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Motivation
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Motivation and main goals
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• Apply propositional and relational pre-processing 
methods to predict yearly burnt area (%) in 
Portuguese civil parishes.

• Evaluate and compare approaches
Maximum burnt area (%) Mean burnt area (%)

Total burnt area in Portugal (103ha)



Understanding a spatio-temporal dataset
PROPOSITIONAL

Parish ID Altitude Year Burnt area

RELATIONAL

Parish

Parish ID
Area
Altitude
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Neighbours

Parish ID
Neighbour ID
Direction

Wildfires

Parish ID
Year
Burnt area



Wildfires in Portugal
AN APPLICATION
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Wildfires in Portugal
Portugal

18 districts

2882 civil parishes

Area: 20 ha – 88 000 ha (median: 1700 ha)

Data

Yearly burn fraction area 1991 to 2010

Background knowledge
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Burn fraction in 2003



Background knowledge

Land cover

Eucalyptus

Tall scrubland

Small scrubland

Broad-leaved 
managed forest

Pinewood

Urban

Terrain

Maximum altitude

Mean altitude

Maximum slope

Mean slope

Road density

All roads

Roads (>6m wide)

Road (<6m wide)

Census data 
(1989,1999,2009)

Irrigable area

Meadow area

Bovine dens.

Ovine dens.

Caprine dens.

Census data 
(1991,2001)

Population density

Population’s     
mean age

Census data 
(1991)

Population         
aged 65+

Housing density
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Census data



Imbalanced domain

• 28% burned more than 0%

• 19% burned 1% or more

• 9% burned 5% or more

• 2% burned 20% or more
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Predicting wildfires
PROPOSITIONAL AND RELATIONAL PRE -PROCESSING APPROACHES
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Propositional and relational approaches
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PROPOSITIONAL
Build        

spatio-temporal 
indicators

Impute 

missing data

Under-sample   
for regression

Model with        
SVR or RF

RELATIONAL Search & select 
relational clauses

Transform 
into binary 

features



Propositional approach
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Propositional approach
BUILD SPATIO-TEMPORAL INDICATORS
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• Calculate exponential average of 
target for each neighbour

• Use average of neighbours in each 
direction weighted by simplified 
border



Propositional approach
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Relational approach
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Relational approach
SEARCH AND SELECT RELATIONAL CLAUSES

• Use random example as seed

• Saturate and reduce using 𝑭𝜷 −𝒎𝒆𝒂𝒔𝒖𝒓𝒆

• Save and select best so far

• Repeat 60 times for each                                
𝛽 ∈ {0.75, 0.9, 1.0, 1.1, 1.25}

burnt(ParishA, Year) :-
maxAltitudeGE(ParishA, 507) ,
neighbourDirection(ParishA, ParishB, south) ,
yearsSinceFireLE(ParishB, 5) .
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Relational approach
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Propositional and relational approaches
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Under-sampling for regression
Proposed by Torgo et al. (2013) and implemented in R package UBL
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Propositional and relational approaches
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Predicting wildfires
EXPERIMENTAL RESULTS
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅 =
σ
𝜙 ෞ𝑦𝑖 >𝑡𝑅

(1+𝑢𝑖)

σ
𝜙 ෞ𝑦𝑖 >𝑡𝑅

(1+𝜙(ෞ𝑦𝑖))

𝑟𝑒𝑐𝑎𝑙𝑙𝑅 =
σ
𝜙 𝑦𝑖 >𝑡𝑅

(1+𝑢𝑖)

σ
𝜙 𝑦𝑖 >𝑡𝑅

(1+𝜙(𝑦𝑖))

𝑓1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙𝑅

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑅+𝑟𝑒𝑐𝑎𝑙𝑙𝑅

Averaged over 10 sliding train/test sets

Experimental setup
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𝑈𝜙
𝑝 ො𝑦, 𝑦 = 𝐵𝜙 ො𝑦, 𝑦 − 𝐶𝜙

𝑝 ො𝑦, 𝑦
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Experimental setup
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Results
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Difference in results
BEST F1-MEASURE: 

PROPOSITIONAL + RELATIONAL
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PROPOSITIONAL         RELATIONAL



Computation time
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Conclusion
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Summary

• Propositional and relational approach achieve comparable results
• Propositional approach is faster

• Relational approach works well though optimized for classification

• Combination of both approaches works best

• Under-sampling for regression greatly improved results
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Future research directions

• Explore other propositional approaches:
• Use clustering to select neighbourhoods as proposed by Appice et al. (2013).

• Explore other relational approaches:
• Use graphical models such as Markov Logic Networks.

• Compare results in different domains to generalise our findings.
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Thank you!
QUESTIONS?


