Symbiosis, Complexification and Simplicity under

GP*

Malcolm I. Heywood and Peter Lichodzijewski'
7-11 July 2010

Abstract

Models of Genetic Programming (GP) frequently reflect a neo-Darwinian
view to evolution in which inheritance is based on a process of gradual
refinement and the resulting solutions take the form of single monolithic
programs. Conversely, introducing an explicitly symbiotic model of inher-
itance makes a divide-and-conquer metaphor for problem decomposition
central to evolution. Benchmarking gradualist versus symbiotic models
of evolution under a common evolutionary framework illustrates that not
only does symbiosis result in more accurate solutions, but the solutions
are also much simpler in terms of instruction and attribute count over a
wide range of classification problem domains.

1 Introduction

Pioneers in the field of Genetic Programming (GP) recognized the requirement
for code reuse / problem decomposition early on and proposed schemes such as
Automatically Defined Functions [11], Adaptive Representations [23] and var-
ious forms of recursion [4, 10]. A second development introduced the concept
of Cooperative Coevolution [22, 21]. From a GP perspective, this has influ-
enced recent advances in Teaming methods in which programs from multiple
populations are combined under different ‘orthogonal’ contexts in an attempt
to identify the optimal set of participants [24]. Conversely, models employing
economic formulations have been pursued under the guise of Learning Classi-
fier Systems — thus, essentially a GA — while examples under an explicitly GP
context have made use of auction models [14] or define entire economic systems
[2]. A final recent development has included the integration of multiple mech-
anisms including objectives that explicitly reward diversity [16] with archiving
and coevolution [19].

A neo-Darwinian model of evolution is classically associated with a gradualist
view of adaptation/ variation care of Mendelian genetics [12]. Neo-Darwinism

*Genetic and Evolutionary Computation Conference (GECCO) — Copyright 2010 ACM
fFaculty of Computer Science, Dalhousie University, Halifax, NS, Canada

is thus limited to incremental refinement care of ‘micro’ operators that focus
on the inheritance of parental traits derived from the variation of specific genes
[17, 18, 12]. Conversely, symbiosis makes extensive use of inheritance to coe-
volve independent organisms (symbionts) over a long term relationship that may
ultimately result in new species (symbiogenesis) [17, 5]. Thus, hosts inherit ‘ac-
quired characteristics’ — a neo-Lamarckian model — albeit from other organisms
rather than their parents. Moreover, the ensuing coevolutionary interaction it-
self may begin as an adversarial relationship and over time emerge into one of
mutualistic coexistence in which all parties benefit/ cannot exist without out
each other [5, 9]. In this work, symbiosis is therefore assumed as the underlying
metaphor for evolutionary inheritance and taken to imply the following require-
ments: (1) a mechanism exists for explicitly identifying symbionts participating
in a symbiotic relationship, and; (2) symbionts continue to adapt under natural
selection during the lifetime of the relation [17, 18]. As a consequence we make
the following two general observations: (i) symbionts need to have the capacity
to communicate the specific context in which they operate, and; (ii) the host is
responsible for explicitly identifying participating candidate symbionts from a
potentially much larger pool of organisms.

With this general background in mind, this study constructs a common
framework for exploring symbiotic and gradualist models of evolution under
GP. Specifically, a gradualist model of evolution is taken to imply that evolu-
tion is limited to gene-wise inheritance or a host ‘compartment’ size of one. This
limits evolution to a monolithic style of program design with all aspects of an
individual evolved simultaneously. Relaxing the host compartment limit intro-
duces symbiosis under the same common framework for evolution. We are now
in a position to explicitly identify the relative contribution of gradualist versus
symbiotic approaches to program evolution under a range of benchmark classi-
fication problems with specific reference to solution complexity, CPU training
requirements and classifier accuracy.

2 Symbiotic Bid-Based GP

Previous examples of symbiosis under Evolutionary Computation frequently
recognize the utility of modularity in for building complex systems [5, 9]. For
example, a two population model for symbiotic neural evolution was adopted by
[20]; thus separate populations of neurons and network ‘blueprints’ are main-
tained. As such the blueprint (host) population defines the subset of neurons
(symbionts) used to construct networks and it is at the blueprint level that
fitness evaluation is performed. The serial link between two populations estab-
lishes the symbiont framework where neither population can exist without the
other.

Under a GP context a similar two population model was employed for Sym-
biotic Bid-Based GP (SBB) [15]. One population declares a set of (symbiont)
programs whereas a second population defines the host organisms in terms of
subsets of symbionts, Figure 1. Assuming such an architecture makes the iden-

GA<>GP interaction
Symbiotic Coevolution
NG

- N
Host Symbiont
Population Population
o
o ©
S o ¢
.
o o o
.
Point Host
Population Population
— _

—
Competitive Coevolution
GA<=GA interaction

Figure 1: Basic SBB architecture. Diamonds in the point population denote
indexes to exemplars from the training data. At initialization each class is
sampled uniformly w.r.t. class, or a balanced initial population. Symbionts
are distinguished on the right by their respective action. Under a classification
domain there are as many actions as class labels. Host individuals appear in
the center population.

tification of coevolving programs explicit. However, care is necessary in order
to ensure that selection pressure acting on the coevolved symbiont programs
does not disturb other symbiotic relationships in which the same symbiont ap-
pears. Likewise, a clear behavioral context must exist for each symbiont in
order to avoid general pathologies of coevolution. This is achieved by casting
the symbiont objective in the form of evolving a bidding policy relative to a
fixed scalar ‘action’. Thus, when a symbiont out bids other symbionts within
the same host (on a given exemplar) it ‘wins’ the right to suggest its corre-
sponding action. Moreover, in addition to symbiosis, the framework of Figure
1 utilizes both cooperative and competitive relationships to develop host diver-
sity (fitness sharing) and guide point selection (variation in the environment)
respectively.

Relative to the earlier SBB framework (e.g., [15]) the following algorithm
differs in some important respects. One of the most significant difference lies
in the maintenance of host population diversity. Previously, the combinatorial
search conducted at the host level (for effective symbiont combinations) made
use of search operators that first copied the intersection of symbionts into the
child from the parents (crossover) and then applied mutation operators to vary
the remaining content. This reinforced the common symbionts, resulting in a

bias towards exploitation over exploration of symbiont combinations that do
not as yet exist in the host population. Given that the SBB model is elitist
this could have implications for local minima. Search operators are now limited
to mutation alone with different sets of operators appearing at the host and
symbiont populations. A new host—symbiont population initialization procedure
was also adopted, again to encourage more diversity in the host population. The
next significant area of novelty relative to the earlier work lies in the specifics
of the competitive coevolutionary framework used to scale SBB to large state
spaces / data sets i.e., the point population on the left of Figure 1. Specifically, a
“fitness sharing scheme” is now embedded within the competitive coevolutionary
model that is more efficient than the original pairwise distinction based Pareto
competitive models from which it was originally derived [6]. The following
subsections detail the corresponding updated SBB algorithm, whereas Section
3.1 returns to the topic of dual support for gradualist and symbiotic models
under a shared evolutionary framework.

2.1 Initialization

A breeder generational model of evolution is assumed in which the (compet-
itively coevolved) point population P and host population M replace a fixed
number of individuals at each generation; or the ‘gap’. Thus, Pg,e — Pyqp in-
dividuals are initialized under the point population using a balanced sampling
heuristic in which each class is represented equally i.e., provides some robustness
to class imbalance [13]. Individuals comprising host and symbiont populations
are initialized under the two stage process of Figure 2. The end result is a
population of M;,e — Mgqp hosts indexing (subsets of) a symbiont population
initially consisting of twice as many (symbiont) programs.

Without loss of generality, a linear representation is assumed for the sym-
bionts, with each individual defining bid and (scalar) action or Bid-GP (Section
2.6). The action for each symbiont is initialized with uniform probability at ini-
tialization from a set of a priori defined actions (e.g., class labels) and remains
fized during the lifetime of the symbiont. The bid component is associated with
the corresponding symbionts’ ‘program’ and is therefore subject to the regular
type-wise process of initialization i.e., select instruction type and then instance
of the type, both with uniform probability. Evaluation of a host implies that
each symbiont program is evaluated under the current exemplar with the sym-
biont returning the maximum bid gaining the right to suggest it’s corresponding
(scalar) action i.e., class label.

2.2 Selection and Search Operators

At each generation Pyqp new points and My,, new hosts are added; after fit-
ness evaluation a corresponding number of point and host individuals will be
removed. Point generation follows the same procedure as at (point) initializa-
tion. However, adding new hosts can also result in new symbionts appearing in
the symbiont population.

Step 1

Figure 2: Initialization of host and symbiont populations. Step 1: Add
(Mgize — Myqp) hosts, one at a time, subject to: i) each host containing two
unique symbiont actions; ii) symbiont actions are selected with uniform p.d.f.;
iii) Programs are initialized over different lengths with instructions selected
with uniform p.d.f. Step 2: Add additional symbiont indexing to the hosts.
Host ‘compartment’ size is selected over the interval {2,...,w}. The number of
hosts and symbionts does not change during Step 2.

The following four part selection—search operator is assumed (Figure 3): (1)
Select parent host from the M,;.. — My,, hosts available at generation ¢ with
uniform probability; (2) Remove symbiont indexes with uniform probabil-
ity, (pma)®~ !, under the limit of maintaining a minimum of two symbionts per
host. The index ¢ ranges from 1 to the number of symbionts i.e., the proba-
bility of removing a symbiont decreases as the test is reapplied. After deleting
the second symbiont the process stops. Symbionts are selected with uniform
p.d.f. to avoid sequence preference artifacts; (3) Add symbiont indexes from
the current symbiont population content with probability, (p,q) !, under the
limit of not exceeding w symbionts per host, and; (4) Modify symbionts by
applying a symbiont-wise test with uniform probability, p,,m. On testing true,
the symbiont is first copied and a unique index created. The bid component of
the symbiont is then modified through the repeated application of GP search
operators (Section 2.6). The symbiont action can also be changed at this point,
at a uniform p.d.f., p,,,. Note operators testing for symbiont modification are
not exponentially weighted but applied at a constant rate; the process iterating
until at least one symbiont is modified.

In summary, steps 2 and 3 introduce variation in the indexes that exist in
the host population, whereas step 4 extends variation down to the symbiont
population. In the latter case, the modified symbionts receive a unique index,
thus ensuring that other hosts using the original copy of the symbiont remain
unaffected'. In doing so, the host population is effectively conducting a com-
binatorial search for the best combinations of symbionts, whereas the symbiont
population is optimized for building programs which are consistent relative to
the host fitness evaluation i.e., symbionts are rewarded for continuing to adapt
to their host context.

2.3 Evaluation

The outcome G(my, py,) of applying each host m; € M (t) to each point py, € P(t)
at generation ¢ is established as follows:

1 if host m; classifies point py correctly
0 otherwise

Glomim) = { 1)

2.4 Point removal

Point fitness, fj, is expressed relative to the count of hosts, ¢, that correctly
classify it, or

1+ 7% ife, >0
= size 2
I { 0 otherwise (2)

IThe symbiont population size may vary between 2 X M,;.. and w X M,;.. individuals i.e.,
each host can contain between 2 and w symbionts which, if all indexes are unique, represents
the upper bound on symbiont population size.

Step 1: Copy

Step 2: Remove
Symbiont(s)

Step 3: Add
Symbiont(s)

=

Step 4: Create
Symbiont(s)

|

Figure 3: Hierarchical process for applying search operators to a single child
host. Steps 1 through 3 modify the symbiont membership in a child host; Step
4 applies symbiont specific mutation operators to create a new symbiont.

where this establishes a linear weighting relative to the number of hosts correctly
classifying the point; points that have a lower number of hosts correctly classi-
fying them are rewarded — up to the limit of a point ‘defeating’ all hosts, which
is also penalized. The P4, points with lowest fitness are then deterministically
removed at each generation.

2.5 Host—symbiont removal

Host—symbiont removal follows from the outcome vector of Eq. (1), albeit re-
normalized as a shared fitness function, s, to reward hosts which perform well
on the less frequently correctly classified points, or

3
G(mi, pr)
S, = _—
> (zmj G(mj,pw) ¥
where for each host, m;, index pj, iterates over all points on which at least one
host in the current population received a non-zero reward. The denominator es-
tablishes the aggregate reward on point pg across all hosts i.e., a larger discount
is applied to points for which many teams do well.

Once the shared score for each host is established, the My, hosts with lowest
shared fitness values, s;, are deleted. In addition we also test the symbiont
population for any symbionts who are no longer indexed by the host population
i.e., as a consequence of host deletion. Any such symbionts are considered to

Table 1: Instruction Set. Linear GP representation under register-register ad-
dressing. Index z denotes the target and first source register; whereas y denotes
the second source register or an attribute reference. A mode bit would toggle
between the two second source register scenarios.

’ Operation \ Definition ‘

Add R[x] +— R[z| + Rly|

Sub Rlz] — R[z] — R[y]

Multiply R[z] < R[z] x R[y]

Divide R[z] — R[z] + R]y]
Cosine R[z] < cos(R[y])
Logarithm Rlx] < In(R[y])
Exponential Rlx] « exp(R[y])

Conditional | if (R[z] < R[y]) then (R[z] — —R|x])

have ‘died’. Also — when the host size reaches the limit, w — we test for whether
any symbiont fails to place a winning bid. Such cases are deleted from the
team. Likewise, symbionts are tested for removal at the end of training, the
latter irrespective of host symbiont count.

2.6 Bid-GP

The program of the symbiont defines a bidding strategy, with the result from
the output register Ry normalized to the unit interval using a sigmoid i.e., all
symbionts use the same bidding interval. Actions are expressed as a scalar which
is not subject to modification once initialized (Section 2.1). Following initializa-
tion of the symbiont population, symbiont creation/ bid program modification
is asexual — care of step 4 of the host initiated process of variation (Section 2.2).

Search operators applied to Bid-GP take the form of four mutation opera-
tors: delete an instruction with uniform probability (pgeete); add an instruction
with uniform probability (paqq); change a current instruction/ register reference
with uniform probability (Pmutate); and interchange/ swap two existing instruc-
tions with uniform probability (pswap). Following each round of application, the
resulting bidding behavior is again assessed.

In order to guarantee diversity of the symbiont behaviors, each descendent
Bid-GP individual has it’s bidding behavior compared with the bidding behav-
iors from the current symbiont population on an independent sample of 50 ex-
emplars drawn from the training partition.? If the new Bid-GP symbiont results
in a profile with at least one of the 50 exemplars returning a bid value differ-
ing by more than 10~%, then the new symbiont is deemed sufficiently unique.
Should this not be satisfied then repeated rounds of Bid-GP search operators
are applied until variation is detected.

2Sample is drawn once at initialization and is not necessarily unique from Point population
content.

Table 2: Benchmarking Data sets. Parenthesis indicates percent major class
contribution under training (test distributions are within 1% of training).

’ Data set \ Attributes \ Training \ Test ‘
Gisette (gis) 5 000 6 000 (50%) 1 000
Census (cen) 40 199 523 (93.8%) | 99 762
Bupa (bpa) 6 310 (58.1%) 35
Pima (pma) 8 691 (65.1%) 7

3 Evaluation

3.1 Monolithic—gradualist GP

The gradualist framework for constructing solutions as monolithic programs
under a common evolutionary framework with the SBB algorithm of Section 2
will enable any variation in observed performance to be attributed to the lack
of support for symbiosis. This goal is achieved by applying two constraints to
the SBB algorithm. Firstly, the host population is limited to individuals with a
single index (w = 1), thus solutions can only consist of a single ‘symbiont’ i.e.,
solutions take the form of a single monolithic program. Secondly, the referenced
program does not have a separate action and bid, but only an action as per a
canonical linear GP classifier [3]. Thus, each individual provides a class label
i.e., binary classification care of a sigmoid activation function thresholded at
the origin. A common linear representation — for both SBB symbionts and
monolithic GP — was assumed throughout with the instruction set as defined in
Table 1.

3.2 Data Sets

For the purposes of this study?® we consider the following three specific properties
of interest, with Table 2 summarizing the specific properties of the data sets
employed as sourced from the UCI repository (http://archive.ics.uci.edu/ml/):

Large attribute space: GP represents and example of an ‘embedded’ —
as opposed to wrapper or filter — learning paradigms [8]. As such credit as-
signment simultaneously identifies the most appropriate attribute subspaces as
well as classifier parameterization. Symbiosis provides an architecture able to
associate different individuals with different subsets of exemplars and therefore
unique attribute subspaces. The relevance of this should be most apparent un-
der domains with thousands of attributes. Conversely, monolithic approaches
to model building are forced to explicitly join multiple classifier/ attribute sub-
spaces into a single program, potentially hindering classification performance
and/ or solution simplicity. With this in mind the Gisette data set from the

3 Additional properties such as performance under multi-class data sets and performance
relative to alternate models of classification where the focus of earlier versions of SBB [15, 7].

Table 3: Parameterization at Host and Symbiont (program) populations under a
common framework of monolithic and SBB evolution. As per Linear GP, a fixed
number of general purpose registers are assumed (numRegisters) and variable
length programs subject to a max. instruction count (maxProgSize). Values in
parenthesis denote values specific to the evolution of monolithic models (Section
3.4).

Host (solution) level

Parameter \ Value \ Parameter \ Value
tmaz 1 000 w 10 (1)

Piive, Mg e 120 Pyap, Mgap 20, 60
Pmd 0.7 Pma 0.7
Pmm 0.2 Pmn 0.1

Symbiont (program) level
numRegisters 8 mazProgSize | 48 (480)
DPdeletes Padd 0.5 Pmutate, Pswap 1.0

2003 NIPS competition is employed where this consists of some 2,500 unique
attributes and another 2,500 linearly translated ‘dummy’ attributes [8];

Large class imbalance: Real-world data sets do not necessarily represent
each class with equal frequency. Indeed, the ‘robust’ classification of both mi-
nor and major classes is of particular relevance to a number of high impact
applications such as medical diagnosis, fault and/ or intrusion detection. For
both symbiotic and monolithic frameworks, credit assignment needs to resist
the temptation to ‘cherry pick’ in favor of the majority class, resulting in po-
tentially degenerate classifiers.* In this work the Census repository is employed
as a representative example;

Historical relevance: Over time certain ‘small’ data sets have demon-
strated their appropriateness for benchmarking by recording historically high
rates of error across a wide number of machine learning paradigms [1]. In this
case we utilize the Bupa Liver Disorder and Pima Indian Diabetes data sets,
both of which tend to result in error rates in the region of thirty percent.

3.3 Performance Metrics

Solutions will be compared from three perspectives: Classification performance,
model complexity, and CPU training requirements; using metrics summarized
as follows. Classification performance is to be summarized from the per-
spective of multi-class detection rate (mcdr) or individual ¢ has a medr of
ﬁ > _ccc detection(i, C') where |C| is the number of classes and detection(i, C)
is the detection rate of the individual with respect to class C'. Naturally such
a metric is robust to class imbalance (unlike accuracy) so under binary classifi-
cation problems a detection rate of 0.5 (i.e., ﬁ) is an indicator of degenerate

4Naturally both symbiotic and gradualist algorithms utilize the same model of competitive
coevolution which should help mitigate the impact of class imbalance.

10

behavior (all exemplars labeled as a single class). Complexity will be measured
in terms of the number of unique attributes a model utilizes and the number of
effective instructions per solution. That is to say, individuals will be pruned of
introns post training (Section 3.4) and the complexity metrics assessed. Natu-
rally, the shared linear representation of monolithic and SBB solutions permits
such a direct method of comparison. CPU training requirements will be
evaluated care of the UNIX getrusage command (user time) as benchmarked
under a common computing platform (no competing users). As such we are
able to assess to what degree the SBB and monolithic solutions tradeoff algo-
rithmic complexity for greater efficiency in locating solutions over a common
generation limit.

3.4 Parameterization

Learning parameters are summarized as per Table 3 with the only differences be-
tween the parameterization adopted for monolithic and SBB runs being with re-
spect to maxProgramSize. SBB could potentially construct host compartments
consisting of up to 10 programs, each with 48 instructions. Thus, the equivalent
maximum program limit under the monolithic model building framework was
480 instructions per individual. All runs are conducted over 60 initializations
per training partition.®

Structural introns are identified prior to fitness evaluation during training
and test® using specific tests for argument two instructions [3] and argument
one instructions. In the latter case it is necessary to check for argument one
instructions that target Ry using an attribute for the argument. This poten-
tially results in all earlier instructions associated with the Ry path appearing
redundant.

4 Results

4.1 Classification Performance

Performance under the training partition is used to define the representative
host/ monolithic solution per run. Corresponding test partition performance
w.r.t. the 4 test data sets and the multi-class detection rate (mcdr) metric
(Section 3.3) is summarized in terms of a combined density of distribution/
box plot (Figure 4). In all but the case of Pima, the superiority of the SBB
framework is apparent; a trend confirmed with a Kruskal-Wallis non-parametric
hypothesis test at a significance level of 0.001. Moreover, it is also apparent that
the consistency of SBB classification results is also generally better than that
returned under the monolithic case.

5Census and Gisette having a single training-test partition; Bupa and Pima are assessed
over 10 such partitions i.e., stratified 10-fold cross validation.
SIntrons are naturally retained during genotypic processes such as applying search operators

3]

11

0.6 4

:®@®@ |

04 —

0.3

[T T T T T T 1
cenSBB cenmono gisSBB gismono bpaSBB bpamono pmaSBB pmamono

Figure 4: Multi-class Detection Rate (mcdr) over the four data sets. 0.5 denotes
degenerate classifier behavior. ‘mono’ identifies monolithic-GP.

70

60 —

40

30 1

”®@@ﬂvv@@

cenSBB cenmono gis SBB gismono bpaSBB bpamono pmaSBB pmamono

Figure 5: Total number of unique attributes per solution.

12

250
200
150 —

100 —

AROYIPN {l

[T T T T T T 1
cenSBB cenmono gisSBB gismono bpaSBB bpamono pmaSBB pmamono

Figure 6: Total number of effective instructions per solution.

4.2 Complexity

Solution complexity will be assessed from the perspective of the number of
unique attributes utilized by a solution and the number of effective instructions
per solution (Section 3.3). Figures 5 and 6 present these results in terms of the
corresponding combined density of distribution/ box plot. Relative to the total
number of unique attributes indexed (Figure 5), it is apparent that there is little
attribute reduction under Bupa and Pima, whereas both approaches provide
significant reductions appear under Census and Gisette (75 and 99.5 percent
reductions respectively), albeit with much greater constancy under SBB.

Monolithic solutions are also capable of identifying solutions with low in-
struction counts (1st quartiles in Figure 6), however, the third quartile count
across the four data sets was always comparatively high (around 50 instruc-
tions). Conversely all third quartile instruction counts under SBB are consid-
erably lower. This appears to indicate that the explicit provision of support
for a divide-and-conquer approach to constructing models provides a signifi-
cant benefit so solution simplicity / consistency without negatively impacting
on classification performance.

4.3 CPU training requirements

Figure 7 summarizes the CPU training time under a common dedicated com-
puting platform and generation limit. Although both monolithic and SBB al-
gorithms share the same competitive coevolutionary and intron removal frame-
works during evolution, the consistency of SBB is again readily apparent. Par-
ticularly impressive is that this consistency is achieved across very wide ranges
of training partition size. Indeed, the data with the largest training partition
(Census) has the fastest training time; a vindication of the shared competitive-

13

600 —

500 —

400

300 —

200

100 —

[T T T T T T 1
cenSBB cenmono gisSBB gismono bpaSBB bpamono pmaSBB pmamono

Figure 7: Training time (in seconds).

coevolutionary component of the evolutionary framework. Only under Gisette
was the monolithic model significantly faster than SBB. This is likely an artifact
of two properties: the relative difference in classification performance combined
with the larger attribute space associated with the Gisette data set. Specifically,
under Gisette, each exemplar is a vector of 5,000 attributes; whereas under Cen-
sus, for example, each exemplar consists of 40 attributes or the equivalent of
125 Census exemplars for every Gisette exemplar. This will make achieving
cache constancy more difficult; particularly when the problem is magnified by
the need to support the identification of stronger solutions under SBB.”

5 SBB specific properties

The solution complexity comparison of Section 4.2 was conducted in terms of
the total effective instruction count (post intron removal) and total attributes
indexed to support the direct comparison between monolithic and SBB solu-
tions. However, such a framework ignores the additional structure provided
by the participation of multiple symbionts in a solution under SBB. Thus, we
can also characterize solution complexity from the perspective of the number
of participating symbionts — as a whole or class wise; or the uniqueness of at-
tributes associated with symbionts. Hence provision of an explicit architecture
for a divide-and-conquer approach to problem solving enables us to introduce
another level of insight as to the construction of solutions which is not available
under monolithic style solutions.

7Competitive coevolution represents a dual learning problem in which a point and learner
population incrementally improve. If the learners reach a stronger behavior post training, it
is fair to assume that there was a greater turn over in point population content i.e., decreasing
cache hit rate.

14

10

8
6 — ° :
4 -
2
[T T 1
cen gis bpa pma

Figure 8: Number of symbionts per SBB host.

The number of symbionts per host — or programs per solution — is
identified by first pruning any symbionts that never provide a winning bid under
training conditions (Figure 8). The problem domains with the larger attribute
spaces tend to result in more symbionts contributing. However, relative to the
corresponding average number of effective instructions per symbiont,
Figure 9, the much smaller data sets typically require more instructions. This
appears to indicate that as the attribute count increases it is easier to build
useful subspace behaviors in which subsets of class-wise behavior can be clearly
determined. As this becomes less possible, the total number of cooperating
symbionts decreases and the complexity of those symbionts which do cooperate
increases.

This property is further reinforced by considering the uniqueness of at-
tributes identified by symbionts. That is to say, if symbionts are able to
locate an attribute subspace unique to their bidding strategy — relative to the
total set of attributes indexed by the set of symbionts in the same host — then
insight can be gained as the the structure of the problem domain. Figure 10
summarizes the percentage of attributes which are unique to symbionts in the
same solution. The uniqueness of attributes under the Gisette data set is effec-
tively 100 per cent. Even under Census with an attribute space of 40, typically
90 percent of attributes indexed by any given solution were unique to a spe-
cific symbiont; whereas the Bupa and Pima data sets demonstrated much more
overlap in the corresponding symbiont attribute subspaces.

Finally, we consider the average number of (distinct) attributes sup-
ported per action (Figure 11). That is to say, we count the distinct attributes
used by each symbiont, and average over the symbionts with the same action.
We are now able to resolve attribute uniqueness on a class-wise basis. It is now
apparent that attribute uniqueness is generally balanced over both symbiont
actions, with Census being the only exception; requiring a lower support un-

15

25

20 —

| &

15 4

10

Figure 9: Average number of effective instructions per SBB symbiont.

1.0 4
0.8 —
0.6 — :
0.4 —
T 1

0.2 -

T T
cen gis bpa pma

Figure 10: Proportion of attributes accessed by a host that are unique to a
participating SBB symbiont.

16

10

[T T T T T T 1
cen0 cenl gis 0 gis1 bpa 0 bpa 1 pma 0 pmal

Figure 11: Average number of (distinct) attributes supported per action. 0/ 1
denote action (class).

der class 0 (majority class). Symbionts with less than one attribute are also
frequently observed. This represents symbionts which learn to bid a constant
value, against which the symbionts with the alternate action learn to bid dynam-
ically. Moreover, this property is correlated with the majority class in the case
of Census. Thus, symbionts representing the major class (more than 90 percent
of the data) are more likely to learn the simplest bidding strategy whereas the
minority class symbionts require a more complex bidding strategy to effectively
model the minor class behavior.

6 Conclusion

A framework is constructed for comparing a gradualist (neo-Darwinian) model
of evolution against a symbiotic model of evolution, thus an explicitly neo-
Lamarckian (divide-and-conquer) process of inheritance. Naturally, the gradu-
alist framework produces solutions in the form of a single monolithic program
whereas symbiosis results in solutions taking the form of multiple programs.
Both models of evolution share a common representation and utilize advanced
algorithmic features such as competitive coevolution, intron removal and fitness
sharing. Results from the ensuing benchmarking study indicate that adopting
symbiosis provides for much more consistency than the gradualist/ monolithic
model. This was apparent across multiple performance factors — classification
rate, complexity, computational requirements — and data sets designed to test
different factors of classifier design — non-linearity, large attribute spaces, and
class imbalance. This implies that the although neo-Lamarckian inheritance re-
quires additional support for symbiont programs to recognize context — the basis
for problem decomposition — the overall advantages of this appear to outweigh

17

additional costs.

A case can naturally be made for and against the relative importance of in-
cluding sexual search operators in gradualist models of evolution. However, the
effective operation of such (crossover style) search operators is dependent on the
ability to establish the specific genetic context/ alignment of the genotypic ma-
terial exchanged e.g., competent selecto-recombinative models [25]. By adopting
a symbiotic model of evolution we leave the search for relevant context to the
combinatorial search conducted at the host and the inter-symbiont bidding, thus
no genotypic knowledge is necessary at the program level to guide the process of
modular model building / divide-and-conquer. However, assuming a symbiotic
framework does not preclude the utility of crossover/ sexual reproduction where
suitable a priori information is available to guide gene alignment.

7 Acknowledgments

P. Lichodzijewski is a recipient of Killam and NSERC pre-doctoral scholarships.
M. Heywood is supported through NSERC and MITACS research grants.

References

[1] S. Ali and K. A. Smith. On learning algorithm selection for classification.
Applied Soft Computing, 6:119-138, 2006.

[2] E. B. Baum and I. Durdanovic. Toward code evolution by artificial
economies. In Fvolution as Computation, pages 314-332. Springer, 2002.

[3] M. Brameier and W. Banzhaf. A comparison of linear genetic program-
ming and neural networks in medical data mining. IEEE Transactions on
Evolutionary Computation, 5(1):17-26, 2001.

[4] S. Brave. Evolving recursive programs for tree search. In P. J. Angeline
and K. E. Kinnear, editors, Advances in Genetic Programming, volume 2,
chapter 10, pages 203-220. MIT, 1996.

[6] J. M. Daida, C. S. Grasso, S. A. Stanhope, and S. J. Ross. Symbion-
ticism and complex adaptive systems I: Implications of having symbiosis
occur in nature. In Proceedings of the Annual Conference on Evolutionary
Programming, pages 177-186. MIT Press, 1996.

[6] E. D. de Jong. A monolithic archive for Pareto-coevolution. Ewvolutionary
Computation, 15(1):61-94, 2007.

[7] J. Doucette, P. Lichodzijewski, and M. I. Heywood. Evolving coevolution-
ary classifiers under large attribute spaces. In Genetic Programming Theory
and Practice VII, pages 37-54. Springer, 2009.

18

8]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature Extrac-
tion: Foundations and Applications, volume 207 of Studies in Fuzziness
and Soft Computing. Springer, 2006.

M. I. Heywood and P. Lichodzijewski. Symbiogenesis as a mechanism for
building complex adaptive systems: A review. In FvoApplications, volume
6024 of LNCS, pages 51-60, 2010.

L. Huelsbergen. Learning recursive sequences via evolution of machine-
language programs. In Proceedings of the Annual Conference on Genetic
Programming, pages 186-194, 1997.

J. R. Koza. Genetic Programming: On the programming of computers by
means of natural selection. MIT, 1992.

U. Kutschera. Symbiogenesism natural selection, and the dynamic Earth.
Theory in Biosciences, 128:191-203, 2009.

M. Lemczyk and M. I. Heywood. Training binary GP classifiers efficiently:
A Pareto-coevolutionary approach. In Furopean Conference on Genetic
Programming, volume 4445 of LNCS, pages 229-240, 2007.

P. Lichodzijewski and M. I. Heywood. GP classifier problem decomposition
using first-price and second-price auctions. In Furopean Conference on
Genetic Programming, volume 4445 of LNCS, pages 137-147, 2007.

P. Lichodzijewski and M. I. Heywood. Managing team-based problem solv-
ing with symbiotic bid-based genetic programming. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 363-370, 2008.

Y. Liu, X. Yao, and T. Higuchi. Evolutionary Ensembles with negative
correlation learning. IEFEE Transactions on Evolutionary Computation,
4(4):380-387, 2000.

L. Margulis and R. Fester, editors. Symbiosis as a Source of Evolutionary
Innovation. MIT Press, 1991.

J. Maynard Smith and E. Szathmary. The origins of life. Oxford University
Press, 1999.

A. R. McIntyre and M. I. Heywood. Pareto cooperative-competitive Genetic
Programming: A classification benchmarking study. In Genetic Program-
ming Theory and Practice VI, pages 43-60. Springer, 2008.

D. E. Moriarty and R. Miikkulainen. Forming neural networks through
efficient and adaptive coevolution. Fuvolutionary Computation, 5(4):373~
399, 1998.

L. Panait, S. Luke, and R. P. Wiegand. Biasing coevolutionary search for
optimal multiagent behaviors. IEEE Transactions on Evolutionary Com-
putation, 10(6):629-645, 2006.

19

[22]

M. Potter and K. De Jong. Cooperative coevolution: an architecture for
evolving coadapted subcomponents. Evolutionary Computation, 8(1):1-29,
2000.

J. P. Rosca and D. H. Ballard. Hierarchical self-organization in genetic
programming. In International Conference on Machine Learning, pages

251-258, 1994.

R. Thomason and T. Soule. Novel ways of improving cooperation and
performance in ensemble classifiers. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1708-1715, 2007.

S. van Dijk, D. Thierens, and M. de Berg. On the design and analy-
sis of competent selecto-recominative GAs. Fwolutionary Computation,
12(2):243-267, 2004.

20

