
Adaptive Tuple Differential Coding

Jean-Paul Deveaux, Andrew Rau-Chaplin, and Norbert Zeh

Faculty of Computer Science, Dalhousie University, Halifax NS Canada,
jpdeveaux@starcatcher.ca, arc@cs.dal.ca, nzeh@cs.dal.ca

Abstract. It is desirable to employ compression techniques in Rela-
tional OLAP systems to reduce disk space requirements and increase
disk I/O throughput. Tuple Differential Coding (TDC) techniques have
been introduced to compress views on a tuple level by storing only the
differences between consecutive ordered tuples. These techniques work
well for highly regular data in which the differences between tuples are
fairly constant but are less effective on real data containing either skew or
outliers. In this paper we introduce Adaptive Tuple Differential Coding
(ATDC), which employs optimization techniques to analyze blocks of tu-
ples to detect large tuple differences, with the purpose of isolating them
to minimize their negative effect on the compression of neighbouring tu-
ples. Our experiments show that this new algorithm provides an increase
in compression ratio of 15–30% over TDC on typical real datasets.

1 Introduction

Many types of information systems, particularly Relational On-Line Analytical
Processing (ROLAP) systems, must store ordered multi-dimensional views on
disk. Data compression is often critical to their success due to the massive size
of the views involved. A properly implemented compression algorithm can save
disk space and reduce the overall amount of time required to answer queries, as
long as the overhead required to compress and decompress the data is less than
the reduction in disk I/O time resulting from the compression.

In order to use compression in a live database environment, compression and
decompression has to be fast, and the basic database functionality (insert, query,
update in place) has to be retained. This rules out standard general-purpose
compression techniques, as they are too computationally expensive and their
strength lies in compressing large files rather than, say, individual disk blocks.

Tuple Differential Coding (TDC) techniques initially introduced by Ng and
Ravishankar [6] work by storing differences between consecutive tuples and pro-
vide view compression that is often superior to traditional compression tech-
niques both in terms of compression ratio achieved and compression and decom-
pression time required. However, while TDC methods perform well on databases
where the gaps between successive tuples are reasonably small and constant,
they often deteriorate on real data containing either skew or outliers. For an
overview of compression techniques as applied to information systems, see [3, 5].

Given a sequence of n tuples T = [t1, . . . , tn] to be encoded, TDC breaks it
into subsequences, each of which is stored in a separate block. The subsequence

2 J.-P. Deveaux, A. Rau-Chaplin, and N. Zeh

encoded tuple differences

lh
h

tu
p

le
 d

if
f.

 b
it

 l
en

g
th

lk

encoded tuple differences

tu
p

le
 d

if
f.

 b
it

 l
en

g
th k

lili–1 b
o
u
n
d
ar

y
 t

u
p
le

encoded tuple differences

tu
p
le

 d
if

f.
 b

it
 l

en
g
th

(a) TDC: Similar
differences

(b) TDC: Dissimilar
differences

(c) ATDC: Effect of a
boundary tuple

Fig. 1. Encoded tuple difference values where the shaded area represents wasted space.

T [a, b] = [ta, . . . , tb] stored in a given block is encoded as follows: For a tuple
tj , let φ(tj) be its “standard” encoding discussed in Section 2.1, let ∆(tj) =
φ(tj) − φ(tj−1), let lj = ⌈log2(∆(tj) + 1)⌉, and let l∗ be the number of bits
required to encode any tuple using encoding φ. Then the sequence T [a, b] is stored
as the sequence [φ(ta), ∆(ta+1), . . . , ∆(tb)], plus a constant amount of meta-data
discussed later. The φ(tj) value is stored as a length-l∗ bit string. Each of the
∆(tj) values is stored using la+1,b = maxa+1≤j≤b lj bits. This saves (b − a)(l∗ −
la+1,b) bits of space compared to storing values φ(ta), . . . , φ(tb) explicitly. The
number of tuples stored in a block varies and depends on the number of bits
needed to encode the tuples. In particular, tuples are added to blocks one by
one. If so far, tuples ta, . . . , tj have been added to the current block, the next
tuple tj+1 is added to the same block if l∗ + (j + 1− a)la+1,j+1 is no more than
the number of bits that fit in a block; otherwise, tj+1 starts a new block.

Since the number of bits used to store the difference values in each block is
determined by the largest difference value in the block, TDC performs best when
the differences ∆(tj) in a block are small and do not vary much; more precisely,
when the la+1,b value for the sequence T [a + 1, b] is by only a small constant
factor α > 1 greater than the average number of bits required to encode these
difference values: la+1,b ≤ α ·

∑b

j=a+1 lj/(b − a).

This is illustrated in Figure 1(a). In this figure, the largest difference ∆(th)
occurs in position h, forcing us to encode all differences in T [a + 1, b] using
la+1,b = lh bits. The shaded area represents the number of bits wasted by storing
the differences as fixed-length bitstrings compared to encoding each value ∆(tj)
in lj bits. However, since most encoded tuple difference values in this block
require close to lh bits to be encoded, padding them to length lh does not waste
much space in this case. Figure 1(b), on the other hand, shows a scenario where
a single difference value (at position k) forces us to use significantly more than
∑b

j=a+1 lj bits to encode the difference values in the block. As a result, the
wasted bits represented by the grey area now account for a major portion of the
space used to store the difference values in the block.

This phenomenon should not be unexpected in a dataset made up of real (as
opposed to synthetic) data. Real data will contain clusters and other patterns
not always found in synthetic datasets. Large tuple differences are representative
of “gaps” in real data and should at least be tolerated, if not anticipated.

Adaptive Tuple Differential Coding 3

In this paper we introduce Adaptive Tuple Differential Coding (ATDC),
which employs greedy optimization techniques to analyze blocks of tuples to de-
tect large tuple differences, with the purpose of isolating them to minimize their
negative effect on the compression of neighbouring tuples. Our experiments show
that ATDC provides an increase in compression ratio of 15–30% over standard
TDC on typical real datasets, depending on the distribution of the data in the
domain space. Additionally, the ATDC algorithm proves to be very robust in
situations where there are large gaps due to data skew or outliers. Our experi-
ments show that a good implementation of the ATDC algorithm does not incur
any performance penalty compared to reading and writing uncompressed data
and compared to a variant of TDC called XTDC [5]. Given the increasing gap
between processor speeds and disk access rates, we believe that the savings in
I/O-time obtained using the ATDC algorithm will outweigh the investment in
compression and decompression time in the near future, thus making ATDC a
simple and effective tool for increasing the performance of modern information
systems that store relational tables on disk.

Section 2 discusses the ATDC algorithm. Section 3 discusses our experimental
results. Concluding remarks are given in Section 4.

2 The ATDC Algorithm

As we have already done for the TDC algorithm in the introduction, we discuss
the ATDC algorithm in the context of storing a sequence T = t1, . . . , tn of tuples
in a sequence of blocks so that each block can be decoded in isolation.

Structurally, ATDC follows the basic framework of the TDC method. The
tuples in the given sequence T = [t1, . . . , tn] are converted into integers φ(ti)
using an encoding function φ. Then the sequence T is divided into subsequences
T1, . . . , Tk, where Ti = [tai

, . . . , tbi
], 1 = a1 < . . . < ak ≤ bk = n, and bi =

ai+1 − 1, for 1 ≤ i < k. We call the sequences T1, . . . , Tk chunks. The first
tuple tai

in each chunk Ti is stored explicitly using its encoding φ(tai
), while

all subsequent tuples tj in Ti are represented by their difference values ∆(tj).
We call tai

the boundary tuple of Ti. Each chunk Ti is stored as the sequence
[ni, l̄i, φ(ai), ∆(tai+1), . . . , ∆(tbi

)], where ni = bi − ai +1 is the number of tuples
in Ti and l̄i = lai+1,bi

; φ(ai) is stored as a length-l∗ bit string and each ∆(tj) is
stored as a length-l̄i bit string.

The key difference between TDC and ATDC is the definition of chunks and
their association with physical disk blocks. TDC declares a tuple tj to be the
boundary tuple of a new chunk Ti whenever adding tj to Ti−1 would increase
the number of bits required to encode Ti−1 beyond the capacity of a disk block.
Each disk block then stores one chunk.

ATDC on the other hand chooses boundary tuples to be those tuples tj whose
difference values ∆(tj) are significantly higher than those of the tuples in their
vicinity, as these are exactly the tuples that negatively affect the compression
ratio of TDC. (We describe the exact choice of these tuples in Section 2.2.) The
space savings resulting from this strategy are visualized in Figure 1(c), which

4 J.-P. Deveaux, A. Rau-Chaplin, and N. Zeh

shows the same sequence as Figure 1(b), but encoded using ATDC. By storing
tuple tk as a boundary tuple, we can store the tuples preceding and succeeding
tk in significantly fewer bits than using TDC. The penalty we pay is that we
need to store φ(tk) explicitly, as well as values ni and l̄i for the chunk Ti starting
with boundary tuple tk. Let cboundary be the number of bits required to store the
values ni, l̄i, and φ(tk). It is worthwhile to make tk a boundary tuple if the space
savings for storing the difference values before and after tk exceed cboundary − lk.

As a result of choosing boundary tuples as described above, chunks may vary
greatly in size, and we may end up storing more than one chunk in each disk
block. The boundary tuples in all chunks in a disk block are encoded using the
same number of bits, as are the tuple differences in each chunk. The number of
bits used to encode tuple differences in different chunks, however, may differ.

More precisely, in order to fill disk blocks completely and in order to avoid
loading the whole data set to be encoded into memory, we apply the following
strategy to pack the data into blocks: Assuming that the blocks we have filled
so far store tuples t1, . . . , ta−1, we load the next m = b − a + 1 tuples ta, . . . , tb
into memory, encode these tuples using one of the encoding functions discussed
in Section 2.1 and apply one of the boundary tuple selection algorithms from
Section 2.2 to this sequence. We then iterate over the sequence of tuples and
pack them into the current physical block until it is full. For each tuple tj , if it
is marked as a boundary tuple, we add the meta-information of its chunk and
φ(tj) to the physical block. For any other tuple tj , we encode ∆(tj) using l̄i bits,
where Ti is the chunk containing tj .

We choose the number m of tuples to be packed into a disk block so that we
expect that their encoding requires at least the number of bits that can fit into
a block. Thus, we may end up storing only a subsequence [ta, . . . , tb′], b′ ≤ b, of
tuples in the current block. Tuples tb′+1, . . . , tb are reconsidered when filling the
next block. On the rare occasion when encoding tuples ta, . . . , tb uses less than a
block-full of space, we double the number of tuples we consider and restart the
whole packing procedure for the current block.

The following two subsections discuss the two main factors affecting com-
pression ratio and compression/decompression time: the choice of the encoding
function φ and the selection of boundary tuples.

2.1 Encoding Tuples

We consider two encoding functions: a mixed-radix (MR) and a bit-shift (BS)
encoding. Using the MR-encoding, a tuple t = (a1, . . . , ad) is encoded as

φ(a1, . . . , ad) =

d
∑

i=1

ai

d
∏

j=i+1

card(j)

 ,

where card(j) denotes the cardinality of dimension j (ie, the values in this di-
mension are integers between 0 and card(j) − 1). Using the BS-encoding, each
value aj is encoded using ⌈log2 card(j)⌉ bits, and the value of φ(a1, . . . , ad) is
the concatenation of these bit strings.

Adaptive Tuple Differential Coding 5

The advantage of the MR-encoding is that it uses the minimum number of
bits necessary to encode all possible tuple values in the given view. It is computa-
tionally expensive to decode, however, as computing φ−1(e) incurs one division
per dimension. An encoding using the BS-encoding can be expected to waste
half a bit per dimension on average, but its inverse is extremely fast to compute
using simple bit-shift operations. We investigate the impact of this trade-off on
compression ratio and compression/decompression time in our experiments.

2.2 Selection of Boundary Tuples

The key step in the ATDC algorithm is the selection of boundary tuples. We de-
scribe this process as if we were to apply it to the whole sequence T = [t1, . . . , tn].
Recall, however, that we apply it only to subsequences [ta, . . . , tb] expected to
be long enough to fill a disk block in encoded form.

We define the set of boundary tuples incrementally, starting with t1 as the
only initial boundary tuple. Given the current sequence of boundary tuples, we
inspect subsequences T [a, b] that currently do not contain any boundary tuples,
choose a candidate tuple tj , a ≤ j ≤ b, in each such sequence and decide whether
making tj a boundary tuple reduces the amount of space necessary to encode
T [a, b]; if so, we add tj to the set of boundary tuples.

We present two algorithms that choose subsequences T [a, b] and the can-
didate boundary tuples tj in these subsequences differently. Both algorithms
satisfy the condition that encoding T [a, b] takes (b − a + 1) · lj bits if tj is not
chosen as a boundary tuple, and (j − a) · la,j−1 + cboundary + (b − j) · lj+1,b bits
if tj is chosen as a boundary tuple. Thus, choosing tj as a boundary tuple re-
duces the amount of space required to store the sequence T [a, b] if and only if
(j−a) · la,j−1 +cboundary +(b−j) · lj+1,b < lj ·(b−a+1). In this case, we say that
tuple tj satisfies the boundary tuple condition with respect to sequence T [a, b].

Top-down boundary tuple selection. The tuples that are most likely to decrease
the cost of storing subsequences of T when chosen as boundary tuples are those
whose tuple differences are large relative to the tuple differences of their neigh-
bours. Our first algorithm, called the top-down boundary tuple selection algo-

rithm or Top-Down, is based on this observation and can be described recur-
sively: Initially, let t1 be the only boundary tuple and invoke Top-Down on the
sequence T [2, n]. Given a sequence T [a, b], let i be the index such that a ≤ i ≤ b
and li = maxa≤j≤b lj. If tuple ti satisfies the boundary tuple condition w.r.t. se-
quence T [a, b], we add ti to the set of boundary tuples and recurse on sequences
T [a, i − 1] and T [i + 1, b]. Otherwise, we choose no boundary tuples in T [a, b].

When implemented naively, this algorithm takes O(n2) time. Next we de-
scribe a faster method to implement the Top-Down algorithm, which runs in
O(n) time. The key is to store the entire tuple sequence in a Cartesian tree [8].
This is a binary tree in which each node has a key and a priority. The tree is
a binary search tree w.r.t. the keys, that is, for every node, the keys in its left
subtree are less than the key of the node itself, which in turn is less than the
keys in the right subtree; and it is heap-ordered w.r.t. the priorities, that is, no

6 J.-P. Deveaux, A. Rau-Chaplin, and N. Zeh

20 18 12 11 15 6 6 35 16 22 27 15 6 19 10

20

18

12

11

15

6

6

35

16

22

27

15

6

19

10

Fig. 2. Example of a Cartesian tree. The values in the boxes denote tuple differences.

node has a greater priority than its parent. In the context of boundary tuple
selection, the key of a tuple tj is its position j in the tuple sequence; its priority
is the number of bits lj required to store ∆(tj) (see Figure 2).

A Cartesian tree for a sequence of elements sorted by their keys can be built
in linear time [1]. Every node v in the tree can be seen as representing the
subsequence Tv consisting of all tuples stored at descendant nodes of v. The
construction algorithm is easily augmented to compute the size of Tv for every
node v and store this size with v. Once the tree is given, implementing procedure
Top-Down in O(n) time is straightforward. In particular, testing whether a
node v satisfies the boundary tuple condition translates into the condition |Tv| ·
lv > |Tx| · lx + cboundary + |Ty| · ly, where x and y are the children of v in T .

Bottom-up boundary tuple selection. The problem with the top-down approach
is that it is short-sighted in nature: by deciding that a tuple tj is an unsuitable
choice for a boundary tuple, we do not consider any further tuples in its subtree.
It may be, however, that tj by itself is not a good boundary tuple, while choosing
tj together with additional tuples in its subtree leads to significant compression.

Our second tuple selection algorithm, the bottom-up boundary tuple selection

algorithm or Bottom-Up, shown in Algorithm 1, tries to address this weakness.
In order to choose the boundary tuples in a subsequence Tv represented by a node
v, it first considers v’s left and right subtrees in isolation and chooses boundary
tuples for the subsequences represented by these trees. It then considers the
subsequence T [a, b] of Tv, where a − 1 and b + 1 are the indices of the last
boundary tuple chosen in the left subtree and the first boundary tuple chosen in
the right subtree, respectively. If v satisfies the boundary tuple condition w.r.t.
sequence T [a, b], it is added to the sequence of boundary tuples.

In procedure Bottom-Up, not choosing a node v as a boundary tuple does
not prevent us from choosing boundary tuples in v’s subtree, as was the case in
Top-Down. The down-side of Bottom-Up is that it always traverses the whole
tree, while Top-Down can be expected to stop recursing after visiting only a
small portion of the tree. Our experiments investigate the resulting trade-off
between compression time and compression ratio.

Adaptive Tuple Differential Coding 7

Algorithm 1 Bottom-Up(v): Returns a triple (B, lp, ls), where B is a list of
boundary tuple indexes in Tv, lp is the number of bits required to encode each
tuple difference up to the first boundary tuple in B, and ls is the number of bits
required to encode each tuple difference after the last boundary tuple in B.

1 if v has a left child
2 then (L, lp,l, ls,l)← Bottom-Up(left(v))
3 else (L, lp,l, ls,l)← (∅, 0, 0)
4 if v has a right child
5 then (R, lp,r, ls,r)← Bottom-Up(right(v))
6 else (R, lp,r, ls,r)← (∅, 0, 0)
7 if L = ∅
8 then a← index of the leftmost tuple in Tv

9 else a← (last entry in L) + 1
10 if R = ∅
11 then b← index of the rightmost tuple in Tv

12 else b← (first entry in R)− 1
13 if v satisfies the boundary tuple condition w.r.t. sequence T [a, b]

� This is easily checked using indices a, b, values ls,l and lp,r, and lv = priority(v).
14 then return the triple (B, lp,l, ls,r), where B is the concatenation of L, a new list

node storing the index of v, and R.
15 else if L = ∅
16 then lp ← lv
17 else lp ← lp,l

18 if R = ∅
19 then ls ← lv
20 else ls ← ls,r

21 return the triple (B, lp, ls), where B is the concatenation of L and R.

3 Experimental Analysis

We evaluated the performance of the ATDC algorithm on a collection of different
types of datasets, both in terms of the compression ratios achieved and the
time required for compression and decompression. Both the Bottom-Up and
Top-Down boundary tuple selection algorithms were included in the tests, as
were the bit-shifting and mixed-radix encoding techniques. The results of these
tests were compared with tests run using an implementation of the XTDC variant
of TDC proposed in [5], as well as a Bit Compression algorithm [6].

We conducted all our experiments on an Intel P4 2.8GHz processor with
512KB L2 cache and 1GB Dual-channel DDR333 RAM on a motherboard using
the Intel 875P chipset and equipped with a 3ware 7506-8 parallel ATA RAID
controller and 3 Maxtor MaxLine Plus II 250GB drives (ATA/133) in RAID
Level 5 configuration. The operating system was Debian Linux 2.6.8.

The compression achieved by the Bit Compression algorithm served as the
baseline against which the compression ratios of the XTDC and ATDC algo-
rithms were compared. Also, as with the tests conducted in [5], we considered
only the attribute dimensions in the compression ratios: since the measure di-
mensions could have been of some non-categorical datatype, it could not be
safely assumed that they could be compressed using the same technique that
was applied to the attribute dimensions; so we decided to store them explicitly.

The timing tests we performed on the datasets consisted of measuring the
round-trip compression time (RTT). The RTT consists of compression time and

8 J.-P. Deveaux, A. Rau-Chaplin, and N. Zeh

decompression time. The compression time represents the amount of time re-
quired to compress the tuples from their normalized form into a set of boundary
tuples and tuple difference values and write them to disk. The decompression

time refers to the amount of time required to read every boundary tuple and
tuple difference value from the disk and convert them back to normalized tuple
form. The results of these timing tests include the read and write times for the
raw datasets that consisted of 32-bit integers, to show that even with virtually
unlimited storage space, there are still speed advantages to using compression.

The uniform and skewed synthetic datasets used in our tests were created
using the OLAP data generator described in [2]. Real data was extracted from
the HYDRO1K database developed by the U.S. Geological Survey [7].

3.1 ATDC vs. GZIP Compression

Our first experiment compares the performance of ATDC to that of GZIP, a
popular compression tool based on the Lempel-Ziv compression scheme.

Table 1 represents a comparison between GZIP compression and ATDC com-
pression on a selection of the datasets used in this project. It should be noted
that the compression ratios shown in this table are relative to the size of the
original database file and not to the Bit-compressed version of the file as in
the other experiments documented in this paper. The reason is that the GZIP
algorithm did not achieve any compression whatsoever on the Bit-compressed
version of the database, due to the fact that packing tuples tends to eliminate
the long common sequences in the input that make GZIP effective.

As we can see, ATDC achieves compression ratios that are roughly twice as
high as those achieved by GZIP on the same dataset. Not only are the ATDC
compression results much better, the ATDC compression algorithm compresses
data in approximately 1/4th the time required by GZIP.

3.2 ATDC vs. TDC Compression

Our final set of experiments compares the performance of ATDC with that of
the XTDC algorithm. We consider the standard bit compression [6] to be the
baseline against which we compare our compression ratios. To demonstrate that
compression in general can lead to significant overall performance improvements,
we also include round-trip time measurements for reading and writing the raw
tuple sequence without even bit compressing it.

Database GZIP Size GZIP Ratio ATDC Size ATDC Ratio

Uniform Synthetic 123,749,391 5.818:1 57,230,264 12.581:1
Skewed Synthetic (1.0) 59,534,163 9.406:1 22,217,928 25.205:1
HYDRO1K-Africa 131,143,020 8.232:1 75,554,360 14.228:1
HYDRO1K-North America 96,134,225 8.271:1 62,448,276 12.732:1

Table 1. GZIP compression vs. ATDC compression

Adaptive Tuple Differential Coding 9

Unpack Read Time Unpack Process Time Pack Write Time Pack Process Time Compression Ratio

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

M
R
, Bottom

-U
p ATD

C

BS, Bottom
-U

p ATD
C

M
R
, Top-D

ow
n ATD

C

BS, Top-D
ow

n ATD
C

M
R
, XTD

C

BS, XTD
C

Bit
R
aw

 1

 1.5

 2

 2.5

 3

 3.5

R
o

u
n

d
-T

ri
p

 T
im

e
 (

s
e

c
o

n
d

s
)

C
o

m
p

re
s
s
io

n
 R

a
ti
o

 0

 5

 10

 15

 20

 25

 30

H
ilbert, Bottom

-U
p ATD

C

M
R
, Bottom

-U
p ATD

C

BS, Bottom
-U

p ATD
C

H
ilbert, Top-D

ow
n ATD

C

M
R
, Top-D

ow
n ATD

C

BS, Top-D
ow

n ATD
C

H
ilbert, XTD

C

M
R
, XTD

C

BS, XTD
C

Bit
R
aw

 2

 4

 6

 8

 10

 12

 14

R
o

u
n

d
-T

ri
p

 T
im

e
 (

s
e

c
o

n
d

s
)

C
o

m
p

re
s
s
io

n
 R

a
ti
o

(a) (b)

Fig. 3. Average round-trip times and compression ratios: (a) HYDRO1K Africa
dataset, n = 29, 987, 509 tuples. (b) Synthetic data, n = 20, 000, 000 tuples. Zipf skew
z = 1.5.

We tested these methods on a range of datasets. Due to lack of space, we
report results on only two data sets here: the Africa data set from the HYDRO1K
database [7] (Figure 3(a)) and a synthetic data set skewed with Zipf factor 1.5
(Figure 3(b)). The behaviour of the algorithms on other datasets is similar.

For the Africa dataset, we observe that all compression methods signifi-
cantly decrease the round-trip time compared to the raw dataset. All our adap-
tive methods produce significantly higher compression ratios than the XTDC
algorithm, with the bottom-up approach outperforming the top-down approach
and the mixed-radix encoding leading to better compression ratios than the bit-
shift approach. This aligns well with our expectations about the performance
of these algorithms. Also in line with our expectations, the higher compression
ratio in both cases is bought at the expense of increased round-trip times. In
the case of the bottom-up algorithm, the time is lost during the compression
phase; the mixed-radix encoding requires more time to decode. Note, however,
that even using the bottom-up algorithm in combination with bit-shift encod-
ing, the round-trip time is only slightly higher than using bit compression and
XTDC. For the top-down algorithm and bit-shift encoding, the round-trip time
is slightly lower than using bit compression and XTDC. In general, in terms of
compression ratio bottom-up ATDC is superior; however, top-down ATDC may
be preferred in applications where the round-trip compression time is critical.

For our skewed data set, the round-trip time improvement over the raw tuple
sequence is less pronounced than on the Africa data set; the mixed-radix meth-
ods even lead to significantly higher round-trip times, due to high decompression
cost. Consistent with the behaviour on the Africa dataset, the bit-shift compres-
sion methods produce round-trip times that are competitive with bit compression
and XTDC but, due to the skew, now lead to significantly improved compression

10 J.-P. Deveaux, A. Rau-Chaplin, and N. Zeh

ratios. It is interesting to note that, on this data set, there seems to be little
gain in compression ratio when using mixed-radix instead of bit-shift encoding.
Since the mixed-radix encoding leads to a significantly increased decompression
cost, it therefore cannot be considered useful for compressing this type of data.

Figure 3(b) also includes the compression ratios and compression times when
applying our ATDC variants to a tuple sequence based on a Hilbert space en-
coding, which has been shown to be effective in improving query time in parallel
OLAP query processing [4]. Although we used an efficient Hilbert implementa-
tion that was largely based on simple bit-shifts, the increased processing cost had
a detrimental effect on round-trip times, increasing it even beyond that incurred
by the mixed-radix methods. It is interesting to note, however, that the compres-
sion ratio does not deteriorate; on the contrary, the Hilbert encoded sequences
lead to the highest observed compression ratios for each of the XTDC, top-down
ATDC, and bottom-up ATDC algorithms. Thus, our compression method can be
applied effectively in combination with Hilbert encodings in applications where
the cost required for computing the Hilbert encoding is justified. In particular,
our ATDC method is potentially a useful tool for reducing the amount of data
exchanged between processors in parallel processing of OLAP queries.

4 Conclusion

We have demonstrated that the use of the ATDC algorithm has the poten-
tial of providing improved compression over existing algorithms on tuple-based
statistical datasets. The algorithm was shown to be effective and robust on
synthetically-generated datasets, both uniform and skewed, as well as on real-
world datasets. In particular ATDC using a bit-shift encoding achieves both
high compression ratios and low round-trip compression times. Furthermore, it
must be emphasized that, as the gap between processor and I/O speeds grows,
optimizing compression methods like ATDC, which may be encapsulated in the
storage layer, will become increasingly appealing.

References

1. M.A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest
common ancestors in trees and directed acyclic graphs. J. Alg., 57:75–94, 2005.

2. cgmLab. OLAP data generator. http://cgmlab.cs.dal.ca/downloadarea/, 2000.
3. Z. Chen and P. Seshadri. An algebraic compression framework for query results. In

Proc. 16th Int. Conf. on Data Eng., pp. 177–188, 2000.
4. F. Dehne, T. Eavis, and A. Rau-Chaplin. Parallel multi-dimensional ROLAP in-

dexing. In Proc. 3rd Int. Symp. on Cluster Comp. and the Grid, pp. 86–93, 2003.
5. B. Liang. Compressing Data Cube in Parallel OLAP Systems. Master’s thesis,

Carleton University, 2004.
6. W.K. Ng and C.V. Ravishankar. Block-oriented compression techniques for large

statistical databases. Knowledge and Data Eng., 9(2):314–328, 1997.
7. US Geological Survey. HYDRO1k elevation derivative database, 2003. http://

edcdaac.usgs.gov/gtopo30/hydro/index.asp.
8. J. Vuillemin. A unifying look at data structures. Comm. ACM, 23:229–239, 1980.

