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Abstract

In 1996 Daida et al. reviewed the case for using symbiosis as the basis
for evolving complex adaptive systems [6]. Specific observations included
the impact of different philosophical views taken by biologists as to what
constituted a symbiotic relationship and whether symbiosis represented
an operator or a state. The case was made for symbiosis as an operator.
Thus, although specific cost benefit characterizations may vary, the un-
derlying process of symbiosis is the same, supporting the operator based
perspective. Symbiosis provides an additional mechanism for adaption/
complexification than available under Mendelian genetics with which Evo-
lutionary Computation (EC) is most widely associated. In the following
we review the case for symbiosis in EC. In particular, symbiosis appears
to represent a much more effective mechanism for automatic hierarchi-
cal model building and therefore scaling EC methods to more difficult
problem domains than through Mendelian genetics alone.

1 Introduction

Evolutionary Computation (EC) has long been associated with a Darwinian
model of evolution in which natural selection represents a metaphor for perfor-
mance evaluation and the motivation for maintaining a population of candidate
solutions, whereas metaphors from Mendelian genetics are generally invoked to
support the specifics of the representation and provide a model for credit assign-
ment [13]. As such this mirrors the classical development of biology, with recent
extensions including the introduction of developmental evolution – therefore re-
inforcing the use of Mendelian genetics – to the widespread use of coevolution,
particularly cooperative and competitive models. Indeed, even calls for the use
of more accurate biological models in EC have generally focused on the genetics,
thus reinforcing discoveries such as the process of transcription [4]. Conversely,
symbiosis as a coevolutionary process has been much less widely studied in the
EC literature.
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Symbiosis was defined by De Bary in 1879 as the living together of organisms
from different species c.f., “unlike organisms live together” [8] (see [24, 6, 20] for
current surveys of the concept). As such the process can encompass both ex-
ploitive parasitic relationships and co-operative mutualistic associations. How-
ever, central to symbiosis is a requirement for long-term, but not necessarily
physical, association between partnering entities. The nature of the associa-
tion, and therefore the degree of antagonism versus mutualism linking different
partners, will vary as a function of environmental factors (see for example the
closing commentary in [6]). When the symbiotic association leads to a long-term
relationship that, say, converts an initially exploitive relationship into one of co-
operative dependence resulting in a new species then the process is considered
to be that of symbiogenesis [26, 27, 25].

The core components include: (1) partners entering in a relationship from
different species/ organisms; (2) partners adapting phenotypically under selec-
tion pressure as a result of the symbiotic relationship, and; (3) a long term
association which facilitates the creation of a new species of organism(s). The
first two points are sufficient for symbiosis, whereas all three points provide
symbiogenesis. The result is therefore increased functionality in the case of
the final host entity, through the learning or application of traits developed in-
dependently by the symbiont(s) [26, 27, 25]. Conversely, a Darwinian model
emphasizes the vertical inheritance of genetic variation through sexual repro-
duction of partners from the same species [19, 25]. From an EC perspective
symbiogenesis is a form of coevolution that has the potential to provide the
basis for hierarchical/ component-wise model building; whereas competitive co-
evolution provides a mechanism for scaling EC to problem domains with truly
vast state spaces and cooperative coevolution supports processes by which par-
allel problem decomposition / diversity is emphasized. Indeed systems utilizing
multiple forms of coevolution are beginning to appear in EC (e.g., [38, 21]),
whilst the interaction of multiple evolutionary mechanisms in biology is widely
acknowledged [19]. In the following we review biological properties of symbiosis
– thus revisit a general abstract model of symbiosis that appears to be partic-
ularly useful under an EC context – as well as recent attempts to make use of
symbiotic style algorithms in EC.

2 Biological Context

Despite De Bary’s early recognition of symbiosis, it was not until the 1970’s that
the phenomena received more widespread recognition. In particular Lynn Mar-
gulis was instrumental in promoting Serial Endosymbiosis Theory as the mech-
anism by which evolution from prokaryote to eukaryote took place [23]–[27].
Moreover, most autopoietic entities require symbiotic (as well as Darwinian)
models of development [25]. From the perspective of theoretical biology, John
Maynard Smith was an early proponent, abstracting the concept of symbio-
genesis as a mechanism by which complexity may be increased [28]. Figure 1
summarizes his model in which: Individuals (symbionts) from candidate species
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Figure 1: Abstract model of Symbiogenesis: Complexification as a process
of compartmentalization (adopted from [28]). Individuals from independent
species A, B, C already under an ecological coexistence (far left) form an increas-
ingly intimate coevolutionary partnership resulting in a ‘compartment’ (center)
that supports the coordinated replication of symbionts (right).

currently coexisting in a common genepool/ population/ ecosystem become en-
closed within a ‘compartment’ such that a subset of individuals interact, thus
identifying the partners. Over time, the interaction results in a mechanism
being established for the replication of the partners i.e., the interaction is ben-
eficial as measured by natural selection. Thus, the specific form of a symbiotic
coevolutionary interaction was not emphasized, but rather the key factors were
that different species were involved and that the process establish an intimate
association over a ‘significant time period.’ Note also that the concept of a ‘host’
is quite abstract; the host may or may not be a currently existing entity.

Given this definition for the generic process of symbiogenesis – effectively
establishing symbiosis as an operator rather than a state [6] (i.e., outcomes are
independent of the coevolutionary interaction) – a wide range of ‘resolutions’ ex-
ist that provide specific examples of symbiosis in nature: (1) Endosymbiotic:
Interactions that take place within a host potentially resulting in symbiogenesis.
Intracellular – in which integration at the cellular level takes place. Symbiont
cells enter the host, survive, reproduce and successfully appear in the host off-
spring e.g., as in the case of prokaryote to eukaryote transfers; Extracellular
– symbionts establish themselves between the host cells (as opposed to within
them) or within cavities of the host e.g., as in the case of the mammalian gut
(host) and E. coli (symbiont) a relation that enables mammals to digest food.
(2) Entosymbiotic: Represent symbiotic relationships that do not enter the
host ‘body’ and to date lack complete histories supporting symbiogenesis [20].
Daida et al. separate this into two forms [6]: Attachment Symbiosis – the host
and symbiont undergo a permanent/ semi-permanent attachment e.g., as in the
case of sea anemones riding the shells of hermit crabs. As such the relationship
tends to be one-to-one; Behavioral Symbiosis – rely on communication as the
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medium to establish the basis for the symbiotic association. As such, relation-
ships can be much more flexible with hosts being served by different symbionts
over time e.g., the tooth cleaning relationship between crocodiles and birds.

In addition to this, intracellular endosymbiosis can be augmented by other
processes such as horizontal gene transfer (HGT) [1]. Classically, HGT was
associated with the transfer of plasmids – bacterial genes not in the main chro-
mosome; where genetic material in the plasmid is known to confer resistance
to antibiotics through the combination of high rates of plasmid exchange and a
‘noisy’ process of transcription [1]. The process frequently appears in bacteria,
but also considered to result in the migration of plastids and mitochondria be-
tween bacteria, archaea and eukarya [33]. From the view of molecular evolution,
both HGT and symbiosis imply that molecular development did not follow a
tree of life, but a network of life metaphor in which there is much more inter-
breeding of the gene pool [33, 25]. However, the underlying message is that the
process of variation is that of Lamarckian inheritance augmented with mutation
[26].

The above two level ontology is by no means the only scheme for distinguish-
ing between different forms of symbiosis. Indeed, we maintain in this work that
it is the relationship supporting the process of compartmentalization (Figure
1) that more effectively summarizes developments under EC. Thus, five basic
categories of relationship might be identified (adapted from [24]): (1) Spatial
relationships – what degree of physical proximity is necessary to support the
identification of potential partners e.g., commensalism (a very intimate integra-
tion of partners) versus mutualism (a purely behavioral compartment in which
participants maintain physical independence); (2) Temporal relationships –
defines over what period of the participant’s lifetime the compartmentalization
exists e.g., whether a compartment is only established following: appropriate
communication (therefore symbiosis is an occasional behavioral activity), under
a periodic model of reformation and disengagement, or be permanent through
the lifetime of participants; (3) Metabolic relationships – to what degree a
third party host is necessary to provide the compartmentalization, in contrast
with symbionts relying on a nonphysical identification (of compartmentaliza-
tion). This might raise secondary factors such as to what degree participants
provide mutually beneficial food sources; (4) Genetic relationships – To what
degree specific protein(s)/ gene(s) of a participant are transfered to others; and,
(5) Coevolutionary relationships – symbionts need not be purely mutual-
istic in their interaction [26, 27, 6]. Indeed coevolutionary relationships could
fall under the categories of amensalism, commensalism, competition, predation
or mutualism.

Finally, we note that more recent observations from the field of theoretical
biology have increasingly emphasized that symbiosis is associated with confer-
ring robustness to the resulting biological entity. The resulting hypothesis of
‘self extending symbiosis’ refers to a process by which [18]: “evolvable robust
systems continue to extend their system boundary [a.k.a compartmentalization]
by incorporating foreign biological forms to enhance their adaptive capability
against environmental perturbations and hence improve their survivability and
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reproduction potential.” In short, Mendelian genetics is associated with provid-
ing the genomic architecture, whereas symbiosis extends the host through new
‘layers of adaptation’ [18].

3 Summary of EC models supporting Symbio-
genesis

In the following we review examples from EC in which symbiogenesis has played
a central role. Particular attention is given to the relationship supporting
compartmentalization (spatial, temporal, metabolic, genetic or coevolutionary).
That is to say, it is the combination of relations that promotes the state of sym-
biosis as opposed to the relative resolution at which symbiosis takes place.

3.1 Learning Classifier Systems (LCS)

Initial research used the control of a 4 legged robot as the environment to con-
sider issues such as [3]: (1) the allocation of rules from a fixed sized population
to one of the four robot legs (speciation); (2) symbiosis as used to control the
identification of genetic information transferred between pairs of LCS rules.
Thus speciation controls the number of legs to which members of the rule pop-
ulation are mapped, whereas symbiosis provided an operator for pairing rules
initially associated with each leg. The authors continue with this theme in later
work [34]. They note that in order to promote the identification of effective
serial combinations of rules, the symbiotic operator needs to focus on rules from
different niches and be biased towards matching the rules that were sequen-
tially successful. Moreover, additional controls were necessary in order to build
suitable mechanisms for effective credit assignment – or temporal persistence –
when using symbiosis. Once integrated, the model was able to provide favorable
solutions under a suite of ‘Woods’ reinforcement domain problems. The focus
of the earlier work was necessarily directed towards the impact of assuming dif-
ferent mechanisms for establishing the ‘compartmentalization’ of symbionts (or
the spatial relationships of Section 2), while simultaneously providing the basis
for providing solutions to a specific problem domain. Conversely, under the later
work, the key factor was the use of temporal relationships as the mechanism for
establishing stable compartments. Both approaches make use of macro opera-
tors for selecting individuals to appear in the host compartment and assume a
relatively loose model of metabolic relation.

3.2 Symbiogenesis and genetic linkage learning

The overall goal of these algorithms is to establish a mechanism for dealing with
deceptive linkage/ epistasis in binary representations i.e., correlation of gene
changes with fitness is highly non-linear. As such, the participants take the
form of a Genetic Algorithm (GA) and most emphasis is placed on establishing
relevant metabolic and genetic relationships for compartmentalization to take
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place. Conversely, the spatial and temporal relationships remain intimate and
permanent respectively. The process involved takes the form of either reordering
the genes of the host [32] or providing mechanisms for inserting different genetic
information within the context of an initial host individual [11, 37, 35]. In the
latter case, the work of Dumeur defines a structure for building solutions out
of multiple symbionts in which the frequency of seeing similar values in the
same gene location makes the utility of that value more probable [11]. The
process for promoting symbiont membership is driven by how ‘open’ a host is
to incorporating new symbionts. The ‘weaker’ a host, the more likely that it
will accept new symbionts and vice versa.1 The GA representation utilizes a
pair of values <gene location, gene value> where gene values are binary i.e.,
implementing a binary GA.

A different approach is taken by the ‘composition’ model of Watson and
Pollack [37]. Again a binary GA is considered in which individuals only specify
subsets of the genes. Other genes are considered ‘neutral’ to that individual:
such neutral genes have no contribution other than to establish the alignment of
the remaining genes. Fixed length individuals are assumed in order to establish
gene alignment for the sharing of genetic material during symbiosis. Symbiosis
is the sole mechanism by which individuals are combined to produce a child.
To do so, a rule for combining non-neutral genes is established (referred to as
‘composition’). In a later work this is combined with a Pareto based competitive
coevolutionary model for determining whether a (symbiotic) child is retained
[38, 36]. Thus a child is retained if it is better than the parents, in the Pareto
sense, over a random sample of training scenarios (i.e., a test for symbiogenesis).
Thus, children are only accepted if they are explicitly better than the parents.

Further efforts have been made to provide a more formal structure by which
composition may evolve solutions to problems with higher orders of linkage [9].
Recent results are along these lines [10] i.e., hierarchical model building . Addi-
tional refinements to the composition model have also been introduced [15]: (1)
mutation for supporting population diversity (2) initial population limited to
single (non-neutral) genes but allowed to incrementally increase, thus making
the hierarchical gene linkage learning more explicit; and, (3) maintenance of
a worst case tabu list of poorly performing genomes to bias against revisiting
poor states during symbiosis. Moreover, the same process was also employed
for evolving fuzzy rules under a LCS context [2]. Watson has also continued to
develop the model, with a particular focus on the criteria for detecting ‘good’
symbiotic partners [29], dropping the requirement for children to strictly better
their parents. Finally, a ‘Symbiogenetic Coevolutionary’ framework also concen-
trates on the linkage learning problem under binary GAs with symbionts having
the capacity to ‘inject’ themselves into the host chromosome, over-writing se-
quences of bits [35]. Again binary deceptive problems were used to illustrate
the effectiveness of the approach under a fixed length representation.

1Incidentally, the early GA model of Daida et al. also made use of ‘switches’ to indicate
whether the corresponding gene of the host can be ‘infected’ with a symbiont of a ‘type’ also
declared by the host [7].
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3.3 Pairwise symbiogenesis and coevolution of symbiont
behaviors

Kim et al. develop a model for the pairwise construction of symbionts [17].
Emphasis was placed on the exchange process for mapping participants be-
tween independent symbiont and component populations i.e., spatial and tem-
poral relationships are used to control the mapping from independent species
to compartmentalization (and viceversa). However, a natural penalty for this
is that there is no process for combining more than two partners in a symbiotic
relation. The pairwise limitation also appears in the ‘linear’ model of Morrison
and Oppacher [31]. What is particularly interesting in their linear model is that
different pairwise associations are initialized to represent different coevolution-
ary relation: amensalism, commensalism, competition, predation and mutual-
ism. Moreover, the relative ‘strength’ of an association can be pre-specified as
a design parameter. Defining the relevant strength parameter, however, was
observed to be problem dependent. Eguchi et al. address this by letting the
association itself evolve, this time under a multi-agent context [12]. Specifically,
pairs of agents are selected – ‘self’ and ‘opponent’ – as well as the children
of the ‘self’ individual. Pairwise evaluation under a Pareto framework is then
performed under each of the models of symbiotic association to establish their
preferred relation. (In an earlier work the authors describe an approach based
on fuzzy rules [16]).

3.4 Models with dissimilar representations and multiple
populations

The evolution of neural networks provided an early example in which differ-
ent representations are employed for compartment and symbiont or hierarchical
Symbiotic Adaptive Neuroevolution [30]. Specifically, a ‘blueprint’ population
in this case expresses the compartment by indexing (symbiont) neurons from an
independent neuron population; thus model building is a combinatorial search
over the set of symbionts i.e., a spatial relationship. Similarly, the symbiogenetic
evolution of Genetic Programming (GP) has also been considered for ‘teaming’ –
that is forming teams of programs which collectively evolve to provide solutions
[21]. The Symbolic Bid-based (SBB) GP framework utilizes a GA to conduct a
combinatorial search for effective GP symbionts; thus each GA (host) individual
defines a compartmentalization. Central to this model is an explicit separation
of learning when to act (the bid or a temporal relation) and what to do (the
action) or Bid-based GP. Without this, the context under which each symbiont
program operated would be lost. Results demonstrate effectiveness at problem
decomposition under classification [21] and reinforcement learning domains [22].
Moreover, the symbiont population (Bid-based GP) content evolves under mu-
tation and a variable size population model in order to support symbiogenesis
in the best compartments (teams) with fitness sharing providing additional sup-
port for diversity. Finally, under a Tree structured GP context the evolution of
constants using a separate GA representation/ population was considered [5].
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As such this may be interpreted as symbiosis where multiple GP populations
are evaluated using constants suggested by the GA population.

4 Discussion

A characterization of the form of symbiosis employed in EC is established
through emphasizing the nature of relationships used to support compartmen-
talization. As such, genetic and metabolic relationships appear to be the norm
in (binary) GAs with symbiogenesis having strong implications for solving prob-
lems with hierarchical relationships. LCS augment genetic relationships with
temporal relationships. The result is better properties for either constructing
combinations of rules (LCS) or much stronger mechanisms for resolving complex
gene linkage (GA), as illustrated in the case of solutions under binary deceptive
or hierarchical building block style problem domains. Spatial and temporal re-
lationships appear as a central element to the model of Kim et al., whereas the
other pairwise models of symbiosis emphasize the evolution of the degree of mu-
tualism versus competition or the coevolutionary relationship. When multiple
populations are employed with different representations – as in Neural Evolu-
tion or GP – then spatial and temporal relationships again establish the relevant
model of compartmentalization for symbiogenesis to take place.

Common to symbiosis in general is the explicit support for a divide and
conquer approach to evolution. EC frequently assumes sexual recombination
(crossover) as the principle mechanism for making use of modularity. However,
as demonstrated by the work of Watson [36], crossover requires very favorable
gene orderings for addressing problems with high orders of gene linkage. Like-
wise, EC models making use of symbiosis require support for suitable contextual
information. Models of gene alignment play a significant role in GAs support-
ing symbiogenesis whereas for the GP setting of SBB the concept of bidding
is central to enforcing a relevant behavioral context. Moreover, diversity main-
tenance in the symbiont population must be explicitly addressed in order to
avoid premature convergence [15, 29]. Indeed, any scheme of model building
through symbiosis must be augmented by suitable variation operators. This
brings the discussion back to the relation between Darwinism and Symbiogen-
esis. It is increasingly apparent that mutation operates at many levels – micro,
macro, mega [26] – with symbiosis often considered a form of mega mutation,
whereas more gradualist forms of adaptation are associated with micro and
macro models of mutation [26]. With this in mind Watson considered ‘composi-
tional evolution’ in general as support for combining genetic material that was
“semi-independently preadapted in parallel” [36]. This covers more than just
symbiotic models, including specific forms of sexual recombination (implying
that specific conditions for population diversity and genetic linkage exist [36])
and horizontal gene transfer (see for example ‘Transgenetic Algorithms’ [14]).

Finally, from the perspective of future developments, the advent of recur-
sively applied symbiotic operators is likely. Specifically, hosts reaching symbio-
genesis may themselves become candidate symbionts for the continued devel-
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opment of more complex individuals. This is particularly likely when the host
(compartment) population make use of cooperative coevolutionary mechanisms,
such as fitness sharing, to encourage diversity at the host level. The next (recur-
sive) application of symbiosis would use (some subset of) a previously evolved
host population as the candidate symbionts for building new host compartments
(see for example the diversity in host/ team behaviors illustrated by [22]); thus,
providing an automated process for ‘layered learning.’
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