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Abstract. One-class classification naturally only provides one-class of
exemplars, the target class, from which to construct the classification
model. The one-class approach is constructed from artificial data com-
bined with the known in-class exemplars. A multi-objective fitness func-
tion in combination with a local membership function is then used to
encourage a co-operative coevolutionary decomposition of the original
problem under a novelty detection model of classification. Learners are
therefore associated with different subsets of the target class data and
encouraged to tradeoff detection versus false positive performance; where
this is equivalent to assessing the misclassification of artificial exemplars
versus detection of subsets of the target class. Finally, the architecture
makes extensive use of active learning to reinforce the scalability of the
overall approach.

Keywords: One-Class Classification, Coevolution, Active Learning,
Problem Decomposition.

1 Introduction

The ability to learn from a single class of exemplars is of importance under do-
mains where it is not feasible to collect exemplars representative of all scenarios
e.g., fault or intrusion detection; or possibly when it is desirable to encourage
fail safe behaviors in the resulting classifiers. As such, the problem of one-class
learning or ‘novelty detection’ presents a unique set of requirements from that
typically encountered in the classification domain. For example, the discrim-
inatory models of classification most generally employed might formulate the
credit assignment goal in terms of maximizing the separation between the in-
and out-class exemplars. Clearly this is not feasible under the one-class scenario.
Moreover, the one-class case often places more emphasis on requiring fail safe be-
haviors that explicitly identify when data differs from the target class or ‘novelty
detection’.

Machine learning algorithms employed under the one-class domain therefore
need to address the discrimination/ novelty detection problem directly. Specific
earlier works include Support Vector Machines (SVM) [1,2,3], bottleneck neural
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networks [4] and a recent coevolutionary genetic algorithm approach based on
an artificial immune system [5] (for a wider survey see [6,7]).

In particular the one-class SVM model of Schölkopf relies on the correct
identification of “relaxation parameters” to separate exemplars from the ori-
gin (representing the second unseen class) [1]. Unfortunately, the values for such
parameters vary as a function of the data set. However, a recent work proposed
a kernel autoassociator for one-class classification [3]. In this case the kernel fea-
ture space is used to provide the required non-linear encoding, this time in a
very high dimensional space (as opposed to the MLP approach to the encod-
ing problem). A linear mapping is then performed to reconstruct the original
attributes as the output. Finally, the work of Tax again uses a kernel based
one-class classifier. This approach is distinct in that data is artificially generated
to aid the identification of the most concise hypersphere describing the in-class
data [2]. Such a framework builds on the original support vector data descrip-
tion model, whilst reducing the significance of specific parameter selections. The
principle drawback, however, is that tens or even hundreds of thousands of ar-
tificially generated training exemplars are required to build a suitably accurate
model [2]. The work proposed in this paper uses the artificial data generation
model of Tax, but specifically addresses the training overhead by employing an
active learning algorithm. Moreover, the Genetic Programming (GP) paradigm
provides the opportunity to solve the problem using an explicitly multiple objec-
tive model, where this provides the basis for cooperative coevolutionary problem
decomposition.

2 Methodology

The general principles of the one-class GP (OCGP) methodology, as originally
suggested in [8], is comprised of four main components:

(1) Local membership function: Conventionally, GP programs provide a
mapping between the multi-dimensional attribute space and a real-valued one-
dimensional number line called the gpOut axis. A binary switching function
(BSF), as popularized by Koza, is then used to map the one-dimensional ‘raw’
gpOut to one of two classes, as shown in Fig. 1(a) [9]. However, a BSF assumes
that the two classes can be separated at the origin. Moreover, under a one-class
model of learning – given that we have no information on the distribution of
out-class data – exemplars belonging to the unseen classes are just as likely to
appear on either side of the origin, resulting in high false positive rates. There-
fore, instead of using the ‘global’ BSF, GP individuals utilize a Gaussian or
‘local’ membership function (LMF), Fig. 1(b). A small region of the gpOut axis
is therefore evolved for expressing in-class behavior, where this region is asso-
ciated with a subset of the target distribution encountered during training. In
this way GP individuals act as novelty detectors, as any region on the gpOut
axis other than that of the LMF is associated with the out-class conditions; thus
supporting conservative generalization properties when deployed. Moreover, in-
stead of a single classifier providing a single mapping for all in-class exemplars,
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Fig. 1. (a) ‘Global’ binary switching function vs. (b) Gaussian ‘local’ membership
function

our goal will be to encourage the coevolution of multiple GP novelty detectors
to map unique subsets of the in-class exemplars to their respective LMF.

(2) Artificial outlier generation: In a conventional binary classification prob-
lem the decision boundaries between classes are supported by exemplars from
each class. However, in a one-class scenario it is much more difficult to estab-
lish appropriate and concise decision boundaries since they are only supported
by the target class. Therefore, the approach we adopt for developing one-class
classifiers is to build the outlier class data artificially and train using a two class
model. The ‘trick’ is to articulate this goal in terms of finding an optimal trade-
off between detection and false positive rates as opposed to explicitly seeking
solutions with ‘zero error’.

(3) Balanced block algorithm (BBA): When generating artificial outlier
data it is necessary to have a wider range of possible values than the target data
and also to ensure that the target data is surrounded in all attribute directions.
Therefore, the resulting ‘two-class’ training data set tends to be unbalanced and
large; implying artificial data partitions in the order of tens of thousands of
exemplars (as per Tax [2]). The increased size of the training data set has the
potential to significantly increase the training overhead of GP. To address this
overhead the BBA active learning algorithm is used [10]; thus fitness evaluation
is conducted over a much smaller subset of training exemplars, dynamically
identified under feedback from individuals in the population, Fig. 2.

(4) Evolutionary multi-objective optimization (EMO): EMO allows mul-
tiple objectives to be specified, thereby providing a more effective way to express
the quality of GP programs. Moreover, EMO provides a means of comparing in-
dividuals under multiple objectives without resorting to a priori scalar weighting
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Fig. 2. The balanced block algorithm first partitions the target and outlier classes
(Level 0) [10]. Balanced blocks of training data are then formed by selecting a partition
from each class by dynamic subset selection (Level 1). For each block multiple subsets
are then chosen for GP, training again performed by DSS (Level 2).

functions. In this way the overall OCGP classifier is identified through a coopera-
tive approach that supports the simultaneous development of multiple programs
from a single population.

The generation of artificial data in and around the target data means that
outlier data lying within the actual target distribution cannot be avoided. Thus,
when attempting to classify the training data it is necessary to cover as much of
the target data as possible (i.e., maximize detection rate), while also minimizing
the amount of outlier data covered (i.e., minimize false positive rate); the first
two objectives. Furthermore, it is desirable to have an objective to encourage di-
versity among solutions by actively rewarding non-overlapping behavior between
the coverage of different classifiers as evolved from the same population. Finally,
the fourth objective encourages solution simplicity, thus reducing the likelihood
of overfitting and promoting solution transparency.

GP programs are compared by their objectives using the notion of dominance,
where a classifier A is said to dominate classifier B if it performs at least as well
as B in all objectives and better than B in at least one objective. Pareto ranking
then combines the objectives into a scalar fitness by assigning each classifier
a rank based on the number of classifiers by which it is dominated [11,12].
A classifier is said to be non-dominated if it is not dominated by any other
classifier in the population and has a rank of zero. The set of all non-dominated
classifiers is referred to as the Pareto front. The Pareto front programs represent
the current best trade-offs of the multi-objective criteria providing a range of
candidate solutions. Pareto front programs influence OCGP by being favored
for reproduction and update the archives of best programs which determine the
final OCGP classifiers.

2.1 OCGP Algorithm

The general framework of our algorithm is described by the flowchart in Fig. 3.
The first step is to initialize the random GP population of programs and the
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Fig. 3. Framework for OCGP assuming target data is provided as input

necessary data structures, Step 1. OCGP is not restricted to a specific form of
GP but in this work a linear representation is assumed. Artificial outlier data is
then generated in and around the provided target data, Step 2.

The next stage outlines the three levels of the balanced block algorithm
(BBA), Fig. 2, within the dashed box. Level 0, Step 3, partitions the target
and outlier data. The second level, Step 5, selects a target and outlier partition
to create the Level 1 balanced block. At Level 2, Step 7, subsets are selected
from the block to form the subset of exemplars over which fitness evaluation is
performed (steady state tournament).

The next box outlines how individuals are evaluated. First programs are evalu-
ated on the current data subset to establish the corresponding gpOut distribution,
Step 10. The classification region is then determined to parameterize the LMF,
Step 11, and the multi-objective fitness is established, Step 12. Once all programs
have their multi-objective fitness the programs can be Pareto ranked, Step 13.

The Pareto ranking determines the tournament winners, or parents, from
which genetic operators can be applied to create children, Step 14. In addition
parent programs update the difficulty of exemplars in order to influence future
subset selections. That is to say, previous performance (error) on artificial–target



6 R. Curry and M.I. Heywood

class data is used to guide the number of training subsets sampled from level 1
blocks. As such, difficulty values are averaged across the data in level 1 and 2,
Step 6 and 8 respectively.

Once training is complete at level 2, the population and the archives associated
with the current target partitions are combined, Step 15, and evaluated on the
Level 1 block (Step 10 through Step 13). The archive of the target partition is
then updated with the resulting Pareto front, Step 16, and partition difficulties
updated in order to influence future partition selections and the number of future
subset iterations. The change in partition error rates for each class is also used
to determine the block stop criteria, Step 4. Once the block stop criteria has
been met the archives are filtered with any duplicates across the archives being
removed, Step 17, and the final OCGP classifier consists of the remaining archive
programs. More details of the BBA are available from [10].

2.2 Developments

Relative to the above, this work introduces the following developments:

Clustering. In the original formulation of OCGP the classification region for
each program (i.e., LMF location) was determined by dividing a program’s gpOut
axis into class-consistent ‘regions’ (see Fig. 4) and the corresponding class sepa-
ration distance (1), or csd, between adjacent regions estimated. The target region
that maximizes csd with respect to the neighboring outlier regions has the best
separability and is chosen as the classification region for the GP program (de-
termining classification region at Fig. 3 Step 11).

csd 0/1 =
|μ0 − μ1|√

σ2
0 + σ2

1

(1)

In this work the LMF is associated with the most dense region of the gpOut
axis i.e., independent of the label information. Any artificial exemplars lying
within the LMF might either result in the cluster being penalized once the
fitness criteria is applied or be considered as outliers generated by the artificial

Fig. 4. Determining GP classification region by class separation distance
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data generation model. In effect we establish a ‘soft’ model of clustering (may
contain some artificial data points) in place of the previous ‘hard’ identification
of clusters (no clusters permitted with any artificial data points).

To this end, subtractive clustering [13] is used to cluster the one-dimensional
gpOut axis and has the benefit of not requiring a priori specification of the
number of clusters. The mixed content of a cluster precludes the use of a class
separation distance metric. Instead the sum squared error (SSE) of the exem-
plars within the LMF are employed. The current GP program’s associated LMF
returns confidence values for each of the exemplars in the classification region.
Therefore, the error for each type of exemplar can be determined by subtracting
their confidence value from their actual class label (i.e., reward for target ex-
emplars in classification region and penalize for outliers). The OCGP algorithm
using gpOut clustering will be referred to as OCGPC.

Caching. The use of the clustering algorithm caused the OCGPC algorithm to
run much more slowly than OCGP. The source was identified to be the clustering
of the entire GP population and the current archive on the entire Level 1 block
(Fig. 3 Step 15). Therefore, instead of evaluating the entire population and
archive on the much larger Level 1 block, the mean and standard deviation
is cached from the subset evaluation step. Caching was introduced in both the
OCGP and OCGPC algorithms and was found to speed up training time without
negatively impacting classification performance.

Overlap. The overlap objective has been updated from the previous work to
compare tournament programs against the current archive instead of comparing
against the other tournament programs (assessing multi-objective fitness at Step
12). Individuals losing a tournament are destined to be replaced by the search
operators, thus should not contribute to the overlap evaluation. Moreover, com-
parison against the archive programs is more relevant, as they represent the cur-
rent best solution to the current target partition (i.e., target exemplars already
covered) and thus encourages tournament programs to classify the remaining
uncovered target exemplars.

Artificial outlier generation. Modifications have been made in order to im-
prove the quality of the outlier data (Fig. 3 Step 2). Previously a single radius,
R, was determined by the attribute of the target data having the largest range
and was then used as the radius for all attribute dimensions when creating out-
liers. If a large disparity exists between attribute ranges, this can lead to large
volumes of the outlier distribution with little to no relevance to the target data.
Alternatively, a vector R of radii is used consisting of a radius for each attribute.
Additionally, when the target data consists of only non-negative values, negative
outlier attribute values are restricted to within a close proximity to zero.

3 Experiments

In contrast to the previous performance evaluation [8], we concentrate on bench-
marking against data sets that have large unbalanced distributions in the
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Table 1. Binary classification datasets. The larger in-class partition of Adult, Census
and Letter-vowel was matched with a larger artificial exemplar training partition.

Dataset Adult Census Letter-vowel

Features 14 40 16

Class Train Test Train Test Train Test

0 50, 000 11, 355 50, 000 34, 947 50, 000 4, 031

1 7, 506 3, 700 5, 472 2, 683 2, 660 969

Total 57, 506 15, 055 55, 472 37, 630 52, 660 5, 000

Dataset Letter-a Letter-e Mushroom

Features 16 16 22

Class Train Test Train Test Train Test

0 10, 000 4, 803 10, 000 4, 808 10, 000 872

1 574 197 545 192 1, 617 539

Total 10, 574 5, 000 10, 545 5, 000 11, 617 1, 411

underlying exemplar distribution, thus are known to be difficult to classify under
binary classification methods. Specifically, the Adult, Census-Income (KDD),
Mushroom and Letter Recognition data sets from the UCI machine learning
repository [14] were utilized (Table 1). The Letter Recognition data set was
used to create three one-class classification data sets where the target data was
alternately all vowels (Letter-vowel), the letter ‘a’ (Letter-a) and the letter ‘e’
(Letter-e). For the Adult and Census data sets a predefined training and test
partition exists. For the Letter Recognition and Mushroom data sets the data
was first divided into a 75% training and 25% test data set while maintaining
the class distributions of the original data. The class 0 exemplars were removed
from the training data set to form the one-class target data set.

Training was performed on a dual G4 1.33 GHz Mac Server with 2 GB of
RAM. All experiments are based on 50 GP runs where runs differ only in their
choice of random seeds for initializing the population while all other parameters
remain unchanged. Table 2 lists the common parameter settings for all runs.

The OCGP algorithm results are compared to results found by a one-class
support vector machine (OC ν-SVM) [1] and a one-class or bottleneck neural
network (BNN)1, where both algorithms are trained on the target data alone.
Additionally, the OCGP results will be compared to a two-class support vector
machine (ν-SVM) which use both the artificial outlier and the target data. The
two-class SVM is used as a baseline binary classification algorithm in order
to assess to what degree the OCGP algorithms are able to provide a better
characterization of the problem i.e., both algorithms are trained on the target
and artificial outlier data. Comparison against Tax’s SVM was not possible as
the current implementation does not scale to large data sets.
1 Unlike the original reference ([4]) the BNN was trained using the efficient second

Conjugate Gradient weight update rule with tansig activation functions; both of
which make a significant improvement over first order error back-propagation.
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Table 2. Parameter Settings

Dynamic Page-Based Linear GP

Population size 125 Tournament Size 4

Max # of pages 32 Number of registers 8

Page size 8 instructions Instr. prob. 1, 2 or 3 0/5, 4/5, 1/5

Max page size 8 instructions Function set {+, –, ×,÷}
Prob. Xover, Mut., Swap 0.9, 0.5, 0.9 Terminal set {# of attributes}

Balanced Block Algorithm Parameters

Target Partition Size ≈ #Patterns
#Archives

Max subset iterations 10

Outlier Partition Size 500 Tourneys per subset 6

Max block selections 2000 Level 2 subset size 100

Archive Parameters

Number of Archives Adult = 15, Census = 11, Letter-vowel = 10, Letter-a = 6,
Letter-e = 6, Mushroom = 4

Archive Size 10

The algorithms are compared in terms of ROC curves of (FPR, DR) pairs on
test data sets (Fig. 5). Due to the large number of runs of the OCGP algorithms
and the multiple levels of voting possible, plotting all of the OCGP solutions
becomes too convoluted. Alternatively, only non-dominated solutions will be
shown, where these represent the best-case OCGP (FPR, DR) pairs over the
50 runs. Similarly only the non-dominated solutions of the bottle-neck neural
networks will be shown, while for the other algorithms only a small number of
solutions are present and so all results will be plotted. Comments will be made
as follows on an algorithm-by-algorithm basis:

OCGPC. Of the two one-class GP models the cluster variant for establishing
the region of interest on the gpOut axis described in Sect. 2.2 appeared to be the
most consistent. Specifically, OCGPC provided the best performing curves under
the Adult and Vowel data sets (Fig. 5(a) and (c)) and consistently the runner
up under all but the Census data set. In each of the three cases where it appears
as a runner up it was second to the BNN. However, GP retains the advantage of
indexing a subset of the attributes; whereas multi-layer neural networks index
all features – a bias of NN methods in general and the autoassociator method of
deployment in particular.

OCGP. When assuming the original region based partitioning of gpOut, ROC
performance decreases significantly with strongest performance on the Census
data set; and runner up performance under Adult and Mushroom. Performance
on the remaining data sets might match or better the one-class ν-SVM, but
generally worse than BNN or OCGPC.

BNN. As remarked above the BNN was the strongest one-class model, with best
ROC curves on Letter ‘a’, ‘e’, and mushroom; and joint best on Census (with
OCGP). Moreover, the approach was always better than the SVM methods
benchmarked in this work.
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(c) Vowel
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Fig. 5. Test dataset ROC curves
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SVM methods. Neither SVM method – one-class or binary SVM trained on the
artificial versus target class – performed well. Indeed the binary SVM was at best
degenerate on all but the Letter ‘a’ data set; resulting in it being ranked worst in
all cases. This indicates that merely combining artificial data with target class
data is certainly not sufficient for constructing one-class learners as the learning
objective is not correctly expressed. The one-class SVM model generally avoided
degenerate solutions, but never performed better than OCGPC or BNN.

4 Conclusion

A Genetic Programming (GP) classifier has been proposed in this work for the
one-class classification domain. Four main components of the algorithm have
been identified. Artificial outlier generation is used to establish more concise
boundaries and to enable the use of a two-class classifier. The active learn-
ing algorithm BBA tackles the class imbalance and GP scalability issues in-
troduced by the large number of artificial outliers required. Gaussian ‘local’
membership functions allow GP programs to respond to specific regions of the
target distribution and act as novelty detectors. Evolutionary multi-objective
optimization drives the search for improved target regions, while allowing for
the simultaneous development of multiple programs that cooperate towards the
overall problem decomposition through the objective for minimizing overlapping
coverage.

A second version of the OCGP algorithm is introduced, namely OCGPC,
which determines classification regions by clustering the one-dimensional gpOut
axis. In addition, ‘caching’ of the classification regions is introduced to both al-
gorithms, in order to eliminate the need to redetermine classification regions
over training blocks. Caching reduces training times without negatively im-
pacting classification performance. Modifications were also made to improve
the quality of generated artificial outliers and to the objectives used to de-
termine classification regions, including the use of the sum-squared error and
improving the overlap objective by comparing to only the current best archive
solutions.

The OCGP and OCGPC algorithms were evaluated on six data sets larger
than previously examined. The results were compared against two one-class
classifiers trained on target data alone, namely one-class ν-SVM and a bot-
tleneck neural network (BNN). An additional comparison was made with a
two-class SVM trained on target data and the generated artificial outlier data.
The OCGPC and BNN models were the most consistent performers overall;
thereafter model preference might be guided by the desirability for solution
simplicity. In this case the OCGPC model makes additional contributions as
it operates as a classifier as opposed to an autoassociator i.e., autoassociators
are unable to simplify solutions in terms of attributes indexed. Future work
will concentrate in this direction and to applying OCGPC to learning without
artificial data.
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