
Binary versus Real-valued Reward Functions
under Coevolutionary Reinforcement Learning

Peter Lichodzijewski and Malcolm I. Heywood

Faculty of Computer Science
Dalhousie University,
6050 University Ave.,

Halifax, NS, Canada, B3H 1W5
{piotr,mheywood}@cs.dal.ca

Abstract. Models of coevolution supporting competitive and coopera-
tive behaviors can be used to decompose the problem while scaling to
large environmental state spaces. This work examines the significance
of various design decisions that impact the deployment of a distinction-
based formulation of competitive coevolution. Specifically, competitive
coevolutionary formulations with and without point population specia-
tion are compared to stochastic sampling of the environment under both
binary and real-valued rewards. The additional structure implicit in the
competitive coevolutionary models is shown to be of significant bene-
fit under binary rewards, however, stochastic sampling results in more
dependable performance under real-valued feedback. It is also observed
that cooperation between multiple solutions is much more prevalent un-
der real-valued rewards than under binary rewards.

Key words: Competitive Coevolution, Problem Decomposition, Ge-
netic Programming, Teaming, Reinforcement Learning

1 Introduction

Model-based Evolutionary Computation such as Genetic Programming (GP)
and Neural Evolution provide an effective basis for reinforcement learning, i.e.,
learning under environments with delayed reward [11]. Recent developments in-
clude comparisons of Sarsa TD-learning with Neuro-Evolution of Augmented
Topologies (NEAT) [14], incorporating weight term refinement using Q-learning
into NEAT [15], and augmenting GP with Q-learning to facilitate a strictly
conditional tree-structured representation [5]. Application domains range from
the behavioral modeling of non-player characters for video games [13] to robot
rover control [1]. Most of the emphasis, however, has been on the model side of
development with less attention placed on the interaction between model and
environment. Such an interaction is important when scaling reinforcement learn-
ing to larger problem domains; that is, domains for which it is not sufficient to
perform fitness evaluation over a fixed, a priori, set of training scenarios.

Methods for adapting training scenarios to the ability of the learners under
an evolutionary framework are generally referred to as competitive coevolution.

mheywood
Typewritten Text
To appear at Artificial Evolution, 2010https://lsiit.u-strasbg.fr/ea09/index.php/Programme

2 Peter Lichodzijewski and Malcolm I. Heywood

In this work, a distinction-based [6] competitive coevolutionary framework is
assumed. When combined with a model of GP that provides solutions in team
form – multiple cooperating programs – the potential exists to support problem
decomposition both internally to the team and across multiple teams. Natu-
rally, such phenomena are emergent, potentially resulting in complex behaviors.
Specifically, we are interested in identifying properties from competitive coevo-
lution that are important for influencing the nature of the resulting cooperative
behaviors. To do so we focus on the formulation for the interaction between point
population (subset of configurations of the training environment) and the team
population. Given that points are credited for distinguishing between the per-
formance of teams, a design decision critical to this interaction is the definition
of the reward function, i.e., at what sensitivity can a ‘distinction’ be registered.
Previous works concentrated on binary rewards under immediate feedback (su-
pervised learning) [4], [6]; where this can lead to a period of disengagement before
points that distinguish between learners are identified. Conversely, a real-valued
interaction between points and learners may result in too many distinctions (i.e.,
there are too many ways in which learner performance can vary) and also lead
to disengagement as many meaningless distinctions are registered.

Section 2 develops the GP-based Symbiotic Bid-Based (SBB) model for the
coevolution of non-overlapping learner behaviors under a competitive model of
interaction. Assuming the SBB methodology provides the basis for problem de-
composition between individuals within the same team as well as between differ-
ent teams. Relative to the earlier SBB formulation (e.g., SBB as utilized under
the context of supervised learning [8]) much more emphasis is placed on diversity
maintenance, where this impacts variation operators, support for speciation, and
the reward function. The problem domain adopted takes the form of the truck-
backer-upper [2], made considerably more difficult than the original formulation
through the introduction of an obstacle and a post-training generalization test
based on 1,000 test configurations (Section 3). The definition of the reward func-
tion is shown to play a significant role in establishing the diversity of training
scenarios and the corresponding support in the learner population for collective
problem solving. Conclusions appear in Section 4.

2 Symbiotic Bid-Based Model

2.1 Model Overview

A bid-based metaphor [8] establishes the interaction between programs within a
team. A team is composed of n team members where each member associates a
bid behavior (evolved program) with a scalar action. The size of a particular team
is not specified a priori but is determined through evolution. Likewise, evolution
determines which actions need to be represented in a team, the number of times
an action appears in the same team, and the contexts in which actions should
be applied. To determine what action the team applies given an input state, the
state features are presented to each team member and the action associated with
the highest bidder is selected.

Binary versus Real-valued Reward Functions 3

The SBB model evolves three populations [9]. The team members, each as-
sociating a bid behavior with an action, are evolved in the learner population.
Since a single learner can suggest only one action, to form non-trivial solutions
(involving different actions) it must be combined with other learners. A popula-
tion of teams, representing useful combinations of learners, is therefore evolved
in a symbiotic relationship with the learner population. Each team references
a subset of the learner population restricting the bidding competition to this
subset. The teams are of varying size, and each learner can appear in more than
one team. A single team may represent a complete solution that can be applied
to solving a non-trivial problem instance. The team population is thus evolved
against a population of initial environmental states (points) through distinction-
based competitive coevolution [6]. In this regard, the teams are evaluated on how
well they perform given the initial states, while the points are evaluated on how
well they distinguish between the teams.

Once a team is created the subset of learners it references does not change.
Different combinations of learners are explored when offspring teams are created.
Likewise, once an individual learner is defined its bid behavior and action are also
fixed – alternate associations of bid behavior and action can only be explored in
the offspring. While the set of possible actions is problem dependent, the space
of possible bidding behaviors is a function of the GP implementation.

2.2 Training Algorithm

Algorithm 1 provides an overview of the SBB training process. The point, team,
and learner populations are initialized in lines 3 and 4. The main loop, line
5, represents an iteration over a single generation: the creation of new points,
teams, and learners, lines 6 and 7, the evaluation of teams on points, line 10,
and the removal of points, teams, and learners, lines 13 and 14. Following the
main training loop, a single best team is identified, line 17.

Initialization, lines 3, 4. No assumptions are made about the preference
of certain points over others. As such, Psize − Pgap points are sampled from
the problem space with uniform probability. Here, Psize refers to the size of the
point populations after point generation, line 6 of Algorithm 1, and Pgap is the
number of points created and removed every generation.

Team initialization is performed in two steps and results in Msize −Mgap

teams (Msize and Mgap defined analogously as with respect to the points). In
the first step, teams of size two are created by combining two new learners of
different actions. Bid program generation and action selection is random and
assumes a uniform probability. The learners created are included in the learner
population. At the end of this first step, there are a total of Msize−Mgap teams
and twice as many learners, and each learner appears in exactly one team.

The goal of the second team initialization step is to explore larger combi-
nations of learners and to place learners in multiple contexts. For each team
generated in the first step, a team size is uniformly selected from {2, 3, . . . , ω}.
Learners are then selected and added to the team until its chosen size is reached
using a tournament heuristic that favours learners with fewer references.

4 Peter Lichodzijewski and Malcolm I. Heywood

Algorithm 1 Overview of the SBB training algorithm.

1: procedure Train
2: t = 0 . Initialization
3: initialize point population P t

4: initialize team population M t (and learner population Lt)
5: while t ≤ tmax do . Main loop
6: create new points and add to P t

7: create new teams and add to M t (add new learners to Lt)
8: for all mi ∈M t do
9: for all pk ∈ P t do

10: evaluate mi on pk

11: end for
12: end for
13: remove points from P t . Form P t+1

14: remove teams from M t (remove learners from Lt) . Form M t+1, Lt+1

15: t = t + 1
16: end while
17: return best team in M t

18: end procedure

Whenever a new bidding behavior (program) is generated, as in lines 4 and 7
of Algorithm 1, a check is performed against the learner population to determine
if the new behavior is a duplicate of an existing behavior. This check is based
on bidding profiles, where, for a given program, its bidding profile consists of
its bid values on 100 uniformly selected points (this set is fixed over the entire
run). If two programs result in the equal bids (values within 10−7) across all
points, they are considered duplicates. The set of implementation specific search
operators is then applied to a new program as long as it duplicates the behavior
of an existing program.

Creation of new individual, lines 6, 7. Point creation generates new
points in one of two ways and adds them to P t until it contains Psize points.
With a probability of 0.9, a point is generated as an offspring of an existing
point. First, a species is selected using roulette wheel selection with probability
proportional to the species fitness. Once a species is selected, a parent point
is selected from within that species with uniform probability. Problem depen-
dent search operators are applied to the parent to produce an offspring that is
then added to P t. With a probability of 0.1, a point is generated by uniformly
sampling the space as in the initialization step, line 3 of Algorithm 1.

New teams are always created from existing teams through mutation. First, a
parent team is selected with uniform probability and an initial offspring formed
as a copy of the parent. Mutation is applied in three steps and only to the
offspring (so the parent team remains unaltered). (1) Respecting the minimum
team size of two, uniformly selected references are removed from the offspring.
The probability that exactly n references are removed is (µd)n−1(1− µd) where
µd is the probability of learner deletion. (2) Respecting the maximum team size

Binary versus Real-valued Reward Functions 5

ω, learners are uniformly selected from the learner population and added to the
team. Whether a learner is to be added is determined as in learner deletion
but considering the probability of learner addition, µa. (3) With probability µm

that an individual learner is affected, learners in the offspring team are mutated.
First, the learner to be mutated is copied into a new offspring learner and the
reference in the offspring team is updated accordingly. With probability µn, the
action associated with the learner is changed to a uniformly selected action, and
the associated bid program is always altered (implementation specific). This step
is repeated until at least one learner in the offspring team is mutated. By always
operating on copies of parent teams/learners, the team generation procedure
never disturbs existing teams. New teams are added to M t until it contains
Msize teams. New learners are added to Lt whose size may fluctuate but never
surpasses |M t| × ω.

Evaluation, line 10. The goal of the evaluation step is to determine the
outcome of applying team mi to point pk, where this outcome is denoted as
G(mi, pk). It is assumed that outcomes fall in the unit interval and that higher
outcomes are preferred.

Removal of individuals, lines 13, 14. Point fitness is determined using
a form of genotypic speciation where in generation t the set of point species St

is determined using the species in the previous generation (S−1 is assumed to
be empty). First, the problem-specific genotypic distance between every pair of
points is determined. Using the state feature vectors of points assigned to species
in St−1, the centroid of each of these species is calculated as the arithmetic
mean with respect to each feature. Next, the points not assigned to a species
(those created during the current generation) are assigned to the closest species
provided that it is within a radius of δs. Here, the distance to each species is
determined by comparing the species’ centroid to the unassigned point’s state
feature vector. If a point is not within δs of an existing centroid, it is used to
form a new species whose centroid is (for the current generation) assumed to be
that point. Once assigned a point’s species remain fixed for the point’s lifetime.

After the species are determined, the points’ distinction vectors are calcu-
lated. Given the Msize teams, the distinction vector for the kth point pk is
defined as

dpk
[Msize · i+ j] =

{
1 if G(mi, pk) > G(mj , pk)
0 otherwise (1)

where i, j iterate over all teams and mi, mj are the ith and jth team (i.e., the size
of the distinction vector is the square of Msize). When G returns real outcomes, a
team epsilon εteam defines when an outcome is considered to be strictly greater.
The distinction vectors are then used to calculate a raw competitive fitness
sharing score [12] as

fpk
=
∑

q

(
dpk

[q]∑
l dpl

[q]

)3

(2)

where q iterates over all dimensions of dpk
and l iterates over all points. Thus,

distinctions that are made by many points are assigned less worth. Finally, the

6 Peter Lichodzijewski and Malcolm I. Heywood

raw fitness sharing score for pk is normalized by the cube of the size its species,

f ′pk
=

fpk

|St(pk)|3
(3)

where St(pk) denotes pk’s species at time t. Based on this normalized fitness,
the worst Pgap points are removed. Following point removal, a species fitness is
calculated for each non-empty species as the mean fitness of its member points
so that it can be used during point generation, line 6 of Algorithm 1.

The fitness calculation for team mi follows Eq. 2 but is based on the outcomes
G(mi, pk) over all points pk (i.e., there are Psize terms in the sum) instead of
the distinction vectors. Genotypic speciation is not applied to the teams. The
lowest-scoring Mgap teams are removed from the population. Any learners not
referenced by at least one team are then removed from the learner population.

Two issues motivate the use of competitive fitness sharing instead of Pareto-
dominance for selecting points and teams. First, the large number of objectives
makes applying the Pareto-dominance relation impractical (e.g., all individu-
als tend to form a non-dominated set). Second, the competitive fitness sharing
score is meant to discourage the overlapping behavior that tends to occur under
Pareto-dominance [10].

Selection of best team, line 17. At the end of training, the team popula-
tion contains multiple solutions. Given 1000 uniformly selected points, the best
team is identified as the one with the highest mean outcome across this set1.

3 Experiments

3.1 The Truck Reversal Problem

Experiments were performed on the truck reversal environment [2] with an ad-
ditional wall obstacle. Specifically, the point population specified starting con-
figurations of the cab and semi, and the teams assumed steering responsibility
given a starting state. Unlike maze-style problem domains the only inputs to the
team were the cartesian coordinates of the semi, (x, y), and angle of the cab, Θc,
and semi, Θs. Performance was evaluated over truck configurations established
by the point population. The single action that each learner could assume was
selected from {0◦,±35◦,±70◦}, and an episode ended when: (1) the back of the
semi crossed the y-axis, (2) the cab and semi jackknifed, (3) the cab and semi
did not have sufficient time to return to the origin assuming a straight-line path,
(4) the back of the semi entered a block with upper-right corner at (45, 50) and
lower-right corner at (55,−50), or (5) 600 time steps elapsed. Relative to pre-
vious research employing the truck reversal environment, the formulation used
here has an open-ended state space of training configurations, explicitly termi-
nates a trial when jackknifing occurs, and introduces an obstacle into the world.
Conversely, [7] applied GP to a problem formulation without the wall using a
fixed symmetric set of 8 configurations for both training and testing.
1 This set is different from the test points used in the evaluation.

Binary versus Real-valued Reward Functions 7

The (x, y)-coordinates of starting states were always outside of the block and
restricted to (0, 100) × (−100, 100), while Θs was always initially equal to Θc.
The distance between two states (used in speciation) was defined as the square
of the Euclidean distance with respect to the x, y, and Θs components, where
the range of each was normalized to the unit interval. Offspring points were
generated from parent points by independently mutating the state components
by a normally distributed amount, assuming a mean of 0 and standard deviation
of 5, 10 for x, y and 18 for the angles respectively.

The reward a team mi received for a point pk, G(mi, pk), was based on the
x, y, and Θs in the last time step of the episode. In the binary reward scheme,
the team received a reward of 1 if the x and y components were both within
1 meter of the origin and |Θs| was less than 45◦, and a reward of 0 otherwise
(the absolute value of both angles was always within [0, 180]). In the real-valued
reward scheme, the reward was set to (x2 +y2 +Θ2

s +1)−1, so states closer to the
origin and aligned with the x-axis received higher reward. Both fitness functions
returned 0 for states where the cab and semi were in a jackknifed position.

3.2 Genetic Programming Implementation

Linear GP [3] was used to evolve the bid programs, assuming register-register
and register-input modes, using eight registers (initialized to 0), and function
set {+,−,×,÷, cos, ln, exp, cond}. The cond operator compared the value of the
destination register with the source value (input or another register) and if the
destination was smaller flipped its sign. To obtain bids in the unit interval, the
raw GP output y was transformed using y′ = (1+e−y)−1. Four search operators
were applied to parent programs to obtain offspring: add and delete removed
and inserted arbitrary instructions, mutate flipped a single random bit, and
swap exchanged the locations of two instructions (probabilities of 0.5, 0.9, 0.9,
0.9 respectively). Maximum program size was 48. A uniform distribution was
assumed in setting bits and in selecting instructions to add, delete, and swap.

3.3 Configurations

The competitive interaction between training points and teams will be investi-
gated using three variants of the algorithm: SBB with competitive coevolution
(CC, the algorithm as described in Section 2.2), SBB with competitive coevolu-
tion but no speciation (CC-NS), and SBB with competitive coevolution replaced
by random subset selection (RSS). CC-NS is like CC except that it sets the
niching radius, δS , to infinity so that all points are assigned to the same species.
Thus, CC-NS can be used to identify the contribution of the speciation mecha-
nism. RSS replaces the competitive coevolution component with random subset
selection so that at each generation Pgap points are uniformly sampled from
the environment during point generation and Pgap uniformly selected points are
purged during removal. Comparison with RSS is meant to establish the contri-
bution of developing points through the competitive interaction versus a policy

8 Peter Lichodzijewski and Malcolm I. Heywood

based purely on diversity. This results in a total of six configurations given the
two reward function formulations, binary and real-valued.

Unless noted otherwise, the parameters used were as follows: Psize 64, Msize

128, Pgap 8, Mgap 64, µd 0.3, µa 0.4, µm 0.1, µn 0.1, δS 0.2, εteam 10−3, ω 10.
Thirty initializations, each training for 1000 generations, were performed using
each configurations under both the binary and real-valued reward scheme.

3.4 Results

Performance was evaluated on an independent set of 1000 test points sampled
uniformly but with the following restriction: Points which, along a straight line,
backed the cab and semi into the block were not allowed. The number of these
points solved by the best team, line 17 of Algorithm 1, and the entire population
at the end of training were recorded for each initialization. The population-
wide behavior was assessed to determine the degree to which the fitness sharing
function, Eq. 2, promotes useful diversity in the teams. The thresholds on x, y,
and Θs used in the binary reward definition were used to determine if the final
state was sufficiently close to the origin for it to be considered solved.

Binary rewards, Figure 1 (left), appear to result in a strong preference for
competitive coevolution; the RSS model effectively being unable to identify con-
figurations of the environment that lead to non-zero outcomes. Moreover, the
combination of the competitive interaction with point speciation (CC) results
in improved team behaviour. Comparing individual to population-wide perfor-
mance indicates that performance roughly doubles. Under real-valued rewards,
Figure 1 (right), the level of diversity introduced by the RSS model of point sam-
pling results in a significant benefit to the overall behavior (note the different
y-axis scales between subplots). Indeed, the RSS population-wide performance
is able to leverage team-wise fitness sharing, improving performance three-fold
over that of the single best team. Finally, aside from the general quartile trends,
strong outlier behaviors are observed, particularly with respect to the individual-
wise behavior of CC. That said, CC under real-valued rewards is generally not
able to capitalize on this at the population level. In a sense CC emphasizes ex-
ploitation more than exploration – a property that works to its advantage under
binary rewards. RSS clearly emphasizes exploration, with different teams be-
ing associated with different subsets of test configurations. The penalty for this
is that under environments limited to binary rewards RSS is unable to estab-
lish/maintain engagement between point and team populations.

The contribution of point speciation can be observed by reviewing the dis-
tribution of the points during training, Figure 2. The two plots on the left show
that by generation 100 the CC run is able to form point species and maintain
them through the rest of the run; this results in 853 of 1000 test cases solved.
The best case CC-NS run, on the other hand, produces a point population that
by generation 100 has converged, thus only generalizing to solving 271 test cases,
most of which fell to the left of the obstacle (not shown). Points near and ori-
ented towards the origin can be viewed as easier, and although they make many
distinctions, Eq. 1, their aggregate usefulness is limited since they are in the

Binary versus Real-valued Reward Functions 9

CC−NS team CC team RSS team CC−NS pop CC pop RSS pop
0

50

100

150

200

250

300

350

400

450

500

n
u

m
b

e
r

o
f

te
s

t
c

a
s

e
s

 s
o

lv
e

d

CC−NS team CC team RSS team CC−NS pop CC pop RSS pop
0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

te
s

t
c

a
s

e
s

 s
o

lv
e

d

Fig. 1. Distributions under the binary (left) and real-valued (right) rewards across 30
initializations. Box endpoints represent first and third quartiles, the line inside the box
the median. Whiskers extend to points within 1.5 times the interquartile range, and
other outliers are noted with a ‘+’. A point in a distribution represents the number
of cases solved by the best team in an initialization (distributions labeled ‘team’ on
x-axis) or across all teams at the end of training in the initialization (distributions
labeled ‘pop’).

same local region of the environment. This lack of point diversity precludes the
development of a general set of solutions in the team population.

Figure 3 summarizes several representative trajectories employed by the best
CC team (same initialization as in Figure 2 (left)). In effect, the basic approach
is to reverse the tractor-trailer to the top right (thus avoiding the wall obstacle)
and then swing back to the origin. Needless to say, this results in a preference
for solving test cases along this path, Figure 4 (left), where points not along this
path are typically not solved, Figure 4 (middle). This particular team tends to
fail on points because (1) they are too close to the origin leaving little room for
maneuvering, (2) they result in jackknifing, or (3) they do not swing the tractor-
trailer quite far enough so that it clips the top-right of the wall obstacle, Figure
4 (right). However, this reflects the single best team, with another 200 or so of
the failed test cases correctly solved by other teams in the same population.

To gain insight into the nature of the CC versus RSS behavior across teams
in the same population, the absolute contribution of each individual in the team
population is compared to the combined accumulative improvement in test cases
solved across the population as a whole, Figure 5. Here, the number of test
cases solved by the best team is indicated at x = 1. The contribution made by
considering additional teams, as measured by the number of unique test cases
solved, is indicated by the solid line. The degree overlap in the test cases solved
can be gauged by considering the absolute number of test cases solved by the
team as indicated by the dashed line. Under CC (left) the initially very strong
individual of Figure 3 is identified from which no more than five more individuals

10 Peter Lichodzijewski and Malcolm I. Heywood

0 50 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

CC generation 100

0 50 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

CC−NS generation 100

0 50 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

CC generation 1000

0 50 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

CC−NS generation 1000

Fig. 2. Contents of point population in the best CC and CC-NS initializations (with re-
spect to the test cases solved) after 100 and 1000 generations under real-valued rewards.
Each plot shows the 56 surviving points, with the dot representing the coordinate of
the back of the semi. The rectangle in the middle of the area represents the block.

0 20 40 60 80 100 120 140

−100

−50

0

50

100

Fig. 3. Trajectories of the best case CC team under real rewards on a sample of solved
cases. States are plotted every ten time steps.

0 50 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

0 50 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

0 50 100

−100

−80

−60

−40

−20

0

20

40

60

80

100

Fig. 4. Behaviour of the best (in terms of test cases solved) team across all CC runs:
Solved cases (left), unsolved cases (middle) and final states for unsolved cased (right).

Binary versus Real-valued Reward Functions 11

are able to provide a significant contribution to the base behavior. Conversely,
under RSS the initial single best case team is relatively weak. However, about
ten other teams are then able to significantly contribute resulting in a similar
cumulative count of test cases solved.

0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

team (sorted most solved to least solved)

0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

team (sorted most solved to least solved)

Fig. 5. Absolute and cumulative counts of test cases solved in the best CC (left) and
RSS (right) initializations under real-valued rewards. The x-axis represents teams at
the end of training sorted so that teams solving more cases are on the left. Going
left to right, the number of test cases solved by the team (dashed line, absolute) and
the number of test cases solved by the team and all the teams to its left (solid line,
cumulative), are plotted.

4 Conclusions

A study was performed on problem decomposition under the SBB teaming model
for building reinforcement learners under an environment with a large state
space, thus necessitating a competitive coevolutionary interaction between can-
didate solutions and the environment. The fitness sharing component was found
to be effective in producing non-overlapping behaviours across multiple teams
during a single run, resulting in two to three times the performance achievable
by the single best team. An evaluation was performed on the formulation of the
competitive coevolutionary component of the model. Specifically, binary and
real-valued rewards were considered, as was the significance of speciation in the
point populations. Comparisons were also made against pure stochastic sampling
of points (RSS). When the available rewards are limited to binary outcomes CC
was found to outperform RSS, and speciation of the points provided an addi-
tional advantage. However, the structure of point replacement enforced by CC
under real-valued rewards was generally not able to match RSS under real-valued
rewards. The additional information provided by a real-valued reward function
enabled the RSS heuristic to identify and support multiple teams making effec-
tive use of fitness sharing. Conversely, CC appeared to need additional diversity
to support more teams concurrently. In the wider context, distinguishing classes
of problem domains that explicitly conform to the binary/real-valued world view
would naturally establish when to use each reward function. Opportunities for

12 Peter Lichodzijewski and Malcolm I. Heywood

future work include additional diversity mechanisms for the point population and
further levels of symbiosis to provide a team integration mechanism by evolving
‘team-of-teams’.

Acknowledgments

The authors gratefully acknowledge the support of MITACS, NSERC, CFI, and
the Killam Scholarship program.

References

1. A. Agogino and K. Tumer. Efficient evaluation functions for evolving coordination.
Evolutionary Computation, 16(2):257–288, 2008.

2. C. W. Anderson and W. T. Miller. A challenging set of control problems. Neural
Networks for Control, pages 475–508, 1990.

3. M. Brameier and W. Banzhaf. Linear Genetic Programming. New York, NY:
Springer, 2007.

4. E. D. De Jong and J. B. Pollack. Ideal evaluation from coevolution. Evolutionary
Computation, 12:159–192, 2004.

5. K. L. Downing. Reinforced Genetic Programming. Genetic Programming and
Evolvable Machines, 2(3):259–288, 2001.

6. S. G. Ficici and J. B. Pollack. Pareto optimality in coevolutionary learning. In
Proceedings of the 6th European Conference on Advances in Artificial Life, pages
316–325. Berlin: Springer-Verlag, 2001.

7. J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA: MIT Press, 1992.

8. P. Lichodzijewski and M. I. Heywood. Coevolutionary bid-based Genetic Pro-
gramming for problem decomposition in classification. Genetic Programming and
Evolvable Machines, 9(4):331–365, 2008.

9. P. Lichodzijewski and M. I. Heywood. Managing team-based problem solving with
symbiotic bid-based Genetic Programming. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 363–370, 2008.

10. A. R. McIntyre and M. I. Heywood. Cooperative problem decomposition in Pareto
competitive classifier models of coevolution. In Proceedings of the European Con-
ference on Genetic Programming, volume 4971 of LNCS, pages 289–300, 2008.

11. D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette. Evolutionary algorithms
for reinforcement learning. Journal of Artificial Intelligence Research, 11:241–276,
1999.

12. C. D. Rosin and R. K. Belew. New methods for competitive coevolution. Evolu-
tionary Computation, 5:1–29, 1997.

13. K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Real-time Neuroevolution in the
NERO Video Game. IEEE Transactions on Evolutionary Computation, 9(6):653–
668, 2005.

14. M. E. Taylor, S. Whiteson, and P. Stone. Comparing evolutionary and temporal
difference methods in reinforcement learning domain. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 1321–1328, 2006.

15. S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement
learning. Journal of Machine Learning Research, 7:877–917, 2006.

