since the trunk
of Er has constant size, we introduce only O(1) extra nodes. The following lemma shows that Phase
3 computes the correct input for Phase 4.

Lemma 17 Let i be a node in T , let Ci = (T , (Ze)e∈T , (τ [ye])e∈T ) be the characteristic stored at

i, let e be an edge of T , let τ
(

y
(q)
e

)

be a typical sequence in τ [ye], and let yh ∈ τ
(

y
(q)
e

)

. Then
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G(yh) has Properties G1–G5, and coloring the source σ of G(yh) with color c(σ) directs the edges
of G(yh) from the source σ to the sink τ of G(yh) and colors τ with color c(τ).

Proof. The proof is by induction on the size of the subtree Ti rooted at node i. If |Ti| = 1, i.e., i is

a start node, then every graph G(yh) consists of a single vertex v with Lv = Rv = Z
(q)
e = Y

(q)
e and

ρv = 1. On the other hand Yyh
=

(

Z
(q)
e

)

. Properties G1–G5 are now easily verified. Moreover, as

G(yh) has no edges, it is trivially true that coloring σ = τ with color c(σ) directs the edges in G(yh)
from σ to τ and colors τ with color c(τ).

If |Ti| > 1, i is an internal node of T , i.e., a join, introduce, or forget node. If i is an introduce or
forget node with child j, |Tj| < |Ti|. Hence, by the induction hypothesis, all graphs G(yh) associated
with the entries yh of the typical lists characteristic Cj have Properties G1–G5. Analogously, if i

is a join node with children j and k, |Tj| < |Ti| and |Tk| < |Ti|; so the graphs G(yh) stored with
characteristics Cj and Ck have Properties G1–G5. We show that, for all three node types, the
algorithm constructs graphs G(yh) for the elements of the typical sequences in Ci correctly. In
order to verify that these graphs G(yh) have Property G1, i.e., that G(yh) is a flippable DAG, we
restrict our attention to Property F3 of flippable DAGs, as the other two properties are easily
verified.

Forget node: If i is a forget node with child j, we distinguish two cases again. If T = T ∗, the
path decomposition Ye corresponding to every edge e ∈ T does not change. If |Ze| = |Z∗

e |, then

τ [ye] = τ [y∗e ]. Hence, for every element yh ∈ τ
(

y
∗(q)
e

)

= τ
(

y
(q)
e

)

, G(yh) has Properties G1–G5, by

the induction hypothesis. So assume that |Ze| 6= |Z∗
e |. Again, we restrict our attention to the case

|Ze| = |Z∗
e |+ 1 and Z

(a−1)
e = Z

(a)
e \ {x}.

Consider the path decompositions Y
(a−1)
e and Y

(a)
e that correspond to intervals Z

(a−1)
e and Z

(a)
e .

By the induction hypothesis, Y
(a−1)
e = Yy1 ◦ Yy2 ◦ · · · ◦ Yym , where τ

(

y
(a−1)
e

)

= (y1, . . . , ym), and

for every 1 ≤ h ≤ m, G(yh) has Properties G1–G5, i.e., represents Yyh
correctly. Analogously,

Y
(a)
e = Yy′

1
◦ Yy′

2
◦ · · · ◦ Yy′

n
, where τ

(

y
(a)
e

)

= (y′1, . . . , y
′
n), and for every 1 ≤ h ≤ n, G(y′h) has

Properties G1–G5. Thus, every graph G(y◦f ), 1 ≤ f ≤ m + n, has Properties G1–G5, and Y
∗(a)
e =

Yy◦
1
◦ · · · ◦ Yy◦

m+n
, where y◦ = τ

(

y
(a−1)
e

)

◦ τ
(

y
(a)
e

)

= (y◦1 , . . . , y
◦
m+n). Every element yh ∈ τ

(

y
∗(a)
e

)

corresponds to an interval y◦k, . . . , y
◦
l of elements in y◦, and we compute G(yh) = G(y◦k) ◦ · · · ◦ G(y◦l ).

Let σ and τ be the source and sink of G(yh). First we prove Property G1 and that coloring σ
with color c(σ) directs all edges in G(yh) from σ to τ and colors τ with color c(τ). We do this by
induction on the number of concatenated graphs; that is, we consider graphs Gj, 0 ≤ j ≤ l − k,
defined as Gj = G(y◦k) ◦ · · · ◦ G(y◦k+j).

For j = 0, the claim holds, by the induction hypothesis (on |Ti|). So assume that j > 0. To show
that Gj is a flippable DAG, we have to prove that the coloring of Gj is independent of the spanning
tree, once a color for σ has been chosen. This is true for Gj−1, by the induction hypothesis. Let
τj−1 be the sink of Gj−1. Then the color of τj−1 depends only on the color of σ. The same is true
for the source σj of G(y◦k+j) because every spanning tree of Gj must contain edge {τj−1, σj}. By
the induction hypothesis (on |Ti|), the colors of all vertices in G(yk+j) are fixed, once the color of
σj is fixed. Hence, the coloring of Gj is independent of the spanning tree chosen for Gj , and Gj is a
flippable DAG. In order to show that coloring σ with color c(σ) colors the sink τj of Gj with color
c(τj) and directs all edges in Gj from σ to τj, we make the following observations: By the induction
hypothesis, coloring σ with color c(σ) colors τj−1 with color c(τj−1). Hence, σj is colored with color
c(σj), because edge {τj−1, σj)} has color (c(τj−1), c(σj)). By the induction hypothesis (on |Ti|), τj
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is thus colored with color c(τj). Also, coloring σ with color c(σ) directs all edges in Gj−1 from σ
to τj−1; chooses edge (τj−1, σj) from the two possible edges between τj−1 and σj; and directs all
edges in G(yk+j) from σj to τj, because σj receives color c(σj).

Properties G2 and G3 are readily verified. We split the proof of Property G4 into two parts.
The first part deals with vertices x that appear in only one subgraph G(y◦f ) of G(yh). By the
induction hypothesis, there are two unique vertices µ(x) and ν(x) in G(y◦f ) such that x ∈ Lµ(x) and
x ∈ Rν(x). Since G(y◦f ) is the only graph containing x, these are the only such vertices in G(yh).

If a vertex x occurs in more than one subgraph G(y◦f ), let G(y◦p) and G(y◦q ) be the leftmost and
rightmost such subgraphs. As the concatenation of path decompositions Y ◦

p , . . . , Y ◦
q is itself a path

decomposition, x is contained in all sets of path decompositions Y ◦
f , p < f < q. Hence, if σf and

τf are the source and sink of graph G(y◦f ), then x ∈ Lσf
, for all p < f ≤ q, and x ∈ Rτf

, for all
p ≤ f < q. In addition, there is a unique vertex µ(x) ∈ G(y◦p) such that x ∈ Lµ(x) and a unique
vertex ν(x) ∈ G(y◦q ) such that x ∈ Rν(x). By the induction hypothesis, these are the only vertices
α in G(y◦p), . . . ,G(y◦q ) such that x ∈ Lα or x ∈ Rα. Our construction procedure removes x from all
adjacent sink and source vertices in this set of vertices, so that µ(x) ∈ G(y◦p) and ν(x) ∈ G(y◦q ) are
the only remaining vertices with x ∈ Lµ(x) and x ∈ Rν(x).

The proof of Property G5 distinguishes the same two cases as the proof of Property G4. If x
is contained in only one graph G(y◦f ), then the property follows immediately from the induction
hypothesis and the fact that Yyh

is the concatenation of Yy◦
k
, . . . , Yy◦

l
and G(yh) is the concatenation

of graphs G(y◦k), . . . ,G(y◦l ). If x is contained in more than one graph G(y◦f ), let IG(y◦
p)(x) = [c, d]

and IG(y◦
q )(x) = [c′, d′]. The leftmost interval I(α), α ∈ G(y◦p), contained in IG(y◦

p)(x) is I(µ(x));

the rightmost interval I(β), β ∈ G(y◦q ), contained in IG(y◦
q )(x) is I(ν(x)). We have already observed

that x must be contained in all sets between Yc and Yd′ . Hence, the interval IG(yh)(x) = [c, d′] as
defined by the two nodes µ(x) and ν(x) is correct.

If T 6= T ∗, there is a leaf a ∈ T that is not in T ∗. If the neighbor, b, of a is a node of T ∗, the
path decomposition for every edge e ∈ T ∗ remain the same. Hence, by leaving the graph associated

with every entry yh ∈ τ
(

y
(q)
e

)

unchanged, Properties G1–G5 are preserved.

If b is not a node of T ∗, we have to merge path decompositions Y(c,b) and Y(b,d) into a path
decomposition Y(c,d), where c and d are the other two neighbors of b in T . Once we have guaranteed
that the directions of typical lists τ [y(c,b)] and τ [y(b,d)] and of the corresponding graphs G(yh) match,
the lemma can be shown similarly to the argument for the case T = T ∗, as the same operations
are involved in computing path decompositions Yh and graphs G(yh).

In order to show that we flip graph G(yh) correctly, for every yh ∈ τ
(

y
(q)
(b,c)

)

, observe that by

the induction hypothesis, coloring its source σ with color c(σ) directs the edges of G(yh) from σ
to τ and colors the sink τ of G(yh) with color c(τ). This implies that coloring τ with color c̄(τ)
colors σ with color c̄(σ) and directs the edges of G(yh) from τ to σ. In order to complete the flip,
we exchange the roles of σ and τ as source and sink vertices, and exchange the roles of Lα and Rα,
for every vertex α ∈ G(yh).

Introduce node: We discuss the different possible cases. First assume that T = T ∗. In this
case, we have to augment path decomposition Ye to path decomposition Y ∗

e , for every edge e ∈ T ,
by adding the introduced vertex x to the appropriate sets in Ye. If |Ze| = |Z∗

e |, the typical list τ [ye]
remains structurally unchanged. The only change is the increase of all values in typical sequences

τ
(

y
∗(i)
e

)

by one, for all sets Z
∗(i)
e containing the introduced vertex x. This means that we have

to introduce vertex x into every path decomposition Yyh
represented by an element yh ∈ τ

(

y
∗(i)
e

)

.
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This is done by adding x to Lσ and Rτ , where σ and τ are the source and sink of G(yh). Note that
none of the graphs G(yh) changes structurally. Therefore, Properties G1–G5 are readily verified.

So consider the case when |Z∗
e | = |Ze| + 1 and Z

∗(a−1)
e = Z

∗(a)
e \ {x}, for some a. (The other two

cases are similar.)

Again, we write τ [ye] =
(

τ
(

y
(1)
e

)

, . . . , τ
(

y
(a−2)
e

)

, τ
(

y
(a)
e

)

, . . . , τ
(

y
(s)
e

))

. Then every typical

sequence τ
(

y
∗(q)
e

)

, except τ
(

y
∗(a−1)
e

)

and τ
(

y
∗(a)
e

)

, is derived from the corresponding typical

sequence τ
(

y
(q)
e

)

as in the case |Ze| = |Z∗
e |. Also, the information stored with every element

in such a sequence is computed in the same way as in the case |Ze| = |Z∗
e |, so that Properties

G1–G5 are easily verified. So consider the computation for Z
∗(a−1)
e and Z

∗(a)
e . For these two

intervals, τ
(

y
∗(a−1)
e

)

= τ1 and τ
(

y
∗(a)
e

)

= 1 + τ2, where (τ1, τ2) is a split of sequence τ
(

y
(a)
e

)

. If

the split is of type two, Properties G1–G5 are easily verified for all graphs G(yh) associated with

entries yh ∈ τ
(

y
∗(a−1)
e

)

or yh ∈ τ
(

y
∗(a)
e

)

because again these graphs are just copies of the graphs

associated with the corresponding entries in τ
(

y
(a)
e

)

, possibly augmented with the new vertex x. If

the split is of type one, we have to consider the last entry yf in τ1. For this entry, we create a new
one-vertex graph G(yf ). In path decomposition Ye, this type-one split corresponds to duplicating
the first set in the path decomposition corresponding to (yf , . . . , yr), which is just what we want.
It is straightforward to verify Properties G1–G5 for G(yh).

If T 6= T ∗, we possibly split an edge (c, d) of T into two new edges (c, b) and (b, d) and then
attach a new edge (a, b). Properties G1–G5 can be verified for graphs G(yh) along edge (a, b) just
as for start-nodes and for the graphs along all other edges as for the case T = T ∗.

Join node: Finally, consider a join node i with children j and k. Note that the tree models of
characteristics Ci, Cj, and Ck are the same. So we fix an edge e and discuss the computation for
edge e.

The correctness of the flip possibly performed for some of the lists τ [ae] or τ [be] can be established
using the same arguments as for forget nodes. Properties G1–G5 are easily verified for graphs Ga(y

◦
f )

and Gb(y
◦
f ). So we prove Properties G1–G5 for graphs G(y◦f ). Once this is done, the lemma can be

shown for graphs G(yh) as for a forget node.
First we prove Property G1 and that coloring σ with color c(σ) colors τ with color c(τ) and

directs edges from σ to τ . Consider a spanning tree H of G(y◦f ). H consists of spanning trees
for Ga(y

◦
f ) and Gb(y

◦
f ) as well as three of the four edges {σ, σa}, {σ, σb}, {τ, τa}, and {τ, τb}. First

assume that both edges {σ, σa} and {σ, σb} are included in H. Then coloring σ with color c(σ)
colors σa and σb with colors c(σa) and c(σb), by the choice of the colors of edges (σ, σa) and (σ, σb).
Hence, τa and τb receive colors c(τa) and c(τb), by the induction hypothesis. Regardless of whether
{τ, τa} ∈ H or {τ, τb} ∈ H, the coloring of edges (τa, τ) and (τb, τ) guarantees that τ receives color
c(τ). As the coloring of all vertices in Ga(y

◦
f ) and Gb(y

◦
f ) is uniquely determined by the colors of σa

and σb, all spanning trees containing edges {σ, σa} and {σ, σb} give the same coloring. If w.l.o.g.
{σ, σb} 6∈ H, we can argue as above that vertices σa, τa, and τ are colored with colors c(σa), c(τa),
and c(τ), respectively. This implies that τb receives color c(τb), and, thus, σb receives color c(σb).
Hence, all spanning trees H give the same coloring, and G(y◦f ) is a flippable DAG. Also, coloring σ
with color c(σ) chooses edges (σ, σa) and (σ, σb) from the possible edges between σ and σa and σb.
As σa and σb are colored with colors c(σa) and c(σb), all edges in Ga(y

◦
f ) and Gb(y

◦
f ) are directed

from σa to τa and from σb to τb, respectively. Finally, as τa and τb are colored with colors c(τa) and
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c(τb), edges (τa, τ) and (τb, τ) are chosen from the possible edges between τ and τa and τb. This
proves that coloring σ with color c(σ) directs all edges in G(y◦f ) from σ to τ .

Property G2 is easily verified. To prove Property G3, we argue as follows: By the induction
hypothesis, the interval I(α) assigned to every node α ∈ Ga(y

◦
f ) or α ∈ Gb(y

◦
f ) is independent

of the path chosen to compute this interval. This immediately implies that all nodes in G(y◦f ),
except τ , have this property. To see that node τ has this property, observe that values ρ(σa)
and ρ(σb) are adjusted so that for any σaτa-path Pa in Ga(y

◦
f ) and any σbτb-path Pb in Gb(y

◦
f ),

∑

α∈Pa
ρ(α) =

∑

α∈Pb
ρ(α). This implies that I(τ) is independent of the choice of the στ -path chosen

to compute I(τ). The adjustment of ρ(σa) or ρ(σb) during the computation G(y◦f ) corresponds to
the duplication of initial elements in path decomposition Aa◦

f
or Bb◦

f
before “overlaying” these

two path decompositions to obtain path decomposition Yy◦
f
. Hence, for any στ -path P in G(y◦f ),

∑

α∈P ρ(α) = |Yy◦
f
|, which shows that G(y◦f ) has Property G3. Property G5 follows immediately

from the observation just made, that the increase of ρ(σa) or ρ(σb) reflects the “stretching” of the
corresponding path decomposition Aa◦

f
or Bb◦

f
.

In order to prove Property G4, observe that graphs Ga(y
◦
f ) and Gb(y

◦
f ) have this property, by

the induction hypothesis. Since Ga(y
◦
f ) corresponds to a path decomposition Ā◦

f containing only

vertices from Gj, and Gb(y
◦
f ) corresponds to a path decomposition B̄◦

f containing only vertices from
Gk, every vertex that is shared by two sets in Ga(y

◦
f ) and Gb(y

◦
f ) is in Xi. So Property G4 holds for

all vertices in path decomposition Y ◦
f , except those that are in Xi. Now observe that y◦f corresponds

to a set Z
(q)
e in the interval model of edge e ∈ T , so that exactly the vertices in Z

(q)
e are shared

between Gj and Gk. Moreover, as path decompositions Ā◦
f and B̄◦

f are completely contained in the

interval corresponding to Z
(q)
e , the vertices in Z

(q)
e are contained in every set of Ā◦

f and B̄◦
f . Hence,

Z
(q)
e ⊆ Lσa , Z

(q)
e ⊆ Rτa , Z

(q)
e ⊆ Lσb

, and Z
(q)
e ⊆ Rτa ; and by the induction hypothesis, sets Lσa ,

Rτa , Lσb
, and Lτb

are the only sets in Ga(y
◦
f ) and Gb(y

◦
f ) containing vertices from Z

(q)
e . In order to

obtain G(y◦f ) from Ga(y
◦
f ) and Gb(y

◦
f ), we define Lσ ← Lσa ∪ Lσb

and Lσa ← Lσb
← ∅. Thus, every

vertex in Z
(q)
e ⊆ Lσa ∪Lσb

occurs in exactly one set Lα, namely Lσ. We argue similarly that every

vertex in Z
(q)
e is contained only in set Rτ , which finishes the proof of Property G4.

The following lemma bounds the size of the constructed graph G.

Lemma 18 Graph G has size O(N).

Proof. It is easily verified that we introduce only a constant number of vertices into graph G at
every node of T . As |T | ≤ 4N , G has O(N) vertices. Also, it is easy to see that the in-degree and
out-degree of every vertex are at most two. Hence, G has O(N) edges.

6.2.5 Phase 4: Constructing the Tree Decomposition Explicitly

In this section, we show how to extract path decomposition Ye from graph G(e), for every edge
e removed from the trunk; we also show how to use the information stored in the link list L to
construct tree U by joining these path decompositions. We start with the description of the method
for extracting path decomposition Ye from graph G(e).

First we compute the connected components G(e) of G and use Algorithm 1 to replace each
such graph them with a DAG G′(e) that represents path decomposition Ye. Let G′ be the union of
all these DAGs. We sort G′ topologically.
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Now consider a single path decomposition Ye. We compute for every node α ∈ G′(e), its interval
I(α). This is easily done using time-forward processing [14]: given the interval I(α′) = [a′, b′] of
one of the in-neighbors of a node α ∈ G′(e), the interval I(α) is defined as I(α) = [b′ + 1, b′ + ρ(α)].

Next we compute for every vertex x ∈ G, its interval I(x). Recall that this is the smallest interval
containing I(µ(x)) and I(ν(x)). Thus, for every node α ∈ G′(e) and every vertex x ∈ Lα ∪Rα, we
write a triple (e, x, I(α)) to a list L. (This step can be incorporated into the time-forward processing
step.) Then we sort this list by the first two components of its entries. This stores triples with
the same first two components consecutively. For every pair (e, x), there are at most two triples
(e, x, I(α)) and (e, x, I(β)) that have e and x as their first two components. I(x) is the smallest
interval containing I(α) and I(β). If there is only one such interval I(α), then x ∈ Lα ∩ Rα; that
is, x appears only in the sets associated with the nodes of the path decomposition corresponding to
node α. Hence I(x) = I(α). Note that sets Lα and Rα are in fact handled as one set Sα = Lα∪Rα.
This is the reason why we did not have to exchange sets Lα and Rα for vertices α involved in a
graph flip in Phase 3.

Given intervals I(x), for all vertices in the graph Ge represented by path decomposition Ye, we
create a list S of triples (e, a, x), for all x ∈ Ge and a ∈ I(x). This can be done in a single scan of
the list of intervals I(x). We sort list S by the first two components of its entries, thereby storing all
entries with the same two components e and a consecutively. Pairs (e, 1), . . . , (e, |Ye|) represent the
nodes of path decomposition Ye. We scan list S to construct vertex sets X(e,a) = {x : (e, a, x) ∈ S}.
For every such vertex set with a > 1, we also add an edge ((e, a − 1), (e, a)) to the edge set of U .

Observe that we can perform this construction for all graphs G(e) at the same time, as we label
every record in L and S that represents a node or vertex in path decomposition Ye with the ID of
edge e.

It remains to describe how to link path decompositions Ye, in order to obtain the desired tree
U . To do this, we need to translate the links (α, β) ∈ L linking two graph G(e1) and G(e2) into
edges between appropriate nodes of path decompositions Ye1 and Ye2.

During the initial time-forward processing step computing intervals I(α) = [a, b], for all nodes
α ∈ G′(e), we add an entry (α, e, a) to a link translation table LT . We sort LT and the link list L
by the first components of their entries. In a single scan of LT and L, we translate entries (α, β) in
L into entries ((e1, a), β). We sort L by the second components of its entries and scan LT and L
again, to translate entries ((e1, a), β) into entries ((e1, a), (e2, b)); we add these entries to the edge
set of U . We summarize this section in the following theorem.

Theorem 6 Given a graph G = (V,E), two constants k, ℓ ∈ N, and a tree decomposition D =
(X , T ) of width at most k and size O(N) for G, it is possible to decide in O(sort(N)) I/Os whether
G has treewidth at most ℓ and, if so, compute a tree decomposition E = (Y, U) of width at most ℓ
and size O(N) for G.

Proof. Phase 1 of Algorithm 5 takes O(sort(N)) I/Os, by Theorem 5. Phase 2 is trivial. Phase
3 takes O(sort(N)) I/Os: We send O(1) information along every edge of T when processing T
bottom-up; the construction of graph G and link list L takes O(scan(|G|)) = O(scan(N)) I/Os
because we sequentially write the vertices of G and the link records in L to disk in the order they
are created, which can be done in a blockwise fashion. To see that Phase 4 takes O(sort(N))
I/Os, observe that the untangling of all subgraphs G(e) of G takes O(sort(

∑ |G(e)|)) = O(sort(|G|))
I/Os, by Lemma 7. By Lemma 18, |G| = O(N), so that all subgraphs of G can be untangled in
O(sort(N)) I/Os. Also, observe that every DAG G′(e) is in fact a planar st-graph, because it is
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series-parallel; hence, it can be topologically sorted in O(sort(|G′(e)|)) I/Os [14], and topologically
sorting G′ takes O(sort(N)) I/Os. The remainder of Phase 4 takes O(sort(N)) I/Os, as it involves
sorting and scanning linear size lists a constant number of times. Hence, the I/O-complexity of the
algorithm is O(sort(N)).

The correctness of the algorithm follows from the correctness of each of its phases: The correct-
ness of Phase 1 is shown in [11]. Phase 2 is trivial. Lemma 17 establishes that the graphs G(yh)
constructed in Phase 3 have Properties G1–G5, which implies that Phase 4 constructs the path
decompositions of the tree decomposition E correctly because Phase 4 precisely implements the
rules for deriving these path decompositions from the corresponding graphs G(e). The correctness
of the linking in Phase 4 follows from the observation that a correct tree decomposition is obtained
by translating every link (α, β) in the link table into an edge (a, b) between any two nodes a and b

that correspond to α and β, because all these nodes contain the relevant vertices of G.

Remark. We have not included an explicit description of the (simpler) algorithm for computing a
path decomposition of minimal width for a graph G = (V,E), but the algorithm is given implicitly
in the description of the procedures for constructing the path decompositions corresponding to
trunk-edges.

7 Constructing a Nice Tree Decomposition

In this section, we consider the following problem: Given a tree decomposition D = (X , T ) of width
k and linear size for a graph G = (V,E), construct a nice tree decomposition E = (Y,U) of linear
size and width at most k for G. We first sketch the internal-memory algorithm of [11] for this
problem and then show how to make this algorithm I/O-efficient.

The algorithm of [11] first constructs a chordal graph G′ ⊇ G with tree decomposition D and
then computes a perfect elimination ordering (PEO) of the vertices of G′. Then it processes the
vertices of G′ in reverse elimination order; initially tree decomposition E consists of a single node r

with Yr containing the last k + 1 vertices in the PEO; the remaining vertices are processed one by
one.

Let v be the next vertex to be inserted. By the chordality of G′, vertex v is simplicial in the
subgraph of G′ induced by all vertices following and including v in the PEO. Hence, the neighbors
of v form a clique C of size k in this graph and must be stored at some node in the part of tree
decomposition E constructed so far. Moreover, there exists such a node iv that is either a leaf or
has only one child, because E is nice.

If iv is a leaf, the algorithm adds one or two vertices below iv: If Yiv = C, only one child jv of
iv with Yjv = C ∪ {v} is added. Otherwise, two nodes jv and k are added, with jv being a child of
k and k being a child of iv. The sets associated with these two nodes are Yk = Yiv \ {y}, for some
vertex y ∈ Yiv \ C, and Yjv = Yk ∪ {v}.

If iv has one child j, a node k with Yk = Yiv is inserted between i and j and another child l of iv
with Yl = Yi is added. Node l is a leaf, and the insertion procedure of the previous paragraph can
be applied with l playing the role of iv.

In order to make this algorithm I/O-efficient, we have to show how to compute G′, a PEO of
G′, and tree decomposition E in O(sort(N)) I/Os.

Given tree decomposition D = (X , T ) of G, graph G′ can be computed as follows: For every
node i ∈ T and every pair of vertices {v,w} ⊆ Xi, add an edge {v,w} to E′. In [22, Lemma 2.2.3],
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it is proved that G′ is chordal. We show in Section 8 how to compute a PEO of G′, using tree-
decompositon D. The rest of this section deals with the construction of the nice tree decomposition
E .

In order to construct E , we have to solve two problems: First we have to show how to find the
node iv, for each vertex v to be inserted. Then we have to show how to update the structure of
U = (I, F ) as we keep inserting the vertices of G. The following modification of the algorithm helps
to solve both problems efficiently: Instead of computing E right away, we first construct the tree
decomposition E ′ = (X ′, U ′) that is obtained from E by contracting all edges {i, j} ∈ U such that
Xi = Xj. The nodes in U ′ may have many children. Given E ′, we expand every node i ∈ U ′ with
more than one child into a binary tree Ui whose number of leaves equals the number of children of
i in U ′ and then make every child of i in U ′ the child of a different leaf in Ui.

Now the procedure for inserting vertex v into the current tree decomposition simplifies to the
following two steps: Let C be the set of neighbors of v that succeed v in the PEO. Then we have
to find a node iv such that C ⊆ Yiv , and we have to add one or two descendants of iv, depending on
whether C = Yiv or C ⊂ Yiv . The following observation tells us how to find such a node iv, for every
vertex v: Let w be the last vertex in v’s neighborhood that has been inserted before v. Since the
neighbors of v that succeed v in the PEO form a clique, they must all be neighbors of w. Hence,
we can choose iv to be the leaf created when inserting w into the tree decomposition. (Note that iv
may no longer be a leaf when v is inserted).

Assuming that every vertex v ∈ G′ is labeled with its number ν(v) in the PEO, vertex w is the
neighbor of v with the smallest number ν(w) > ν(v) in the PEO. A single scan of the adjacency
lists of all vertices in G′ is sufficient to determine this vertex, for all v ∈ G′, and to create a list L
containing one pair (w, v), for every vertex v ∈ G′. We sort list L lexicographically, thereby storing
all pairs (w, v1), . . . , (w, vk) consecutively.

Now we process the vertices of G′ in reverse elimination order, first creating a node r in E that
contains the last k+1 vertices of G′ and then adding the vertices one by one. For every vertex w ∈ Yr,
we process all its entries in L and insert a pair (v, r) into a max-priority queue2 Q, for every processed
entry (w, v) ∈ L. When inserting vertex v ∈ G′ into E , we perform DeleteMax operations until
we retrieve the unique entry (v, iv) from Q. Then we perform the insertion procedure for vertex v,
as described above, and insert an entry (u, jv) into priority queue Q, for every pair (v, u) ∈ L.

Once we have processed all vertices of G′ in this manner, we obtain tree decomposition E ′.
The replacement of high-degree nodes in U ′ by binary trees, as described above, is straightforward.
Hence, we obtain the following lemma.

Lemma 19 Given a graph G = (V,E) and a tree decomposition D = (X , T ) of width k and size
O(N) for G, a nice tree decomposition E = (Y, U) of width at most k and size O(N) for G can be
computed in O(sort(N)) I/Os.

Proof. Given tree decomposition D, the construction of G′ takes O(sort(N)) I/Os, as we only have
to scan the nodes of the tree decomposition to create a multi-set containing the edges of G′; then
we sort and scan the resulting multiset to remove duplicate edges. The construction of the PEO
takes O(sort(N)) I/Os, by Lemma 20. The computation of list L takes O(sort(N)) I/Os, as it
only requires scanning the adjacency lists of the vertices of G′ and sorting list L. Given list L, the
construction of E takes O(sort(N)) I/Os: We scan list L as well as the vertex set of G′, sorted

2A priority queue which supports DeleteMax instead of DeleteMin operations.
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in reverse elimination order; and we perform O(N) priority queue operations, because every entry
in L causes one Insert and one DeleteMax operation to be performed on Q. To see that the
algorithm is correct, we have to show that every vertex v, except the last k + 1 vertices of G′, has
a neighbor w with ν(w) > ν(v). This, however, follows from the chordality of G′ and the fact that
G′ is connected.

8 Finding a Perfect Elimination Ordering of a k-Tree

In this section, we consider the following problem: Given an undirected graph G = (V,E) and a tree
decomposition D = (X , T ) of width k for G, assume that we have computed a chordal supergraph
G′ = (V,E′) of G, by making sure that every set Xi, i ∈ T , is a clique in G′. We want to find a
perfect elimination ordering (PEO) of the vertices of G′.

The algorithm is simple: We traverse the tree T in preorder. At the root r of T we “process”
all vertices in Xr, where “processing” means that we assign to each of these vertices the highest
possible number in the PEO that has not been used yet. At any other vertex j with parent i, we
“process” all vertices in Xj \Xi.

Lemma 20 Given a graph G = (V,E), a chordal supergraph G′ = (V,E′) of G, and a tree
decomposition D = (X , T ) of G and G′, as defined above, it takes O(sort(N)) I/Os to compute a
PEO of G′.

Proof. Clearly, the above method takes O(sort(N)) I/Os and produces an ordering of the vertices
of G. We have to prove that this ordering is a PEO.

Assume that there are three vertices u < v < w such that there are edges {u, v} and {u,w} in
G′, where “<” is the computed PEO. We show that edge {v,w} must also be in G′, which proves
that the computed ordering is indeed a PEO. Let i, j, and k be the first nodes in a preorder traversal
of T that contain u, v, and w, respectively. As u < v < w, we have i ≥ j ≥ k. First observe that k

must be an ancestor of i. Indeed, if k is not an ancestor of i, let a be the lowest common ancestor
of i and k; then any path from u to w has to contain a vertex from Xa, so that edge {u,w} cannot
exist. For the same reason, j must be an ancestor of i. However, no proper ancestor of i contains
u. Hence, as edges {u, v} and {u,w} are in G′, {v,w} ⊆ Xi, and edge {v,w} is in G′.

9 Applications

In this section, we present three applications of our tree-decomposition algorithm. All the algo-
rithms in this section assume that a nice tree decomposition of the graph is given. In Section 9.1, we
show how to solve the single-source shortest path problem on directed graphs of bounded treewidth
in O(scan(N)) I/Os. The algorithm assumes that the given graph does not contain any nega-
tive cycles. In Section 9.2, we show how to compute optimal separators for graphs of bounded
treewidth and how to exploit the information provided by these separators to compute DFS-trees
for graphs of bounded treewidth. In Section 9.3, we argue that the linear-time solutions for many
NP-hard problems on graphs of bounded treewidth of [5, 6, 7] can be combined with the linear-I/O
time-forward processing procedure of [42] to solve these problems in O(scan(N)) I/Os.
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9.1 Single Source Shortest Paths

The input to our algorithm is a nice tree decomposition D = (X , T ) of the given graph G = (V,E)
represented as follows: The nodes of the tree T = (I, F ) are stored in preorder. Every node i ∈ I
is represented by the set of at most k + 1 vertices in Xi. Every edge (v,w) ∈ E is stored at every
node i ∈ I such that {v,w} ⊆ Xi.

Our algorithm uses dynamic programming in T and is divided into three phases. The first phase
processes the nodes of T bottom-up, computing for every pair of vertices {v,w} ⊆ Xi the distances
di(v,w) and di(w, v) from v to w and from w to v in Gi. The second phase processes the nodes of T
top-down and computes for all pairs of vertices {v,w} ⊆ Xi the distances d(v,w) and d(w, v) from
v to w and from w to v in G. The third phase uses the distance information computed by the first
two phases to build a shortest path tree for the desired source vertex s.

During the first phase of the algorithm (k +1)× (k+1)-matrices M ′
i are computed for all nodes

i ∈ I. Let the vertices in Xi be v1, . . . , vk+1. Then position (j, k) of matrix M ′
i stores di(vj , vk).

The second phase uses matrices M ′
i to compute a matrix Mi, for every node i ∈ T , which stores

distance d(vj , vk) at position (j, k). The third phase uses the distances d(vj , vk) computed in the
second phase to compute distances d(s, v), v ∈ G.

Phase 1. For a start node i, computing M ′
i is straightforward as Gi = G[Xi]. Any other node

has either one or two children. If i has one child, it is either an introduce or a forget node. For a
forget node i with child j, Gi = Gj and Xj = Xi ∪ {x}. Hence, we only delete the row and column
corresponding to x from M ′

j to obtain M ′
i . For an introduce node i with child j, Xi = Xj ∪ {x}.

Let v and w be two nodes in Xi with shortest path P = 〈v = u0, u1, . . . , us = w〉 in Gi. If x is
not contained in this path, then P is also a shortest path from v to w in Gj, and we just copy the
corresponding entry from M ′

j to M ′
i . Otherwise, let ul = x. The only edges in Gi that are not in

Gj are edges with endpoint x. Hence, the paths P1 = 〈u0, . . . , ul−1〉 and P2 = 〈ul+1, . . . , us〉 exist
in Gj and must be shortest paths from u0 to ul−1 and from ul+1 to us, respectively, in Gj. Thus,
the distance between v and w in Gi is the same as the distance between v and w in the following
graph Ĝi. The vertex set of Ĝi is Xi. For every finite entry in M ′

j , there is an edge of that weight

between the corresponding vertices in Xj. Finally, we add all edges incident to x in Gi to Ĝi. Now

we compute M ′
i by running the Floyd-Warshall algorithm [19, 41] on Ĝi in internal memory, as

|Ĝi| = O(1).
If i is a join node, i has children j and k with Xi = Xj = Xk. Also, if Gj = (Vj, Ej) and

Gk = (Vk, Ek), then Gi = (Vj ∪ Vk, Ej ∪ Ek). We construct a graph Ĝi from M ′
j and M ′

k as follows:

The vertex set of Ĝi is again Xi; the edge set contains an edge (vj , vk) if position (j, k) is less than
infinity in at least one of M ′

j and M ′
k. The weight of the edge is min{M ′

j (j, k),M ′
k(j, k)}. Again,

we compute M ′
i by running the Floyd-Warshall algorithm on Ĝi. We have to prove that this gives

the right result.
Consider a shortest path P in Gi from a vertex v ∈ Xi to another w ∈ Xi. We cut P into

maximal subpaths P1, . . . , Pq such that none of these paths has an interior vertex in Xi. Such a
path Pk stays completely inside one of the graphs Gj and Gk because the vertices in Xi form a
separator of Gi cutting Gi into two pieces: one contains all vertices in Vj −Xi; the other contains
all vertices in Vk −Xi. Hence, if u and z are the endpoints of Pk with u, z ∈ Xi, then Pk must be
the shortest path between u and z in either Gj or Gk, so that we have assigned the length of Pk as

the weight of edge (u, z) in Ĝi. As we do this for all subpaths Pk, the length of the shortest path
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between any pair of vertices in Ĝi is just the length of the shortest path between these two vertices
in Gi.

Phase 2. Having computed matrices M ′
i , for all nodes i ∈ T , which store distances di(v,w), for

all pairs of vertices v,w ∈ Xi, we now use these matrices to compute matrices Mi, for all nodes
i ∈ T , which store distances d(v,w), for all pairs of vertices v,w ∈ Xi.

Consider a node j with parent i. Depending on the type of i, there are two cases to consider. If
i is a join or introduce node, then Xj ⊆ Xi. Otherwise, Xj = Xi ∪ {x}. The root r of the tree T
does not have any parent, and Gr = G. Hence, Mr = M ′

r . That is, the distances between vertices
in Xr stored in M ′

r are the distances between these vertices in G.
Now consider the case of a node j with a join or introduce node i as parent. As already noted

Xj ⊆ Xi. By induction, matrix Mi already stores all the distances in G between vertices in Xi. As
Xj ⊆ Xi, we just copy the relevant entries from Mi to Mj.

If node j’s parent i is a forget node, Xj = Xi ∪ {x}. That is, matrix Mi already stores the
distance in G between any pair of vertices {v,w} ⊆ Xj \ {x}. We have to compute the distances
between x and all other vertices v ∈ Xi. Consider a shortest path P from x to v. Let w be the first
vertex in Xi suceeding x on path P and consider the subpaths P1 from x to w and P2 from w to v.
Both paths have to be shortest paths as well. Hence, the length of P2 is stored in Mi. We claim
that P1 stays within Gj, which implies that the length of P1 is just the distance di(x,w) from x to
w stored in M ′

j . Again, this claim is easy to prove, as the vertices in Xi form a separator of the
vertices in Gj from the rest of G. That is, in order to reach a vertex not in Gj, a path starting at
x must cross some vertex in Xi, but w is the first such vertex in P , so that P1 cannot contain any
vertex not in Gj. A similar argument shows that a shortest path from a vertex v ∈ Xi to vertex x
can be divided into a shortest path from v to another vertex w ∈ Xi and a shortest path from w
to x which stays completely inside Gj.

Hence, we build a graph G̃j with vertex set Xj. An edge (v,w) in G̃j has the weight given in
Mi if x 6∈ {v,w}. For edges incident to x, we take the appropriate edge weight from M ′

j . Matrix

Mj will now be filled with the distances in G̃j between the vertices in Xj. Again, we compute these
distances in internal memory, using the Floyd-Warshall algorithm.

Phase 3. The third and final phase of the algorithm uses the distances d(v,w), v,w ∈ Xi,
computed by the second phase to compute the distances d(s, v) from the source s to all other
vertices v ∈ G. In particular, we compute for every node i a vector ∆i storing the distances from
node s to the nodes in Xi. We do this as follows: First we extract all nodes i such that s ∈ Xi.
For all these nodes, the matrices Mi already give us the distances from s to the nodes in Xi. After
removing the subtree Ts of T induced by these nodes, we obtain a set of subtrees T1, T2, . . . , Tq of
T . We root these subtrees at the nodes that are adjacent to nodes in Ts. Now we process each of
these trees top-down as follows.

Consider such a tree Tl. Let j be a node in Tl with parent i. Let v ∈ Xj\Xi. Then any path from s
to v must contain at least one vertex in Xi∩Xj. Hence, d(s, v) = min{d(s,w)+d(w, v) : w ∈ Xi∩Xj}.
Distances d(s,w) are already provided by the vector ∆i, as Xi ∩ Xj ⊆ Xi. Distances d(w, v) are
provided by the matrix Mj.

It is an exercise to augment the three phases of this algorithm to compute a shortest path-tree
with root s instead of only the distances from s to all other vertices in G.
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Theorem 7 Given a nice tree decomposition D = (X , T ) of width at most k and size O(N)
for a directed graph G = (V,E), the single-source shortest path problem in G can be solved in
O(scan(N)) I/Os and linear space, provided that the nodes of T are stored in preorder.

Proof. Given that the nodes of T are stored in preorder, Phases 1 and 2 of the above algorithm take
O(scan(N)) i/Os using the linear-I/O time-forward processing technique for trees of [42] to realize
the bottom-up or to-down processing of T . This is true because we send only O(1) information
along every edge of T , and the computation at every node is carried out in internal memory. In
order to realize Phase 3 in O(scan(N)) I/Os, the nodes in each subtree Tl need to be rearranged in
preorder w.r.t. its new root. For all of these subtrees, except the tree Tr containing the root r of T ,
this preorder numbering is consistent with the preorder numbering of T , so that no computation
is required. In order to change the preorder numbers of the nodes of Tr and rearrange the nodes
according to the new preorder numbering, it is sufficient to compute an Euler tour of Tr and then
use this Euler tour to derive the desired preorder numbering. This can be done in O(scan(N)) I/Os
using ideas similar to those used in the time-forward processing technique of [42]. The details are
straightforward. The correctness of the above algorithm follows from the discussion included with
the description of the algorithm.

By Theorem 4 and Lemma 19, a nice tree decomposition D = (X , T ) of G can be computed in
O(sort(N)) I/Os. Computing a preorder numbering of the nodes of T takes O(sort(N)) I/Os using
the Euler tour technique and list-ranking [14]. Hence, we obtain the following corollary.

Corollary 2 Given a directed graph G = (V,E) of treewidth at most k, the single-source shortest
path problem in G can be solved in O(sort(N)) I/Os and linear space.

9.2 Depth-First Search

In this section, we address an important fundamental problem on graphs of bounded treewidth
that remains entirely elusive on general graphs: computing a DFS-tree of a directed graph. Our
algorithm takes O(N/B) I/Os, once a tree decomposition of the graph is given.

Let D = (X , T ) be a nice tree decomposition of G with root r. Our DFS-algorithm is the
standard internal-memory DFS-procedure [15]; but it uses the tree decomposition to guide the order
in which the out-edges of a given vertex v are explored. As we show, combined with an appropriate
blocking of tree T , this ensures that the total number of I/Os performed by the algorithm is
O(N/B).

Blocking. We partition T into O(N/B) subtrees of size B. Since T is binary, we can use the
partition procedure described in [?, 42] to achieve this. We store every such subtree in a separate
block. Every (copy of) a vertex v ∈ G is augmented with a pointer to the root of the subtree Tv of
T that corresponds to node v. Every vertex in every set Xi has room to store whether it has been
explored and to store a mark to be used in the depth-first search.

Choosing out-neighbours. When the DFS visits a node v for the first time, it initiates the
following procedure: It locates the root rv of Tv and defines iv to be the root of Tv. Every time
the DFS visits node v, we repeat the following procedure: If there is an unexplored out-neighbour
w of v in Xiv , we choose this out-neighbour to be the next vertex to be visited and push the pair
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(v, iv) onto the DFS-stack, to be recovered when the DFS backtracks to v from w. If there is no
unexplored out-neighbour of v in Xiv , we check whether v ∈ Xj, where j is the left child of iv,
and whether v is unmarked in Xj. If so, we set iv = j and repeat the procedure. Otherwise, we
determine whether Xk, where k is the right child of iv, contains an unmarked copy of v. If so, we
set iv = k and repeat the procedure. If neither Xj nor Xk contain an unmarked copy of v, we mark
v in Xiv ; if v is contained in the set of iv’s parent p, we set iv = p. Otherwise, the exploration of v
is finished, and we backtrack to v’s parent in the DFS-tree.

In essence, our algorithm performs a depth-first traversal of Tv to locate the out-neighbours of
v. We argue next that this costs only O(N/B) I/Os for constructing the DFS-tree of G.

First observe that, except for the traversal of the tree decomposition, the DFS-procedure takes
O(N/B) I/Os. Indeed, we perform O(N) operations on the stack of vertices representing the
path from the root of the DFS-tree to the current vertex. These operations take O(N/B) I/Os.
No random accesses are required to determine whether a given out-neighbour w of a node v is
explored. This is true because, at the time when we explore edge (v,w), we are at a node iv such
that w ∈ Xiv . Thus, we only have to query the local copy of w to determine w’s status. This,
of course, requires the updating of this status when w is explored. The easy way to do this is
to traverse all of Tw and update the status of all copies of w when w is explored. A more clever
argument, which we omit here, shows that it is sufficient to copy the status between copies of w
residing in adjacent tree nodes as we move between these nodes.

It remains to show that loading tree nodes as we move in the tree decomposition incurs no more
than O(N/B) I/Os. We split the I/Os into two types. A jump is an I/O that loads the root of a
subtree Tv into memory when v is visited for the first time and an I/O that loads the node iw of
the parent w of the current node into memory when we backtrack from v to w. A step is an I/O
that loads a node of T into memory as a result of moving between adjacent nodes in Tv.

Lemma 21 The total number of I/Os incurred by steps is O(N/B).

Proof. We partition steps further into downward steps and upward steps, depending on which
direction we are moving in as we take the step. Since we perform a DFS-traversal of Tv, the total
number of upward steps equals the number of downward steps. Hence, it suffices to bound the
number of downward steps. Assume that a step is taken from node i to node j during a traversal of
Tv. Then v ∈ Xj, and j is the root of one of the O(N/B) subtrees into which T has been partitioned
by our blocking. Hence, the total number of downward steps is bounded by the number of nodes
in the roots of these subtrees. There are O(N/B) subtrees, each containing k nodes. Hence, the
number of downward steps is O(kN/B) = O(N/B).

Note that Lemma 21 implies that the marking of all copies of an explored node w mentioned
above incurs only O(N/B) extra I/Os because this marking process can be implemented by travers-
ing Tw in the same order as the subsequent steps we take.

Lemma 22 The total number of I/Os incurred by jumps is O(N/B).

Proof. Similar to the pairing of downward and upward steps, we can divide jumps into explore
jumps, which are the result of exploring a new vertex, and backtrack jumps, which are the re-
sult of backtracking to a vertex’s parent. Every backtrack jump must have been preceded by a
corresponding explore jump, so that it suffices to count explore jumps.
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To do so, we make the simple observation that an explore jump always jumps up tree T . Indeed,
since w is contained in the set Xiv of the current node iv when w is explored, the root of Tw must be
an ancestor of iv. Hence, w must be contained in the set Xj of the root j of the tree in the blocking
that contains iv. This limits the number of jumps out of any block to the number of vertices in
the root of this subtree, which is constant. Since there are O(N/B) subtrees, the total number of
jumps is also O(N/B).

Since a nice tree decomposition and the required blocking of the decomposition can be computed
in O(sort(N)) I/Os, we obtain the following result.

Theorem 8 Depth-first search can be solved in O(sort(N)) I/OS on a directed or undirected graph
of constant treewidth.

9.3 Solving NP-Hard Problems on Graphs of Bounded Treewidth

Arnborg, Lagergren, and Seese [5] present polynomial-time solutions for NP-hard problems on
bounded treewidth graphs which are describable in monadic second order logic. Arnborg and
Proskurowski [6] present linear time algorithms for graphs of bounded treewidth by processing a
k-tree embedding of the graph. It is straightforward to rewrite their algorithms to use a rooted tree
decomposition instead of a k-tree, so that their algorithms compute a solution by traversing the tree
decomposition bottom-up. Bodlaender [7] defines two classes of graph problems that are decidable
in polynomial time on graphs of bounded treewidth and NP-hard in general. As the algorithms in
[6], his algorithms compute an answer to the problem by traversing the tree decomposition bottom-
up. He proves that several of these problems are decidable in linear time on graphs of bounded
treewidth or graphs of bounded treewidth and bounded degree. The linear time tree-traversal
algorithms of [6, 7] together with the linear-I/O time-forward processing technique of [42] give the
following results.

Theorem 9 Given a graph G = (V,E) with treewidth bounded by some constant k, the following
optimization problems can be solved in O(sort(N)) or O(scan(N)) I/Os and linear space, depending
on whether a nice tree decomposition D = (X , T ) for G of width at most k and size O(N) is given
and the nodes of T are stored in preorder: vertex cover, chromatic number, independent set,
dominating set, and Hamiltonian cycle.

Proof. Simulate the algorithms from [6] using the time-forward processing technique for trees pro-
posed in [42]. If the tree decomposition is not part of the input, a nice tree decomposition can
be computed in O(sort(N)) I/Os by Theorem 4 and Lemma 19. Using results from [14], it takes
O(sort(N)) I/Os to arrange the nice tree decomposition in preorder.

Theorem 10 Given a graph G = (V,E) with treewidth bounded by some constant k, the following
decision problems can be solved inO(sort(N)) I/Os orO(scan(N)) I/Os and linear space, depending
on whether a tree decomposition D = (X , T ) for G of width at most k and size O(N) is given and
the nodes of T are stored in preorder: vertex cover, chromatic number, independent set, bipartite
subgraph, k-closure, and max cut.

Proof. Analogous to the previous result, using the algorithms from [7] for graph problems in 1-ECC
(see [7] for a definition of this complexity class).
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For completeness, we illustrate the approach for Theorem 9 using the vertex cover problem
as an example. The other solutions are similar. Details can be found in [6]. Also, the solutions
in [6] are easily extended to find minimum or maximum weight solutions instead of minimum or
maximum cardinality solutions. The weighted vertex cover problem is defined as follows:

Given a graph G = (V,E) and a weight function ω : V → R, find a vertex set C ⊆ V of
minimum weight such that every edge e ∈ E has at least one endpoint in C.

The algorithm proceeds in two phases. The first phase processes the tree T bottom-up, i.e., starting
at the leaves and computing compact representations of partial solutions for internal nodes from
representations computed for their children. The second phase processes the tree top-down to
compute the final solution.

In the bottom-up phase a candidate set Ci is computed, for every node i. This set Ci contains all
pairs (S, ω), where S ⊆ Xi and there is a vertex cover C of Gi containing all vertices in S, but no
vertex in Xi \ S. Let Cov(S) be the set of all such vertex covers of Gi. Then ω = min{ω(C) : C ∈
Cov(S)}. After the bottom-up phase, we choose the pair (S, ω) ∈ Cr, where r is the root of T , such
that ω is minimized. The top-down phase constructs a vertex cover C ∈ Cov(S) with ω(C) = ω.

Bottom-up phase. The set Ci is easy to compute for a start node because Cov(S) = ∅ if S is
not a vertex cover of G[Xi], and Cov(S) = {S} if S is a vertex cover of G[Xi]. In the latter case,
we put (S, ω(S)) into Ci.

At a forget node i with child j, observe that any vertex cover of Gi is also a vertex cover of
Gj and vice versa. Given a vertex cover C for Gj, then C ∩Xi = S if and only if C ∩Xj = S or
C ∩Xj = S ∪ {x}. Hence, we put a pair (S, ω) into Ci if at least one of (S, ω1) and (S ∪ {x}, ω2) is
in Cj. We define ω = min{ω1, ω2}.

At an introduce node i with child j, observe that any vertex cover C of Gi must cover all edges
in Gj and all edges incident to x. Moreover, x cannot cover any of the edges in Gj. Hence, either
x ∈ C and C \ {x} is a vertex cover for Gj, or x 6∈ C, C is a vertex cover for Gj, and ΓGi

(x) ⊆ C.
As ΓGi

(x) ⊆ Xi, ΓGi
(x) ⊆ S in the latter case. Hence, we construct Ci = C′ ∪ C′′ from two sets C′

and C′′: C′ = {(S ∪ {x}, ω + ω(x)) : (S, ω) ∈ Cj} and C′′ = {(S, ω) : (S, ω) ∈ Cj ∧ ΓGi
(x) ⊆ S}.

Finally, at a join node i with children j and k, observe that any vertex cover C of Gi must be a
vertex cover for Gj = (Vj, Ej) and Gk = (Vk, Ek). Let C1 = C ∩ Vj, C2 = C ∩ Vk, and C ∩Xi = S.
Then C1∩Xj = S and C2∩Xk = S. Hence, there is a vertex cover C with C ∩Xi = S if and only if
(S, ω1) ∈ Cj and (S, ω2) ∈ Ck, where ω1 = ω(C1) and ω2 = ω(C2). As the vertices in S are counted
in ω1 and ω2, we have to compute ω = ω1 + ω2 − ω(S) and add (S, ω) to Ci.

Top-down phase. Once we have reached the root r of T , we can immediately report the weight
of the minimum weight vertex cover by examining pairs (S, ω) ∈ Cr and reporting the weight
ωmin = min{ω : (S, ω) ∈ Cr}. We construct a vertex cover C with weight ω(C) = ωmin as follows:

At the root r of T , we mark the element (Smin, ωmin) ∈ Cr as selected and add the vertices in
Smin to C. At any other node j with parent i, the computation depends on the type of its parent.

If i is a join node with selected pair (S, ω), we mark the pair (S, ω′) ∈ Cj as selected, but add
no vertices to C.

If i is an introduce node with selected pair (S, ω), then either x ∈ S or x 6∈ S. If x ∈ S, we mark
the pair (S \ {x}, ω − ω(x)) ∈ Cj as selected. Otherwise, we mark the pair (S, ω) ∈ Cj as selected.
Again, we do not add any vertices to C.
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If i is a forget node with selected pair (S, ω), we mark one of the pairs (S, ω1) or (S ∪ {x}, ω2)
as selected, depending on which one has less weight. It may also be that (S, ω1) 6∈ Cj, in which case
the only possible choice is (S ∪ {x}, ω2). If we mark pair (S ∪ {x}, ω2) as selected, we add vertex
x to C.

The correctness of the bottom-up phase follows from the discussion given in the description of
that phase. The correctness of the top-down phase follows from the observation that we mark one
pair (S, ω) as selected in every candidate set Ci and we guarantee that C ∩Xi = S. Hence, C is a
vertex cover for all graphs G[Xi], where i is a leaf of T , and an inductive argument shows that C
is a vertex cover for Gi = (Vi, Ei). A similar inductive argument shows that if (S, ω) is the selected
pair in Ci, then ω(C ∩ Vi) = ω, so that ω(C) = ωmin.

10 Conclusions and Open Problems

Even though our algorithms exploit the constant treewidth of the input graphs to obtain asymptot-
ically more efficient algorithms than those for general graphs, they suffer from the same drawbacks
as existing internal memory algorithms for graphs of bounded treewidth, namely large constants
hidden in the big-Oh notation which are super-exponential in the treewidth of the graph. Thus,
the contribution of our paper is of rather theoretical interest, and the results in this paper should
be seen as a step towards understanding the I/O-complexity of fundamental graph problems, while
practitioners cannot benefit from the results presented here.

A fact that is worth mentioning is that all classes of sparse graphs with I/O-efficient solutions
for the single-source shortest path problem have small balanced separators: Outerplanar graphs
have 2

3 -separators of size 2, planar graphs have 2
3 -separators of size O(

√
N

)

, and graphs of bounded
treewidth have 2

3 -separators of size k. Thus, the results presented in this paper seem to suggest
that there exist I/O-efficient algorithms for the SSSP problem on outerplanar and planar graphs
not so much because they are planar, but rather because they have small separators. Still, the
planarity of outerplanar and planar graphs can be exploited to obtain much more efficient and
possibly practical solutions for the single-source shortest path problem in these graphs than the
shortest path algorithm for graphs of bounded treewidth presented here.
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