
One-Class Learning with

Multi-Objective Genetic Programming∗

Robert Curry and Malcolm Heywood†

August 22, 2007

Abstract

One-class classification naturally only provides one class of exemplars
on which to construct the classification model. In this work, multi-
objective genetic programming (GP) allows the one-class learning problem
to be decomposed by multiple GP classifiers, each attempting to identify
only a subset of the target data to classify. In order for GP to identify
appropriate subsets of the one-class data, artificial outclass data is gener-
ated in and around the provided inclass data. A local Gaussian wrapper
is employed where this reinforces a novelty detection as opposed to a dis-
crimination approach to classification. Furthermore, a hierarchical subset
selection strategy is used to deal with the necessarily large number of
generated outclass exemplars. The proposed approach is demonstrated
on three one-class classification datasets and was found to be competitive
with a one-class SVM classifier and a binary SVM classifier.

1 Introduction

One-class classification, where the training dataset contains exemplars from only
one class (the target class), has the potential to provide solutions to a range of
application domains otherwise inappropriate for classical two class models. For
example, in domains such as intrusion detection, medical diagnosis and fault
detection data might only be available to support a single class of behavior, the
’cost’ of acquiring missing classes appearing too high.

The principle distinction between one-class learners and the more typical
binary approach to classification is that the learner must operate as a novelty
detector as opposed to a discriminator [10, 11]. In order to ensure such a behav-
ior under the GP paradigm we make use of a local wrapper (Gaussian) rather

∗Published in Proceedings of the 2007 IEEE Systems, Man and Cybernetics (SMC) con-
ference, Montreal, Canada, 10/07/2007

†R. Curry and M. Heywood are with the Faculty of Computer Science, Dal-
housie University, 6050 University Avenue, Halifax, NS, Canada, B3H-1W5
{rcurry,mheywood}@cs.dal.ca

than a global wrapper (sigmoid). In doing so, a classifier only responds to tar-
get exemplar subsets explicitly encountered during training. We then adopt a
one-class learning model in which data for the unseen class is created artifi-
cially, with the objective of learning a mapping able to maximize the distinction
between target and artificial outlier data [17]. Finally, problem decomposition
is facilitated, by way of an evolutionary multi-objective optimization (EMOO)
approach as developed under different data partitions identified using active
learning. This enables us to provide multiple one-class classifiers focusing on
different parts of the problem, such that detection rate is maximized, but false
positive rates are exceptionally low. The emphasis on minimizing the false pos-
itive rate effectively helps to guarantee predictable behavior under multi-class
conditions.

Empirical evaluation is conducted against one-class and binary classifiers
devised under the SVM paradigm [14, 15]. The proposed approach is able to
better the SVM algorithms under two of three datasets considered and provides
competitive results under the third. Moreover, equivalent performance is only
attained under the easier of the three datasets considered.

2 Related Work

The problem of one-class learning or ‘novelty detection’ presents a unique set of
requirements from that typically encountered in classification. For example, the
discriminatory models of classification often utilize a ‘global’ decision function,
such as a sigmoid operator, to distinguish between two classes. As such it is
difficult to identify how the model will behave under unseen data. Conversely,
the one class learning problem requires that any model explicitly identify when
data differs from the target class appearing under training conditions.

Machine learning algorithms employed under the one-class domain there-
fore need to address the discrimination-detection problem directly. In this work
we will concentrate on the kernel or Support Vector Machine (SVM) approach
[14, 17, 18] (for a wider survey see [10, 11]). The one-class SVM model of
Schölkopf relies on the correct identification of “relaxation parameters” to sep-
arate exemplars from the origin (representing the second unseen class) [14].
Unfortunately, the values for such parameters vary as a function of the data set.
However, a recent work proposed a kernel autoassociator for one-class classifi-
cation [18]. In this case the kernel feature space is used to provide the required
non-linear encoding, this time in a very high dimensional space (as opposed to
the MLP approach to the encoding problem). A linear mapping is then per-
formed to provide the original features as the output. Finally, the work of Tax
again uses a kernel based one-class classifier, however, the approach is distinct
in that data is artificially generated to aid the identification of the most concise
hypersphere describing the in-class data [17]. Such a framework builds on the
original support vector data description model, whilst reducing the significance
of specific parameter selections. The principle drawback, however, is that tens
or even hundreds of thousands of artificially generated data is required to build a

suitably accurate model [17]. The work proposed in this paper uses the artificial
data generation model of Tax, but specifically addresses the training overhead
by employing an active learning algorithm. Moreover, the GP paradigm pro-
vides the opportunity to solve the problem using an explicitly multiple objective
model, where this will be shown to aid problem decomposition.

3 Methodology

The proposed multiobjective one-class genetic programming classifier is outlined
in Fig. 1. Although the one-class learning algorithm presented here is not re-
stricted to any one form of GP, dynamic page-based linear genetic programming
is used as the underlying learner, Section 3.1. In order to train binary GP clas-
sifiers, artificial or outlier exemplars are generated in and around the provided
target or inclass data, Section 3.2. To ensure that the target class exemplars
will be surrounded in all feature directions by artificial outlier exemplars it is
necessary to generate a sufficient number of artificial exemplars. The balanced
block active learning algorithm, Section 3.3, is then utilized in order to scale GP
classifiers to deal with the resulting large datasets. Finally, as opposed to hav-
ing GP produce a single program as the classifier solution, multiple programs
are encouraged to decompose the classification problem and participate in the
solution by using multiobjective Pareto ranking, Section 3.5.

3.1 Dynamic Page-Based Linear GP

In this work dynamic page-based linear genetic programming (DPLGP) was
employed as the underlying learner, where this implies a fixed length represen-
tation and a steady state tournament selection operator.

Representation. In linear genetic programming individuals are expressed
as linear lists of instructions, executed sequentially, thereby mimicking the pro-
cess of program execution normally associated with a simple register machine
[1]. Instructions are defined in terms of an opcode and operand that modify
the contents of general purpose registers {R[0], . . . , R[k]}, memory and program
counter [1]. For DPLGP in particular, an individual is described in terms of
a number of pages, where each page consists of the same number of linear GP
instructions.

Genetic Operators. DPLGP utilizes three types of genetic operators
namely crossover and two forms of mutation: ‘mutation’ and ‘swap’. Crossover
in DPLGP is limited to the exchange of single pages between two parents. The
motivation is to make the action of crossover in GP less destructive by making
the location of crossover points constant, where this appears to result in concise
solutions across a range of benchmark regression and classification problems
(see [7]). The first form of mutation is the ‘mutation’ operator which randomly
selects an instruction and replaces it with an alternative instruction (uniform

1. Create artificial outlier data;

2. Partition outlier and target classes (level 0);

3. Initialize population of programs;

4. While (Level 1 Termination == FALSE)

(a) Use DSS to select a target and outlier partition to create a block
(level 1) (combine an outlier and target class partition selected by
DSS);

(b) While (Level 2 Termination == FALSE)

i. If (DSSiteration MOD (SubsetFrequency))
Then Identify training subset from level 1 block using DSS
(level 2);

ii. Select tournament for fitness evaluation;
iii. While (program < TournamentSize)

A. While (pattern < NumSubsetPatterns)
Run program on pattern; record GPout;

B. Partition GPout to create class-consistent regions;
C. Determine µ, σ2 and class separation distance for each par-

tition;
D. Determine best target partition (2);
E. Assess multi-objective fitness;

iv. Rank programs by Pareto dominance ;
v. Select parents and apply search operators;
vi. Update exemplar difficulty and age;

(c) While (program < (Population ∪ Archive))

i. Run program on block recording GPout;
ii. Partition GPout and determine best partition;
iii. Determine the best cutoff for error function;
iv. Assess multi-objective fitness;

(d) Rank by Pareto dominance ;

(e) Find Pareto front ;

(f) Update partition archive;

(g) Update partition difficulties and ages;

(h) SubsetTermination = f(MaxSubsetIteration, PartitionErrors);

5. Post Processing;

Figure 1: Multiobjective One-Class GP with Balanced Block Algo-
rithm

probability in both cases). The second form is the ‘swap’ operator where two
instructions from the same individual are randomly selected with uniform prob-
ability and their positions exchanged. This provides sequence modification and
is motivated by the fact that the order that instructions are executed within a
program can have a significant effect on the outcome of that program. For more
information on DPLGP see [7].

3.2 Artificial Data Generation

In a conventional binary classification problem the decision boundaries between
classes are supported by the exemplars provided from each class. However, in an
one-class scenario it is much more difficult to establish appropriate and concise
decision boundaries since they are only supported by the target class. The
approach we adopt for developing one-class classifiers is therefore to build the
outlier class data artificially and train using a two class model with appropriate
regularization constraints [17].

Therefore, in order to train the binary GP classifier on the target data,
artificial outlier data is generated in and around the target exemplars, Fig.
1, Step 1. In particular, the outlier generation algorithm of Tax and Duin is
utilized in this work [17]. Outliers are generated that are uniformly distributed
in a unit hypersphere with as many dimensions as there are features in the target
exemplars. The unit hypersphere is then shifted and rescaled to fit around the
target exemplars. Due to the wider range of possible values for outlier data,
and to ensure that the target class exemplars will be surrounded in all feature
directions by outlier exemplars, the ensuing training dataset tends to be of the
order of 10, 000 to 100, 000 exemplars as per Tax [17].

3.3 Balanced Block Dynamic Subset Selection

Datasets examined in this work contain < 200 target exemplars in their inclass
training datasets. Increasing the size of the training datasets through the use
of the artificial outlier exemplars has the potential to significantly increase the
training overhead. In order to address this overhead an active learning algorithm
is utilized that filters the initial training dataset in parallel with the learning
process. This algorithm is termed the Balanced Block Algorithm (BBA) and is
part of a family of hierarchical subset selection algorithms [5, 16]. The moti-
vation of these algorithms is to focus GP training on the most difficult or least
recently visited exemplars through a hierarchy of subset selections that mimic
the concept of a memory hierarchy. The use of hierarchical subset selection
algorithms was found to provide a training speed up of several orders of mag-
nitude for GP on large datasets without negatively impacting the classification
accuracy [5, 16].

The architecture is summarized in terms of three levels by Fig. 2. At Level
0 of the subset selection hierarchy the original dataset is first sorted by class
with each class then being divided into partitions (Fig. 1, Step 2). A partition
is then selected from each class in proportion to the partition difficulty and age

Figure 2: Balanced Block Heirarchical Subset Selection

using the dynamic subset selection (DSS) algorithm of [6]. At Level 1 of Fig.
2 the two selected partitions are combined to form a balanced “block”, which
is level 1 of the subset selection hierarchy (Fig. 1, Step 4a). Fig. 2, Level 2
of the hierarchy shows DSS again being used, this time to stochastically select
exemplars from the Level 1 block biased by exemplar age and difficulty (Fig. 1,
Step 4(b)i). The Level 2 “subset” created by these exemplars forms the training
dataset for the current tournament of GP individuals. Multiple tournaments are
run over a single Level 2 subset selection, and multiple Level 2 subset selections
are conducted for each Level 1 block selection. The use of BBA ensures that
every level 1 block consists of a balanced set of exemplars, independent of the
initial exemplar data distribution [5].

BBA has been modified in this work due to the small number of target class
exemplars. This means there can only be a few small target class partitions for
forming level one blocks. Moreover, due to the importance of learning from the
target class exemplars and finding concise boundaries around the target class
the appearance of a sufficient number of target class exemplars is desirable in
every Level 2 training subset. For this reason the small Level 1 target class
partition is copied directly into the level two subset while only outlier class
exemplars are sampled by the DSS algorithm.

In addition to speeding up training time, BBA also has the ability to de-
termine which outlier exemplars are more difficult to classify. In this way and
without prior knowledge of what a good outlier exemplar would be, BBA can
focus GP training to outlier exemplars that are potentially more relevant to
learning the concise boundaries of the target class.

3.4 Class-Consistent Partition Selection

For binary classification datasets GP fitness functions typically utilize a binary
switching function as popularized by Koza [8]. The binary switching function
maps the one-dimensional ‘raw’ GP output, or GPout, to one of two classes, as
in (1), where y is the label the GP program assigns to the exemplar:

y =
{

0 if GPout ≤ 0.
1 otherwise. (1)

The GP label y is compared to the actual label provided with the training
exemplar to determine the error. However, under a one-class model of learning,
exemplars belonging to the unseen classes are just as likely to appear on either
side of the GPout origin, resulting in high false positive rates. In order to
encourage GP to act as a novelty detector the GPout values associated with the
single class encountered during training must appear over a small neighborhood
of the GPout axis.

To this end, a fitness function is designed whose goal is to encourage a
concise clustering of target exemplars on the GPout axis. In Fig. 1, Step
4(b)iiiA, each GP tournament program is run on the exemplars from the current
level 2 training subset identified by the Balanced Block Algorithm (Step 4(b)i).
Each program participating in a tournament has now mapped the subset of
multi-dimensional training exemplars onto its one-dimensional GPout space.
The GPout of each program is then partitioned into class consistent regions of
sequential target and outlier exemplars (Step 4(b)iiiB). The “cluster separation
distance” (CSD) [2] is then used to measure the ability of a GP program to
distinguish between two neighboring (class consistent) regions and is calculated
for each neighboring partition. CSD is estimated from the distance between
partition means (µ) normalized by the partition variances (σ2):

CSD0/1 =
|µ0 − µ1|√

σ2
0 + σ2

1

(2)

The ‘best’ target partition is then identified as the partition that gives the best
separability, i.e., maximizes (2), relative to its neighboring partitions represent-
ing artificial or outlier data, (Step 4(b)iiiC). For each program participating in
a tournament the partition selection heuristic of Fig. 3 selects the best target
partition that maximizes the CSD to the nearest pair of outlier partitions:

3.5 Tournament Multi-Objective Fitness and Pareto Rank-
ing

At this point the response of each individual is expressed in terms of a target
class consistent partition on the GPout axis. We now need to compare the
programs to determine the tournament winners. The quality of the programs is
determined for each tournament by way of a multi-objective fitness evaluation
(Fig. 1, Step 4(b)iiiE) and the winners are determined by Pareto ranking (Fig.

1. Identify the set S of target partitions with size N > 5% of the target
exemplars in the current training subset;

2. If (S = ∅)
Then (S = {target partition with max N});

3. ∀ partitions si ∈ S:

(a) Calculate the CSD with respect to the immediate neighboring outlier
partitions;

(b) Choose the min(CSD) between the neighboring partitions as the per-
formance of si;

4. The partition s ∈ S with max(CSD) is then chosen as the best partition
for the current tournament individual;

Figure 3: Partition Selection Heuristic

1, Step 4(b)iv). Four objectives have been identified for optimization in order
to encourage GP programs to find ‘good’ inclass partitions.

1. Minimize Overlap: Minimize the number of target patterns that are
already being classified by other programs in order to encourage diversity
(i.e., discourage GP programs from finding partitions that overlap inclass
exemplars)

2. Maximize Count: Find partitions that maximize the count of target
exemplars (i.e., encourages GP programs to densely map inclass exemplars
to regions on the GPout space).

3. Maximize CSD: Find partitions that maximize CSD, (2), to the neigh-
boring outlier partitions (i.e., encourages GP programs to form ‘robust’
boundaries around target partitions).

4. Minimize Solution Size: Programs should minimize their solution size
(# of instructions) in order to avoid overfitting on the current training
subset.

Each individual in a GP tournament now has an associated four dimensional
objective vector. An individual A is said to dominate another individual B
if it performs at least as well as B in all objectives and better than B in at
least one objective. Pareto ranking is then used to combine the objectives into
a scalar fitness without combining the objectives in any way [9, 19]. Instead,
each tournament individual is given a rank based on the number of individuals
by which it is dominated (Fig. 1, Step 4(b)iv). The two individuals with the

lowest Pareto ranks are chosen as the tournament winners. The winners become
parents and have search operators applied to them (Fig. 1, Step 4(b)iv) forming
children who replace the tournament losers in the GP population.

The parent programs also update the difficulty ([6, 5, 16]) of target exemplars
in their ‘best’ partition as well as the difficulty of exemplars in the neighboring
outlier partitions (Fig. 1, Step 4(b)vi).

exemplardiff =
1

1 + (CSDmax)
(3)

Exemplar ages are also updated ([6, 5, 16]), with exemplars chosen to be in the
subset having their ages set to zero, while exemplars not appearing in the subset
increment their age.

3.6 Block Multi-Objective Fitness and Pareto Ranking

Once training has been completed on a Level 1 block (i.e., the Level 2 termi-
nation criteria has been met) the age, difficulty and error rate of the target
and outlier partitions making up the Level 1 block need to be updated [5]. A
partition’s age and difficulty are updated to influence future partition selections
in the creation of Level 1 blocks (Fig. 1, Step 4g) while partition error rates are
needed to update the Level 2 termination criteria (Fig. 1, Step 4b). To deter-
mine these values the entire population of programs is evaluated over the Level
1 block (Fig. 1, Step 4c). In addition to the population of programs, an archive
of previously stored programs is evaluated on the same Level 1 block. Archives
are maintained for each target partition in an effort to facilitate problem decom-
position under a boosting model of classification. That is to say, classifiers with
similar levels of pareto performance are identified under different partitions of
the training data.

As during a tournament, the GPout for each program is stored (Fig. 1,
Step 4(c)i) and sorted into class-consistent partitions. The partition selection
heuristic of Fig. 3 is then applied (Fig. 1, Step 4(c)ii). Now that a partition
has been selected the error rate is determined by a local membership function
based on a partition’s mean µ and variance σ2 (see Fig. 4 [12]).

For each exemplar i the GPout(i) value returned by the program is entered
into the local membership function, (4), and the value returned provides a
confidence measure on whether the associated exemplar is labeled as a target
or an outlier by the current program.

confidencei = exp
(
− (GPout(i)− µ)2

2 · σ2

)
(4)

A Cutoff is used to classify the exemplars, where all confidence values greater
than the Cutoff are labeled target and all confidence values below the Cutoff
are labeled outlier (dashed line in Fig. 4), as in Equation 5.

Figure 4: GP local membership function

IF (confidencei > Cutoff)
THEN GPlabel(i) = target;
ELSE GPlabel(i) = outlier;

(5)

In order to optimize the classifier, different Cutoff values are evaluated over
the training data. Increasing the Cutoff value from zero to one describes an
ROC curve, where the knee in the curve is used to define the optimal operating
condition (Fig. 1, Step 4(c)iii).

Now that a local membership function and a Cutoff value have been found
for each program, the programs can be compared in order to decide which will
be allowed to participate in the classification of the block. Again the quality
of the programs is determined through the use of Pareto objectives (Fig. 1,
Step 4(c)iv), however the ‘maximize CSD’ objective from the tournament based
evaluation has been replaced by the block objective of minimizing the false
positive rate (FPR). This is due to the use of the Cutoff, (5), in the local
membership function which has the potential to allow outlier exemplars to fall
within the GP program’s identified target partition. The four objectives used
to determine the best programs over the block are now:

1. Minimize Overlap.

2. Maximize Count.

3. Minimize Solution Size.

4. Minimize FPR: Find partitions that minimize the count of outlier ex-
emplars labeled incorrectly.

Each program now has an associated four dimensional multi-objective vector
and the programs are ranked according to dominance (Fig. 1, Step 4d). A
program is said to be non-dominated if it is not dominated by any other program

in the population and has a rank of zero. The set of all non-dominated programs
is referred to as the Pareto front (Fig. 1, Step 4e) and only these programs
participate in the classification of the block [19, 9].

The Pareto front is then stored in the current target partition’s archive
(Fig. 1, Step 4f). If the Pareto front is smaller than the size of the archive the
remainder of the archive is filled with next least Pareto-ranked programs. If the
Pareto front is larger than the archive size then for each program the distance to
the nearest neighboring program is found where distance is measured in terms
of similarity of Pareto objective vectors. The programs are then ranked by
this nearest neighbor distance and those with the greatest distance, or least
similarity, are chosen for the archive.

The archive programs are then evaluated on the exemplars from the block,
recording each correctly classified target exemplar and incorrectly classified out-
lier exemplar (only one count per exemplar). Partition difficulties are updated
as the error rate found on each partition as in Equation 6 (Fig. 1, Step 4g).

targeterror = 1−
∑ correct target exemplars

target partition size

outliererror =
∑ incorrect outlier exemplars

outlier partition size
(6)

The age of the partitions making up the Level 1 block are set to 0 while all
other partitions have their age incremented. The error rates of each partition
are also stored in order to determine the number of subset iterations to perform
the next time either partition is chosen to be in the Level 1 block (Fig. 1, Step
4h).

3.7 Post Processing

Once the Level 1 termination criteria has been met (Fig. 1, Step 4) all archive
programs are run on the entire artificial training dataset. For each program
the best Cutoff is found which determines its overall detection rate (DR) and
false positive rate (FPR). A final filter is applied to all archive programs in
order to remove any programs with a FPR greater than a specified threshold.
Furthermore, any duplicated programs found across the archives are removed.

Finally, the remaining archive programs are run again on the entire artifical
training dataset and the actual test dataset to determine classification accuracy.
If any program determines an exemplar has a confidence value greater than it’s
Cutoff than that exemplar receives a vote to be labeled as a target exemplar.
The number of votes necessary for an exemplar to be labeled as a target is var-
ied, from requiring only 1 vote up to the maximum number of votes possible
before the false positive rate becomes 0. The exemplars labeled as target by the
GP programs are compared to the actual labels provided with the datasets to
determine the final detection rates, false positive rates and classification accu-
racy.

Table 1: Binary classification datasets
Breast Liver C-heart

Features 9 6 13
Class Art. Test Art. Test Art. Test

0 10,000 114 10,000 50 100,000 41
1 181 60 109 36 105 34

Total 10,181 174 10,109 86 100,105 75

4 Experiments

4.1 Experimental Setup

The one-class multiobjective genetic programming algorithm was tested on the
Breast, Liver and C-heart datasets from the UCI machine learning repository
[13]. Each dataset was first divided into a 75% training dataset and a 25% test
dataset while maintaining the class distribution of the original dataset. The class
0 exemplars are removed from the training dataset to form the one-class target
dataset. Then, the artificial outlier exemplars are generated around the target
training data. Table 1 lists the number of features in each dataset, the number of
target exemplars provided in the training dataset, the total number of artificial
outlier exemplars generated and the number of target and outlier exemplars in
the test dataset. For the Breast and Liver datasets 10, 000 artificial exemplars
are generated. Experiments on the C-heart dataset with only 10, 000 exemplars
resulted in frequent degenerate solutions in which all exemplars were labeled
as outliers. The cause was attributed to the increase in the dimensionality of
the feature space for C-heart, from 6 and 9 features for Liver and Breast to 13
features for C-heart. Therefore 100, 000 artificial exemplars were generated to
deal with this wider range of possible values.

Training was performed on a dual G4 1.33 GHz Mac Server with 2 GB RAM.
All experiments are based on 50 GP runs where runs differ only in their choice of
random seeds for initializing the population while all other parameters remain
unchanged. Table 2 lists the common parameter settings for all runs.

The performance of the final GP programs are reported in terms of first,
second (median) and third quartiles for training time, the number of participants
in a GP solution and test accuracy. The votes for each final GP program on
the test exemplars were also recorded so that the detection rate (DR) and false
positive rate (FPR) could be determined based on different voting schemes.
Detection rate and false positive rate are estimated as in Equation 7.

DR =
(

of True Positives
Total # of Positives

)
FPR =

(
of False Positives
Total # of Negatives

)
(7)

Table 2: Parameter Settings
Page Based Linear GP

Parameter Setting
Population size 125

Maximum # of pages 32
Page size 8 instructions

Maximum page size 8 instructions
Prob. Crossover, Mutation, Swap 0.9, 0.5, 0.9

Tournament size 4
Number of registers 8

Instr. prob. type 1, 2 or 3 0/5, 4/5, 1/5
Function set {+, –, ×,÷}
Terminal set {# of exemplar features}

Balanced Block Algorithm Parameters
Target Partition Size ≈ NumPatterns / NumArchives
Outlier Partition Size 500
Max block selections 2000
Max subset iterations 5

Tournaments per subset 6
Level 2 subset size 100

Archive Parameters
Number of Archives Liver = 2, C-heart = 3, Breast = 4

Archive Size 10

Table 3: ν min, max and step size for ν-SVM
Dataset νmin νmax νstep

Breast 0 0.035556 0.00250
Liver 0 0.021565 0.00250

C-Heart 0 0.002098 0.00025

4.2 Support Vector Machines

Support vector machines (SVMs) were used to compare to the one-class GP
results. In particular the ν-SVM algorithm [15] and the one-class ν-SVM [14]
variant as implemented in LibSVM [3] were used. The binary ν-SVM algorithm
uses the entire artificial dataset for training while the one-class ν-SVM algorithm
uses the target class data only. For both algorithms the radial basis kernel was
used, Equation (8), with kernel parameter set to the LibSVM default γ = 1

k
where k is the number of features in a training exemplar.

K(x, y) = exp−γ‖x−y‖2 (8)

The ν parameter for the standard ν-SVM was varied in the interval [νmin, νmax]
where νmin = 0 and νmax is determined by Equation 9:

νmax = 2
min(m+,m−)

m
(9)

where m is the total number of exemplars in the training dataset and m+ and
m− are the total number of positive and negative exemplars respectively [4].
Table 3 lists the ν values for ν-SVM on each dataset where νstep is the step size
used to vary ν between νmin and νmax.

The ν parameter for the one-class ν-SVM was varied through the interval
[0.1, 0.9] with νstep = 0.1.

4.3 Results

Table 4 lists the GP results in terms of 1st, median and 3rd quartiles over all
runs in terms of run time in minutes, the number of programs participating
in the GP solution (# of Participants) and the percent accuracy on the test
dataset. The median run time for each GP run over all datasets was less than
5 minutes. In terms of classifier participants, on the Liver dataset there can be
up to 20 participants in 2 archives, the C-heart can have up to 30 participants
in 3 archives and the Breast dataset can have up to 40 participants in 4 archives
(Table 2). Table 4 shows that on the Liver dataset the GP algorithm used
a median of 100% participation (20 participants out of a possible 20) in the
final solution, while on the Breast and C-heart datasets the GP algorithm used
a median of only 43.8% (17.5 out of 40) and 70.0% (21 out of 30). Having
a higher rate of participants on the Liver dataset, which consists of 10, 000
artificial exemplars, than on the Breast dataset (10, 000) or on the C-heart

Table 4: One-class GP Results
Time (m) # of Participants Acc. (%)

Breast
Q1 1.63 13.75 (34.4%) 67.39

Med. 1.74 17.50 (43.8%) 70.11
Q3 1.88 20.25 (50.6%) 74.57

Liver
Q1 1.63 19.00 (95.0%) 63.08

Med. 1.74 20.00 (100%) 66.28
Q3 1.90 20.00 (100%) 68.31

C-Heart
Q1 1.75 18.75 (62.5%) 55.00

Med. 3.02 21.00 (70.0%) 57.33
Q3 4.87 23.00 (76.7%) 63.67

Table 5: Best Case Accuracy
OC GP OC ν-SVM ν-SVM

Breast 90.80 95.98 85.06
Liver 72.09 65.12 56.98

C-heart 77.33 66.67 68.00

dataset (100, 000) suggests that the rate of participation is related more to the
difficultly of the dataset and less on the size of the training dataset.

Table 5 lists the best case accuracies for the one-class GP (OC GP), the
one-class ν-SVM (OC ν-SVM) and the standard ν-SVM. The one-class GP had
the highest best case accuracy found on the more difficult Liver and C-heart
datasets while achieving a higher accuracy than the standard ν-SVM on the
Breast dataset. The one-class ν-SVM had the highest best case accuracy on
Breast. Moreover, the median GP accuracy on the Liver dataset (Table 4)
was higher than the best case accuracy of both the one-class and the standard
ν-SVM.

Fig. 5, Fig. 6 and Fig. 7 plot the detection rate and false positive rates of
the one-class GP’s and the one-class and standard ν-SVM’s on the Breast, Liver
and C-heart datasets respectively. The one-class GP results differ depending on
the number of votes required for an exemplar to be labeled a target, starting
from one vote up to the number of votes that results in no exemplars being
labeled target. Increasing the number of votes required to label an exemplar as
a target requires a consensus from the GP programs and gives a more confident
prediction.

A point in these figures represents a solution and a solution can be said to
dominate another solution if it is at least as good in all objectives (DR and FPR)
and better in at least one (DR or FPR). In other words, a solution is dominated

Figure 5: Breast Results

by any solutions that are in the box created by the solution in question and the
upper left corner (the optimum with a DR of 100% and an FPR of 0%). Only
non-dominated GP solutions are shown in these figures.

Fig. 5 shows that for the case of having a false positive rate of zero the
one-class GP was able to find higher detection rates than both SVM’s, with the
best GP having a DR of 40% and FPR of 0%. Furthermore, the one-class GP
solution with a DR of 75% and FPR of ≈ 1% dominates the remaining one-class
ν-SVM solutions with the exception of the two one-class ν-SVM solutions with
DR > 80%. The one-class GP also managed to find at least one solution that
dominates each of the standard ν-SVM solutions.

Fig. 6 shows that neither SVM algorithm was able to find a solution with
FPR of 0% while the one-class GP found several, with the best being a DR of
≈ 30% and FPR of 0%. Moreover, the one-class GP was able to dominate all
of the one-class and standard ν-SVM solutions.

Fig. 7 shows that while having a FPR of 0% the one-class ν-SVM and the
one-class GP were both able to find the best DR of ≈ 24%. For FPR > 0% the
one-class GP was able to find solutions that dominate the rest of the one-class
ν-SVM solutions and all of the standard ν-SVM solutions.

5 Conclusions and Future Works

This work proposed a methodology for applying GP to the problem of one-class
learning comprising of four components. (1) Artificial outclass (outlier) data
was generated in and around the provided inclass (target) data to emphasize
the limit of inclass (target) data. (2) A local Gaussian wrapper then allowed

Figure 6: Liver Results

Figure 7: C-heart Results

GP to concentrate on classifying only a subset of the target data, as opposed
to using a global wrapper to classify the entire target class. (3) Evolutionary
multi-objective optimization then allowed GP to decompose the problem by
simultaneously developing multiple classifiers that each identify their own target
exemplar subsets while also driving the GP programs to search for improved
target subsets. Moreover, the ensuing problem decomposition enables a voting
scheme to be employed whereby increasing the number of votes required to
label an exemplar as target increases the confidence in the prediction reducing
the likelihood of false positives. (4) An active learning algorithm provides an
effective means for training GP over the large unbalanced data sets that result
from the artificial outclass data.

After testing on three classification datasets the GP solutions were found
to be competitive with an one-class SVM trained on inclass exemplars alone
and a standard SVM trained on the generated artificial dataset. In particular,
against the standard SVM the one-class GP was able to find a better best case
solution on all datasets. Moreover, at a false positive rate of 0% the one-class
GP had the highest detection rate on all three datasets compared with both
the one-class and the standard SVM. The power of the GP voting scheme for
classifying target exemplars was demonstrated by the ability of GP to find a
variety of solutions over varying levels of false positive rate. This would allow
the user to decide on an acceptable level of FPR in choosing a GP solution.

6 Acknowledgments

The authors gratefullly acknowledge the support of a Walter Sumner Fellowship,
NSERC Discovery, MITACS, and CFI New Opportunities programs; and indus-
trial funding through the Telecom Applications Research Alliance (Canada), and
SwissCom Innovations AG (Switzerland).

References

[1] M. Brameier and W. Banzhaf. Linear Genetic Programming Genetic and
Evolutionary Computation Series. Springer Verlag, 2007.

[2] K. R. Castleman. Digital Image Processing. Prentice Hall, Englewood
Cliffs, NJ, USA, 1996.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines.
http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2001.

[4] C.-C. Chang, C.-J. Lin, and B. Scholkopf. A tutorial on nu-support vector
machines. Applied Stochastic Models in Business and Industry, 21:111–136,
2005.

[5] R. M. Curry, P. Lichodzijewski, and M. I. Heywood. Scaling genetic pro-
gramming to large datasets using hierarchical dynamic subset selection.

IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernet-
ics, August 2007.

[6] C. Gathercole and P. Ross. Dynamic training subset selection for super-
vised learning in genetic programming. In Parallel Problem Solving from
Nature III, volume 866 of Lecture Notes in Computer Science, pages 312–
321. Springer Verlag, 1994.

[7] M. I. Heywood and A. N. Zincir-Heywood. Dynamic page-based linear
genetic programming. IEEE Transactions on Systems, Cybernetics and
Man - Part B: Cybernetics, 32(3):380–388, June 2002.

[8] J. R. Koza. Genetic programming: On the programming of computers by
means of natural selection. Statistics and Computing, 4(2), June 1994.

[9] R. Kumar and P. Rockett. Improved sampling of the pareto-front in mul-
tiobjecctive genetic optimizations by steady-state evolution: A pareto con-
verging genetic algorithm. Evolutionary Computation, 10(3):283–314, 2002.

[10] M. Markou and S. Singh. Novelty deteciton: a review – part 1: statistical
approaches. Signal Processing, 83:2481–2497, 2003.

[11] M. Markou and S. Singh. Novelty deteciton: a review – part 2: neural
network based approaches. Signal Processing, 83:2499–2521, 2003.

[12] A. McIntyre and M. I. Heywood. MOGE: GP classification problem decom-
position using multi-objective optimization. In ACM, editor, Proceedings
of Genetic and Evolutionary Computation Conference, 2006.

[13] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of
machine learning databases.

[14] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson. Estimating the support of a high-dimensional distribution.
Neural Computation, 13:1443–1471, 2001.

[15] B. Scholkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New
support vector algorithms. Neural Computation, 12:1207–1245, 2000.

[16] D. Song, M. I. Heywood, and A. N. Zincir-Heywood. Training genetic pro-
gramming on half a million patterns: An example from anolmaly detection.
IEEE Transactions on Evolutionary Computation, 9(3):225–239, 2005.

[17] D. M. J. Tax and R. P. W. Duin. Uniform object generation for optimizing
one-class classifiers. Journal of Machine Learning Research 2, pages 155–
173, December 2001.

[18] H. Zhang, W. Huang, Z. Huang, and B. Zhang. A kernel autoassociator
approach to pattern classification. IEEE Transactions on Systems, Man,
and Cybernetics - Part B: Cybernetics, 35(3):593–606, June 2005.

[19] E. Zitzler and T. Thiele. Multiobjective evolutionary algorithms: A com-
paritive case study and the strength pareto approach. IEEE Transactions
on Evolutionary Computation, 3(4):257–271, 1999.

