

Propositional and Relational Approaches to Spatio-Temporal Data Analysis

AUTHOR: MARIANA RAFAELA OLIVEIRA

SUPERVISOR: PROF. LUÍS TORGO

CO-SUPERVISOR: PROF. VÍTOR SANTOS COSTA

COMPUTER SCIENCE DEPARTMENT

FACULTY OF SCIENCES, UNIVERSITY OF PORTO

DECEMBER 2015

Outline

Introduction

Wildfires in Portugal: a case study

Describing wildfires

- Introduction
- Propositional and relational methods
- Experimental results

Predicting wildfires

- Introduction
- Propositional and relational methods
- Experimental results

Conclusion

Introduction

Spatio-temporal databases

EVOLVING THEMATIC MAPS AND SENSOR NETWORKS

MOVING OBJECTS

Source: Visualization in Mobility Data Mining , S. Rinzivillo

Propositional and relational approaches

RELATIONAL

PROPOSITIONAL

Course ID	Student ID	Grade

Descriptive and predictive methods

Motivation and main goals

Total burnt area in Portugal (10³ha)

- Review the state-of-the-art
- Apply propositional and relational methods
- Compare approaches

Wildfires in Portugal

A CASE STUDY

Wildfires in Portugal

Portugal

- 2882 civil parishes
- 278 municipalities
- 18 districts

Parish total area

- 20 ha 88 000 ha
- Median: 1700 ha

Area burnt in 2003 (%)

Percentage of burnt area (yearly)

Number of parishes with >0% burnt area

Number of parishes with ≥5% burnt area

Imbalanced domain

28% burned more than 0%

19% burned 1% or more

9% burned 5% or more

Background knowledge

Land cover	Terrain	Road density	Census data (1989,1999,2009)	Census data (1991,2001)	Census data (1991)
 Eucalyptus Tall scrubland Small scrubland Broad-leaved managed forest Pinewood Urban 	 Maximum altitude Mean altitude Maximum slope Mean slope 	 All roads Roads (>6m wide) Road (<6m wide) 	 Irrigable area Meadow area Bovine dens. Ovine dens. Caprine dens. 	 Population density Population's mean age 	 Population aged 65+ Housing density

Computing spatial relationships

Using PostGIS

- Find neighbours with *ST_Intersect*
- Calculate neighbour direction with *ST_Azimuth* and *ST_Centroid*
 - East [45,135[⁰
 - South [135,225[⁰
 - West [225,315[⁰
 - North ($[315,360[U[0,45[)^{\circ}]$
- Calculate border parishes with *ST_Union* and *ST_Intersects*

Describing wildfires

INTRODUCTION

Association rules

TID	Basket
1	milk, bread
2	butter
3	beer, diapers
4	milk, bread, butter
5	bread

$A \Rightarrow C$

 $support = \Pr(A, C)$ $confidence = \Pr(C|A)$ $lift = \frac{\Pr(C|A)}{\Pr(C)}$

Example:

 $\{butter, bread\} \Rightarrow \{milk\}$ supp = 0.2; conf = 1.0; lift = 2.5

Spatio-temporal association rule learning

Describing wildfires

PROPOSITIONAL AND RELATIONAL METHODS

- Jenk's natural breaks classification method
- 4 categories per variable
 - Very Low
 - Low
 - Medium
 - High

BACKGROUND KNOWLEDGE

- numAttribute(Parish, Value).
- numAttribute(Parish, Year, Value).
- neighbour(Parish, Parish).
- border(Parish, Object).

POSITIVE EXAMPLES

• burntArea(Parish, Year, Category).

TEMPORAL PREDICATE

SPATIAL PREDICATE

- *yearsSinceLastFireLE(Parish, Year, TimeDist)* if last fire was TimeDist or less years ago
- *yearsSinceLastFireGE(Parish, Year, TimeDist)* if last fire was TimeDist or more years ago
- *fixedNeighbour(Parish, Neighbour)* prevents neighbour recursion

- *attribute(Parish, Category)* depending on *numAttribute(Parish, Value)*
- attribute(Parish, Year, Category) depending on numAttribute(Parish, Year, Value)

Describing wildfires

EXPERIMENTAL RESULTS

Experimental setup

Percentage of burnt area categories

- [0,5[Very low
- [5,20[Low
- [20, 40[Medium
- [40, 100] High

Consider only categories ≥ Low!Minimum confidence set at 0.Consequent must be burnt area percentage.

Fixed minimum support (0.01)

SUPPORT VS CONFIDENCE

SUPPORT VS LIFT

Examples

PROPOSITIONAL

RELATIONAL

Caprine dens. = *Very Low*,

Meadow area = Very Low}

 \Rightarrow Burnt Area = Low

pinewood(Parish, verylow),
fixedNeighbour(Parish, Neib),
yearsSinceFireLE(Neib, Year, 8)
⇒ burntArea(Parish, Year, Low).

supp = 0.18conf = 0.78lift = 1.1

Varying minimum support

TIME TAKEN

RULES FOUND

Summary

PROPOSITIONAL APPROACH

RELATIONAL APPROACH

- more time-efficient
- larger number of rules
- wider range of confidence and lift for rules with low support

- more interpretable
- more expressive

Predicting wildfires

INTRODUCTION

Spatio-temporal forecasting (regression)

Predicting wildfires

PROPOSITIONAL AND RELATIONAL METHODS

Under-sampling for regression proposed by Torgo et al. (2013) and implement in package UBL

December 2015

Predicates for numerical data

- *attributeLE(Parish, Year, Value)* if *attribute* measured before or in *Year* was lesser or equal to *Value*
- *attributeGE(Parish, Year, Value)* if *attribute* measured before or in *Year* was larger or equal to *Value*

SEARCH AND SELECT CLAUSES

- Use random example as seed
- Saturate and reduce using $F_{\beta} measure$
- Save and select best so far
- Repeat 60 times for each $\beta \in \{0.75, 0.9, 1.0, 1.1, 1.25\}$

•
$$F_{\beta} = \frac{(1+\beta^2).precision.recall}{\beta^2.precision+recall}$$

• precision =
$$\frac{TP}{TP+FP}$$

•
$$recall = \frac{TP}{TP + FN}$$

Predicting wildfires

EXPERIMENTAL RESULTS

Experimental setup

10 REPETITIONS

Performance metrics

$$precision_{R} = \frac{\sum_{\phi(\widehat{y_{i}}) > t_{R}} (1+u_{i})}{\sum_{\phi(\widehat{y_{i}}) > t_{R}} (1+\phi(\widehat{y_{i}}))}$$

$$recall_{R} = \frac{\sum_{\phi(y_{i}) > t_{R}} (1+u_{i})}{\sum_{\phi(y_{i}) > t_{R}} (1+\phi(y_{i}))}$$

Results

		Propositional			Relational			
			Under-sampling				Under-sampling	
	\mathbf{RF}	SVR	RF	SVR	\mathbf{RF}	SVR	RF	SVR
Precision _R	0.26	0.25	0.65	0.56	0.22	0.0082	0.58	0.45
$\operatorname{Recall}_{\mathbf{R}}$	0.69	0.74	0.80	0.78	0.71	0.65	0.80	0.76
F_1 -measure _R	0.38	0.37	0.72	0.65	0.34	0.016	0.67	0.57
Pre-processing time (s)	1.4e-3	1.4e-3	1.4e-3	1.4e - 3	1.7	1.7	1.7	1.7
Training time (s)	2.8e-2	1.1e - 1	2.2e-3	3.2e-4	5.4e-2	3.3e-2	5.4e-3	3.0e-3
Prediction time (s)	1.5e-04	1.1e-3	8.0e-5	4.3e-4	1.7e-4	5.6e-3	1.3e-4	2.0e-3
Total time (s)	3.1e-2	1.1e - 1	3.7e-3	2.2e-3	1.8	1.7	1.7	1.7

Example: under-sampling + RF

PROPOSITIONAL

Summary

• Comparable results, in spite of relational feature extraction optimised for classification

• Propositional approach more time-efficient again

• Under-sampling greatly improves results

Conclusion

Summary

- Reviewed the state-of-the-art;
- Developed and compared
 - a propositional methodology based on pre-processing, and
 - a relational methodology based on ILP

for

- spatio-temporal association rule learning, and
- spatio-temporal forecasting (regression).

Future research directions

- Explore other propositional approaches:
 - Extend the work of Oliveira & Torgo (2014) to include spatial dimensions;
 - Use clustering to select neighbourhoods as proposed by Appice *et al.* (2013).
- Explore other relational approaches:
 - Use graphical models such as Markov Logic Networks.
- Compare results in different domains to generalise our findings.

Thank you!

ACKNOWLEDGEMENTS

- PROF. LUÍS TORGO PROF. RITA RIBEIRO
- PROF. VÍTOR SANTOS COSTA PAULA BRANCO
- DR. JOÃO TORRES PROF. ALÍPIO JORGE
 - PROF. PAULO AZEVEDO

Propositional and Relational Approaches to Spatio-Temporal Data Analysis

AUTHOR: MARIANA RAFAELA OLIVEIRA

SUPERVISOR: PROF. LUÍS TORGO

CO-SUPERVISOR: PROF. VÍTOR SANTOS COSTA

COMPUTER SCIENCE DEPARTMENT

FACULTY OF SCIENCES, UNIVERSITY OF PORTO

DECEMBER 2015