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Abstract—Extreme and rare events, such as abnormal spikes
in air pollution or weather conditions can have serious repercus-
sions. Many of these sorts of events develop from spatio-temporal
processes, and accurate predictions are a most valuable tool in
addressing their impact, in a timely manner. In this paper, we
propose a new set of resampling strategies for imbalanced spatio-
temporal forecasting tasks, by introducing bias into formerly
random processes. This spatio-temporal bias includes a hyper-
parameter that regulates the relative importance of the temporal
and spatial dimensions in the selection of observations during
under- or over-sampling. We test and compare our proposals
against standard versions of the strategies on 10 different geo-
referenced numeric time series, using 3 distinct off-the-shelf
learning algorithms. Experimental results show that our proposal
provides an advantage over random resampling strategies in im-
balanced spatio-temporal forecasting tasks. Additionally, we also
find that valuing an observation’s recency is more useful when
over-sampling; while valuing its spatial distance to other cases
with extreme values is more beneficial when under-sampling.

I. INTRODUCTION

Abnormal weather conditions, pollution level spikes, and
fire ignitions are examples of rare or extreme events. These
are commonly associated with impactful situations, often
developed as the effect of uncommon natural factors on
spatio-temporal processes or through the impact of conditional
changes in underlying factors, i.e. concept drift [1]. Due to
characteristics of such events, they are difficult to predict, but
an accurate anticipation is very important [2].

Our work focuses on this problem of forecasting extreme
values in spatio-temporal settings. Standard learning methods
often assume data to be independent and identically distributed
(i.i.d.). However, in the context of spatio-temporal forecasting,
this assumption is likely false due to the correlation that data
points have with their neighbours, both spatially and tempo-
rally, possibly leading to poor predictive performance [3]. In
fact, spatio-temporal modelling approaches are highly prone to
problems when focusing on the accurate prediction of extreme
values due to their assumption of uniform domain preferences
by users (each point is equally important) and the use of
standard evaluation metrics (both internally and in model
optimization) which is known to specialize the forecasters
towards the central tendency of the distribution (i.e. average
target values) [4], instead of the extreme values which we are
focused on accurately forecasting.

Our main motivation derives from the exciting results
obtained by the application of resampling strategies in the
prediction of rare events [4]. Resampling strategies are off-
the-shelf methods that are applied in order to pre-process the
training data, biasing it towards users’ objectives, either by the
removal or replication/generation of cases. Although the appli-
cation of resampling strategies in the context of classification
tasks has a long research record, having been applied to many
domains (e.g. financial data analysis, intrusion detection in
network forensics, oil spill detection and prognosis of machine
failures), only recently has the problem of imbalanced domain
learning been extended to numerical prediction tasks.

In this paper, we leverage recent work on imbalanced
domain learning [4], [5], addressing the problem of forecasting
extreme values in spatio-temporal settings. With this objective,
we propose a novel set of resampling strategies that are tailored
for the spatio-temporal context via 1) accounting for the spatial
and temporal relevance of the data points and 2) by assuming
that the spatial and temporal dimensions may have a different
impact in the modelling process, depending on the domain.
It should be noted that, as far as we know, this is the first
proposal focused on solving imbalanced numerical forecasting
in spatio-temporal contexts. The contributions of this paper are
the following:

1) biased under-sampling and over-sampling strategies for
spatio-temporal forecasting of extreme values;

2) an experimental evaluation including 10 data sets, a
paired comparison of purely random and spatio-temporal
biased resampling strategies for various learning algo-
rithms, and sensitivity analysis of the strategies’ main
parameters.

The remainder of this paper is organized as follows. The
following section provides the problem definition (Section II).
Resampling strategies for spatio-temporal context proposed in
this paper are described and formalized in Section III. An
experimental evaluation is presented in Section IV, followed
by results (Section V), and their discussion (Section VI).
Finally, a review of previous work is detailed in Section VII
and conclusions are presented (Section VIII).

II. PROBLEM DEFINITION

In spatio-temporal forecasting the aim is to predict the
future values of a target variable at a given location. Consider



a set of locations L = {l1, · · · , ln}, a set of time-stamps
T = {t1, · · · , tm}, and a set of observations

D = {{y1,1, < x1
1,1, · · · , xk

1,1 >}, · · · ,
{yi,j , < x1

i,j , · · · , xk
i,j > }}j∈{1,2,··· ,n}i∈{1,2,··· ,m},

where yi,j and xk
i,j correspond, respectively, to the values

of the target variable Y and predictors Xk, at time ti and
geographical location lj . The goal is to predict the value of
Y at a location of interest, ls (s ∈ {1, 2, · · · , n}), at a future
time, tf , given the observed values yi,j and xi,j, such that
ti < tf .

In this work we focus on imbalanced spatio-temporal fore-
casting tasks, where certain ranges of values in the target
variable Y are most important to the end-user, but severely
under-represented in the training data1, e.g. predicting extreme
levels of pollution. This representation bias (imbalance) in the
data commonly leads to modelling solutions that are optimized
towards the prediction of values within the central tendencies
of the distributions, and to the detriment of accurate predic-
tions of extreme values. Given that events with extreme values
often represent situations of high importance and interest to
the end-users, our objective is improving the predictive ability
of such cases.

In order to formalize our prediction task, we need to specify
what is meant by “highly important” values of the target
variable. To this end, we resort to the work of Ribeiro [6],
proposing the use of a relevance function to map the domain
of continuous variables into a [0, 1] scale of relevance, i.e.
φ(Y ) : Y → [0, 1]. Usually, this function is given by the users,
attributing levels of importance to ranges of the target variable
specific to their interest, taking into consideration the domain
of the data. In our work, we do not assume expert knowledge
concerning the domains. Instead, we employ an automated
approach to define the relevance function. We use box plot
statistics as detailed by Ribeiro [6], which automatically
assigns more relevance/importance to the extreme low and
high values of the target variable. This automatic approach
uses a piecewise cubic Hermite interpolation polynomials [7]
(pchip) algorithm to interpolate a set of points describing the
distribution of the target variable. These points are given by
box plot statistics. The outlier values according to box plot
statistics (either extreme high or low) are given a maximum
relevance of 1 and the median value of the distribution is given
a relevance of 0. The relevance of the remaining values is then
interpolated using the pchip algorithm.

Finally, in order to define the cases considered by the user
as having extreme values, we are also required to establish
a threshold value tR. This leads to the formalization of two
subsets of the data set, containing the cases with normal and
extreme values, respectively: DN = {〈x, y〉 ∈ D : φ(y) < tR}
and DR = {〈x, y〉 ∈ D : φ(y) ≥ tR}, where |DR| � |DN |.

1Note that in this paper we assume that all events follow the same
distribution, thus using a global definition of what constitutes a rare/extreme
case, instead of a local one.

We should note that throughout this paper we assume a value
of 0.9 as tR. Furthermore, we should stress that this threshold
does not serve the purpose of discretization, given that predic-
tions are evaluated taking into account their numerical error
and not merely their presence in either DN or DR.

III. SPATIO-TEMPORAL BIAS RESAMPLING STRATEGIES

Resampling strategies such as under-sampling and over-
sampling which reduce/increase the number of normal/rare
cases are well-known. In most contexts, observations are
selected entirely randomly during this process, though there
are proposals introducing bias, e.g., in a time series forecasting
context [8]. In this section we detail our proposal of novel
resampling strategies that include a spatio-temporal bias in
case selection procedures.

A. Algorithms

We aim at taking advantage of the effect that spatial and
temporal dimensions may have in determining which observa-
tions are more useful to keep or replicate during the resampling
process. For this purpose, we make use of a sampling weight,
Wi,j , that regulates the probability that a certain observation
will be selected to stay/be replicated in the training set. The
higher the weight, the higher the probability that an obser-
vation is found in the data set after resampling. This weight
is based on the intuitions that the temporal recency of the
observation, as well as the relevance of its spatial neighbours,
may have an impact on the observation’s importance to the
learning process. It also takes into account that, depending on
the domain, the temporal or spatial dimensions may have a
different impact, so we introduce a parameter α to strike a
balance between a spatial and a temporal component, WL

i,j

and WT
i,j , as in Eq. 1,

Wi,j = α×WT
i,j + (1− α)×WL

i,j + ε (1)

where i is a time-stamp index, j is a location index, and ε is a
small value added so that no observation has zero probability
of being kept/added to the training set during resampling.

The weights are calculated according to the algorithm
depicted in Figure 1, and the intuitions behind them are as
follows:
• Observations that are more recent should have higher

probability of being selected given that they hold infor-
mation that is more up-to-date and, thus, more relevant
to the predictive task at hand (cf. line 12 in Figure 1);

• When selecting extreme observations to be over-sampled,
observations that are spatially farther away from other
extreme cases should take priority as they are otherwise
isolated and could be more prone to be filtered out or
ignored during the learning process (cf. lines 17–20);

• When selecting normal cases to keep in under-sampling,
observations that are spatially farther away to extreme
cases should have higher probability of being selected to
stay in the final set so borders around extreme cases can
be easier to learn (cf. lines 15–16, 19–20).



1: function SAMPLEWEIGHTS(T, L, Y, φ, tR, α, ε)
2: � T = {ti}, i ∈ {1 · · ·m} - Time-stamps
3: � L = {lj}, j ∈ {1 · · ·n} - Geolocations
4: � Y = {yi,j}, i ∈ {1 · · ·m}, j ∈ {1 · · ·n} - Target values
5: � φ(Y ) - User specified relevance function
6: � tR - The relevance threshold for y values
7: � α - Dimensional weighting factor
8: � ε - Minimum weight
9:

10: dmax ← max(DIST(lj , lk)), j �= k � DIST is a spatial distance function
11: for i← 1,m do
12: WT

i,j ← ti � Temporal weight is proportional to time-stamp (higher
weight → more recent observation)

13: Ri ← {(i, j) | φ(yi,j) ≥ tR}
14: for j ← 1, n do
15: if Ri = ∅ then
16: WL

i,j ← dmax � No rare cases at time-stamp ti means spatial
weights of normal cases are maximal

17: else if |Ri| = 1 ∧ (i, j) ∈ Ri then
18: WL

i,j ← dmax � Only one rare case at time-stamp ti means its
spatial weight is maximal (isolated rare case)

19: else
20: WL

i,j ← min(DIST(lj , lk)), (i, k) ∈ Ri, j �= k � Spatial
weight is proportional to minimum distance to rare case at time-stamp ti (higher
weight → more isolated rare case OR normal case farther away from rare cases)

21: end if
22: end for
23: end for
24: WT ← NORM(WT , φ) � NORM normalizes weights separately for cases

with normal and extreme values
25: WL ← NORM(WL, φ)
26: W ← α×WT + (1− α)×WL + ε

return W
27: end function

Fig. 1. Spatio-temporal bias resampling weights

Since the under- and over-sampling algorithms focus, re-
spectively, on randomly selecting normal/extreme cases to
keep/add to the training set, the weights are normalized
separately for each type of observation.

As an example, heatmaps of the relevance function, and
the spatial, temporal and spatio-temporal weights for data
set 31 (see Section IV-A1) are pictured in Figure 2. The
relevance function, φ, is calculated automatically, and values
are considered extreme when φ(y) ≥ 0.9. For each time-slice
along the x-axis, the spatial weight of a case (a cell in the
graph, WL) is higher when the spatial distance to measured
extreme values is larger. Note that while WL is related to
φ, this graph cannot show the spatial relationships between
different locations along the y-axis. The temporal weights,
WT , increase smoothly along the x-axis, as observations
become more recent. The spatio-temporal weight, W , is then
calculated by combining the temporal and spatial dimensions
in equal measure (α = 0.5 in this example).

Next, we specify the proposed variants of under- and over-
sampling algorithms which include the spatio-temporal weight
to bias the random sampling process. The pseudocode for both
variants can be found in Figure 3.

1) Biased Under-Sampling: The process of spatio-temporal
biased random under-sampling first collects all observations
with extreme values. Then, it samples a number of instances
with normal values to be kept in the new data set, with a
probability that is proportional to the weights calculated above.
A case will have a higher probability of being selected if i) it
is more recent, and ii) it is spatially farther away from any
extreme cases at the time of observation. This approach uses

Wᴸ Wᵀ

ϕ W
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Fig. 2. Heatmaps for data set 31, showing relevance values, φ, spatial weight,
WL, temporal weight, WT and their combination as the spatio-temporal
weight, W . Each cell in the heatmap corresponds to one observation at a
given point in time and location.

random selection without replacement, and the parameter u,
0 < u < 1, can be used to define the fraction of normal cases,
w.r.t. to the number of normal cases in the data set, that is to
be kept in the new data set.

2) Biased Over-Sampling: The process of spatio-temporal
biased random over-sampling starts with the initial data set.
Then, it randomly selects a number of instances with extreme
values to be replicated and added to the data set, with a
probability that is proportional to the weights calculated above.
The probability of being replicated is higher if the case is
i) more recent, and ii) more distant to other extreme values
measured at the time of observation. This random selection is
done with replacement and the parameter o > 0 allows the
user to select a specific percentage of highly relevant cases to
replicate.

1: function STRANDRESAMPLING(D, Y, φ(Y ), tR, B, u, o)
2: � D - A data set
3: � Y - The target variable
4: � φ(Y ) - User specified relevance function
5: � tR - The threshold for relevance on y values
6: � W - Spatio-temporal bias weight
7: � B - Variant of biased resampling (STRUS for biased under-sampling; STROS

for biased over-sampling)
8: � u - Percentage of under-sampling (if B = STRUS)
9: � o - Percentage of over-sampling (if B = STROS)

10:
11: DR ← {Di : ∀yi ∈ Y, φ(yi) > tR} � Cases considered as highly relevant
12: DN ← {Di : ∀yi ∈ Y, φ(yi) ≤ tR} � Cases considered as normal
13: if B = STRUS then � Biased random under-sampling
14: TgtNr ← |DN | × u
15: newData← DR � Highly relevant cases are kept in the new data set
16: selCases← SAMPLE(tgtNr,DN ,W ) � Biased random selection of a

number of normal cases from DN

17: else if B = STROS then � Biased random over-sampling
18: tgtNr ← |DR| × o
19: newData← D � All cases are kept in the new data set
20: selCases← SAMPLE(tgtNr,DR,W ) � Biased random selection of a

number of rare cases from DR

21: end if
22: newData← c(newData, selCases) � Add selected cases to the new

data set
23: return newData
24: end function

Fig. 3. Spatio-temporal bias random under- and over-sampling



IV. EXPERIMENTAL EVALUATION

In this section, we describe the experimental evaluation
process used to test and compare the following resampling
strategies: random under- and over-sampling (RUS and ROS),
and spatio-temporal bias random under- and over-sampling
(STROS and STRUS). Note that ROS and RUS are versions
of STROS and STRUS where the probability of selection is
not dependent on spatio-temporal weights, i.e., their sampling
processes work as if all observations have the same non-zero
weight. These strategies were also compared against a baseline
where no resampling was applied.

A. Data and Methods

Next, we describe the data sets, pre-processing methods,
and learning algorithms used.

1) Data: Ten variables from five different environmental
monitoring data sources were used as target variables, as if
each was an independent and univariate data set. A summary
of the characteristics of each data set can be found in Table I.
The size of sensor networks varies from 20 to 72 geolocations
irregularly distributed in space, with measurements being taken
from below 200 times to more than 11k times at different
frequencies. Percentages of cases with extreme values range
from 2.4% to 8.6% of instances. These percentages were
calculated by inferring the relevance function of each data set,
φ, using a relevance threshold tR of 0.9.

2) Methods: In this section, we explain how features were
generated, how we handle missing data, and the used regres-
sion algorithms.

a) Feature engineering: In order to use standard machine
learning algorithms and compare the effect of resampling
approaches, the pre-processing strategy proposed in [12] was
used to transform the data sets. For each observation, the
predictors used to predict the target value are i) a temporal
embed of values previously measured at that location, ii) a
set of spatio-temporal indicators built by calculating summary
statistics of previous measurements at neighbouring locations
within three dataset-specific boundaries of spatio-temporal dis-
tance, and iii) ratios between the indicators of spatio-temporal
neighbourhoods of increasing radius. This data transformation
was performed on the whole data set before any train/test data
divisions, and resulted in a total of 20 predictors.

b) Handling missing data: Three of the data sources
were measured at every point in time and space, with no miss-
ing values. However, for others, only a percentage of location
and time-stamp pairs (from 39% to 49%) have available val-
ues, due to failures in data acquisition, or sensor stations being
set up at later times. Before applying a resampling strategy
and/or training a model within the evaluation framework, all
columns that have 20% or more of training data missing are
discarded as they should not be very useful predictors. The
remaining missing data is dealt with as follows: first, any rows
that have too many predictors missing (set at 20% of columns)
are discarded from the training set; then, missing values for
both the training and test sets are imputed as the median of
that column in the set.

c) Regression algorithms: Three standard regression al-
gorithms were selected to test whether the results are consis-
tent across different tools. Implementations available in free
and open source R packages were used: multivariate adaptive
regression splines algorithm (MARS) from package earth [13],
random forest (RF) from ranger [14], and regression trees
(RPART) from rpart [15]. Results were obtained using default
parametrizations, with the exception of number of trees in RF
which was set to 250.

B. Evaluation Methodology

The evaluation methodology involves two choices: which
performance metrics are more appropriate, and what procedure
should be used to estimate them. In this section, we describe
our evaluation framework.

1) Performance Metrics: The focus of this experimental
evaluation is to assess the predictive ability of models in
forecasting highly relevant cases, corresponding to extreme
target values. As previously mentioned, given the considerable
representation bias between cases with values around the
central tendency of the distribution and those with extreme val-
ues, the use of standard (average-based) numerical evaluation
metrics is not appropriate: these will lead to an optimization
process focusing on reducing the average error of the models.
In order to provide a thorough analysis of the models’ ability
in predicting extreme values, this experimental evaluation is
focused on the use of the utility-based F-Score [6] metric.

The utility-based F-Score is motivated by the well-known
precision/recall evaluation framework [16] used in classifica-
tion tasks. Based on the concepts of relevance (see Section II)
and utility, Ribeiro [6] presents a formulation of precision
and recall for regression tasks with imbalanced domains, of
which the following is an alternate definition for simplification
purposes:

precuφ =

∑

φ(ŷi)≥tR,φ(yi)≥tR
(1 + u(ŷi, yi))

∑

φ(ŷi)≥tR
(1 + φ(ŷi))

(2)

recuφ =

∑

φ(ŷi)≥tR,φ(y)≥tR
(1 + u(ŷi, yi))

∑

φ(yi)≥tR
(1 + φ(yi))

(3)

where φ(yi) and φ(ŷi) is the relevance associated with the
true value yi and predicted value ŷi, respectively; tR is a user-
defined relevance threshold, above which cases are signalled
as highly relevant for the user, and u(ŷi, yi) is the utility of
making the prediction ŷi for the true value yi, normalized to
[−1, 1]. In this paper tR is set to 0.9, and relevance functions
are automatically calculated.

Utility is commonly referred to as being a function com-
bining positive benefits and negative benefits (costs). In this
paper, we use the approach for utility surfaces proposed by
Ribeiro [6]. Unlike in classification tasks, utility is interpreted
as a continuous version of the benefit matrix proposed by
Elkan [17], where utility U is defined as the difference between



TABLE I
REAL-WORLD DATA SETS

Data set ID Variables Frequency #timeIDs #locIDs #inst. %avail. %extr. Source
MESA
Air Pollution

10 NOX conc. bi-weekly 280 20 5.6k 100 7.3 [9] 1

NCDC
Air Climate

20 precipitation monthly 105 72 7.6k 100 6.0 [9] 1

TCE 30 ozone hourly 360 26 8.6k 100 6.3 [9] 1

Air Climate 31 temperature 9.4k 3.8
32 wind speed 9.4k 2.4

RURAL
airBase

40 PM10 conc. daily 4382 70 149k 49 7.5 [10] 2

Beijing 50 NOX conc. hourly 11235 36 404k 39 3.5 [11] 3

UrbanAir 51 PM10 conc. 11312 407k 39 5.5
52 wind speed 11319 407k 41 8.6
53 PM25 conc. 11350 409k 41 3.8

aDownloaded at: http://www.di.uniba.it/\∼appice/software/COSTK/index.htm
bLoaded from R packages GSIF (0.5-4) and spacetime (1.2-1).
cDownloaded at: https://www.microsoft.com/en-us/research/publication/u-air-when-urban-air-quality-inference-meets-big-data/

benefits B and costs C, U = B − C. To calculate utility, we
have to consider two factors: i) if the true and predicted values
and their respective relevance belong to similar relevance bins
(e.g. both values are extreme and thus highly relevant); and
ii) whether the prediction is reasonably accurate, given a
factor of maximum admissible loss, defined by the author.
Accurate predictions are attributed non-negative utility, with
higher utility values being attributed to correct predictions of
the (highly relevant) extremes of the target variable. When
predictions are not entirely accurate, utility also takes into
account the magnitude of predictive errors: predictions that
are reasonably close to the true values have non-negative
utility; but, as the distance between predicted and true values
increases, utility becomes negative, tending to −1.

Finally, the utility-based F-Score metric Fu
β combines both

precision (precuφ) and recall (recuφ) with an harmonic mean,
including a β factor denoting the importance attributed to the
components. In this paper, it is set as 1, equally weighting pre-
cision and recall. We should stress that, unlike the traditional
F-Score metric used in classification tasks, this formulation of
the utility-based F-Score is based on the analysis of numerical
prediction errors.

2) Estimation Procedures: Estimating performance metrics
using cross-validation in settings where temporal and spatial
dependence structures are present raises issues [18]–[20].
In this context, we opt for a prequential temporal block
evaluation procedure (as described in the work of Oliveira et
al. [20]), where the data set is divided into 10 blocks respecting
temporal order, using a growing window for training. That is, a
model is trained using the first block and tested in the second;
then, it is trained using the first two blocks, and tested in the
third; until all (except the first) blocks are used for testing.
The relevance function is automatically calculated based on
the training target values at each step. Evaluation metrics are
averaged over the 9 testing blocks.

For each resampling strategy, there are parameters that
need to be set: the over- and under-sampling percentages,

o and u, and α for biased resampling approaches. These
parameters can be set a priori, or they can be tuned internally.
The set of parameters tested include all combinations of
u ∈ {0.2, 0.4, 0.6, 0.8, 0.95}, o ∈ {0.5, 1, 2, 3, 4}, and α ∈
{0, 0.25, 0.5, 0.75, 1}. Once again, note that the percentage
of under-sampling determines that the set of non-extreme
observations will be reduced to u of its original size. The
percentage of over-sampling establishes that o of the original
number of extreme observations will be added to the training
set, i.e., a o of 1 means the frequency of rare cases will be
doubled after resampling.

When internally tuning them, we deploy time-blocked
cross-validation (also described in [20]) within each growing
window of blocks in the prequential evaluation procedure
described above. The parameters obtaining the best results in
that training window are then used to re-sample that training
set. While time-blocked cross-validation does not completely
respect temporal order, it does acknowledge temporal de-
pendence and it uses the whole training set to search for
parameters. This is why it was employed instead of a pre-
quential evaluation in this internal setting, where the amount
of working data is smaller.

The proposed methods are implemented in an R pack-
age, STResampling, available at https://github.com/mrfoliveira/
STResampling-DSAA2019. All the code and data necessary
to replicate our results is also included.

V. RESULTS

In this section, we present the results obtained using the
framework detailed in the previous section and three different
parametrization methodologies.

Specifically, we show the results of following two strategies
that are often required in real-world applications: a) tuning the
parameters internally, and b) a priori fixing the parameters at
arbitrary values. The first strategy requires more computational
resources, while the second gives us a glimpse of what may
happen if “default” parameters are used regardless of data
set characteristics. We also show optimal results obtained



by c) using the best parameters for each data set, chosen
a posteriori. While reporting on optimal results does not
guarantee that it would be possible to replicate them, it can
help establish the full potential of the resampling strategies.

Next, we present a summary of the overall results, which
are further detailed below. We dedicate the remainder of the
section to parameter sensitivity analysis and the precision-
recall trade-off of our resampling strategies.

A. Summary of Results

Table II summarizes our results. The rank according to Fu
1

is calculated per learning model and data set pair, and then
the overall average is calculated. The best results are in bold.
The results show that whether the parametrization is internally
tuned according to the results of each training window, or it
is chosen a posteriori to be the one getting optimal results
for each data set, or it is fixed arbitrarily to be the same
for all data sets, biased under-sampling always achieves the
best overall average rank. Moreover, if considering optimal
or internally tuned parametrization, the second best result is
obtained by the biased form of over-sampling. However, when
fixing parameters arbitrarily, both types of under-sampling
are better than over-sampling. Note that applying any form
of resampling always improves against the baseline and that
whether under- or over-sampling is used, the results are always
improved, on average, by including a spatio-temporal bias to
the approach.

TABLE II
AVERAGE RANKS OF Fu

1 RESULTS

parametrization None ROS STROS RUS STRUS
internally tuned 4.60 3.07 2.37 2.67 2.30
fixed arbitrarily a priori 4.53 2.77 2.73 2.57 2.40
optimal a posteriori 5.00 3.07 2.27 2.93 1.73

B. Internally Tuning Parameters

This subsection describes the results of prequential time-
block evaluation with internal parameter tuning using time-
block cross-validation, as detailed in Section IV-B.

Figure 4a shows the best resampling approach w.r.t. the
baseline. It is clear that some sort of resampling benefits all
data sets and learning model pairs, except data set 32 when
using MARS. When using any of the three learning models,
the best results on the majority of data sets are obtained when
using a form of biased resampling. When using RF, there is a
very clear preference for under-sampling, while for the other
two models the best performers are more balanced between
under- and over-sampling alternatives.

For each learning model and data set pair, we rank the
different strategies according to Fu

1 . Table III shows the
average ranks of each sampling method aggregated by model.
We can see that our biased under-sampling proposal is the
best performer in the case of RF and RPART (tied with non-
biased over-sampling in the case of RPART), while biased
over-sampling is best when using MARS. Table IV shows the
breakdown by data set. Notice that the baseline is consistently
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Fig. 4. Baseline and best Fu
1 result achieved for each data set. Top layers

present MARS results, followed by RF and RPART. Two bars correspond
to one data set: the baseline, in gray, and the best result. Under-sampling is
shown in shades of purple; over-sampling, in orange shades; darker colours
indicate bias

ranked bottom for 8 of the data sets. The best results are always
obtained by using resampling. Biased resampling strategies
achieve the best rank in 6 of the 10 data sets; random
resampling works best for 3; and in the case of data set 31,
there is a tie.

C. Fixing Parameters A Priori

Next, we show the results obtained by the prequential
evaluation procedure when setting parameters to the values in



TABLE III
AVERAGE RANKS OF Fu

1 PER MODEL USING TUNED PARAMETERS

model None ROS STROS RUS STRUS
MARS 4.40 3.20 2.20 2.50 2.70
RF 4.70 3.60 2.90 2.00 1.80
RPART 4.70 2.40 2.90 2.60 2.40

TABLE IV
AVERAGE RANKS OF Fu

1 PER DATA SET USING TUNED PARAMETERS

data None ROS STROS RUS STRUS
10 2.67 2.67 3.33 2.33 4.00
20 5.00 3.67 3.33 1.67 1.33
30 5.00 3.00 2.00 2.33 2.67
31 5.00 2.33 2.33 2.33 3.00
32 3.33 4.00 2.00 3.67 2.00
40 5.00 3.33 3.33 1.33 2.00
50 5.00 3.33 3.00 2.67 1.00
51 5.00 2.67 3.00 2.00 2.33
52 5.00 3.00 2.67 2.67 1.67
53 5.00 2.67 1.67 2.67 3.00

the middle of the grid search, regardless of data set or learning
algorithm. That is, α is set to 0.5, o to 2, and u to 0.6.

In Figure 4b, we can see the results obtained by the best
resampling approach against the baseline. A strong prefer-
ence for under-sampling when using RF is still noticeable,
while MARS and RPART favour over-sampling in more cases
(cf. 4a). Using these fixed parameters, biased resampling
approaches have the advantage in almost all cases when using
MARS and RF. However, in the case of RPART (the least
complex of learning models), biased resampling only achieves
the best result for 4 out of 10 data sets.

For another perspective on the results, Tables V and VI show
the average ranks of Fu

1 , of each sampling method using the
parametrization outlined above, aggregated by learning model
and data set, respectively.

In Table V, we see that when using MARS and RF, the best
performance is achieved by using resampling methods with
spatio-temporal bias when over- or under-sampling, respec-
tively. Though in the case of RPART the best performance is
obtained by random over-sampling, there is still an advantage
to applying spatio-temporal bias when under-sampling. When
using RF, it is advantageous to apply spatio-temporal bias
regardless of the resampling method being used.

TABLE V
AVERAGE RANKS OF Fu

1 PER MODEL WITH FIXED PARAMETERS

model BASELINE ROS STROS RUS STRUS
MARS 4.60 2.70 2.00 2.80 2.90
RF 4.60 3.60 3.10 2.00 1.70
RPART 4.40 2.00 3.10 2.90 2.60

In Table VI, we can see that, even when using parameters
that were not specifically selected for each data set, applying
a spatio-temporal bias to a form of random resampling still
achieves a result that is best (or tied for best) for half the data
sets. It is also noticeable in Table VI that, as the size of the data
set increases (the table is ordered accordingly), the advantage

of biased approaches becomes more clear, indicating that, with
these “default” parameters, the bias works better as it is applied
to larger data sets that include missing data.

TABLE VI
AVERAGE RANKS OF Fu

1 PER DATA SET WITH FIXED PARAMETERS

data None ROS STROS RUS STRUS
10 2.33 3.33 4.33 2.00 3.00
20 5.00 3.00 2.67 1.67 2.67
30 4.67 2.00 2.33 3.67 2.33
31 5.00 1.67 2.67 2.67 3.00
32 3.67 4.33 3.33 1.67 2.00
40 5.00 2.67 2.33 2.33 2.67
50 5.00 2.33 2.00 3.00 2.67
51 4.67 3.00 3.00 2.67 1.67
52 5.00 3.00 2.67 2.67 1.67
53 5.00 2.33 2.00 3.33 2.33

D. Optimal Parametrization

In this section, we present the optimal results achieved by
each resampling strategy. These results were obtained by run-
ning prequential time-block evaluation with all combinations
of parameters and, a posteriori, selecting the best performers
for each data set and learning algorithm pair, in order to assert
the potential of each strategy.

In Figure 4c, a baseline and the optimal F1u achieved
overall are presented for each data set and learning model.
When using MARS or RPART, a biased approach is always (or
almost always) preferred, with a near-perfect balance between
under- and over-sampling. When using RF, however, a strong
preference for under-sampling is noticeable and non-biased
under-sampling is responsible for the best results for 3 out of
10 data sets.

Table VII shows the average rank of each resampling
approach aggregated by model. The baseline, where no step to
address the imbalance problem was taken, is consistently out-
performed by all resampling approaches. Including a spatio-
temporal bias improves the rank of both over- and under-
sampling in all cases. Biased under-sampling achieves the best
results when using RPART or RF, and biased over-sampling
when using MARS.

TABLE VII
AVERAGE RANKS OF OPTIMAL Fu

1 RESULTS PER MODEL

model None ROS STROS RUS STRUS
MARS 5.00 2.80 1.70 3.70 1.80
RF 5.00 3.70 2.90 2.00 1.40
RPART 5.00 2.70 2.20 3.10 2.00

In Table VIII, a complementary view is given, aggregating
the ranks by data set instead of by model. It is shown that
for all data sets, it is beneficial to apply some kind of random
resampling, with the advantage being greater, in general, if a
spatio-temporal bias is observed.

1) Statistical Significance: The statistical significance of
our findings was tested with the Friedman test, as suggested
in [21]. The resulting critical difference diagrams can be



TABLE VIII
AVERAGE RANKS OF OPTIMAL Fu

1 RESULTS PER DATA SET

data None ROS STROS RUS STRUS
10 5.00 3.00 1.33 3.67 2.00
20 5.00 4.00 2.67 2.33 1.00
30 5.00 2.67 1.67 3.00 2.67
31 5.00 2.33 2.00 4.00 1.67
32 5.00 3.67 2.67 2.67 1.00
40 5.00 3.00 3.00 3.00 1.00
50 5.00 3.00 2.67 2.00 2.33
51 5.00 3.67 2.00 2.67 1.67
52 5.00 2.67 2.33 3.33 1.67
53 5.00 2.67 2.33 2.67 2.33

seen in Figure 5. While differences between biased and non-
biased variants of the resampling approaches are not generally
significant, both spatio-temporally biased resampling strategies
stand out by achieving significantly better results than the
baseline regardless of the learning model being used.

E. Parameter Sensitivity Analysis

To study parameter sensitivity, we investigate how each
resampling percentage and α pair ranks, on average, against
all other pairs (including the baseline where no resampling is
performed), for all data sets. Results are presented in Figure 6.
In general, a colour gradient is more noticeable along the
X-axis, indicating that resampling percentage has a larger
impact than α (or its absence, which corresponds to resampling
without bias). However, a diagonal gradient is discernible with
the worst performers being accumulated in the two corners
where values for both parameters are either very high (when
under-sampling) or very low (when over-sampling).

1) Parameter α: In Figure 7, results are aggregated to better
evidence the impact of weighting factor α. It is apparent
that, when under-sampling, low values of α are preferred.
This indicates that it is more useful to keep normal cases
that are distant spatial neighbours to extreme cases, weighing
temporal recency less (or not at all). When over-sampling, it
is more advantageous to favour more recent extreme cases for
replication, weighting spatial isolation from other rare cases
to a lesser degree.

F. Precision and Recall Trade-Off

While Fu
1 is a useful metric for evaluation/optimization

processes when an algorithm capable of accurately predicting
extreme values is required, the trade-offs between precision
and recall that these approaches allow should be considered
and analysed.

In Figure 8, the average ranks of both precuφ and recuφ
can be found. The darker region in the centre of the X-axis
in Figure 8a was to be expected in this type of problem.
Those resampling percentages (higher o, lower u) result in
training sets that have a comparatively much higher number
of extreme cases, causing the learning algorithms to focus
more on these cases. This creates a tendency to increase the
rate of normal cases being predicted as highly relevant (with
extreme values), lowering precision. A similar explanation can
be extended to recall, although in the opposite direction (see

Figure 8b). However, in the case of under-sampling, there
seems to be a more noticeable additional layer of dependence,
with the appearance of a more diagonal gradient. This shows
an interesting interplay between α and u, and indicates that
the diagonal pattern found previously in Figure 6 is mostly
impacted by variations in recall.

VI. DISCUSSION

In this section we examine some aspects of our work in
further detail, and motivate future work in this context. We
will address two issues: i) the impact of data characteristics
and ii) a local/global definition of extreme values.

Examining how data characteristics impact the results ob-
tained in our evaluation, we observed that the size of the data
sets may be related to the efficiency of our proposals (see
Section V-C). However, in order to extract deeper insights
regarding the interplay of this and other characteristics and the
failure/success of the methods, a multidimensional analysis of
the results would be required. Such analysis should be paired
with the learning algorithm used, and its own parametrization,
in order to correctly assert the degree of influence that the
characteristics of the data have in the outcome of applying
spatio-temporal biased resampling strategies.

In this paper, we used a general concept of relevance w.r.t.
the target values instead of a local approach (i.e. per location
and/or time window). We recognize that there may be issues
with either configuration. Our choice is based on the assump-
tion that all events follow the same distribution, thus resulting
in a general notion of relevance, as we do not consider spatial
or temporal locality. Depending on the application, this may be
the best decision, e.g. pollution levels should not necessarily be
adjusted locally – there are health risks associated with them
that are independent of local variables. In other situations, this
might not be the ideal approach, and extreme values might
need to be determined locally to be considered useful, e.g. an
extremely high influx of costumers at a specific bike rental
station should be considered in relation to normal consumer
behaviour in the neighbourhood at similar periods of the year,
not against a station with a much higher or lower average
number of customers. In future work, we will address this
issue, by comparing our results with a methodology that
includes the derivation of relevance functions specific to each
location.

VII. RELATED WORK

There are several ways of approaching a spatio-temporal
forecasting problem by leveraging the contextual information
of both spatial and temporal dimensions. Some proposals focus
on adapting or combining context-aware learning models [11],
[22]–[25]. Others use feature engineering to encode spatio-
temporal contextual information, while taking advantage of
off-the-shelf regression algorithms [12], [26]–[28]. In our
work, we make use of the features proposed in [12], before
applying our proposed resampling strategies.

In the context of spatio-temporal forecasting, and although
the relevance of solving tasks related to the prediction of
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rare cases or extreme values is considerable [29], only a
small fraction of this body of work specifically tackles such
problems [11], [25], [27]. Furthermore, we also note that the
great majority of related work concerns the prediction of rare
cases, i.e. classification tasks [11], [25]. We should highlight
the work of Oliveira et al. [27] and Moniz et al. [8] tackling
numerical prediction of extreme values.

In the work of Oliveira et al. [27], a similar framework to
the one we use is applied to the prediction of areas burnt
by wildfires: features encoding spatio-temporal information
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are extracted from the data set, and random resampling is
then applied to improve predictions of cases with extreme
values. While the feature engineering step takes into account
the spatio-temporal context of the problem, using random
resampling ignores it. In our paper, we have proposed the



first set of resampling strategies that are specific to the task of
imbalanced spatio-temporal forecasting. Additionally, we have
shown that taking into account the possibly different impact
of the temporal and spatial dimensions is capable of boosting
the predictive performance of the forecasters. In the work
of Moniz et al. [8], the authors propose seminal approaches
for solving imbalanced time series forecasting tasks, using a
similar approach as that used in our work, i.e. incorporation
of a vector weighting the relevance of each case w.r.t. the
sampling process. Notwithstanding, their work is based on
the analysis and pre-processing of data solely based on the
temporal dimension of the data, which is not the objective in
the present paper.

VIII. CONCLUSIONS

We address the problem of imbalanced spatio-temporal
numerical forecasting, by proposing the first set of resampling
strategies that can take advantage of the interplay between the
temporal and spatial dimensions of the data. By incorporating
a bias in the selection procedure of the resampling strategies,
we have shown that i) biased resampling improves perfor-
mance; ii) the contributions (i.e. weight) of each dimension
should be optimized according to the domain; and iii) biased
under-sampling and over-sampling approaches display oppo-
site tendencies. Namely, in the case of spatio-temporal biased
under-sampling, the strategy works best when it prefers the
selection of normal cases that are distant from instances with
extreme values, and gives less weight to the temporal aspect
of the data. Biased over-sampling works best when it favours
the selection of recent extreme instances, and attributes less
weight to the spatial dimension of the data.

A thorough experimental evaluation provides extensive em-
pirical evidence supporting the ability of the spatio-temporal
biased resampling strategies to boost predictive performance
towards cases with extreme values, when compared to state-
of-the-art resampling strategies, in several parametrization sce-
narios: using internally tuned, fixed, and optimal parameters.
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