
Towards Efficient Training on Large Datasets for
Genetic Programming

Robert Curry and Malcolm Heywood

Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax,
Nova Scotia, Canada, B3H 1W5

{rcurry, mheywood}@cs.dal.ca

Abstract. Genetic programming (GP) has the potential to provide unique solu-
tions to a wide range of supervised learning problems. The technique, however,
does suffer from a widely acknowledged computational overhead. As a conse-
quence applications of GP are often confined to datasets consisting of hundreds
of training exemplars as opposed to tens of thousands of exemplars, thus limit-
ing the widespread applicability of the approach. In this work we propose and
thoroughly investigate a data sub-sampling algorithm – hierarchical dynamic
subset selection – that filters the initial training dataset in parallel with the
learning process. The motivation being to focus the GP training on the most dif-
ficult or least recently visited exemplars. To do so, we build on the dynamic
sub-set selection algorithm of Gathercole and extend it into a hierarchy of sub-
set selections, thus matching the concept of a memory hierarchy supported in
modern computers. Such an approach provides for the training of GP solutions
to data sets with hundreds of thousands of exemplars in tens of minutes whilst
matching the classification accuracies of more classical approaches.

1 Introduction

The interest of this work lies in providing a framework for efficiently training genetic
programming (GP) on large datasets. There are at least two aspects to this problem:
the cost of fitness evaluation and the overhead in managing datasets that do not reside
within RAM alone. The computational overhead associated with the inner loop of GP
fitness evaluation has been widely recognized. The traditional approach for address-
ing this problem has been hardware based. Examples include Beowulf clusters [1],
parallel computers [2] and FPGA solutions [3]. In this work we propose to address the
problem through the following two observations. Firstly, within the context of super-
vised learning, the significance of data sampling algorithms have been widely ac-
knowledged albeit with the motivation to improve error performance, e.g. boosting
and bagging [4, 5]. Secondly, memory hierarchies are widely used in CPU architec-
tures, where such hierarchies are based on the concept of temporal and spatial locality
[6]. The motivation used here, however, is that any learning algorithm need only see a
subset of the total dataset, where the sampling process used to identify such a subset
of exemplars should also be sympathetic to the memory hierarchy of the computing
platform.

To address these issues the method of Dynamic Subset Selection [7] was revisited and
extended to a hierarchy of subset selections. Such a scheme was applied to the 10%
KDD-99 benchmark, a dataset consisting of approximately half a million patterns [8].
The dataset was first partitioned into blocks that were sufficiently small to reside
within RAM alone. Blocks were then chosen from this partition based on Random
Subset Selection (RSS). This forms the level 1 of the selection hierarchy. At level 2,
the method of Dynamic Subset Selection (DSS) was used to stochastically select pat-
terns from the block identified at the first level. Several rounds of DSS are performed
per level 1 block, with exemplars identified on the basis of their difficulty and age.
This hierarchy shall be referred to as a RSS-DSS hierarchy.

In this work we concentrate on the parameterization of the algorithm and extending
the evaluation to another dataset (the work of Song et al., concentrated on application
issues associated with the application to an intrusion detection problem [8]). Further-
more, an alternative hierarchy is introduced in which the level 1 block selection was
also chosen using DSS. This new hierarchy shall be referred to as the DSS-DSS hier-
archy and is shown to improve the error properties of the ensuing solution.

The remainder of the paper consists of the methodology for hierarchical DSS, the en-
suing Results and Discussion, Sections 2, 3 and 4 respectively.

2 Methodology

As indicated above, our principle interest lies in the investigation of an exemplar sub-
sampling algorithm, which filters the dataset in proportion to the ‘age’ and ‘difficulty’
of exemplars as viewed by the learning algorithm, whilst also incorporating the con-
cept of a memory hierarchy. Such a scheme should significantly decrease the time to
complete the inner loop of GP, without impacting on the error performance. The algo-
rithm is actually independent of the supervised learning algorithm, but in this case is
motivated by the plight of GP in which the inner loop is iterated over a population of
candidate solutions. Section 2.1 summarizes the form of GP utilized later (any generic
form of GP will suffice), whereas the methodology for hierarchical dynamic subset
selection is detailed in Sections 2.2 and 2.3.

2.1 Genetic Programming

In the case of this work a form of Linearly-structured GP (L-GP) is employed [9-12].
That is to say, rather than expressing individuals using the tree like structure popular-
ized by the work of Koza [13], individuals are expressed as a linear list of instructions
[9]. Execution of an individual therefore mimics the process of program execution
normally associated with a simple register machine. That is, instructions are defined
in terms of an opcode and operand (synonymous with function and terminal sets re-
spectively) that modify the contents of internal registers {R[0],…,R[k]}, memory and

program counter [9]. Output of the program is taken from the best register upon com-
pletion of program execution (or some appropriate halting criterion [11]), where the
best register is the register of the best performing individual that generates the greatest
number of hits. Moreover, in an attempt to make the action of the crossover operator
less destructive, the Page-based formulation of L-GP is employed [12]. In this case,
an individual is described in terms of a number of pages, where each page has the
same number of instructions. Crossover is limited to the exchange of single pages
between two parents, and appears to result in concise solutions across a range of
benchmark regression and classification problems. Moreover, a mechanism for dy-
namically changing page size was introduced, thus avoiding problems associated with
the a priori selection of a specific number of instructions per page at initialization.
Mutation operators take two forms. In the first case the ‘mutation’ operator selects an
instruction for modification with uniform probability and performs an Ex-OR with a
second instruction, also created with uniform probability. If the ensuing instruction
represents a legal instruction the new instruction is accepted, otherwise the process is
repeated. The second mutation operator ‘swap’ is designed to provide sequence modi-
fication. To do so, two instructions are selected within the same individual with uni-
form probability and their positions exchanged.

2.2 RSS-DSS Hierarchy

The basic formulation for the hierarchical sampling of training exemplars divides the
problem into three levels. Level 0 divides the training set into a sequence of equal
blocks. Blocks reside in memory and are chosen stochastically, Level 1. Level 2
samples the exemplars of the selected block using a stochastic sampling algorithm bi-
ased towards the more difficult or older patterns, or Dynamic Subset Selection (DSS)
[7]. Program 1 outlines the general relationship between learning algorithm (GP in
this case) and hierarchical sampling algorithm for the case of RSS block selection at
level 1 and DSS exemplar selection at level 2:

Program 1 - Genetic Programming with RSS-DSS Hierarchy

{

(1) divide dataset into blocks (level 0)

(2) initialize training system and population

(3) while (RSStermination == FALSE)

{

(4) conduct Block Selection (level 1)

(5) while (DSStermination == FALSE)

{

(6) conduct Subset Selection (level 2)

(7) while (TournamentEnd == FALSE)

{

(8) conduct tournament selection

(9) train tournament individuals on Subset

(10) update connection difficulty

(11) apply genetic operators

}

}

(12) update #Subset selected at next block b instance

}

(13) run best individual on entire dataset

(14) run best individual on test dataset

(15) record results

(16) remove introns and translate

}

Basic design decisions now need to identify: how a block is identified (level 1), how a
subset is selected (level 2) where GP individuals only iterate over the contents of a
subset, and how many subsets are selected per block, i.e. the source of the
computational speedup. Two basic algorithms are proposed, RSS-DSS (following)
and DSS-DSS (§2.3).

Level 1 – Block based Random Subset Selection (RSS). At level 0 the datasets are
partitioned into ‘blocks’ (Program 1-1), all the blocks exist on the hard disk. A block
is then randomly selected with uniform probability (Program 1-4) – or Random
Subset Selection (RSS) – and read into RAM, level 1 of the hierarchical Subset
Selection algorithm. Following selection of block ‘b’ a history of training pressure on
the block is used to determine the number of iterations performed at level 2 of the
RSS-DSS hierarchy – the DSS subset. This is defined in proportion to the error rate
over the previous instance of block ‘b’ for the ‘best’ individual over a level 2 subset
from block ‘b’ (Program 1-12), Eb(i-1). Thus, the number of DSS subset iterations, I,
on block, b, at the current instance, i, is

Ib(i) = I (max) ¥ Eb(i – 1) . (1)

Where I(max) is the maximum number of subsets that can be selected on a block; and
Eb(i – 1) is the error rate (number of block misclassifications) of the best-case subset
individual from the previous instance, i, of block b. Hence, Eb(i)=1 – [hitsb(i)/ #pat-
terns(b)], where hitsb(i) is the hit count over block b for the best-case individual iden-
tified over the last level 2 tournament at iteration i of block b; and #patterns(b) is the
total number of feature vectors in block b. Naturally denoting the ‘best case’ individ-

ual relative to those which took part in level 2 competitions has the potential to miss
better performing individuals which might reside in the population. However, this
would also reintroduce a significant computational cost of the inner loop. Specifically,
an array is kept to record hits for each individual in the population. After each tour-
nament the hits of the parents are accumulated while the hits of the newly created in-
dividuals are set to zero. The best case individual over block b is therefore the indi-
vidual with the maximum number of hits accumulated.

Level 2 – Dynamic Subset Selection (DSS). A simplified version of DSS is
employed in the second level of the selection hierarchy [7]. Once a block has been
selected using the above RSS process, patterns within the block are associated with an
age and difficulty. The age is the number of DSS selections since the pattern last
appeared in a DSS subset. The difficulty is the number of GP individuals that
misclassified the pattern the last time it appeared in the DSS subset. Following
selection of a block at level 1, all ages are set to one and all difficulties are set to a
worst-case difficulty (i.e. no persistence of pattern difficulties or ages beyond a block
selection). Patterns appear in the DSS subset stochastically, with a fixed chance of
being selected by age or difficulty (%difficulty = 100 – %age). Thus two roulette
wheels exist per block, one is used to control the selection of patterns with respect to
age and the other difficulty, the roulette wheels being selected in proportion to the
corresponding probability for age and difficulty. This process is repeated until the
DSS subset is full (Program 1-6), the age and difficulty of selected patterns being
reset to the initial values. Patterns that were not selected from the block have their age
incremented by one whereas their difficulties remain the same. Currently DSS uses a
subset size of 50 patterns, with the objective of reducing the number of computations
associated with a particular fitness evaluation. Each DSS subset is kept for six steady
state tournaments (4 individuals taking part per tournament) before reselection takes
place with up to I(b)(i) selections per block (Program 1-5) – equation (1).

The use of the fixed probability of 70% for difficulty ensures that greater emphasis is
given to connections that resist classification, while the 30% for age ensures that eas-
ier patterns are also visited in an attempt to prevent over-learning.

2.3 DSS-DSS Hierarchy

The RSS-DSS algorithm makes the implicit assumption that all blocks are equally dif-
ficult. The following DSS-DSS algorithm relaxes this assumption. To do so, a block
difficulty and age is introduced and used to bias the stochastic selection of blocks in
proportion to their relative age and difficulty using roulette wheel selection. Thus, the
probability of selecting block i is,

Block(i)weight = %diff ¥ Blockdiff(i) + %age ¥ Blockage(i)
Âj (Blockdiff(j)) Âj (Blockage(j))

P(block(i)) = (2)Block(i)weight

Âj (Block (j) weight)

Where %diff is the fixed difficulty weighting (70%) and %age the age weighting (100
- %diff); Blockdiff(i) and Blockage(i) are the respective block difficulty and age for
block i; and j indexes all blocks.

At initialization each block has an age of one and worst-case difficulty. Therefore,
block selection will initially be uniform. The age of a block is the number of RSS
block selections since last selected. The difficulty of a block takes the form of a
weighted running average, thus persistent across block selections, or,

Block(i, 0) = Block (i – 1);
Block(i, j) = a patterndiff(j) + (1 – a) Block (i, j – 1); "j Œ {1, …, Psubset}

Block(i) = Block(i, Psubset)

Where patterndiff(j) is the difficulty of pattern j; j indexes all patterns in the subset of
Psubset patterns; and, a is a constant (0 < a < 1), set to 0.1 in this case. The difficulty of
a block will be updated before each new level 2-subset selection (step Program 1-11
and before returning to Program 1-5). Since a is small, each of the patterns in subset
have the ability to influence the overall block difficulty by a small amount. If the con-
nection difficulty is high, the overall block difficulty will increase, whereas if the
connection difficulty is small, the overall block difficulty will decrease. Level 2 of
this hierarchy uses the same DSS process as the RSS-DSS hierarchy.

3 Results

As indicated in the introduction, the principle interest of this work is in establishing a
framework for applying Genetic Programming to large datasets. To this end experi-
ments are reported using two large datasets: the KDD-99 Intrusion Detection dataset,
taken from the 5th ACM SIGKDD Knowledge Discovery and Data Mining Competi-
tion (1999) [14]; and the Adult dataset, taken from the UCI Machine Learning Re-
pository [15]. The total number of patterns in the training and test sets of each dataset
is listed in Table 1.

Table 1. DataSets: Sizes and Distributions

KDD-99 Adult
Connection Training (10%KDD) Test (Corrected Test) Training Test

Class 0 97,249 60,577 7,508 3,700
Class 1 396,744 250,424 22,654 11,360
Total 493,993 311,001 30,162 15,060

For KDD-99 two partitions are used, 10% KDD for training and Corrected Test for
test, as per the original competition [14]. Each pattern is described in terms of 41
features, comprising of 9 basic features and 32 derived features describing temporal
and content information. Here we only use the first 8 basic features, but express these
in terms of a shift register with 8 taps taken at intervals of 8 sequential patterns. Such
a scheme requires that the learning algorithm also identify the useful temporal prop-
erties, rather than relying on the a priori selected features (see [16]). Each entry of the

KDD dataset represents a connection, labeled in terms of one of five categories: Nor-
mal, Denial of Service (DoS), Probe, User to Root (U2R) and Remote to Local (R2L).
In this work we are only interested in distinguishing between Normal and any of the
four attack categories. Moreover, 79% of the training data represent instances of DoS,
20% normal and the remainder Probe, U2R and R2L, Table 2. Thus, as well as repre-
senting a large training set it is unbalanced, introducing the possibility for degenerate
solutions i.e. a detector that labels every pattern as attack. The test data on the other
hand increases the contribution of the smallest attack category, R2L, to 5% of the
dataset and introduces 14 attack types unseen during training, Table 2.

Table 2. Distribution of Attacks

Data Type Training Test
Normal 19.69% 19.48%
Probe 0.83% 1.34%
DOS 79.24% 73.90%
U2R 0.01% 0.07%
R2L 0.23% 5.2%

The Adult dataset is significantly smaller than KDD (30 thousand as opposed to half a
million patterns), Table 1, but is introduced to verify that the proposed algorithms are
not making undue use of duplicate properties that might exist in KDD. Specifically,
the DoS class making up nearly 80% of the training data might well demonstrate self-
similar properties (a natural characteristic of a DoS attack). Thus, resulting in the
sampling algorithm ignoring these exemplars with little or no penalty once some clas-
sification capability on DoS has been identified. The adult dataset represents a pre-
diction problem taken from the 1994 Census database. The learning task is to predict
whether a person’s income exceeds $50,000 per year based on 14 census data fea-
tures. Each pattern represents a person and is made up of 14 personal and demo-
graphic characteristics plus a label. All patterns with missing features were removed
from both the training and test data. The data distribution for the Adult dataset is ap-
proximately 25% class 0 and 75% class 1 for both training and test sets.

All the following experiments are based on 40 GP runs using Dynamic page-based
Linear-GP [12]. Runs differ in their choice of random seeds used for initializing the
population, all other parameters remaining unchanged. Table 3 lists the common pa-
rameter settings for all runs.

In addition to validating the use of the proposed hierarchical process for sampling
patterns, experiments with different block sizes were made under the Adult dataset,
Table 4. Note for each dataset the final block does not contain the full block size but
the remaining number of patterns.

Instruction Set. The GP instructions employ a 2-address format in which provision is
made for: up to 16 internal registers, up to 64 inputs (Terminal Set), 5 opcodes (Func-
tional Set) – the fifth is retained for a reserved word denoting end of program – and an
8-bit integer field representing constants (0-255) [12]. Two mode bits toggle between
one of three instruction types: opcode with internal register reference; opcode with

reference to input; target register with integer constant. Extension to include further
inputs or internal register merely increases the size of the associated instruction field.

Table 3. Parameter Settings for Dynamic Page-based Linear GP

Parameter Setting
Population size 125

Maximum # of pages 32
Page size 8 instructions

Maximum working page size 8 instructions
Crossover probability 0.9
Mutation probability 0.5

Swap probability 0.9
Tournament size 4

Number of Registers 8
Instruction type 1 probability 0.5
Instruction type 2 probability 4
Instruction type 3 probability 1

Function set {+,-,*,/}
Terminal set {0, …, 255} » {pattern features}

Level 2 subset size 50
RSS iterations 1000

Max DSS iterations (6 tourn./iteration) 100
Wrapper function 0 if output £ 0, otherwise 1

Cost function Increment by 1/(# in class) for each misclassi-
fication

Table 4. Dataset block sizes and number of blocks

Dataset 10% KDD-99 Adult
Block size 5000 1000 5000
of blocks 99 31 7

Training was performed on a dual G4 1.33 GHz Mac Server with 2 GB RAM. In all 6
experiments were run. Two experiments on the 10% KDD-99 dataset: the first using a
hierarchy of RSS-DSS; and the second using the hierarchy of DSS-DSS. Four ex-
periments were conducted on the Adult Dataset using the two hierarchies as well as
the two different block sizes (1000 and 5000).

For each GP run in an experiment the best individual is recorded and simplified by
removal of structural introns [17]. The ‘best’ individual is identified post training by
taking the maximum of the hits accumulated by each individual on the entire training
dataset. The performance of each best individual is expressed in terms of time, pro-
gram length (before and after simplification), detection rate (DR) and false positive
rates (FPR) on Corrected KDD Test set. Detection rates and false positive rates are
estimated as follows,

Detection Rate = 1 – (# of False Negatives / Total # of Attacks) . (5)

False Positive Rate = (# of False Positives / Total # of Normals) . (6)

3.2 10% KDD-99 Dataset

Results are initially summarized in terms of first, second (median) and third quartiles
for time, detection rate, false positive rate, and solution complexity before and after
intron removal. In addition comparisons are made against reported figures for both
training characteristics and quality of the resulting solutions.

Figure 1 indicates that in general the RSS-DSS hierarchy typically takes less time to
train than the DSS-DSS hierarchy on the 10% KDD-99 dataset. This appears to be a
natural reflection of the overhead in conducting an additional roulette wheel based
calculation for block selection in DSS-DSS, as opposed to the uniform selection in the
RSS-DSS algorithm. However, both algorithms are two orders of magnitude better
than previously reported research in which GP was applied directly to the entire
10%KDD dataset [18]. Such a direct application required 48 hours to complete a sin-
gle trial (Pentium III, 800MHz), whereas here each trial takes less than 15 minutes; 40
trials therefore completing in 10 hours.

9

10

11

12

13

14

15

RSS-DSS DSS-DSS

T
im

e
 (

m
in

s)

Fig. 1. KDD’99 – Training Time (first, second (median) and third quartile)

0.89

0.895

0.9

0.905

0.91

0.915

RSS-DSS DSS-DSS

D
e
te

c
ti

o
n

 R
a
te

Fig. 2. KDD’99 – Detection Rate (first, second (median) and third quartile)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

RSS-DSS DSS-DSS

F
a
ls

e
 P

o
s
it

iv
e
 R

a
te

Fig. 3. KDD’99 – False Positive Rates (first, second (median) and third quartile)

100

120

140

160

180

200

220

RSS-DSS DSS-DSS

#
 o

f
in

st
ru

ct
io

n
s

Fig. 4. KDD’99 – Solution Complexity (first, second (median) and third quartile)

10

20

30

40

50

60

70

80

90

RSS-DSS DSS-DSS

#
 o

f
in

st
ru

ct
io

n
s

Fig. 5. KDD’99 – Solution Complexity (first, second (median) and third quartile)

Detection and False Positive (FP) Rates of the ‘best’ individual across the 40 runs,
figures 2 and 3 respectively, indicates that uniform selection of blocks results in a sig-
nificantly wider spread in both Detection and FP rates relative to that from DSS-DSS.

Moreover, the median FP rate of DSS-DSS is better than that for RSS-DSS. This
property also appears to have carried over to the complexity of solutions, figures 4
and 5, with DSS-DSS returning longer solutions (i.e. more instructions) both before
and after simplification. Moreover, the trend continues with respect to classification
count of each category of attack, Figures 6 - 9. It is also apparent that DSS-DSS has
emphasized solutions to the DoS category, where this represents 80% of the training/
test data.

50

55

60

65

70

75

80

RSS-DSS DSS-DSS

P
ro

b
e
 A

cc
u

ra
cy

Fig. 6. Probe Accuracy.

95.2

95.4

95.6

95.8

96

96.2

96.4

96.6

RSS-DSS DSS-DSS

D
O

S
 A

cc
u

ra
cy

Fig. 7. Denial Of Service Accuracy

In order to qualify whether the hierarchical subset selection algorithm negatively im-
pacts classifier quality, comparison is made against the results from the original
KDD-99 competition winners, Table 2. Both the winning entries were based on deci-
sion trees, also taking roughly 24 hours to complete training. The resulting solutions
were complex (500 C5 decision trees in the case of the winning entry) and trained
using a boosting algorithm on different partitions of the original 10%KDD dataset.
Moreover, independent detectors were developed for each class over all 41 features,

making a direct comparison difficult. It is apparent however, that the GP solutions are
competitive.

5

15

25

35

45

55

RSS-DSS DSS-DSS

U
T
O

R
 A

cc
u

ra
cy

Fig. 8. User to Root (U2R) Accuracy.

1

3

5

7

9

11

13

RSS-DSS DSS-DSS

R
T
O

L
 A

cc
u

ra
cy

Fig. 9. Remote to Local (R2L) Accuracy

Table 5. Comparison with KDD-99 winning entries

Parameter Detection Rate FP Rate
Winning Entry 0.908819 0.004472
Second Place 0.915252 0.00576

Best GP (RSS-DSS) 0.889609 0.0128108
Best GP (DSS-DSS) 0.897184 0.0062568

3.3 Adult Dataset Results

In the case of the Adult dataset we also consider the significance of a smaller block
size, thus all properties are expressed in terms of block sizes of 1000 and 5000. From
Table 6 it is evident that a smaller block size results in a significant speedup in CPU
time to complete a run. Such an observation mirrors that in cache block size design,

with larger blocks encountering a higher transfer penalty if this is not leveraged into
extended utilization. Relative to the KDD case, an extra five minutes appear to be
necessary indicating that although the dataset is smaller, there is more diversity in the
dataset, where this is also reflected in the additional complexity in the solutions, Table
6. Detection and FP rates, Table 6, demonstrate variation between RSS-DSS for dif-
ferent block sizes, whereas DSS-DSS retain consistency across the two block sizes.
Moreover, median Detection rates for DSS-DSS exceed that for RSS-DSS and pair-
wise comparison of median FP rates also prefers the DSS-DSS algorithm. In terms of
solution complexity, there is no significant difference between the two algorithms, but
a smaller block size appears to result in less complex solutions, Table 6. Thus, the
optimal parameterization appears to be in the smaller block size – faster training time
and simpler solutions – with the DSS-DSS algorithm.

Table 6. Performance of RSS-DSS and DSS-DSS on Adult Dataset

Run Time
Algorithm RSS-DSS DSS-DSS
Block Size 1,000 5,000 1,000 5,000

Median 10.32 18.46 11.53 15.97
Detection Rate

1st Quartile 0.8129 0.8012 0.8254 0.8061
Median 0.8446 0.8253 0.8575 0.8537

3rd Quartile 0.9237 0.8471 0.9122 0.9013
False Positive Rate

1st Quartile 0.2600 0.2302 0.2962 0.2597
Median 0.3300 0.2857 0.3549 0.3185

3rd Quartile 0.5403 0.3643 0.4630 0.4489
Solution Complexity – Before Intron Removal

Median 127 179 143 171
Solution Complexity – After Intron Removal

Median 62 88 60 83.5

In order to provide some qualification of the classifier performance Table 7 details
(best case) error rates of alternative machine learning algorithms summarized as part
of the UCI repository [15]. Unfortunately no information is provided regarding the
learning algorithms or any preprocessing performed to achieve these results. Table 8
lists the error rates of the best-case RSS-DSS / DSS-DSS algorithms with block sizes
of 5000, 1000, 500 and 250. It is readily apparent that the GP solutions are ranked to-
wards the end of the list, however, they also appear before the step change in errors
from an error of 17 to an error of 19.5. Moreover, no attempt was made to optimize
parameters such as the ratio between difficulty and age (boosting algorithms in wide
spread use are based on difficulty alone). We also note that as block size decreases,
error rates also decrease whilst the preference for the DSS-DSS algorithm becomes
more apparent.

Table 7. Error Rates on Adult Dataset

Algorithm Error Algorithm Error
FSS Naïve Bayes 14.05 Voted ID3 (0.6) 15.64

NBTree 14.10 CN2 16.00
C4.5-auto 14.46 Naïve-Bayes 16.12

IDTM (decision table) 14.46 Voted ID3 (0.8) 16.47
HOODG 14.82 T2 16.84
C4.5 rules 14.94 1R 19.54

OC1 15.04 Nearest-neighbor (3) 20.35
C4.5 15.54 Nearest-neighbor (1) 21.42

Table 8. RSS-DSS and DSS-DSS Error Rates on Adult Dataset

Block Size 5000 1000 500 250
RSS-DSS 17.56 16.78 16.95 16.95
DSS-DSS 17.07 16.95 16.63 16.46

4 Conclusion

The computational overhead of the GP inner loop is addressed by introducing a hier-
archy of training subset selections. This enables the scaling up of the size of problems
for which approaches based on GP may be applied. To do so, the original problem is
divided into a series of blocks. Blocks are either selected uniformly (RSS) or relative
to their age and difficulty (DSS). Exemplars are sampled from a block relative to their
relative block age and difficulty (DSS). Such a scheme matches the observations used
to formulate the memory hierarchy typically employed in computer architectures. The
ensuing algorithm, DSS-DSS, appears to be competitive with alternative learning al-
gorithms previously applied, with the advantage that the computational overhead ap-
pears to be significantly reduced. The method differs from alterative sampling algo-
rithms such as ‘boosting’ by introducing the concept of age and difficulty (boosting is
explicitly based on exponentially weighted difficulties) and utilizing a hierarchy of
samples. The latter point is fundamental in efficiently scaling the algorithm too much
larger datasets than is the norm with GP. That is to say, competitive solutions are lo-
cated in minutes rather than hours, and the framework is not specific to GP, thus po-
tentially applicable to other learning algorithms such as neural networks.

Acknowledgements.

References

1. Bennett III F.H. et al.: Building a Parallel Computer System for $18,000 that Performs a
Half Petra-Flop per Day. Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO), Morgan Kaufmann (1999) 1484-1490

2. Juillé H., Pollack J.B.: Massively Parallel Genetic Programming. In: Angeline P.J., Kin-
near K.E. (eds): Advances in Genetic Programming 2, Chapter 17. MIT Press, Cambridge,
MA (1996) 339-358

3. Koza J.R. et al.: evolving Computer Programs using Reconfigurable Gate Arrays and Ge-
netic Programming. Proceedings of the ACM 6th International Symposium on Field Pro-
grammable Gate Arrays. ACM Press. (1998) 209-219

4. Breiman L.: Bagging predictors. Machine Learning. 24(2) (1996) 123-140
5. Freund Y., Schapire R.E.: A Decision-Theoretic Generalization of On-Line Learning and

an Application to Boosting. Journal of computer and Systems Sciences. 55 Academic
Press. (1997) 119-139

6. Hennessy J.L., Patterson D.A.: Computer Architecture: A Quantitative Approach. 3rd Edi-
tion. Morgan Kaufmann, San Francisco, CA (2002)

7. Gathercole C., Ross P.: dynamic Training Subset Selection for Supervised Learning in
Genetic Programming. Parallel Problem Solving from Nature III. Lecture Notes in Com-
puter Science. Vol. 866. Springer Verlag. (1994) 312-321

8. Song D., Heywood M.I., Zincir-Heywood A.N.: A Linear Genetic Programming Approach
to Intrusion Detection. Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO). Lecture Notes in Computer Science. Vol. 2724 Springer-Verlag. (2003)
2325-2336

9. Cramer N.L.: A Representation for the Adaptive Generation of Simple Sequential Pro-
grams. Proceedings of the International Conference on Genetic Algorithms and Their Ap-
plication (1985) 183-187

10. Nordin P.: A Compiling Genetic Programming System that Directly Manipulates the Ma-
chine Code. In: Kinnear K.E. (ed.): Advances in Genetic Programming, Chapter 14. MIT
Press, Cambridge, MA (1994) 311-334

11. Huelsbergen L.: Finding General Solutions to the Parity Problem by Evolving Machine-
Language Representations. Proceedings of the 3rd Conference on Genetic Programming.
Morgan Kaufmann, San Francisco, CA (1998) 158-166

12. Heywood M.I., Zincir-Heywood A.N.: Dynamic Page-Based Linear Genetic Program-
ming. IEEE Transactions on Systems, Man and Cybernetics – PartB: Cybernetics. 32(3)
(2002), 380-388

13. Koza J.R.: Genetic Programming: On the Programming of Computers by Means of Natu-
ral Selection. MIT Press, Cambridge, MA (1992)

14. Elkan C.: Results of the KDD'99 Classifier Learning Contest. SIGKDD Explorations.
ACM SIGKDD. 1(2), (2000) 63-64

15. U C I M a c h i n e L e a r n i n g R e p o s i t o r y . (2 0 0 3)
http://www.ics.uci.edu/~mlearn/MLRepository.html

16. Lichodzijewski P., Zincir-Heywood A.N., Heywood M.I.: Host-Based Intrusion Detection
Using Self-Organizing Maps. IEEE-INNS International Joint Conference on Neural Net-
works. (2002) 1714-1719

17. Brameier M., Banzhaf W.: A Comparison of Linear genetic Programming and Neural
Networks in Medical data Mining. IEEE Transaction on Evolutionary Computation. 5(1)
(2001) 17-26

18. Chittur A.: Model Generation for Intrusion Detection System using Genetic Algorithms.
http://www1.cs.columbia.edu/ids/publications/ (2001) 17 pages

