

Predicting Wildfires:

Propositional and Relational Pre-processing Approaches

MARIANA OLIVEIRA

LUÍS TORGO

VÍTOR SANTOS COSTA

* Thanks to Dr. João Torres

Outline

Motivation

Wildfires in Portugal

Predicting wildfires

- Propositional and relational pre-processing approaches
- Experimental results

Conclusion

Motivation

Motivation and main goals

Total burnt area in Portugal (10³ha)

- Apply propositional and relational pre-processing methods to predict yearly burnt area (%) in Portuguese civil parishes.
- Evaluate and compare approaches

Understanding a spatio-temporal dataset

RELATIONAL

PROPOSITIONAL

Parish ID	Altitude	Year	Burnt area

Wildfires in Portugal

AN APPLICATION

Discovery Science 2016

PREDICTING WILDFIRES: PROPOSITIONAL AND RELATIONAL PRE-PROCESSING APPROACHES

Wildfires in Portugal

Portugal

18 districts

2882 civil parishes

Area: 20 ha – 88 000 ha (median: 1700 ha)

Data

Yearly burn fraction area 1991 to 2010

Background knowledge

Burn fraction in 2003

Background knowledge

Imbalanced domain

28% burned more than 0%

19% burned 1% or more

9% burned 5% or more

Predicting wildfires

PROPOSITIONAL AND RELATIONAL PRE-PROCESSING APPROACHES

Propositional and relational approaches

Propositional approach

Propositional approach

BUILD SPATIO-TEMPORAL INDICATORS

- Calculate exponential average of target for each neighbour
- Use average of neighbours in each direction weighted by simplified border

Propositional approach

Relational approach

Relational approach

SEARCH AND SELECT RELATIONAL CLAUSES

- Use random example as seed
- Saturate and reduce using $F_{\beta} measure$
- Save and select **best so far**
- Repeat 60 times for each $\beta \in \{0.75, 0.9, 1.0, 1.1, 1.25\}$

burnt(ParishA, Year) :maxAltitudeGE(ParishA, 507),
neighbourDirection(ParishA, ParishB, south),
yearsSinceFireLE(ParishB, 5).

Relational approach

Propositional and relational approaches

Under-sampling for regression

Proposed by Torgo et al. (2013) and implemented in R package UBL

Discovery Science 2016

Propositional and relational approaches

Predicting wildfires

EXPERIMENTAL RESULTS

Experimental setup

 $\boldsymbol{\smile}$

.

$$\begin{bmatrix} precision_{R} = \frac{\sum_{\phi(\widehat{y_{i}}) > t_{R}}^{(1+u_{i})}}{\sum_{\phi(\widehat{y_{i}}) > t_{R}}^{(1+\phi(\widehat{y_{i}}))}} \\ recall_{R} = \frac{\sum_{\phi(y_{i}) > t_{R}}^{(1+u_{i})}}{\sum_{\phi(y_{i}) > t_{R}}^{(1+\phi(y_{i}))}} \end{bmatrix}$$

$$f_1 = 2 \cdot \frac{precision_R \cdot recall_R}{precision_R + recall_R}$$

Discovery Science 2016

 \sim

Experimental setup

Results

			$\mathbf{Precision}_{\mathrm{R}}$		$\mathbf{Recall}_{\mathrm{R}}$		${f F1} ext{-measure}_{R}$	
Method	Re-sample l	Model	$\mathrm{med}\pm\mathrm{IQR}$	p-val.	$\mathrm{med}\pm\mathrm{IQR}$	p-val.	$\mathrm{med}\pm\mathrm{IQR}$	p-val.
Propositional	None	RF SVR	$\begin{array}{c} 0.70 \pm 0.13 \\ 0.68 \pm 0.10 \end{array}$	$(0.002) \\ (0.002)$	$\begin{array}{c} 0.22 \pm 0.13 \\ 0.49 \pm 0.10 \end{array}$	$(0.002) \\ (0.002)$	$\begin{array}{c} 0.33 \pm 0.13 \\ 0.56 \pm 0.10 \end{array}$	$(0.002) \\ (0.002)$
	Under	RF SVR	$\begin{array}{c} 0.81 \pm 0.13 \\ 0.84 \pm 0.07 \end{array}$	$(0.002) \\ (0.002)$	$\begin{array}{c} 0.67 \pm 0.13 \\ 0.76 \pm 0.07 \end{array}$	$({f 0.002}) \ (0.01)$	$\begin{array}{c} 0.72 \pm 0.13 \\ 0.80 \pm 0.07 \end{array}$	$(0.002) \\ (0.002)$
Relational	None	RF SVR	$\begin{array}{c} 0.71 \pm 0.12 \\ 0.68 \pm 0.09 \end{array}$	$(0.002) \\ (0.002)$	$\begin{array}{c} 0.18 \pm 0.12 \\ 0.50 \pm 0.09 \end{array}$	$(0.002) \\ (0.002)$	$\begin{array}{c} 0.29 \pm 0.12 \\ 0.57 \pm 0.09 \end{array}$	$(0.002) \\ (0.002)$
	Under	RF SVR	$\begin{array}{c} 0.80 \pm 0.09 \\ 0.85 \pm 0.06 \end{array}$	$(0.002) \\ (0.02)$	$\begin{array}{c} 0.58 \pm 0.09 \\ 0.76 \pm 0.06 \end{array}$	$({f 0.002}) \\ (0.04)$	$\begin{array}{c} 0.66 \pm 0.09 \\ 0.80 \pm 0.06 \end{array}$	$\substack{(0.002)\\(0.002)}$
${ m Propositional} + { m Relational}$	None	RF SVR	$\begin{array}{c} 0.72 \pm 0.11 \\ 0.70 \pm 0.10 \end{array}$	$\substack{(0.002)\\(0.002)}$	$\begin{array}{c} 0.22 \pm 0.11 \\ 0.52 \pm 0.10 \end{array}$	$\substack{(0.002)\\(0.002)}$	$\begin{array}{c} 0.33 \pm 0.11 \\ 0.59 \pm 0.10 \end{array}$	$\substack{(0.002)\\(0.002)}$
	Under	RF SVR	$\begin{array}{c} 0.80 \pm 0.12 \\ 0.85 \pm 0.06 \end{array}$	(0.002)	$\begin{array}{c} 0.65 \pm 0.12 \\ \textbf{0.77} \pm \textbf{0.06} \end{array}$	(0.002)	$\begin{array}{c} 0.70 \pm 0.12 \\ 0.81 \pm 0.06 \end{array}$	(0.002)

Difference in results

Computation time

Method	Re-sample	Model	Pre-proc.	Training	Testing	Total time
Propositional	None	$\begin{array}{c} \mathrm{RF} \\ \mathrm{SVR} \end{array}$	2.2e-3 1.7e-3	$5.8e-1 \pm 6e-2$ $8.5e-3 \pm 5e-4$	$8.0e-4 \pm 4e-4$ $6.7e-4 \pm 7e-5$	5.8e-1 1.1e-2
	Under	m RF $ m SVR$	6.8e-3 3.1e-3	$2.6e-2 \pm 6e-3$ $1.8e-4 \pm 6e-5$	$3.3e-4 \pm 6e-5$ $2.1e-4 \pm 4e-5$	3.3e-2 3.5e-3
Relational	None	$ m RF \\ m SVR$	$\begin{array}{c} 1.7\\ 1.7\end{array}$	$2.1e-1 \pm 7e-2$ $2.0e-2 \pm 1e-2$	$3.6e-4 \pm 7e-5$ $2.7e-3 \pm 6e-4$	$\begin{array}{c} 1.9 \\ 1.7 \end{array}$
	Under	$ m RF \\ m SVR$	$\begin{array}{c} 1.7\\ 1.7\end{array}$	$2.2e-2 \pm 6e-3$ $6.0e-4 \pm 1e-4$	$5.0e-4 \pm 4e-4$ 7.0e-4 \pm 2e-4	$\begin{array}{c} 1.7\\ 1.7\end{array}$
Propositional + Relational	None	RF SVR	$\begin{array}{c} 1.7\\ 1.7\end{array}$	$1.5e-1 \pm 2e-2$ 7.0e-2 \pm 1e-2	$2.8e-4 \pm 5e-5$ $6.0e-3 \pm 2e-3$	$1.9\\1.8$
	Under	m RF $ m SVR$	$\begin{array}{c} 1.7\\ 1.7\end{array}$	$1.9e-2 \pm 7e-3$ $1.0e-3 \pm 3e-4$	$3.2e-4 \pm 8e-5$ $1.0e-3 \pm 1e-3$	$\begin{array}{c} 1.7\\ 1.7\end{array}$

Conclusion

Summary

- Propositional and relational approach achieve comparable results
 - Propositional approach is faster
 - Relational approach works well though optimized for classification
- Combination of both approaches works best
- Under-sampling for regression greatly improved results

Future research directions

- Explore other propositional approaches:
 - Use clustering to select neighbourhoods as proposed by Appice *et al.* (2013).
- Explore other relational approaches:
 - Use graphical models such as Markov Logic Networks.
- Compare results in different domains to generalise our findings.

Thank you!

QUESTIONS?