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Spatio-temporal databases

EVOLVING THEMATIC MAPS
AND SENSOR NETWORKS

MOVING OBJECTS

Burnt area (%)
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Source: Visualization in Mobility Data Mining, S. Rinzivillo
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Propositional and relational approaches

PROPOSITIONAL RELATIONAL
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Descriptive and predictive methods

Association Classification
rule learning

Predictive

Descriptive

Anomaly
detection Regression
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Motivation and main goals

Total burnt area in Portugal (103ha)

in Portugal (10%ha)
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Total burnt area
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Year

Review the state-of-the-art

Apply propositional and relational methods

Maximum burnt area (%) Mean burnt area (%) Compare approaches
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Wildtires in Portugal

A CASE STUDY

December 2015 PROPOSITIONAL AND RELATIONAL APPROACHES TO SPATIO-TEMPORAL DATA ANALYSIS




Wildfires in Portugal

Area burnt in 2003 (%)

Portugal

* 2882 civil parishes
* 278 municipalities
* 18 districts

Parish total area
*20 ha—88000 ha
* Median: 1700 ha
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Percentage of burnt area (yearly

Number of parishes with >0% burnt area
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Imbalanced domain

28% burned more than 0%

19% burned 1% or more
B 9% burned 5% or more
B 2% burned 20% or more
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Background knowledge

Land cover e Road densit Census data Census data Census data
y (1989,1999,2009) (1991,2001) (1991)

e Eucalyptus e Maximum e All roads e Irrigable area * Population * Population aged
e Tall scrubland altitude e Roads (>6m e Meadow area density 65+
e Small scrubland * Mean altitude wide) e Bovine dens. * Population’s * Housing density
e Broad-leaved * Maximum slope * Road (<6m e Ovine dens. gzl clge

managed forest * Mean slope wide) e Caprine dens.
e Pinewood
e Urban
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Computing spatial relationships

Using PostGIS

* Find neighbours with ST _Intersect

 Calculate neighbour direction with
ST _Azimuth and ST_Centroid

* East—[45,135[2

* South-[135,225[°

* West—[225,315]°

* North - ([315,360[U[0,45])°

* Calculate border parishes with
ST Union and ST _Intersects
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Describing wildfires

INTRODUCTION
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Association rules

A=>C

DI CECE, (T ot = Pra, )

milk, bread _
confidence = Pr(C|A)
butter Pr(Cl)
. r
beer, diapers lift = Pr(C)

milk, bread, butter

o A W N

bread Example:

\ {butter, bread} = {milk}
supp = 0.2; conf = 1.0; lift=25
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Spatio-temporal association rule learning

Propositional Relational

Intra- Inter-. ILP based
transaction transaction

Pre-processing

based

== Context based
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Describing wildfires

PROPOSITIONAL AND RELATIONAL METHODS




Propositional approach

Build spatio-

temporal
indicators

space

Source: Ohashi & Torgo (2012)

December 2015

time
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Temporal indicator
EMA with k=9

Spatio-temporal indicator
Directional
EMA with k=5

Weighted average with
simplified borders
(with ST_MaxDistance)




Propositional approach

Build spatio-
temporal

- Categorise
Impute missing :
numerical
data

indicators variables

Model with

carenR

Missing data Solution
e 3% due to unavailable e Independent spatial-
data only IDW
® 7% due to ST-indicators e Fill with O if borders
construction with sea, average of

the two nearest

directions otherwise

e 21% due to low e Use most recent
temporal granularity measurement
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Propositional approach

Build spatio- Categorise

Impute missing :
temporal data numerical

indicators variables

Model with

carenR

« Jenk’s natural breaks classification method

* 4 categories per variable
* Very Low

* Low
* Medium
* High
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Relational approach

Design temporal Design

Convert data to
Prolog

Model with Aleph

and spatial
predicates

categorising

predicates RIFIEeE),

BACKGROUND KNOWLEDGE POSITIVE EXAMPLES

* numAttribute(Parish, Value). * burntArea(Parish, Year, Category).
* numAttribute(Parish, Year, Value).

> neighbour(Parish, Parish).

* border(Parish, Object).
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Relational approach

Design temporal
and spatial
predicates

Convert data to

Prolog

TEMPORAL PREDICATE

* yearsSincelastFireLE(Parish, Year, TimeDist)
if last fire was TimeDist or less years ago

* yearsSincelastFireGE(Parish, Year, TimeDist)
if last fire was TimeDist or more years ago

December 2015

Design Model with Aleph

categorising

predicates RIF e

SPATIAL PREDICATE

* fixedNeighbour(Parish, Neighbour)
prevents neighbour recursion

PROPOSITIONAL AND RELATIONAL APPROACHES TO SPATIO-TEMPORAL DATA ANALYSIS



Relational approach

Design temporal Design
and spatial categorising
predicates predicate

Convert data to Model with Aleph

Prolog (ar mode)

* attribute(Parish, Category) depending on numAttribute(Parish, Value)
* attribute(Parish, Year, Category) depending on numAttribute(Parish, Year, Value)
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Describing wildfires

EXPERIMENTAL RESULTS




Experimental setup

Percentage of burnt area categories
* [0,5] - Very low
* [5,20[ - Low

Medium - - N [20, 40[ - Medium
- [40, 100] — High

Low -

High -

Percentage of Burnt Area

o -

5 25 50 7 Consider only categories > Low!
Percentage of instances

Minimum confidence set at 0.

Consequent must be burnt area percentage.
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Fixed minimum support (0.01)

SUPPORT VS CONFIDENCE

60 -

N
=]

Support (%)

Relational Propositional

Cons
Low
-~ Medium
+ High

|
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SUPPORT VS LIFT

Relational

60 -

Support (%)
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4
Lift

Propositional
: :Iiz:ium




Examples

PROPOSITIONAL RELATIONAL

{Self = Very Low, pinewood(Parish, verylow),

Caprine dens.= Very Low, fixedNeighbour(Parish, Neib),

Meadow area = Very Low} yearsSinceFireLE(Neib,Year, 8)

= Burnt Area = Low = burntArea(Parish,Year, Low).

supp = 0.15 supp = 0.18
conf = 0.8 conf = 0.78
lift=1.1 lift =1.1
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Varying minimum support

TIME TAKEN

800 -

600 -

Tool
—+— Aleph(categ)
—eo— carenR(categ)

Time taken (s)
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RULES FOUND
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Summary

PROPOSITIONAL APPROACH RELATIONAL APPROACH
* more time-efficient * more interpretable
* larger number of rules ° more expressive

* wider range of confidence and lift
for rules with low support

December 2015 PROPOSITIONAL AND RELATIONAL APPROACHES TO SPATIO-TEMPORAL DATA ANALYSIS



Predicting wildfires

INTRODUCTION
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Spatio-temporal forecasting (regression)

Propositional
I

: : Combined Integrated spatial
Pre-processing Spatio-temporal
: temporal and and temporal
based clustering based : ) ;
spatial methods dimensions
Relational

Graphical ILP based
models
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Predicting wildfires

PROPOSITIONAL AND RELATIONAL METHODS




Propositional approach

Build spatio- .
temporal Impute Under-sample Model with

indicators missing data for regression SVR and RF
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Force
prediction
into range




Relevance (¢)

0 5 10 20 40 100

Instances

Burnt Area (%)

Propositional approach

Under-sampling for regression proposed by Torgo et al. (2013) and implement in package UBL
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Relational approach

Convert data to
Prolog

Force prediction
into range

December 2015

Design temporal
and spatial
predicates

Model with
SVR and RF

Design predicates
to deal with
numerical data

Under-sample
for regression
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Search and select
clauses using
Aleph

Propositionalise
rules to create
Boolean features




Relational approach

Predicates for numerical data

e attributeLE(Parish, Year, Value) if attribute measured
before or in Year was lesser or equal to Value

e attributeGE(Parish, Year, Value) if attribute measured
before or in Year was larger or equal to Value
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Relational approach

Convert data to
Prolog

Force prediction
into range

December 2015

Design temporal
and spatial
predicates

Model with
SVR and RF

Design predicates
to deal with
numerical data

Under-sample
for regression
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Search and select
clauses using
Aleph

Propositionalise
rules to create
Boolean features




Relational approach

SEARCH AND SELECT CLAUSES

* Use random example as seed (1+p2).precision.recall

° F —
ﬁ ..
* Saturate and reduce using Fg — measure Bfprecisiontrecall
* Save and select best so far - precision = TP
TP+FP
* Repeat 60 times for each
g €{0.75,0.9,1.0,1.1,1.25} e recall = —F

TP+FN
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Relational approach

Convert data to
Prolog

Force prediction
into range

December 2015

Design temporal
and spatial
predicates

Model with
SVR and RF

Design predicates
to deal with
numerical data

Under-sample
for regression
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Search and select
clauses using
Aleph

Propositionalise
rules to create
Boolean features




Predicting wildfires

EXPERIMENTAL RESULTS




Experimental setup

10 REPETITIONS

Subset
Other
Test

Train

| | ] I 1 1
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Year
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Performance metrics

Uy Utility Isometrics

Y |
preCiSiOTlR = Z¢(ﬂ)>tR(1+ui) ) L 05
L (7)1 LT OTD) N
recallg = Lo (yy)>ep 1) /
R Z¢(yi)>tR(1+¢(J’i)) . / ! | o5

0 20 40 60 80

Uy@,y) = Bs(3,y) = C5 @, ¥)
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Results

Propositional Relational
Under-sampling Under-sampling
RF SVR RF SVR RF SVR RF SVR
Precisiong 0.26 0.25 0.65 0.56 0.22  0.0082 (.58 0.45
Recallg 0.69 0.74 0.80 0.78 0.71 0.65 0.80 0.76
F,-measurer 0.38 0.37 0.72 0.65 0.34 0.016 0.67 0.57
Pre-processing time (s) l.de-3  1.4e-3 1.4de-3 1.4e-3 1.7 1.7 1.7 1.7
Training time (s) 2.8¢-2 1l.le-l1 2.2e-3 3.2e-4 5.4e-2  3.3e-2  Hde-d 3.0e-3
Prediction time (s) 1.5e-04 1.1e-3 8.0e-5 4.3e-4 1.Te-4  5.6e-3  1.3e-/ 2.0e-3
Total time (s) 3.1e-2 1.le-1 3.7e-3 2.2e-3 1.8 1.7 1.7 1.7
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Example: under-sampling + RF

PROPOSITIONAL RELATIONAL




Summary

« Comparable results, in spite of relational feature extraction optimised for
classification

* Propositional approach more time-efficient again

* Under-sampling greatly improves results
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onclusion
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Summary

* Reviewed the state-of-the-art;

* Developed and compared
* a propositional methodology based on pre-processing, and
* a relational methodology based on ILP

for
* spatio-temporal association rule learning, and
* spatio-temporal forecasting (regression).
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Future research directions

* Explore other propositional approaches:
* Extend the work of Oliveira & Torgo (2014) to include spatial dimensions;

* Use clustering to select neighbourhoods as proposed by Appice et al. (2013).

* Explore other relational approaches:
* Use graphical models such as Markov Logic Networks.

* Compare results in different domains to generalise our findings.
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