
Approximating geometric bottleneck shortest

paths∗

Prosenjit Bose† Anil Maheshwari† Giri Narasimhan‡

Michiel Smid† Norbert Zeh§

February 18, 2004

Abstract

In a geometric bottleneck shortest path problem, we are given a set
S of n points in the plane, and want to answer queries of the following
type: Given two points p and q of S and a real number L, compute (or
approximate) a shortest path between p and q in the subgraph of the
complete graph on S consisting of all edges whose lengths are less than
or equal to L. We present efficient algorithms for answering several
query problems of this type. Our solutions are based on Euclidean
minimum spanning trees, spanners, and the Delaunay triangulation.
A result of independent interest is the following. For any two points
p and q of S, there is a path between p and q in the Delaunay trian-
gulation, whose length is less than or equal to 2π/(3 cos(π/6)) times
the Euclidean distance |pq| between p and q, and all of whose edges
have length at most |pq|.

∗A preliminary version of this paper appeared in the Proceedings of the 20th Sympo-
sium on Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer
Science, Vol. 2607, Springer-Verlag, Berlin, 2003, pp. 38–49.

†School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6.
E-mail: {jit,maheshwa,michiel}@scs.carleton.ca. These authors were supported by
NSERC.

‡School of Computer Science, Florida International University, Miami, FL 33199, USA.
E-mail: giri@cs.fiu.edu.

§Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H
1W5. E-mail: nzeh@cs.dal.ca.

1

1 Introduction

We consider bottleneck shortest path problems in geometric graphs. For a set
S of n points in the plane, we consider queries of the following type: Given
any two points p and q of S and any real number L, compute or approximate
a shortest path between p and q in the subgraph of the complete graph on S
consisting of all edges whose lengths are less than or equal to L.

To define these problems more precisely, given L ∈ R, let K (≤L) be the
graph with vertex set S, in which any two distinct vertices p and q are
connected by an edge if and only if their Euclidean distance |pq| is less than
or equal to L. Furthermore, we denote by δ(≤L)(p, q) the Euclidean length
of a shortest path between p and q in the graph K (≤L). (If there is no path
between p and q in K(≤L), then δ(≤L)(p, q) = ∞.) In this paper, we will
consider the following three query problems.

1. In a bottleneck connectedness query, we are given two points p and q
of S and a real number L, and have to decide if there exists a path
between p and q in K(≤L).

2. In a bottleneck shortest path length query, we are given two points p
and q of S and a real number L, and have to compute δ(≤L)(p, q) or an
approximation to δ(≤L)(p, q).

3. In a bottleneck shortest path query, we are given two points p and q of
S and a real number L, and have to compute a path between p and q
in K(≤L) whose length is equal to, or approximates, δ(≤L)(p, q).

The motivation for studying these problems comes from several applica-
tions. For example, consider a scenario where there are a number of wireless
devices each with a specified radius of transmission L. Two devices p and
q can communicate with each other if their distance is at most L. If their
distance is more than L, then they can still communicate provided that there
is a sequence of wireless devices each of whose distance is at most L from
its neighbor in the sequence. This is precisely a path in δ(≤L)(p, q). Such a
wireless network is referred to as an ad-hoc wireless network [15].

One can imagine another scenario where the points of S are airports.
Then we would like to answer queries in which we are given two airports
p and q and an airplane that can fly a distance of L kilometres without

2

refueling, and have to compute, or approximate, shortest path information
for this airplane to fly from p to q.

Observe that there are
(

n
2

)

pairs of points in S and
(

n
2

)

graphs K(≤L).
This implies that the number of possible queries is Θ(n4). As a result, both
bottleneck connectedness queries and bottleneck shortest path length queries
can trivially be solved in O(log n) time using O(n4) space. Similarly, using
O(n5) space, bottleneck shortest path queries can trivially be solved in O(`)
time, where ` is the number of edges on the reported path.

1.1 Our results

Throughout the rest of this paper, we denote by L1 < L2 < . . . < L(n

2)
the sorted sequence of distances determined by any two distinct points of S.
(We assume for simplicity that all these distances are distinct.) For any i
with 1 ≤ i ≤

(

n
2

)

, we write K(i) instead of K(≤Li), and δ(i)(p, q) instead of

δ(≤Li)(p, q).
In Section 2, we show that, after an O(n log n)–time preprocessing, bottle-

neck connectedness queries can be answered in O(1) time. The data structure
is a binary tree that reflects the way in which Kruskal’s algorithm computes
the minimum spanning tree of S.

In Section 3, we consider bottleneck shortest path length queries. By us-
ing the fact that |pq| ≤ δ(i)(p, q) ≤ (n− 1)|pq| for any i for which δ(i)(p, q) is
finite, we present a simple data structure of size O(n2 log n) that supports ε-
approximate bottleneck shortest path length queries in O(log n) time, where
ε is any fixed positive real constant. A simple extension of this data struc-
ture allows ε-approximate bottleneck shortest path queries to be answered
in O(log n + `) time, where ` is the number of edges on the reported path.
This data structure uses O(n3 log n) space.

In Section 4, we give a general approach for solving the approximate
bottleneck shortest path query problem. Our approach is to approximate
the sequence K(i), 1 ≤ i ≤

(

n
2

)

, of graphs by a collection of O(n) sparse
graphs. (A precise definition of this notion is given in Section 4.) Examples
of such collections are given in Section 5. In Section 5.1, we show that the
bottleneck version of the Yao-graph [16] is an example of such a collection
of sparse graphs. Using the single-sink spanners of Arya et al. [1], we even
obtain such a collection consisting of graphs of bounded degree (which are, in
general, not planar). In Section 5.2, we prove that the bottleneck version of

3

the Delaunay triangulation gives such a collection, consisting of at most 3n−6
planar graphs. The latter claim is obtained by extending the proof of Keil
and Gutwin [10] that the Delaunay triangulation has stretch factor less than
or equal to 2π/(3 cos(π/6)). To be more precise, we prove that for any two
points p and q of a given point set S, there exists a path between p and q in the
Delaunay triangulation of S whose length is at most 2π/(3 cos(π/6)) ≈ 2.42
times the Euclidean distance |pq| between p and q, and all of whose edges
have length at most |pq|. (In [10], there is no guarantee on the lengths of the
individual edges on the path.)

Finally, in Section 6, we give a data structure of size O(n5/2) that can be
used to answer bottleneck shortest path queries in planar graphs in O(

√
n+`)

time, where ` is the number of edges on the reported path. This data struc-
ture uses a result of Djidjev [7] to obtain a recursive separator decomposition
of the planar graph. By applying this result to the graphs of Section 5.2,
we obtain an efficient solution for the approximate bottleneck shortest path
query problem.

1.2 Related results

After we wrote a preliminary version of this paper, we learned that the
bottleneck connectedness query problem has been solved before, see Neto [12].
In fact, Neto’s solution is identical to ours.

To the best of our knowledge, the other types of bottleneck shortest path
problems considered in this paper have not been studied before. There is
related work by Narasimhan and Smid [11], who consider the following prob-
lem: Given a real number L, approximate the stretch factor of the graph
K(≤L), which is defined as the maximum value of δ(≤L)(p, q)/|pq| over all
distinct points p and q of S. They present a data structure of size O(logn),
that can be built in roughly O(n4/3) time, and that can be used to answer
approximate stretch factor queries (with an approximation factor of about
36) in O(log log n) time.

Our results are based on t-spanners, which are sparse graphs having
stretch factor less than or equal to t. A good overview of results on the
problem of constructing t-spanners for a given point set can be found in the
surveys by Eppstein [8] and Smid [14].

4

2 Bottleneck connectedness queries

As mentioned above, our solution for answering bottleneck connectedness
queries appears already in Neto [12]. In order to be self-contained, however,
we present this solution in this section.

Let MST (S) be the Euclidean minimum spanning tree of the point set
S. We define a binary tree T (S) as follows. If |S| = 1, then T (S) consists
of one node storing the only point of S. Assume that |S| ≥ 2, and let e
be the longest edge in MST (S). Removing e partitions MST (S) into two
trees. Let S1 and S2 be the vertex sets of these trees. Then T (S) consists
of a root that stores the edge e and pointers to its two children, which
are roots of recursively defined trees T (S1) and T (S2). Observe that the
leaves of T (S) are in one-to-one correspondence with the points of S, and the
internal nodes are in one-to-one correspondence with the edges of MST (S).
Computing T (S) according to the above definition corresponds to tracing
back the execution of Kruskal’s minimum spanning tree algorithm [6]. It is
not difficult to see that T (S) can in fact be computed directly while running
Kruskal’s algorithm. The following lemma shows how the tree T (S) can be
used to answer bottleneck connectedness queries.

Lemma 1 Let p and q be two distinct points of S, and let L be a real number.

Let e be the edge stored at the lowest common ancestor of the leaves of T (S)
storing p and q. Then p and q are connected by a path in the graph K (≤L) if

and only if the length of e is less than or equal to L.

Proof. Assume that the length of e is less than or equal to L. Let u be
the node of T (S) that stores e. We may assume without loss of generality
that p is stored in the left subtree of u (and, hence, that q is stored in the
right subtree of u). Let Sp and Sq be the sets of points that are stored at
the leaves of the left and right subtrees of u, respectively. Let x and y be
the endpoints of e, where x ∈ Sp and y ∈ Sq. By the recursive definition of
T (S), the edges of the subtree of MST (S) induced by the points in Sp form
a subtree of MST (S). All edges in this subtree are of length at most that of
e. Hence, there is a path P1 in MST (S) between p and x whose edges have
length at most that of e. Similarly, there is a path P2 in MST (S) between y
and q whose edges have length at most that of e. Thus, the path P1 ◦ e ◦ P2

is a path between p and q whose edges have length at most L. In particular,
this path is contained in K(≤L).

5

To prove the converse, assume that the length of e is larger than L. Let
S1 and S2 be the partition of S obtained by deleting e from MST (S). Since
the unique path in MST (S) between p and q contains e, we have (i) p ∈ S1

and q ∈ S2, or (ii) p ∈ S2 and q ∈ S1. By a well known property of minimum
spanning trees, the length of e is equal to the minimum distance between any
point of S1 and any point of S2. If there is a path in K(≤L) between p and
q, then this path must contain an edge between some point of S1 and some
point of S2. Since the length of any such edge is larger than L, it follows
that such a path cannot exist.

Lemma 1 implies that a bottleneck connectedness query can be answered
by answering a lowest common ancestor query in the tree T (S). This tree
can be computed in O(n logn) time, by first computing the Delaunay tri-
angulation DT (S) of S (see [3]), and then running Kruskal’s algorithm on
DT (S) (see [6]). Given T (S), we preprocess it in O(n) time, so that low-
est common ancestor queries can be answered in O(1) time. (See Harel and
Tarjan [9], Schieber and Vishkin [13], or Bender and Farach-Colton [2].) We
have proved the following result.

Theorem 2 We can preprocess a set of n points in the plane in O(n logn)
time into a data structure of size O(n), such that bottleneck connectedness

queries can be answered in O(1) time.

3 Bottleneck shortest path length queries

Recall the sequence L1 < L2 < . . . < L(n

2)
of distances determined by any

two distinct points of the point set S. Also, recall that, for 1 ≤ i ≤
(

n
2

)

, K(i)

denotes the graph K(≤Li), i.e., the graph with vertex set S in which any two
distinct points p and q are connected by an edge if and only if |pq| ≤ Li.
We define K(0) to be the graph (S, ∅). Finally, recall that we write δ(i)(p, q)
instead of δ(≤Li)(p, q).

Let ε be any fixed real constant with 0 < ε ≤ 3. In this section, we show
how to preprocess the points of S into a data structure of size O(n2 log n),
such that ε-approximate bottleneck shortest path length queries can be an-
swered in O(log n) time. First we show that a query of the following type
can be answered in O(log log n) time: Given two points p and q of S and an
index i with 0 ≤ i ≤

(

n
2

)

, compute an ε-approximation to the length δ(i)(p, q)

6

of a shortest path between p and q in the graph K (i), i.e., a real number ∆,
such that δ(i)(p, q) ≤ ∆ ≤ (1 + ε) · δ(i)(p, q). Using an additional amount
of O(n2) space, we will extend this solution to solve general ε-approximate
bottleneck shortest path length queries (in which an arbitrary real number
L is part of the query, rather than the distance Li) in O(logn) time. Our
solution is based on an approach by Narasimhan and Smid [11].

We fix two distinct points p and q of S, and observe that

|pq| = δ((
n

2))(p, q) ≤ . . . ≤ δ(2)(p, q) ≤ δ(1)(p, q) ≤ δ(0)(p, q) = ∞.

Let k := min{i ≥ 0 : δ(i)(p, q) < ∞}. Since p and q are not connected by a
path in the graph K(k−1), we have |pq| > Lk−1 and, hence, |pq| ≥ Lk. On
the other hand, since p and q are connected by a path in K (k), and since any
such path contains at most n − 1 edges, we have

δ(k)(p, q) ≤ (n − 1)Lk ≤ (n − 1)|pq|.

Hence, for all i with k ≤ i ≤
(

n
2

)

, we have

|pq| ≤ δ(i)(p, q) ≤ (n − 1)|pq|.

Based on this observation, we partition the set {k, k+1, . . . ,
(

n
2

)

} into O(logn)
subsets, in the following way. For any integer j, let

Ij
pq :=

{

i : k ≤ i ≤
(

n

2

)

and (1 + ε/3)j|pq| ≤ δ(i)(p, q) < (1 + ε/3)j+1|pq|
}

.

Clearly, Ij
pq can only be non-empty if 0 ≤ j ≤ log1+ε/3(n − 1). We store for

each integer j where I j
pq 6= ∅,

1. a value `j
pq, which is the smallest element of the set I j

pq,

2. a value ∆(j)(p, q) which is equal to (1 + ε/3) · δ(`j
pq)(p, q).

Let us see how we can use this information to answer an ε-approximate
bottleneck shortest path length query for p and q. Let i be an integer with 0 ≤
i ≤

(

n
2

)

. We start by showing how the value of δ(i)(p, q) can be approximated.
First compute the integer j for which `j

pq ≤ i < `j−1
pq . Then return the value

∆ := ∆(j)(p, q).
To prove the correctness of this query algorithm, first observe that i ∈ I j

pq.

This implies that δ(i)(p, q) < (1 + ε/3)j+1|pq|. Similarly, since `j
pq ∈ Ij

pq, we

7

have δ(`j
pq)(p, q) ≥ (1 + ε/3)j|pq|. By combining these two inequalities, it

follows that δ(i)(p, q) < ∆. In a completely symmetric way, we obtain

∆ = (1 + ε/3) · δ(`j
pq)(p, q) < (1 + ε/3)j+2|pq| ≤ (1 + ε/3)2 · δ(i)(p, q).

Since 0 < ε ≤ 3, we have (1+ ε/3)2 ≤ 1+ ε. Therefore, ∆ < (1+ ε) · δ(i)(p, q).
This proves that ∆ is an ε-approximation to the length of a shortest path
between p and q in the graph K(i).

By storing the values `j
pq in sorted order in an array, the ε-approximation

to δ(i)(p, q) can be computed in O(log log n) time.
We store this information for each pair of points. Additionally, we store

the sequence L1 < L2 < . . . < L(n

2)
of distances. Given two query points p

and q of S and an arbitrary query value L ∈ R, we first use binary search to
find the index i for which Li ≤ L < Li+1. Since δ(≤L)(p, q) = δ(i)(p, q), we
then answer the query as described above.

The amount of space used by this solution is O(n2 log n), because we store
O(log n) values for each pair of points of S. Furthermore, the query time is
O(log n). Let us consider the preprocessing time. It clearly suffices to solve
the all-pairs-shortest-path problem for each graph K (i), 0 ≤ i ≤

(

n
2

)

. Using
the Floyd-Warshall algorithm, one such problem can be solved in O(n3) time;
see [6]. Hence, the overall preprocessing time is O(n5).

If we store with each value ∆(j)(p, q) a path in K(`j
pq) of length δ(`j

pq)(p, q),
then we can use this additional information to answer approximate bottle-
neck shortest path queries: Let L, i, and j be as above. Then the path P

stored with ∆(j)(p, q) has length δ := δ(`j
pq)(p, q) satisfying δ(i)(p, q) ≤ δ ≤

(1 + ε/3)δ(i)(p, q). (Observe that P is a path in K (i).) We have proved the
following result.

Theorem 3 For any real constant ε > 0, we can preprocess a set of n points

in the plane in O(n5) time into

1. a data structure of size O(n2 log n), such that ε-approximate bottleneck

shortest path length queries can be answered in O(log n) time,

2. a data structure of size O(n3 log n), such that ε-approximate bottleneck

shortest path queries can be answered in O(log n + `) time, where ` is

the number of edges on the reported path.

8

4 The bottleneck shortest path problem

In this section, we introduce a general approach for the approximate bottle-
neck shortest path problem. The idea is to approximate the sequence K (i),
1 ≤ i ≤

(

n
2

)

, of graphs by a “small” collection of sparse graphs, i.e., with
“few” edges. This notion is formalized in the definition below. For any graph
G and any two vertices p and q, we denote the length of a shortest path in
G between p and q by δ(G)(p, q).

Definition 1 Let S be a set of n points in the plane, let t ≥ 1 be a real

number, let J be a subset of {1, 2, . . . ,
(

n
2

)

} and, for each j ∈ J , let G(j) be a

graph with vertex set S all of whose edges have length at most Lj. We say

that the collection G = {G(j) : j ∈ J} is a collective bottleneck t-spanner of

S, if the following holds: for any i with 1 ≤ i ≤
(

n
2

)

, there is an index j ∈ J ,

such that j ≤ i and

δ(G(j))(p, q) ≤ t · δ(i)(p, q)

holds for all pairs of points p and q in S.

The purpose of this definition should be clear: In order to approximate a
bottleneck shortest path between p and q in the possibly dense graph K (i),
we compute a shortest path P between p and q in the graph G(j). Observe
that, since j ≤ i, P is a path in K(i) and δ(i)(p, q) ≤ δ(G(j))(p, q). Hence, P
is a t-approximate shortest path between p and q in K (i).

The goal is to define the collection G in such a way that shortest path
queries on them can be answered efficiently. Further goals are to minimize
(i) the value of t, (ii) the size of the index set J , and (iii) the number of
edges in the graphs in G. The following lemma gives a lower bound on the
size of J .

Lemma 4 The size of the index set J in Definition 1 is greater than or equal

to n − 1.

Proof. Let (p, q) be any edge of the Euclidean minimum spanning tree
MST (S) of S, and let i be the index such that |pq| = Li. Observe that
δ(i)(p, q) = |pq| < ∞. We claim that i ∈ J . To prove this, assume that
i 6∈ J . By Definition 1, there is an index j ∈ J such that j < i and
δ(G(j))(p, q) ≤ t ·δ(i)(p, q) < ∞. In particular, we have δ(j)(p, q) < ∞. By well
known properties of minimum spanning trees (see also the proof of Lemma 1),

9

however, we have δ(j)(p, q) = ∞, contradicting our assumption that i 6∈ J .
Hence, each of the n − 1 edges of MST (S) contributes an index to J .

In the next section, we discuss several constructions of collective bottle-
neck spanners G of S.

5 Examples of collective bottleneck spanners

5.1 The Yao-graph

In this section, we consider the Yao-graph [16], which is also known as the
geographic neighborhood graph. Let S be a set of n points in the plane, and
let 0 < θ < π/4 be an angle such that 2π/θ is an integer. We partition the
plane into a collection C of 2π/θ cones of angle θ, all having their apex at the
origin. For any point p ∈ S and any cone C ∈ C, let Cp be the cone obtained
by translating C by the vector ~p. (Hence, Cp has p as its apex.)

The Yao-graph Y (S, θ) has S as its vertex set. Let p be any point of S,
let C be any cone of C such that Cp ∩ (S \ {p}) 6= ∅, and let qp be the point
of Cp ∩ (S \ {p}) whose Euclidean distance to p is minimum. The edge set
of Y (S, θ) consists of all edges (p, qp) obtained in this way. Chang et al. [5]
have shown how to construct the graph Y (S, θ) in O(n logn) time.

Given two points p and q, we construct a path between p and q in Y (S, θ)
in the following way. If p = q, then there is nothing to do. Assume that
p 6= q. Let C be the cone in C such that q ∈ Cp. The graph Y (S, θ) contains
an edge (p, r), where r ∈ Cp and |pr| ≤ |pq|. We follow this edge, and
recursively construct a path between r and q. In the following two lemmas,
we will analyze the path constructed by this algorithm.

Lemma 5 Let p, q, and r be as above. We have

|rq| ≤ |pq| − (cos θ − sin θ)|pr|.

Proof. Let α be the angle between the line segments pq and pr, and let r′

be the orthogonal projection of r onto pq; see Figure 1. Observe that α ≤ θ.
We have |rr′| = |pr| sinα ≤ |pr| sin θ and |pr′| = |pr| cosα ≥ |pr| cos θ. It
follows that

|rq| ≤ |rr′| + |r′q| = |rr′| + |pq| − |pr′| ≤ |pr| sin θ + |pq| − |pr| cos θ,

10

p

q

r

r′

α

Figure 1: Illustrating the proof of Lemma 5.

proving the lemma.

Lemma 6 Let t = 1/(cos θ − sin θ), and let p and q be any two points of S.

There is a path between p and q in the Yao-graph Y (S, θ) whose length is less

than or equal to t|pq|, and all of whose edges have length at most |pq|.
Proof. The proof is by induction on the rank of |pq| in the sequence of all
(

n
2

)

distances determined by pairs of points in S. If p and q form a closest
pair in S, then the lemma holds because p and q are connected by an edge
in Y (S, θ).

We now assume that p and q do not form a closest pair. Furthermore,
we assume that the lemma holds for all pairs of points whose distance is less
than |pq|. Let C be the cone in C such that q ∈ Cp, and let (p, r) be the
edge in Y (S, θ) with r ∈ Cp. If r = q, then (p, q) is an edge in Y (S, θ) and
the lemma holds. So assume that r 6= q. Observe that |pr| ≤ |pq|. Since
0 < θ < π/4, Lemma 5 implies that |rq| < |pq|. Therefore, by the induction
hypothesis, there is a path P between r and q in Y (S, θ) whose length is less
than or equal to t|rq|, and all of whose edges have length at most |rq|. Let
P ′ be the path obtained by concatenating (p, r) and P . Then the length of
each edge of P ′ is less than or equal to |pq|. By Lemma 5, we have

|P ′| = |pr| + |P | ≤ |pr| + t|rq| ≤ |pr| + t|pq| − |pr| = t|pq|.
This completes the proof.

Let ε > 0 be a real constant. We choose a constant 0 < θ < π/4
such that 1/(cos θ − sin θ) ≤ 1 + ε and consider the graph Y (S, θ). Let

11

m denote the number of edges in this graph. Then m ≤ (2π/θ)n = O(n).
Let j1 < j2 < . . . < jm be the indices such that Lj1 < Lj2 < . . . < Ljm

are
the edge lengths of Y (S, θ). For any k with 1 ≤ k ≤ m, we denote by Y (jk)

the graph with vertex set S consisting of all edges of Y (S, θ) whose lengths
are at most Ljk

.
Let J := {jk : 1 ≤ k ≤ m}. We claim that G := {Y (jk) : 1 ≤ k ≤ m}

is a collective bottleneck (1 + ε)-spanner of S. To prove this claim, consider
any two points p and q of S and any integer i with 1 ≤ i ≤

(

n
2

)

. We may

assume that p and q are connected by a path in the graph K (i). Let k be
the integer such that Ljk

≤ Li < Ljk+1
, and let δ be the length of a shortest

path between p and q in the graph Y (jk). It is clear that jk ≤ i. It remains
to show that

δ ≤ (1 + ε) · δ(i)(p, q). (1)

Consider a shortest path P between p and q in K (i). Hence, the length of
P is equal to δ(i)(p, q). Consider an arbitrary edge (x, y) on P . Observe
that |xy| ≤ Li. By Lemma 6, there is a path Pxy between x and y in the
graph Y (S, θ) whose length is at most (1 + ε)|xy| and all of whose edges are
of length at most |xy|. Since Pxy is a path in Y (S, θ), each of its edges has
in fact length at most Ljk

. That is, Pxy is a path in the graph Y (jk). By
concatenating the paths Pxy, over all edges (x, y) of P , we obtain a path
between p and q in Y (jk) having length at most (1 + ε) times the length of
P . This proves (1). We have shown the following theorem.

Theorem 7 Let S be a set of n points in the plane, and let ε > 0 be a

constant. There exists a collective bottleneck (1 + ε)-spanner of S, consisting

of O(n) graphs. Each graph in this collection has O(n) edges.

If the set S consists of the center p of a circle and n − 1 points on the
boundary of this circle, then the degree of p in Y (S, θ) is n − 1. Therefore,
the bottleneck graphs in the collection G are not of bounded degree.

Arya et al. [1] have shown how to combine the Yao-graph with so-called
single-sink spanners to obtain a (1 + ε)-spanner of bounded degree for any
point set S. In the same way as in Lemma 6, it can be shown that this
spanner has the property that any two points p and q of S are connected
by a path whose length is less than or equal to (1 + ε)|pq|, and all of whose
edges have length at most |pq|. This implies the following result.

12

Theorem 8 Let S be a set of n points in the plane, and let ε > 0 be a

constant. There exists a collective bottleneck (1 + ε)-spanner of S, consisting

of O(n) graphs. The maximum degree of each graph in this collection is

bounded by a constant.

Even though the bottleneck graphs in Theorems 7 and 8 are small in
size, they are difficult to preprocess for shortest path queries. In the next
section, we will see how to obtain a collective bottleneck spanner consisting
of O(n) planar graphs. As we will show in Section 6, planar graphs have the
advantage that shortest path queries can be answered efficiently.

5.2 The Delaunay triangulation

Let S be a set of n points in the plane. We assume for simplicity that these
points are in general position, i.e., no three points of S are collinear, and no
four points of S are cocircular. Let DT (S) be the Delaunay triangulation of
S, see [3]. We will show that for any two points p and q of S, there exists a
path P between p and q in DT (S) such that (i) the length |P | of P is less
than or equal to 2π/(3 cos(π/6)) · |pq|, and (ii) no edge on P has length more
than |pq|. We will prove this claim by modifying Keil and Gutwin’s proof of
the fact that DT (S) is a (2π/(3 cos(π/6))-spanner of S; see [10]. (The proof
in [10] may produce a path between p and q that contains an edge whose
length is larger than |pq|.)

We start by stating the main lemma that is needed for our proof. We
remark that this lemma is similar to Lemma 1 in [10].

Before we can state the main lemma, we have to define the notion of
upper angle. Let p and q be two distinct points of S, and let L be the line
through p and q. Assume that L is not vertical and that p is to the left of
q. Let L+ and L− be the open halfplanes consisting of all points that are
above and below L, respectively. Let C be any circle that has p and q on its
perimeter, and let m be the center of C.

Assume that no point of S is in the intersection of L− and the interior of
C. Then the upper angle of p and q is defined as the angle by which we have
to rotate the line segment mp in clockwise order so that it coincides with
mq. See Figure 2 for an illustration.

Now assume that no point of S is in the intersection of L+ and the interior
of C. Then the upper angle of p and q is defined as the angle by which we have

13

p q

z

m
r

L
H

C

θ

p q

z

H

C

L

r

m

θ

Figure 2: Illustrating the assumptions in Lemma 9. There are two cases

depending on whether 0 < θ ≤ π or π < θ < 2π. There are no points of S in

the part of the interior of C that is below the line L.

to rotate the line segment mp in counterclockwise order so that it coincides
with mq.

Lemma 9 Let p and q be two distinct points of S, and let L be the line

through p and q. Let C be any circle that has p and q on its perimeter, and

let r and m be the radius and center of C, respectively. Assume that no point

of S is in the intersection of L− and the interior of C, or no point of S is

in the intersection of L+ and the interior of C. Let θ be the upper angle of

p and q. Then there exists a path P in DT (S) between p and q such that

1. the length of P is less than or equal to rθ, and

2. the length of each edge on P is less than or equal to |pq|.

5.2.1 Proof of Lemma 9

We will assume, for ease of presentation, that p and q are both on the x-axis,
p is to the left of q, and no point of S is in the part of the interior of C that
is below the x-axis.

If (p, q) is an edge of the convex hull of S, then it is also an edge of DT (S).
In this case, Lemma 9 clearly holds. So we assume from now on that (p, q)
is not a convex hull edge.

14

Our goal is to prove Lemma 9 by induction on the angle θ. In order to
do this, we will normalize the circle C so that, over all possible pairs p and
q of points in S, there are only a finite number of normalized circles.

To normalize C, we move the center m of C downwards along the bisector
of p and q; during this movement, we change C so that it always contains the
points p and q. We stop this process at the moment when the part of C below
the x-axis hits a point, say z, of S. Observe that z exists, because otherwise
(p, q) would be an edge of the convex hull of S. Observe that during the
movement, the radius r and the upper angle θ of C change. It is easy to see,
however, that the product rθ decreases. Hence, it suffices to prove Lemma 9
for the new circle C, which we will refer to as a normalized circle.

Hence, from now on, C is a normalized circle through the points p, q, and
z, where z is below the x-axis. This circle has center m and radius r. There
are no points of S in the part of the interior of C that is below the x-axis.

Each pair of points defines at most two normalized circles (depending on
whether the circle is empty above or below the line through the two points).
Therefore, there are O(n2) normalized circles. We proceed by induction on
the rank of the upper angles θ of these circles.

For the base case, assume that the angle θ of C is minimum over all
normalized circles. We claim that (p, q) is an edge of DT (S), which will
prove that Lemma 9 holds for the points p and q. To prove the claim,
assume that (p, q) is not an edge of DT (S). Then, by the definition of the
Delaunay triangulation, the part of the interior of C that is above the x-axis
contains at least one point of S.

For any point t of S that is in the interior of C, let Dt be the circle
through p, q, and t. Choose the point t such that no point of S lies in the
part of the interior of Dt that is above the x-axis. (Observe that such a t
must exist.) We will write D instead of Dt. By symmetry, we may assume
that t is to the left of m; see Figure 3.

Let C1 be the circle through p and t whose center lies on the segment pm.
We denote the center of C1 by m1. By the definition of D, no point of S lies
in the part of the interior of C1 that is below the line through p and t. Let
θ1 be the upper angle ∠pm1t. Observe that (i) the ray from m1 in direction
−→mq intersects the x-axis in a point of C1, and (ii) t is above this ray. This
implies that θ1 < θ.

If C1 is a normalized circle, then we have obtained a contradiction to our
assumption that θ is the smallest angle. In general, however, C1 will not be a
normalized circle. Therefore, we proceed as follows. We move the center m1

15

p

q

z

t

m

m1

C

D

C1

Figure 3: Illustrating the base case. The upper angle ∠pm1t is equal to θ1.

of C1 down along the bisector of p and t; during this movement, we change
C1 so that it always contains p and t. We stop at the moment when the part
of C1 that is below pt hits a point, say x, of S. (Observe that x exists: it is
equal to z or a point of S that is hit upon earlier.) The new circle C ′

1 is a
normalized circle, and its upper angle θ′1 is less than or equal to the upper
angle θ1 of the initial circle C1. Hence, θ′1 < θ, which is a contradiction. This
completes the base case.

For the inductive step, we again consider the normalized circle C with
upper angle θ = ∠pmq. We assume that θ is not the minimum angle. Fur-
thermore, we assume that Lemma 9 holds for all normalized circles whose
upper angles are less than θ. If (p, q) is an edge of DT (S), then Lemma 9
holds for the circle C. So we may assume that (p, q) is not an edge of DT (S).
We define the point t and the circle D as in the base case. We may assume
without loss of generality that t is to the left of m. Observe that θ ∈ (0, 2π).
We will treat the cases 0 < θ ≤ π and π < θ < 2π separately. Before pro-
ceeding, we give some constructions that will be used in the sequel. (Refer
to Figures 4 and 5.)

Let C1 be the circle through p and t whose center lies on the segment pm.
We denote the center and radius of C1 by m1 and r1, respectively. Similarly,
let C2 be the circle through t and q whose center lies on the segment qm. We
denote the center and radius of C2 by m2 and r2, respectively. By our choice
of D, no point of S lies in the part of the interior of C1 that is below the line
through p and t, and no point of S lies in the part of the interior of C2 that
is below the line through q and t.

16

Consider the two intersection points between C1 and the x-axis. One of
these intersection points is p; we denote the other one by a1. Similarly, let
a2 be the intersection point between C2 and the x-axis that is not equal to q.

Let C3 be the circle through a1 and a2 whose center is the intersection
between the line through m1 and a1 and the line through m2 and a2. We
denote the center and radius of C3 by m3 and r3, respectively.

We observe that the following four triangles are all similar isosceles tri-
angles with two equal base angles, which we will denote by φ: 4(p, m, q),
4(p, m1, a1), 4(a2, m2, q), and 4(a2, m3, a1).

As in the base case, both upper angles θ1 := ∠pm1t and θ2 := ∠tm2q are
less than θ. We use the same construction as in the base case to move m1

down along the bisector of p and t (changing C1 such that it always contains
p and t) until the part of C1 that is below pt hits a point of S. Let C ′

1 be the
resulting circle, and let θ′1 and r′1 be its upper angle and radius, respectively.
Then C ′

1 is a normalized circle, r′1θ
′
1 ≤ r1θ1, and no point of S is in the part

of the interior of C ′
1 that is below the line through p and t. Hence, by the

induction hypothesis, there is a path P1 between p and t in DT (S), having
length |P1| ≤ r′1θ

′
1 ≤ r1θ1, and all of whose edges have length at most |pt|. In

a completely symmetric way, there is a path P2 between t and q in DT (S),
having length |P2| ≤ r2θ2, and all of whose edges have length at most |tq|.
Case 1: 0 < θ ≤ π; see Figure 4.

Let P be the concatenation of P1 and P2. Then

|P | = |P1| + |P2| ≤ r1θ1 + r2θ2 = r1θ + r2θ − (r1(θ − θ1) + r2(θ − θ2)) .

Since 0 < θ ≤ π, a2 is to the left of a1. Observe that

1. the length of the upper arc of C3 between a2 and a1 is equal to r3θ,

2. the length of the upper arc of C1 between t and a1 is equal to r1(θ−θ1),
and

3. the length of the upper arc of C2 between a2 and t is equal to r2(θ−θ2).

Since the part of C3 above the x-axis is convex and contained in both parts
of the interiors of C1 and C2 that are above the x-axis, we have

r1(θ − θ1) + r2(θ − θ2) ≥ r3θ.

17

p q

C

D

z

t

m1

m

m2

m3

a1a2

C1

C2

C3

Figure 4: Illustrating Case 1.

Hence,

|P | ≤ (r1 + r2 − r3)θ =

(|pa1|
2 cos φ

+
|a2q|

2 cosφ
− |a2a1|

2 cosφ

)

θ =
|pq|

2 cos φ
θ = rθ.

Since 0 < θ ≤ π, we have |pt| ≤ |pq| and |tq| ≤ |pq|. Recall that all edges
on P1 have length at most |pt| and all edges on P2 have length at most |tq|.
Therefore, the length of each edge on P is less than or equal to |pq|.
Case 2.a: π < θ < 2π and t is inside the circle having p and q as diameter;
see Figure 5.

Let P be the concatenation of P1 and P2. Recall that θ1 < θ and θ2 < θ.
We have

|P | = |P1| + |P2| ≤ r1θ1 + r2θ2 ≤ (r1 + r2)θ.

If a2 is to the right of a1, then

|P | ≤ (r1 + r2)θ =

(|pa1|
2 cos φ

+
|a2q|

2 cosφ

)

θ ≤ |pq|
2 cosφ

θ = rθ.

18

p

q

z

t

m

m1

C

D

C1

a1 a2

C3

m2

C2

Figure 5: Illustrating Case 2.a. The circle C3 has m3 as its center.

If a2 is to the left of a1, then |P | ≤ rθ by the same argument as in Case 1.
Since t is contained in the circle with p and q as diameter, we have

|pt| ≤ |pq| and |tq| ≤ |pq|. As a result, the length of each edge on P is less
than or equal to |pq|.
Case 2.b: π < θ < 2π and t is outside the circle R with p and q as diameter;
see Figure 6.

Let C4 be the circle through p and z whose center is on the x-axis. We
denote the center and radius of C4 by m4 and r4, respectively. Let θ4 be the
upper angle ∠pm4z. (Recall our definition of upper angle given just before
Lemma 9.) Similarly, let C5 be the circle through q and z whose center is on
the x-axis. We denote the center and radius of C5 by m5 and r5, respectively.
Let θ5 be the upper angle ∠zm5q.

Observe that no point of S is contained in the part of the interior of R
that is above the x-axis. Therefore, there is no point of S in the part of the
interior of C4 that is above the line through p and z. Similarly, there is no
point of S in the part of the interior of C5 that is above the line through q and
z. We also observe that both θ4 and θ5 are less than π and, hence, less than
θ. After normalizing C4 and C5, in the same way as we did before, we can
apply the induction hypothesis. Hence, there exists a path P4 between p and
z in DT (S), having length |P4| ≤ r4θ4, and all of whose edges have length at
most pz. Similarly, there exists a path P5 between z and q in DT (S), having
length |P5| ≤ r5θ5, and all of whose edges have length at most zq. Let P be

19

p q

z

t

m

C

C4

C5

m4

m5

R

Figure 6: Illustrating Case 2.b. The upper angle ∠pm4z is equal to θ4; the

upper angle ∠zm5q is equal to θ5.

the concatenation of P4 and P5. Then

|P | = |P4| + |P5| ≤ r4θ4 + r5θ5 ≤ (r4 + r5)θ.

Since z is contained in R, both r4 and r5 are less than or equal to |pq|/2.
Therefore, we have |P | ≤ rθ.

Finally, since both |pz| and |zq| are less than |pq| (this again follows from
the fact that z is contained in R), the length of each edge on P is less than
or equal to |pq|. This concludes the proof of Lemma 9.

5.2.2 A collective bottleneck planar spanner

Using Lemma 9, we obtain the theorem below. We omit the proof, because it
is basically the same as the proof of Theorem 1 in [10]. Replacing Lemma 1
in [10] by Lemma 9 guarantees that the length of each edge on the path is
less than or equal to |pq|.
Theorem 10 Let S be a set of n points in the plane, let DT (S) be the

Delaunay triangulation of S, and let p and q be two points of S. There

is a path between p and q in DT (S) whose length is less than or equal to

2π/(3 cos(π/6)) · |pq| and all of whose edges have length at most |pq|.
We proceed as in Section 5.1. Let m be the number of edges of DT (S),

and let j1 < j2 < . . . < jm be the indices such that Lj1 < Lj2 < . . . < Ljm

20

are the edge lengths of DT (S). Since DT (S) is a planar graph, we have
m ≤ 3n− 6. For any k with 1 ≤ k ≤ m, let DT (jk) be the graph with vertex
set S consisting of all edges of DT (S) whose lengths are at most Ljk

. As in
Section 5.1, we obtain the following result.

Corollary 11 Let S be a set of n points in the plane. The collection G :=
{DT (jk) : 1 ≤ k ≤ m} of planar graphs constitutes a collective bottleneck t-
spanner of S, for t = 2π/(3 cos(π/6)). The number of graphs in this collection

is less than or equal to 3n − 6.

6 Bottleneck shortest path queries in planar

graphs

In this section, we address the following problem: Given a set S of n points
in the plane and a planar graph G with vertex set S, build a data structure
that can answer bottleneck queries of the following type: Given two points
p and q of S and a real number L, decide whether there is a path between p
and q in G all of whose edges are of length at most L, and report the shortest
such path if such a path exists.

Using the results of Section 2, existence queries can be answered in O(1)
time. We will present a data structure of size O(n5/2) that allows the shortest
path whose edges have lengths at most L to be reported in O(

√
n + `) time,

where ` is the number of edges on the reported path.
Our solution uses the following result, due to Djidjev [7], for answering

general shortest path queries in the entire planar graph G.

Lemma 12 ([7]) Let S be a set of n points in the plane and let G be a

planar graph with vertex set S. We can preprocess G in O(n3/2) time into a

data structure of size O(n3/2) such that the shortest path in G between any

two query points can be computed in O(
√

n + `) time, where ` is the number

of edges on the reported path.

Consider again the planar graph G with vertex set S. Let e1, e2, . . . , em be
the m edges of G, sorted by their lengths. For any i with 1 ≤ i ≤ m, let |ei|
denote the Euclidean length of edge ei, and let G(i) be the graph consisting
of all edges of G having length at most |ei|.

In order to answer bottleneck shortest path queries in G, we build the
shortest path data structure of Lemma 12 for each of the graphs G(i). We

21

also compute a labeling of the vertices of each G(i) so that two vertices have
the same label if and only if they are in the same connected component of
G(i). The following observation is obvious.

Observation 1 Let p and q be two points of S, let L be a real number, and

let i be the integer such that |ei| ≤ L < |ei+1|.

1. There is a path between p and q in G all of whose edges have length at

most L if and only if p and q are in the same connected component of

G(i).

2. The shortest path between p and q in G(i) is the same as the shortest

path between p and q in G all of whose edges have length at most L.

Thus, we build a binary search tree T over the sorted edge set of G. In
O(log n) time, we can find the index i such that |ei| ≤ L < |ei+1|. Given
that every node of T stores a pointer to the corresponding graph G(i) and the
shortest path data structure for G(i), it now takes constant time to retrieve
the two labels of the vertices p and q in G(i), and compare them to decide
whether p and q are in the same connected component of G(i). If they are,
we query the shortest path data structure to report the shortest path. Using
the data structure of Lemma 12, this takes O(

√
n + `) time, where ` is the

number of edges in the reported path.
The binary search tree T has size O(n). Since G is planar, the number m

of its edges is less than or equal to 3n−6. Hence, we build O(n) shortest path
data structures of size O(n3/2) each, one per graph G(i). Each of these data
structures can be constructed in O(n3/2) time. Hence, the total preprocessing
time and amount of space used by our data structure is O(n5/2). Thus, we
obtain the following theorem.

Theorem 13 Let S be a set of n points in the plane and let G be a planar

graph with vertex set S. We can preprocess G in O(n5/2) time into a data

structure of size O(n5/2) such that the following type of bottleneck queries

can be answered: Given any two points p and q of S and any real number L,

decide whether there is a path between p and q in G all of whose edges have

length at most L. If such a path exists, report the shortest such path. The

decision part of the query takes O(1) time, whereas reporting the shortest

path takes O(
√

n + `) time, where ` is the number of edges on the reported

path.

22

If we combine Theorems 10 and 13, then we obtain the following result.

Theorem 14 Let S be a set of n points in the plane. We can preprocess S
in O(n5/2) time into a data structure of size O(n5/2) such that t-approximate

bottleneck shortest path queries, for t = 2π/(3 cos(π/6)), can be answered in

O(
√

n + `) time, where ` is the number of edges on the reported path.

7 Conclusion

We have presented efficient algorithms to solve a variety of geometric bot-
tleneck problems. In each case, we show how to preprocess the data so that
(approximate or exact) shortest path queries can be answered efficiently. In
solving these problems, we use an array of tools such as minimum spanning
trees, spanners, and the Delaunay triangulation.

The amount of preprocessing and space used in Theorems 3, 13, and 14,
are very high. It is an open problem whether these bounds can be improved.

The graphs in the collective bottleneck spanner of Theorem 8 are of
bounded degree, but they are not planar. On the other hand, the graphs
in the collective bottleneck spanner of Corollary 11 are planar, but their de-
gree may be unbounded. We leave it as an open problem to decide whether
there exists a collective bottleneck spanner consisting of planar graphs, all
having bounded degree. Observe that Bose et al. [4] have shown that a pla-
nar spanner of bounded degree can be computed for any point set. This
spanner, however, does not have the property that each edge on a spanner
path between two points p and q has length at most |pq|. Therefore, it is not
clear if this result can be used in our context.

Acknowledgement

We thank an anonymous referee for bringing Neto’s PhD thesis [12] to our
attention.

References

[1] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean
spanners: short, thin, and lanky. In Proceedings of the 27th ACM Sym-

posium on the Theory of Computing, pages 489–498, 1995.

23

[2] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In
Proceedings of the 4th Latin American Symposium on Theoretical Infor-

matics, volume 1776 of Lecture Notes in Computer Science, pages 88–94,
Berlin, 2000. Springer-Verlag.

[3] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-

putational Geometry: Algorithms and Applications. Springer-Verlag,
Berlin, 2nd edition, 2000.

[4] P. Bose, J. Gudmundsson, and M. Smid. Constructing plane spanners
of bounded degree and low weight. In Proceedings of the 10th European

Symposium on Algorithms, volume 2461 of Lecture Notes in Computer

Science, pages 234–246, Berlin, 2002. Springer-Verlag.

[5] M. S. Chang, N.-F. Huang, and C.-Y. Tang. An optimal algorithm for
constructing oriented Voronoi diagrams and geographic neighborhood
graphs. Information Processing Letters, 35:255–260, 1990.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

[7] H. N. Djidjev. Efficient algorithms for shortest path queries in planar
digraphs. In Proceedings of the 22nd Workshop on Graph Theoretic Con-

cepts in Computer Science, volume 1197 of Lecture Notes in Computer

Science, pages 151–165, Berlin, 1996. Springer-Verlag.

[8] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, pages 425–461. Elsevier
Science, Amsterdam, 2000.

[9] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM Journal on Computing, 13:338–355, 1984.

[10] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate
the complete Euclidean graph. Discrete & Computational Geometry,
7:13–28, 1992.

[11] G. Narasimhan and M. Smid. Approximation algorithms for the bot-
tleneck stretch factor problem. Nordic Journal of Computing, 9:13–31,
2002.

24

[12] D. M. Neto. Efficient Cluster Compensation for Lin-Kernighan Heuris-

tics. Ph.D. thesis, Department of Computer Science, University of
Toronto, Toronto, Canada, 1999.

[13] B. Schieber and U. Vishkin. On finding lowest common ancestors: sim-
plifications and parallelisations. SIAM Journal on Computing, 17:327–
334, 1988.

[14] M. Smid. Closest-point problems in computational geometry. In J.-
R. Sack and J. Urrutia, editors, Handbook of Computational Geometry,
pages 877–935. Elsevier Science, Amsterdam, 2000.

[15] I. Stojmenovic, editor. Handbook of Wireless Networks and Mobile Com-

puting. Wiley and Sons, 2002.

[16] A. C. Yao. On constructing minimum spanning trees in k-dimensional
spaces and related problems. SIAM Journal on Computing, 11(4):721–
736, 1982.

25

