
CSCI 6403 - IR Assignment (Boolean Search Engine)

Hatem Nassrat

Dalhousie University - Faculty of Computer Science

October 19, 2008

Confirmation of Independent Work

I, the undersigned, certify that the work I have submitted for Assignment 2 (Boolean Search) is the
product of my own work. Any additional software packages that I have used are listed as follows
and have been previously approved by Dr. Shepherd:

External Resources

1. Programming Languages: Python

2. Tools: Berkeley DB 4.4, Porter Stemmer (w/python wrapper), Pylons Web Framework

3. Other: Public Stop Word list

Hatem A. Nassrat
B00393388 date

1 Resource Description

Python

An object oriented, interpreted programming language.

Berkeley DB

A database engine with B-Tree, Hash, Queue, and Recno access methods. Here we use the
BDB Hash access method.

Porter Stemmer

An algorithm, after the inception of the Porter2 or English stemmer is mainly used in IR
research to compare with previous results. We have also used the port to this stemmer
into python downloaded from http://snowball.tartarus.org/wrappers/PyStemmer-1.0.

1.tar.gz.

Pylons

A growing web framework for python that allows for creating web applications design using
Model-View-Controller (MVC) architectures.

1 of 5

http://snowball.tartarus.org/wrappers/PyStemmer-1.0.1.tar.gz
http://snowball.tartarus.org/wrappers/PyStemmer-1.0.1.tar.gz

Stop Words

Used a public set of stop words, to both create the inverted index and parse user queries. Stop
word list retrieved from http://www.dcs.gla.ac.uk/idom/ir resources/linguistic utils/

stop words

2 Data Pre-Processing

For this assignment, the data was preprocessed similar to the previous assignment. Therefore the
following assumptions/processes were made to the input dataset. Similarly this pre-processing has
been run on all the queries.

1. A word is denoted as a string of letters (digits are considered word boundaries)

2. HTML entities (e.g. ") and tags (e.g. < p >) are removed

3. All punctuation/underscores are collapsed/imploded (e.g. my-term rank’s → mytermranks)

3 Word Frequencies

The following subsections describe some word frequencies after processing of the dataset.

3.1 Stop Words

From the public stop word list mentioned earlier, 1, 546, 513 instances after preprocessing were
found and removed. This denotes around 40% of the initial keyword set was filtered. In terms of
unique words, from an initial set of 75, 087 words, 74, 780 remained after stop word removal.

3.2 Keyword Counts

From an initial group of 3, 865, 496 keywords, 74, 780 unique words were found after preprocessing
and stop word removal. After stemming they were reduced 56, 566 unique stemmed keywords.

4 Word Stemming

When retrieving information, it is very unlikely that users would be searching for a given words in
particular form. The following use case displays this problem. A user may place a query for “speed
car”, a basic search engine would only consider documents containing terms “speed” and “car”,
however documents that discuss “speeding cars” would be ignored.

Such a problem may be solved by use of a Stemming Algorithm. Using such algorithms the
root form of the query words would be passed to the Query Engine. Since all documents would
be indexed using the stemmed forms of their words, the problem would disappear. For example
passing the above words to the Porter Stemmer Algorithm would map the query and the displayed
terms to “speed car”, thus finding the document in the example.

We have chosen the Porter Stemmer [4], since it is widely used in information retrieval research
and allows comparison of our search engine with previous work. There exists a newer version of
the Porter Stemmer Algorithm (Porter 2), which would replace this stemmer, if we are to release
this search engine.

2 of 5

http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

5 Dataset Parsing

The dataset was parsed based on the < newsitem > tags. These denoted the start and end of each
document which was recorded in the forward document index. From each document, only < title >

and < p > were looked at for words to index since these contain most of the article’s beef. These
words were pre-processed and stemmed as mentioned above, then placed in an inverted index as
described in the next section.

On the Search Engine Interface, the full document is displayed in its original XML form with
all the relevant fields, and attributes. For information on how the queries were parsed see Section
7.1.

6 Index Generation

All indices were placed in a Berkeley DB hash structure. The following subsections describe why
BDB was chosen over GDBM and the details of each of the file structures (Forward and Inverted
Indices).

6.1 Back-end Choice

A brief experiment was run to check whether Berkeley DB’s dbhash module is more suitable than
the Gnu DBM. Since this project is python based, a python experiment was set-up. It was clearly
seen that BDB had a clear advantage in write speed over GDBM. However, they were extremely
close in random access read times. After looking at the generated file sizes BDB also had smaller
file sizes for the generated test databases. This experiment was verified by the results found at
[1]. According to that study, QDBM or its successor Tokyo Cabinet are the fastest DBM clones,
However, there are currently no functional python bindings available.

Moreover, it seems there are bug reports filed against GDBM for corrupt files if they are not
properly closed, or kept open for too long [3]. Although many of these deal with writing issues,
this was another reason for avoiding GDBM, as our search engine will keep the DB open while it
is running.

6.2 Forward Index

The forward index, is the index were we store information about each document in our dataset. In
this index we have stored the following information:

• Doc ID: A unique ID for the document

• Offset: Offset of the document within the dataset file

• Length: Length in bytes of each document

• Title: The document’s title for display

The way they are stored within the database, is basically a mapping of Doc ID, to a serialized
hash mapping of the other fields. This mapping is serialized into JSON [2] such that the DB will
be programming language independent, and can be easily read by any language that has a JSON
parser.

3 of 5

Since we are implementing a boolean search engine, the forward index, need not contain the
indexed terms for each document as they will not be useful.

6.3 Inverted Index

The inverted file, is one which stores a mapping of terms to documents which contain these terms.
In a boolean search engine, the number of occurrences of each term need not be associated with
each document, but since the infrastructure was available it was included. Therefore our inverted
index contained the following informations associated with each term:

• Doc ID: Unique ID for documents containing term

• Word Count: The number of occurrences of term within document

Each term pointed to a hash map, that had its key being the document and the value being
the word count. This mapping was serialized into JSON [2], and placed into the DB. Thus giving
us a DB which contained terms mapped to the documents that contained the term.

As mentioned, all the terms were pre-processed and stemmed prior to indexing. On Torch
(torch.cs.dal.ca), building the full inverted file took on average around 25 mins prior to stemming
and 15 mins when applying stemming.

7 Query Engine

The Query Engine, was built to be able return results for user queries. It was built in a modular
fashion, such that each task was distributed to a specialized function.

7.1 Query Parsing

This search engine was to deal with simple boolean queries only, and therefore need not handle
bracketed queries. A parsing function was written such that it handled simple boolean queries.

The parser is handed a list of words, which are split up using the pre-processing assumptions.
Moreover, we have only assumed two reserved words NOT & OR, both in uppercase, such that
any two words are assumed to be implicitly joined with an AND operator. NOT has ultimate
precedence while the other two operators are given the same precedence.

The parser then processes the query to return a set of queries each of which contains words
and negated words that are joined by an AND operation, and the entire set of queries is joined by
OR operations. More information on the query parser can be found at http://torch.cs.dal.ca:
5000/help/parser.

8 Search Interface

Built using an MVC architecture, the indexer and Query Engine (section 7) would be considered
the Model. The templates that render the HTML would be considered the View. The URL
dispatcher, and user management modules would be considered the Controller (partially coupled
to query engine for allowing separate user queries). Working together they allow for this Web
Search Application.

4 of 5

http://torch.cs.dal.ca:5000/help/parser
http://torch.cs.dal.ca:5000/help/parser

At http://torch.cs.dal.ca:5000/help/all is a brief Help page on how to use the search
interface, along with a brief description of its modest features.

9 Code & File Sizes

The code that makes up this search engine is downloadable as a bzipped tarfile http://www.cs.

dal.ca/∼nassrat/6403/assign2/kid.tar.gz.
The following table shows a summary of the file sizes associated with this search engine:

File name Size (KB) Description

forward.bdb 5088.00 The Forward Index

inverted.bdb 25144.00 The Inverted Index

csci6403.txt 52804.68 Reuters dataset (for comparison)

stop words.txt 1.87 Stop Word List

kid/model/indexer.py 14.30 Indexing and query engine code (Model)

kid/commands/index.py 2.17 Command line runner for the indexer

kid/controllers/search.py 3.02 Controller code for the search engine

kid/templates/base.mako 2.53 Base template for the views

kid/templates/main.mako 3.02 Main template containing search enging view

kid/templates/help.mako 2.09 Template containing help text

OTHERS 72.00 Configurations, and other files for the pylons framework

NOTES

• An electronic copy of this document is available at http://www.cs.dal.ca/∼nassrat/6403/
assign2/report.pdf.

• The mentioned search engine is running at http://torch.cs.dal.ca:5000

References

[1] Qdbm: Quick database manager benchmark. http://qdbm.sourceforge.net/benchmark.pdf.

[2] Douglas Crockford. RFC4627: Javascript Object Notation, 2006.

[3] Darren Gamble, John Dalbec, and Howard Chu. Re: Corrupt index files. http://www.

openldap.org/lists/openldap-software/200208/msg00437.html.

[4] C.J. van Rijsbergen, S.E. Robertson, and M.F. Porter. New models in probabilistic information
retrieval. 1980.

5 of 5

http://torch.cs.dal.ca:5000/help/all
http://www.cs.dal.ca/~nassrat/6403/assign2/kid.tar.gz
http://www.cs.dal.ca/~nassrat/6403/assign2/kid.tar.gz
http://www.cs.dal.ca/~nassrat/6403/assign2/report.pdf
http://www.cs.dal.ca/~nassrat/6403/assign2/report.pdf
http://torch.cs.dal.ca:5000
http://qdbm.sourceforge.net/benchmark.pdf
http://www.openldap.org/lists/openldap-software/200208/msg00437.html
http://www.openldap.org/lists/openldap-software/200208/msg00437.html

	Resource Description
	Data Pre-Processing
	Word Frequencies
	Stop Words
	Keyword Counts

	Word Stemming
	Dataset Parsing
	Index Generation
	Back-end Choice
	Forward Index
	Inverted Index

	Query Engine
	Query Parsing

	Search Interface
	Code & File Sizes

