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Motivation

Total moisture in deep soil layer (100-500 cm)
144.3,-36.75

Month ?nm 2(}1‘:
Fig 1: Remote monitoring equipment / |
(Source: NDSU) Fig 3: Soil moisture time series

(Source: The Lucid Manager)

Fig 2: Sensor network
(Source: Wikimedia Commons)

Monsture



https://www.ag.ndsu.edu/agmachinery/documents/images/Solar Charger-Cellular Modem-Data Logger.JPG/view
https://upload.wikimedia.org/wikipedia/commons/8/8d/NetworkTopology-Mesh.png
https://lucidmanager.org/tag/hydroinformatics/
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Time-wise holdout

OOS procedures
for time series

Monte Carlo
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Prequential evaluation




5-fold CV

CV Modified CV
procedures for
time series

Block CV works better than CV,
especially for small stationary
series (Bergmeir et al., 2012)

In real-world scenarios, OOS
methods perform betterthan CV
(Cerqueiraetal.,2017)

hv-block CV ("buffered")

Bergmeir, Christoph, and José M. Benitez. "On the use
of cross-validation fortime series predictor evaluation."
InfSci 191 (2012): 192-213.

Cerqueira, Vitor, etal. "A comparative study

of performance estimation methods for

time seriesforecasting." DSAA, 2017.
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Cross-validation
for spatial data

Block CV and buffered LOO CV are
recommended by Roberts et al.

(2017)

Random Contiguous Systematic
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Fig: Spatial cross-validation.
(Adapted from Roberts, David R., etal. "Cross-validation strategies for data with temporal, spatial,
hierarchical, or phylogeneticstructure." Ecography 40.8 (2017): 913-929.)
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What about geo-referenced time series?

Most treat data as if It was spatial-only or temporal-only

Recent work by Meyer et al. (2018) shows how results using "target-oriented" CV (LLO, LTO and
LLTO) differ from conventional CV in spatio-temporal interpolation problems

Our focus is on forecasting — making predictions about the future —, not interpolation.

> The best evaluation procedure to make predictions about unseen locations might not be the
same as when the aim is to predict in known sites!

Meyer, Hanna, et al. "Improving performance of spatio-temporal machine learning models using forward
feature selection and target-oriented validation." Environmental Modelling & Software101 (2018): 1-9.
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Estimation procedures

OUT-OF-SAMPLE
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Holdout (H)

train
test

time
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Monte Carlo (MC)
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Prequential evaluation (P)
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Spatio-temporal preguential
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Estimation procedures

CROSS-VALIDATION
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Cross-validation (CV)
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Temporal CV

sliced

block




Spatial CV
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Spatio-temporal CV
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Estimation procedures

ADDING BUFFERS...
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.. to block CV
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to random CV
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Experimental design




Experimental design

Train with in-set

Divide data into in- and test on out-set Use CV/O0S on the

in-set to estimate
error

set and out-set to get "gold
standard" error

COMPARE
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in-set out-set
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Datasets

ARTIFICIAL REAL-WORLD

STARMA, STMA, STAR and NL-STAR Data | | #tmeiDs | #locbs | % avai.

Orders 2(10), 2(01) and 2(11) MESA 1 280 20 100
NCDC 2 105 72 100

8x8 and 20x20 regular grids

. - TCE 3 330 26 100

150 and 300 time points COOK 3 729 42 ~73
SAC 1 144 900 100

96 datasets with embed 3(110) Rural 1 4382 70 ~49
Beijingair 6 11357 36 ~40

17 univariate datasets with spatio-temporalindicators
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Real-world results




Est - Gold

Median errors

medErr
EJ over
EJunder
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Relative errors: |Est - Gold |/ Gold
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Absolute errors: | Est-Gold|

LINEAL MODEL RANDOM FOREST
CD CD
3 4 5 6 3 4 5 6
CViBsR PtBsR CViBsA CViBsR
CViRsR_S CViBsA H80.20 CVtRsR_S
H80.20 PtBsA PtBsR CViRsR
CViRsR PtBsA
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Conclusion




Conclusion

* Standard CV exhibits outliers of severe error underestimation;

* In real-world cases, spatio-temporal block and time block CV approximate the error better than
other methods and avoid being overly optimistic;

* O0S procedures did not do as well, but they did avoid underestimation of the error in almost
all real-world cases;

* Results seem to point to the temporal dimension being more important to respect during
evaluation.
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Thank you!

Code available at http://bit.ly/STEvaluation
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