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Abstract

The conversion and extension of the Incremental Pareto-Coevolution
Archive algorithm (IPCA) into the domain of Genetic Programming classi-
fication is presented. In particular, the coevolutionary aspect of the IPCA
algorithm is utilized to simultaneously evolve a subset of the training data
that provides distinctions between candidate classifiers. Empirical results
indicate that such a scheme significantly reduces the computational over-
head of fitness evaluation on large binary classification data sets. More-
over, unlike the performance of GP classifiers trained using alternative
subset selection algorithms, the proposed Pareto-coevolutionary approach
is able to match or better the classification performance of GP trained over
all training exemplars. Finally, problem decomposition appears as a nat-
ural consequence of assuming a Pareto model for coevolution. In order to
make use of this property a voting scheme is used to integrate the results
of all classifiers from the Pareto front, post training.

1 Introduction

Binary classification problems within the context of a supervised learning paradigm
provide the basis for a wide range of application areas under machine learning.
However, in order to provide scalable as well as accurate solutions, it must be
possible to train classifiers efficiently. Although Genetic Programming (GP) has
the potential to provide classifiers with many desirable properties, the compu-
tational overhead in doing so has typically been addressed through hardware
related solutions alone [9],[2],[5]. In this work we concentrate on how the train-
ing process can be made more efficient by evaluating classifier fitness over some
adaptive subset of the total training data. To date, the typical approach has
been to utilize an active learning algorithm for this purpose, where the Dynamic
Subset Selection (DSS) family represents one widely used approach [3],[8],[11].
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In this work, an alternative approach to the problem is presented in which
the problem is designed as a competition between two populations, one rep-
resenting the classifiers, the other the data. Progress has recently been made
using Genetic Algorithms based on a Pareto formulation of the competitive co-
evolutionary approach, albeit within the context of player behaviours in gaming
environments. To this end, the proposed approach is based on the Incremental
Pareto-Coevolution Archive (IPCA) algorithm, where this has been shown to ad-
dress several potential problems with the competitive coevolutionary paradigm
i.e., relativism, focusing, disengagement, and intransitivity [1].

The algorithm reported in this work, hereafter denoted the Pareto-coevolutionary
GP Classifier (PGPC) is novel in the fact that it extends a Genetic Algorithm
“game-playing” context into the domain of GP classification. Furthermore,
pruning is utilized to limit the sizes of the IPCA algorithm archives – the point
and learner pareto-fronts – to allow for efficient execution. This differs from
the method employed in the follow-up of the IPCA algorithm, the Layered
Pareto-Coevolutionary Archive (LAPCA) [4], which relies on storing the top N
pareto-layers of the archive, keeping the pareto-front in its entirety. Addition-
ally, PGPC differs from the methods utilized by various Evolutionary Multi-
Objective Optimization (EMOO) algorithms, which tend to perform clustering
on the pareto-front of solutions using the coordinates of candidate solutions to
limit the size of the pareto-front [6], [12]. That is to say, the cooperative coevo-
lutionary case of EMOO is able to maintain limits on the size of the Pareto front
through similarity measures applied pairwise to candidate solutions. In a GP
environment, the design of a suitable similarity metric is not straightforward as
learners take the form of programs. As a consequence, this work investigates
pruning heuristics that make use of structure inherent in the interaction be-
tween learners and training points. Thus, the learner archive is pruned relative
to a performance heuristic defined over the contents of the point archive, and
the point archive is pruned relative to a heuristic quantifying class distribution
and point similarity.

In addition, the GP context requires an alternative approach from those em-
ployed previously when resolving which solution from the pareto-front to apply
under post training conditions. Specifically, an EMOO context does not face
this problem as a individual is identified from the pareto-front of solutions on
the basis of a distance calculation. The solution with minimum distance relative
to the unseen test condition represents the optimal response. Conversely, under
a GP classification context all individuals from the pareto-front provide a label
i.e., only under training conditions are we able to explicitly identify which clas-
sifier is optimal through the associated classification error. Thus, instead of a
single individual representing the optimal strategy for each exemplar, a voting
policy is adopted in which all members of the pareto-front provide labels for
each exemplar under post training conditions.
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1.1 Approach

The co-evolutionary approach of the IPCA algorithm will allow for the “bind-
ing” of the learner and training data point subset evolutions, keeping the point
subset relevant to the current set of learners. The pareto-front of learners allows
the system to explore the search space along different attractors present in the
data, and hopefully provide a diverse set of optimal solutions. In regards to the
pareto-front of points, each point is pareto-equivalent to the others in the front,
and as such provides a “distinction” between the learners that is not duplicated
in the archive. Therefore the pareto-front of points itself is the subset of training
data that provides a learning gradient for the learners [1], [4].

The original IPCA algorithm performed no pruning on the learner and point
archives. Empirically, the learner archive (pareto-front) remained small, and
the point archive which contained the current set of relevant points in addi-
tion to the previously relevant set, grew without bounds [1]. In the case of
the proposed PGPC algorithm, experiments showed that both the learner and
point pareto-fronts grow dramatically on the training data sets, since it may be
that each training point is an underlying objective and provides a distinction
between learners. To retain efficiency, the previously relevant points may not
be stored, nor can the pareto-fronts in their entirety. A pruning method must
be adopted to limit the size of the archives.

Furthermore, in the context of a classification problem, a heuristic is required
to define how the pareto-front of learners is consolidated to return one classi-
fier per testing point. Since the pareto-front of learners may be diversified to
correctly classify subsets of the data, a method to recognize and utilize any
structure inherent in the front must be developed such that the most appro-
priate classifier responds under unseen data conditions. This is generally not a
problem within the context of EMOO as solutions take the form of a point in
a coordinate space. Identifying which individual represent the best solution is
resolved through the application of a suitable distance metric. Under the GP
(classification) domain, solutions take the form of models providing a mapping
from a multi-dimensional input space to a 1-dimensional binary output space.
Thus, on unseen data it is not possible to associate exemplars to models a priori.
This problem is addressed in this work by adopting a simple voting scheme over
the contents of the learner archive.

2 The Pareto-coevolutionary GP Classifier Al-
gorithm

In terms of the GP individuals or learners, a tree-structured representation is
employed, whereas individuals in the point population(s) index the training
data. The classical GP approach for interpreting the numerical GP output
(gpOut) in terms of a class label is utilized, or
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IF (gpOut ≤ 0.0) THEN (return class 0), ELSE (return class 1) (1)

The PGPC algorithm utilizes four populations of individuals: (1) a fixed size
learner population which provides the exploratory aspect of the learner evolu-
tion. (2) a learner archive which contains the pareto-front of learners, bound
by a maximum size value. (3) a fixed size point population (point population
<< training exemplar count). (4) a point archive which describes the current
subset of training points relevant to the learner archive, bound by a maximum
size value. Figure 1 summarizes the organization of data dependencies for each
step of the algorithm.

Point
Population

Point
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Learner
Archive

Learner
Population

Generate new
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Find useful learners and points
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3

Figure 1: The PGPC architecture.

The PGPC algorithm consists of the following steps performed at each gen-
eration of evolution:

Step 1: Generate points in the point population: Since the points
are indices within the training data, a crossover operator makes little sense.
Therefore, only mutation was utilized to generate the point population, with
mutation being performed on each population member. Furthermore, to ensure
class balance within the point population, each half of the population is ran-
domly filled with points belonging to the same class, Figure 1 point 1.

Step 2: Generate learners in the learner population: The canoni-
cal tree-structured model of GP is assumed [7], although the PGPC algorithm
could utilize any standard GP model for the representation and definition of
search and selection operators. In this case fitness proportionate selection is
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assumed, with fitness being calculated over the contents of both the point pop-
ulation and point archive, Figure 1 point 2.

Step 3: The following steps deal with the entry criteria for the point and
learner archives, Figure 1 point 3:

3.a: Compute the set of useful points regarding the learner popu-
lation and archive: As per IPCA; if a newly generated learner is dominated
by the learner archive or contains equal values (evaluated over the point archive),
and the addition of a new point into the evaluation set provides a distinction
such that the generated learner is pareto-equivalent to the archive with no equal
values, the point is inserted into the archive.

3.b: Compute the set of useful learners regarding the point population
and archive: As per IPCA; any generated learner that is pareto-equivalent to
the archive with no equal values (again, evaluated over the point archive) en-
ters the archive. Furthermore, if a generated learner is non-dominated, and a
generated point defeats it, they both enter their respective archives.

3.c: Remove duplicates in the learner and point archives and newly-
dominated learners in the learner archive: As per IPCA.

To maintain the efficiency of the algorithm, a limit on the archive sizes is en-
forced. This limit may be thought of as a tunable parameter of efficiency vs
accuracy. However the relationship between the two may depend on the classifi-
cation problem, as the number of underlying objectives which the point archive
strives to evolve towards may vary. Moreover, the number of individuals qual-
ifying for inclusion in the point or learner archives is also a dynamic property,
with a significant difference between the number qualifying in early versus later
generations.

Within the context of the pruning algorithm, the first assertion will be that
a newly generated learner or point should enter the archive at the possible cost
of evicting an older member. This assertion will help avoid stagnation within
the archive at the risk of possible regression or forgetting. Alternate insertion
basis may be considered and evaluated in the future. Within this framework,
all that remains is to provide a basis for selection of an archive individual for
replacement.

For pruning the learner archive, the proposed greedy approach consists of re-
moving the learner with the worst performance against the point archive (with
the measure being the number of incorrectly classified instances). Within this
view, a learner to be removed may have entered the archive by simply correctly
classifying one training archive point while misclassifying the remainder, there-
fore removing the “worst” learner deletes some of the explorative diversity of
the archive in favour of increased average accuracy.
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For pruning the point archive, the proposed basis utilizes the genotypic infor-
mation of the point co-ordinates to delete one of the two closest points, distance
defined using the Euclidean metric, adhering to the following criteria: the two
points must be of the same class, and that class must be over-represented in the
point archive. This approach will promote class-balanced diversity in the point
archive, while preserving the points which define boundaries between clusters
of points.

Finally, in order to attain a measure of classification performance on testing
data at the completion of training, the learner pareto-front must be interpreted
to provide one class prediction per testing point. To this end an “Average
archive value” voting scheme is used in which each pareto-front learner provides
one vote for their class prediction of the input testing point. The class with the
majority of the votes is selected as the system’s prediction for the correspond-
ing data point. Such a scheme is adopted to make use of the aforementioned
learner pruning bias in which learners are rewarded for maximizing the number
of correctly classified exemplars. Thus, we expect classification by consensus as
opposed to outright specialization, in which case a more sophisticated voting
policy might be required.

3 Experiments

Evaluation of the proposed PGPC algorithm will be performed against canoni-
cal tree-structured GP and three alternative active learning algorithms. Indeed
all methods will share the same canonical GP model. The three active learning
comparison algorithms use a limit on the number of training exemplars to pro-
vide a more accurate comparison with the PGPC classifier. These algorithms
will allow for an evaluation of the IPCA-based dynamics and solution space
search efficiency. They differ from the canonical GP algorithm only in the ac-
tive learning algorithm used to identify the subset of training exemplars over
which fitness evaluation takes place. Section 3.2 summarizes the properties of
each alternative algorithm.

Post training evaluation of classification performance is conducted using a single
classification “score”. This is based on a combined equal weighting of detection
and false positive rate, or

Score =
TruePositives

Positives + (1− FalsePositives
Negatives )

2
(2)

Adoption of such a metric will establish how robust alternative schemes are to
any under representation of the minor class. Algorithm efficiency is measured
in terms of run-time on a common machine under the same conditions.

The classification data sets used in the experiments consist of: Adult, and
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KDD991. Each data set is considered a two-class problem, with the training
partition for Adult being set at 75%. The Adult data set consists of 33916
training points, and 11306 testing points (i.e., exemplars with missing features
are not included); each having a dimension of 14 features. The KDD99 set
consists of 494020 and 311027 training and testing points, respectively; with
each point having a dimension of 41 features. In order to cast the problem as a
binary classification problem we concentrate on separating the class represent-
ing ‘normal’ from the other four classes. Both data sets are unbalanced with
approximately 20 percent in-class exemplars in KDD99 and 15 percent in-class
exemplars in Adult.

The relevant hardware of the test machine utilized for the run-time experi-
ments consists of: Pentium 4, 2.60GHz HT, 800MHz FSB. 1GB DDR400 RAM.
36GB SATA 10K-RPM Hard Drive. The GP implementation common to all five
methods benchmarked was based on the lilGP2 framework, running on Fedora
Core 3 Linux.

3.1 Parameters

The tree-structured GP parameters common to all of the algorithms are sum-
marized in Table 1. The sizes of the populations and archives of the PGPC
algorithm will all be set to a common value of 25.

Although the learner archive is the set of learners constituting an “answer”,
the learner population is still used for exploration and the evolution of the
learners. Therefore the sum of both the archive and population sizes is used to
provide an equivalent limit on the number of learners utilized by the comparison
algorithms, Table 2. The same holds true for the point population and archive,
since they are both used in the evaluation of the fitness of a learner, they con-
stitute the number of points that the algorithm can “access”. Therefore the
comparison subset selection algorithms utilize a subset size set to be the sum of
the two, Table 2.

Due to the stochastic nature of the GP based algorithms, performance is re-
ported over a total of 30 different population initializations per experiment.

3.2 Comparison Algorithms

Canonical tree-structured GP: The base line comparison algorithm takes
the form of a canonical tree-structured GP classifier [7] (denoted as “Regular”),
consisting of only one learner population. At every generation, the fitness of each

1Available at:
http://www.ics.uci.edu/∼mlearn/MLSummary.html [Adult]
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html [KDD99]

2http://garage.cps.msu.edu/software/lil-gp
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Table 1: GP parameters common to all of the algorithms.
Number of generations 500
Individual initialization method Half and half
Individual initialization depth 2-6
Individual maximum nodes 1000
Individual maximum depth 17
Learner breeding phase selection method Fitness Proportionate
Learner breeding phase operators Crossover, Mutation
Learner breeding phase operator frequencies 0.8, 0.2
Function Set *, /, +, -, sin, cos, exp, sqrt

Table 2: Population and Point Subset sizes for comparison algorithms.
Model Regular Cycling Random DSS
Learner

Population Size 50 50 50 50

Point
Subset Size

as per original
Training Set 50 50 50

learner is computed using the entire training data set. The absolute switching
function wrapper maps the gpOut value of the individual against the training
data point class, equation (1), and the number of correct mappings (classifica-
tions) is recorded and normalized into a fitness value (accuracy). The fitness
values of the individuals are used to perform fitness proportionate selection for
breeding the next generation of individuals. Upon completion of the evolution,
the fittest individual is used to classify the testing data using the same switching
function3.

Dynamic subset selection (DSS): This comparison algorithm is an imple-
mentation of the DSS algorithm [3]. Each training exemplar has an associated
age and difficulty value; corresponding to the number of generations elapsed
since that exemplar was last utilized in the subset, and the number of correct
classifications of it when it was utilized. At each generation, a weighing of the
two values is performed to yield a selection probability, or

PointWeightp = Difficulty1.0
p + Age3.5

p (3)

The selected points define a subset over which learners are evaluated in the
current generation.

Random subset selection: This algorithm is based on the “Stochastic
3The score metric of equation (2) is only employed in the post training evaluation of

performance.
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sampling” method described in [10]. Specifically, individuals are evaluated over
a subset of training data points selected randomly with uniform probability and
used to compute the fitness of the individual.

Cycling subset selection: At any evaluation of any individual, a global
index into the training data is incremented. Training points subsequent to the
index are utilized to compute the fitness. Wrap-around is used to resolve the
special case associated with the end of the training data set.

4 Results

Figure 2 illustrates test set performance using first quartile, median, and third
quartile under the ‘score’ metric of equation (2). It is apparent that the PGPC
algorithm matched or bettered all of the comparison algorithms, including the
Regular GP algorithm. This indicates that the proposed algorithm has indeed
provided an effective alternative mechanism for selecting subsets of training ex-
emplars to perform the learner evolution upon. Moreover, although the fitness
metric was based on classification count during training, it is also apparent that
degenerate solutions were successfully avoided in the ensuing solutions (degen-
erates are equivalent to a score of 0.5). Conversely, all three alternative subset
selection algorithms returned performance scores equivalent to degenerate so-
lutions on the Adult data set. DSS performed better on KDD99, although
never as good as PGPC and Regular GP; whereas both random and cycling
subset selection performed worse on KDD99 than on the Adult data set. The
consistently poor behavior of the Random sampling algorithm on KDD99 was
associated with the population being dominated by degenerate solutions that
labeled all exemplars as out of class, where this represents around 400,000 of
the 500,000 training exemplars.

Table 3: Median scores and run-times in seconds of the various algorithms upon
the Adult and KDD99 data sets.

Median Median Median Median
score time score time

Algorithm (Adult) (Adult) (KDD99) (KDD99)
PGPC 0.736611 41.38 0.918419 56.97
Regular 0.611569 1973.74 0.909291 40347.74
DSS 0.526903 11.29 0.827497 120.87
Random 0.527521 3.63 0.500000 4.20
Cycling 0.520470 3.46 0.501884 2.58

In terms of execution efficiency, Table 3, the PGPC algorithm exhibited a

9



speedup of 48 (Adult) to 708 (KDD99) with respect to Regular GP. The Ran-
dom and Cycling Subset Selection algorithms were naturally the fastest, but
also resulted in degenerate solutions for both data sets. The DSS algorithm was
significantly faster than PGPC under Adult, however, was actually slower than
PGPC under the larger KDD99 data set by a factor of two.

In summary, the PGPC algorithm was able to match (KDD) or better (Adult)
the classification scores of the regular GP algorithm whilst providing a signif-
icant speedup. Moreover, as the size of the training data set increased, the
computational effectiveness of the PGPC algorithm improves, Table 3. Thus,
DSS takes twice as long to provide solutions on the KDD data set than PGPC,
for no improvement in classification score. Conversely, the naive schemes for
building subsets of exemplars, Random and Cycling, are very fast, but do not
provide a useful model for learning, barely reaching a 50 percent classification
score i.e., degenerate solutions were the norm.

5 Conclusion

An algorithm employing the coevolution of both classifiers and training data
subset members within a Genetic Programming environment was presented.
Comparisons were made to a traditional GP classifier employing the training
data in its entirety, in addition to classifiers using only a subset of the data
selected via either a Random, Cycling, or DSS method.

With regards to classification performance, the PGPC algorithm out-performed
each of the comparison algorithms, indicating that the algorithm does not com-
promise classification performance. We conclude that even with a small subset
of training points, the pareto-evolutionary approach to learner and point co-
evolution may generate superior or equivalent classification performance. More-
over, the PGPC algorithm was particularly effective at avoiding degenerate
solutions; where this is particularly useful on problems described by large un-
balanced data sets.

In the case of training efficiency, the training point subset selection of PGPC
provides a dramatic increase in execution speed, without recourse to specialist
hardware. Moreover, the approach becomes increasingly effective as the number
of exemplars in the data set increases. Finally, we note that as the entire Pareto
front of learners takes part in the solution, problem decomposition is supported
as an additional side effect of adopting a coevolutionary paradigm.

Future work will evaluate the significance of different point and learner archive
pruning schemes, as well as qualify the significance of pruning in practice. The
latter is particularly relevant with regards to the impact of ‘regression’ or ‘for-
getting’ on the behavior of the point and learner archives.
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Figure 2: Test data box plot as evaluated using the ‘score’ metric. Note: the
variance of the Random algorithm on KDD99 is minimal, with the difference
between the minimum and maximum value being 0.005215 percent, yielding an
insignificant box plot.
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