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EVOLVING COEVOLUTIONARY CLASSIFIERS UNDER
LARGE ATTRIBUTE SPACES
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Abstract Model-building under the supervised learning domain potentially face a dual
learning problem of identifying both the parameters of the model and the sub-
set of (domain) attributes necessary to support the model: or an embedded as
opposed to wrapper or filter based design. Genetic Programming (GP) has al-
ways addressed this dual problem, however, further implicit assumptions are
made which potentially increase the complexity of the resulting solutions. In
this work we are specifically interested in the case of classification under very
large attribute spaces. As such it might be expected that multiple independent/
overlapping attribute subspaces support the mapping to class labels; whereas GP
approaches to classification generally assume a single binary classifier per class,
forcing the model to provide a solution in terms of a single attribute subspace
and single mapping to class labels. Supporting the more general goal is consid-
ered as a requirement for identifying a ‘team’ of classifiers with non-overlapping
classifier behaviors, thus each classifier responds to different subsets of exem-
plars. Moreover, the subsets of attributes associated with each team member
might utilize a unique ‘subspace’ of attributes. This work investigates the util-
ity of coevolutionary model building under the case of classification problems
with attribute vectors consisting of 650 to 100,000 dimensions. The resulting
team based coevolutionary evolutionary method – Symbiotic Bid-based (SBB)
GP – is compared to alternative embedded classifier approaches of C4.5 and
Maximum Entropy Classification (MaxEnt). SBB solutions demonstrate up to
an order of magnitude lower attribute count relative to C4.5 and up to two orders
of magnitude lower attribute count than MaxEnt while retaining comparable or
better classification performance. Moreover, relative to the attribute count of in-
dividual models participating within a team, no more than six attributes are ever
utilized; adding a further level of simplicity to the resulting solutions.
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1. Introduction
Team or ensemble based frameworks for machine learning may be used to

provide explicit support for the ‘divide and conquer’ metaphor of problem de-
composition. Thus under a classification problem domain, rather than assum-
ing a single model-based classifier1 per class, the process of credit assignment
is able to actively decompose the problem as originally posed. The resulting
solution engages multiple classifiers to provide the same class label, but in the
case of this work we do so while seeking an explicitly non-overlapping in-
teraction between classifiers. Such a non-overlapping behavioral requirement
implies that the team of classifiers associated with the same class respond to
different partitions of the exemplars comprising the class in question2. Thus,
under such an approach, the overall solution is potentially much simpler than
assuming a single classifier per class. For the purposes of this work the simple
solution property has at least two specific properties: (1) the complexity of in-
dividual classifiers associated with the same class is less than that when a priori
forcing a single classifier to represent each class, and; (2) the attributes/ fea-
tures3 indexed by a team member need only be a subset of the total attributes
utilized under the single classifier per class approach. The net result is that the
transparency of a solution increases relative to non-team based classifiers and a
wider acceptance of machine learning solutions might be expected in general.

Recent advances to team based evolutionary model building appear to rep-
resent a particularly appropriate approach for realizing both of the above sim-
plification properties simultaneously. To date, however, there has been little
effort to investigate the utility of such models to problem domains with hun-
dreds to hundreds of thousands of attributes. With these goals in mind, we
begin by reviewing advances in team-based evolutionary model building under
the classification domain (Section 2). Section 3 summarizes the properties of
the Symbiotic Bid-Based (SBB) model of coevolutionary machine learning as
employed in this study. The evaluation methodology is established in Section
4, where this includes the details of data sets employed and a summary of two
alternative classification methodologies that also support the embedded identi-
fication of attribute sets (C4.5 and Maximum Entropy Classification). Results
of the empirical benchmarking study follow in Section 5, with conclusions and
future work in Section 6.

1By ‘model-based’ representation we imply that individuals are required to discover a mapping from the
original attribute space to the output space.
2Hereafter ‘team’ and ‘ensemble’ will be used interchangeably with the non-overlapping behavioral con-
straint implicit.
3The term ‘attribute’ and ‘feature’ have became interchangeable in the general literature; although in some
works ‘feature space’ is distinct from the original attribute vector associated with the application domain.
In the following we will associate a ‘feature count’ with all zero argument terms included in a solution, thus
including attributes explicitly included in the classifier as a subset.
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2. Related Work
When faced with a data set comprising of a large potential number of at-

tributes one of two methods are generally employed: filter or embedded (Lal
et al., 2006). Filter methods divide the overall task into two independent steps,
attribute subset identification and then classification; a process that potentially
makes the overall task computationally faster at the potential expense of overall
accuracy. Conversely, the embedded approach takes the view that by perform-
ing both tasks in one step, as part of a single integrated process of learning,
the subset of attributes most appropriate for the model of classification can be
explicitly identified. A third approach – wrapper methods – use the classi-
fication model to iteratively evaluate suggested attribute subsets, but without
integrating the two steps within a single learning algorithm; thus any classifi-
cation algorithm would suffice for evaluation of the suggested attribute subset.
However, such methods do not appear to see much utility in practice.

Whether one of the two methods is pursued over the other is often based
on additional factors such as the ultimate cost of model building or the avail-
ability of expert knowledge appropriate for reducing the size of the attribute
space. Moreover, some models of classification have a bias towards including
all attributes and then simplifying (e.g., neural networks and SVM models);
whereas other models of machine learning begin with a bias towards including
a low number of attributes and incrementally include more until an ‘optimal’
classification performance is achieved (e.g. decision tree induction and evolu-
tionary methods of model building).

This work naturally assumes an embedded approach under the hypothesis
that evolutionary methods for constructing models of classification provide a
suitable basis for incremental attribute identification. Indeed, previous works
have demonstrated that both Genetic Algorithms (GA) and Genetic Program-
ming (GP) are appropriate for attribute subset identification/ attribute creation
(Krawiec, 2002), (Smith and Bull, 2005), (Zhang and Rockett, 2006). In each
case evaluation was limited to problem domains with tens of attributes. More-
over, such approaches to classification still fall short of the overall objective
pursued in this work as the solution takes the form of a single classifier per
class. That is to say, solutions fail to support transparency under the afore-
mentioned two properties of: (1) team-based classifier decomposition through
non-overlapping behaviors, and; (2) the identification of (potentially) indepen-
dent attribute subsets by each team member. More recently, GP was used as a
pairwise attribute selector in combination with statistical feature selection and
a linearly weighted bi-objective fitness function for wrapper based attribute se-
lection under a Bayes model of classification and dimensionality in the order
of thousands of attributes (More and White, 2007). The work reported here
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concentrates on the single step embedded approach to classification–attribute
selection.

In order to support problem decomposition under evolutionary methods var-
ious metaphors have been investigated, including learning classifier systems
(Bernado-Mansilla and Garrell-Guiu, 2003), cooperative coevolution (Potter
and de Jong, 2000), GP teaming (Brameier and Banzhaf, 2001), (Thomason
and Soule, 2007), and various evolutionary approaches for building ensembles
(Jin, 2006). Some of the generic difficulties faced in attempting to compose
such models under the supervised learning domain of classification include:
establishing how many classifiers to include per class; defining an appropriate
credit assignment policy; deciding how to combine multiple individuals once
identified; and simultaneously scaling the model for efficient evolution over
large data sets. Specifically, the generic model of cooperative coevolution es-
tablished by Potter and de Jong assigns an independent population per ‘team
member’ (Potter and de Jong, 2000). Thus, a priori knowledge is necessary in
order to specify the number of individuals required to participate in the class-
wise decomposition. The same constraint has limited teaming metaphors under
GP (Brameier and Banzhaf, 2001), (Thomason and Soule, 2007). In the case
of evolutionary ensemble methods a common requirement is to hold multiple
independent runs to produce each member of the ensemble, where this often
implies suitable computational support, especially when scaling to large data
sets (Folino et al., 2006). Moreover, the generic ensemble learning approach
does not guarantee that the resulting learners will have non-overlapping be-
haviors (Imamura et al., 2003), (Thomason and Soule, 2007). Indeed, in order
to guarantee diversity in the ensemble, techniques such as strongly typed GP
(Kumar et al., 2008), local membership functions (McIntyre and Heywood,
2008), or negative correlation (Chandra et al., 2006) have been proposed; all
under the context of Multi-objective fitness formulations.

With the above discussion in mind, the approach to evolving a team of
learners under the classification domain will assume the Symbiotic Bid-based
(SBB) framework for model building under discrete domains (Lichodzijewski
and Heywood, 2008b). Such an approach provides problem decomposition
without pre-specifying the nature of the decomposition (c.f. the number of co-
operating learners per class) and scales to large data sets care of a competitive
coevolutionary mechanism. Section 3 will summarize the characteristics of the
SBB learning algorithm.

3. Symbiotic Bid-Based framework
Motivation and Methodology

The framework typically assumed for applying model based cases of evo-
lution – such as Genetic Programming (GP) – to the supervised learning do-
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main of classification requires an individual to map exemplars from an attribute
space to a class label space. An individual’s program expresses the mapping.
However, this is not the case under the bid-based GP framework (Lichodzijew-
ski and Heywood, 2008a). Instead the task is divided into two components: (1)
deciding which exemplars to label, or the bid, and (2) suggesting class label, or
the action. In the case of the individual’s action, the assumption is made that
an individual will always be associated with the same action (class label). Thus
at initialization, a problem with C classes results in PopSize

C individuals in the
population being pre-assigned to each class. The assignment is defined by as-
signing a scalar a to each individual at initialization. Scalars are selected with
uniform probability over the interval {1, ..., C}. The actions are not adapted
during evolution. Conversely, the task of deciding which subset of exemplars
to label is expressed in terms of a bid. The individual with maximum (winning)
bid suggests their pre-assigned action as the class label. Individuals suggest-
ing an action a that matches the exemplar class label are rewarded, whereas
individuals winning the bid, but not providing a class matching action are pe-
nalized.

The most recent form of the bid-based framework – hereafter Symbiotic
Bid-based (SBB) – makes extensive use of coevolution (Lichodzijewski and
Heywood, 2008b), with a total of three populations involved: a population of
points, a population of learners, and a population of teams (Figure 1-1). Specif-
ically, individuals comprising a team are specified by the team population, thus
establishing a symbiotic relationship with the learner population. Only the sub-
set of individuals indexed by an individual in the team population compete to
bid against each other on training exemplars. The use of a symbiotic relation
between teams and learners makes the credit assignment process more trans-
parent than in the case of a population wide competition between bids (as used
in the earlier variant of the model (Lichodzijewski and Heywood, 2008a)).
Thus, variation operators may now be defined for independently investigating
team composition (team population) and bidding strategy (learner population).
The third population provides the mechanism for scaling evolution to large
data sets. In particular the interaction between team and point population is
formulated in terms of a competitive coevolutionary relation (de Jong, 2007).
As such, the point population indexes a subset of the training data set under an
active learning model (i.e. the subset indexed varies as classifier performance
improves). Biases are enforced to ensure equal sampling of each class, irre-
spective of their original exemplar class distribution (Doucette and Heywood,
2008); whereas the concept of Pareto competitive coevolution is used to retain
points of most relevance to the competitive coevolution of teams.
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Figure 1-1. Architecture of Symbiotic Bid-based GP. Black/ white diamonds denote exem-
plars from different classes; Black/ white circles denote programs with different actions.

SBB Algorithm
The SBB model of evolution generates Pgap% new exemplar indexes in the

point population and Mgap% new teams in the team population at each gener-
ation. Specifically, individuals in the point population take the form of indexes
to the training data and are generated stochastically (subject to the aforemen-
tioned class balancing heuristic). New teams are created through variation
operators applied to the current team population. Fitness evaluation evaluates
all teams against all points with (1 − Pgap)% points and (1 −Mgap)% teams
appearing in the next generation. Pareto competitive coevolution ranks the
performance of teams in terms of a vector of outcomes, thus the Pareto non-
dominated teams are ranked the highest (de Jong, 2007). Likewise, the points
supporting the identification of non-dominated individuals (distinctions) are
also retained. In addition, use is made of competitive fitness sharing in order
to bias survival in favor of teams that exhibit uniqueness in the non-dominated
set (Pareto front).

Evaluation of team mi on a training exemplar defined by point popula-
tion member pk results in the construction of an outcome matrix G(mi, pk)
in which unity implies a correctly classified exemplar, and zero an incorrectly
classified exemplar. The ensuing distinction matrix details the pairwise out-
come of each team over all exemplars sampled by the point population, or,{

1 if G(mi, pk) > G(mj , pk)
0 otherwise (1.1)
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where unity implies that point pk ‘distinguishes’ between team mi and mj .
The ensuing Pareto competitive coevolutionary process identifies the non-dominated
teams and points supporting their identification.

Denoting the non-dominated and dominated points as F (P ) and D(P ) re-
spectively, the SBB framework notes that as long as F (P ) contains less than
(1 − Pgap)% points, all the points from F (P ) are copied into the next gen-
eration. On the other hand, if F (P ) contains more points than are allowed
to survive, then the following fitness sharing heuristic is imposed to rank the
collection of non-dominated points (Rosin and Belew, 1997),

∑
i

dk[i]
1 + Ni

(1.2)

where dk[i] is the ith entry of the distinction vector for pk; and Ni is the sum
of the i th entries over the distinction vectors across all points in F (P ) i.e., the
number of points making the same distinction. Thus, points making the same
distinction are weighted less than points making unique distinctions.

An analogous process is repeated for the case of team selection, with (1 −
Mgap)% individuals copied into the next generation. Naturally, under the con-
dition where the (team) non-dominated set exceeds this fraction, the fitness
sharing ranking employs F (M) and D(M) in place of F (P ) and D(P ) re-
spectively. The resulting process of fitness sharing under a Pareto model of
has been shown to be effective at promoting solutions in which multiple mod-
els cooperate to decompose the original |C| class problem into a set of non-
overlapping behaviors (Lichodzijewski and Heywood, 2008a), (Lichodzijew-
ski and Heywood, 2008b).

Finally, the learner population of individuals expressing specific bidding
strategies employs a linear representation. Bid values are standardized to the
unit interval through the use of a sigmoid function, or bid(y) = (1+exp−y)−1,
where y is the real valued result of program execution on the current exemplar.
Variation operators take the form of instruction add, delete, swap and mutate;
applied with independent likelihoods, under a uniform probability of selection.
When an individual is no longer indexed by the team population it becomes ex-
tinct and deleted from the learner population. Conversely, during evaluation of
the team population, exactly Mgap% children are created pairwise care of team
based crossover. Learners that are common to both child teams are considered
to be the candidates for retention. Learners not common to the child teams
are subject to stochastic deletion or modification; with corresponding tests for
deletion/ insertion at the learner population. The instruction set follows from
that assumed in (Lichodzijewski and Heywood, 2008b) and consists of eight
opcodes ({cos, exp, log, +,×,−,÷, %}) operating on up to 8 registers, as per
a linear GP representation.
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Table 1-1. Data set properties.

Data set Exemplar Count Feature Count
train (test)

Handwritten character recognition
Multifeature 1,510 (490) 649

Gisette 6,000 (1,000) 5,000
Document Classification: Bag-of-words

NIPS 7,000 (3,500) 12,419
Enron 7,000 (3,500) 28,102

NY Times 7,000 (3,500) 102,660

4. Evaluation Methodology
The Evaluation Methodology is first considered from two perspectives, the

selection of data sets appropriate for performing the comparison, and iden-
tification of alternative models for establishing a realistic baseline of perfor-
mance. Parameterization of the SBB model is briefly discussed and the metrics
deployed for evaluating performance post training are presented.

Data Sets
Data sets with large attribute spaces are frequently encountered under the

context of document analysis (information retrieval), speech recognition, bioin-
formatics, and image processing. In this work, we make use of data sets from
the domains of document analysis and image processing. In the case of the
image processing domain, the ‘Multifeature’ and ‘Gisette’ data sets were em-
ployed (Asuncion and Newman, 2008), where both pertain to the recognition
of handwritten digits (Table 1-1) and used ‘as is’ with no pre-processing ap-
plied. The Multifeature data set is a 10 class problem with each class equally
represented; whereas Gisette is a binary classification problem in which 55%
(45%) of the exemplars are in-class (out-class). Moreover, Gisette has the ad-
ditional property that half of the attributes (2,500) are ‘probes,’ thus redundant
from the perspective of building an appropriate classification model.

In the case of the document analysis domain, three binary classification
problems were composed from the UCI Bag-of-words data set (Asuncion and
Newman, 2008). The data set is comprised from a series of distinct document
repositories. The repository content are unlabeled, however, it is known from
which repository a document is sourced. Thus we first combine the common
words from the NIPS, Enron and New York Times (NYT) repositories; whereas
the three binary classification problems entail distinguishing documents in the
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NIPS/ Enron/ NYT repository from the combination of all three. In each case
document files were normalized with respect to the target class. Thus under the
goal of distinguishing the Enron repository from NIPS and NYT, only words
appearing in the Enron vocabulary were used to build the corresponding bag-
of-words across all three document repositories. The resulting documents were
labeled as in-class if they came from the set of documents that originated the
vocabulary or out-class otherwise. This resulted in the largest attribute spaces
deployed during the ensuing performance evaluation, Table 1-1. Class repre-
sentation was also generally unbalanced with in-class representation at 14, 29
and 43 percent respectively for NIPS, Enron and NYT.

Comparator Models of Classification
In establishing a set of baseline classifiers we considered two alternative ex-

amples of models that operate under an explicitly embedded paradigm and are
widely utilized under large attribute space domains: decision tree induction
and Maximum Entropy Classifiers (MaxEnt). Both models make use of en-
tropy frameworks for model building. However, decision tree induction – C4.5
– naturally assumes a greedy incremental non-linear model building method-
ology. As such this gives the model the explicit ability to trade off model
complexity/ feature count with classification performance. Conversely, Max-
Ent classifiers are based on a linear model and might therefore be expected to
utilize many more attributes relative to non-linear models such as C4.5 or SBB.
However, they have repeatedly been shown to be very accurate under domains
with high feature counts, even relative to methods incorporating SVM models
of classification (Haffner, 2006). Indeed, both SVM and MaxEnt are large mar-
gin classifiers, with the SVM approach formulated for exemplar optimization
and MaxEnt formulated for attribute selection (Haffner, 2006).

Finally, in both cases we also consider the impact of model pruning on the
classification performance of the resulting models, with the goal of establishing
to what degree the baseline models can approach the feature counts returned
under SBB solutions. In the following subsections we provide background
on the parameterization/ modifications necessary prior to benchmarking and a
summary of the C4.5 and MaxEnt approaches.

C4.5 Decision Tree Induction. C4.5 is a widely used model for the con-
struction of decision trees under a recursive algorithm in which attributes are
incrementally added to the model care of their respective maximum normal-
ized information gain relative to class label (Quinlan, 1993). The deployment
used here is essentially the original code from Quinlan with modifications to
support wider ranges of (confidence value) pruning than would normally be
the case. In order to support efficient operation under the larger data sets, mod-
ification was necessary of the code in order to accept implicit data formats.
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Naturally, extensive evaluation was performed to verify that results remained
consistent with the original version under smaller attribute dimensions. Such
formats are widely used in text classification domains where they provide a
significant reduction on memory requirements under sparse data sets.

Maximum Entropy Classifier. MaxEnt methods are either based on a
conditional distribution, P (y|x), (Nigam et al., 1999) or a joint distribution,
P (y, x), (Haffner, 2006). Moreover, MaxEnt models’ each class indepen-
dently, thus the conditional probability of a binary problem becomes,

P (y = +1|x) =
exp(y(w+)T x)

Z(x)
(1.3)

for the in-class exemplars, and,

P (y = −1|x) =
exp(y(w−)T x)

Z(x)
(1.4)

for the out-class exemplars. However, Z(x) = exp(y(w+)T x)+exp(y(w−)T x),
thus a conditional MaxEnt classifier reduces to a logistic classifier i.e., a sig-
moid function applied to the linear combination of weights w = (w+)+(w−),
with an exponentially weighted error term,

Elog(yiw
T xi) = log(1 + exp(−2yiw

T xi)) (1.5)
This is the most common formulation and will be employed here. In ad-

dition, the frequently employed l2 Gaussian regularization factor for reducing
the likelihood of overfitting will be assumed (Nigam et al., 1999), (Haffner,
2006), (Lal et al., 2006).

The foregoing description establishes the basis for the definition of the er-
ror term, but says nothing about the scheme employed for adapting the free
parameters, w. One of the very nice properties of MaxEnt methods is that the
constrained multi-objective formulation results in a single unimodal objective
search space (Nigam et al., 1999). As such, gradient based optimization rou-
tines are sufficient. However, it is still important to address stability issues (c.f.
sparse training data) and direct inversion of the Hessian matrix is generally
not possible. In this work, we make use of a recent Conjugate Gradient (bi-
nary) and BFGS (multi-class) implementation, or MegaM, (Daum„e III, 2004)
– rather than the originally widely employed Improved Iterative Scaling (IIS)
routine (Nigam et al., 1999) – where MegaM provides a considerable speedup
over the IIS methodology.

Finally, we note that pruning was applied post training through the applica-
tion of a simple thresholding scheme in which attributes with free parameters
below the threshold were ignored. Such a simplistic scheme was deemed suffi-
cient for qualifying to what degree the resulting linear model was reliant on the
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Table 1-2. Parameterization of the Symbiotic Bid-Based model.

Parameter Value
Team/ Point population 90

Point replacement (Pgap) 1 / 3
Team replacement (Mgap) 2 / 3

Max. Team size 100
Prob. Team add/ remove/ swap 0.1

Prob. Learner add remove/ swap/ mutate 0.1
Max. Generations 30,000
Number of Trials 40

overall composition of the attribute space (as opposed to the potential ability
of a non-linear model to compose features from a smaller subset of the total
attribute space).

SBB Configuration
Relative to the original SBB configuration the most significant modifica-

tion necessary to undertake this work was to: (1) provide support for implicit
data formats, and; (2) extend the range of attributes learners may index from
64 to over 100,000. Parameterization of the model essentially follows that of
the original work (Lichodzijewski and Heywood, 2008b), but with larger team
sizes appearing here, and is summarized in Table 1-2. A distribution of the
source code and data is available (http://www.cs.dal.ca/~mheywood/Code/SBB/).

Post Training Performance Metrics
Post training performance will be assessed from the perspective of clas-

sification and feature count. In the case of classification performance we
make use of detection (sensitivity) as measured class-wise, resulting in a multi-
class measure of detection. Thus, defining the class specific detection rate as
DR(i) = tp(i)

tp(i)+fn(i) where tp(i) and fn(i) are the true positive and false neg-
ative counts under class i ∈ {1, ..., C}, leads to the following definition for
class-wise detection,

CW-detection =
DR(1) + · · ·+ DR(C)

C
(1.6)

Such a measure is independent of the distribution of exemplars per class.
Thus under an imbalanced binary data set in which 95% (5%) of the exemplars
were out-class (in-class) a degenerate classifier might label all exemplars as
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(a) Multifeature
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(b) Gisette

Figure 1-2. Test CW-detection versus complexity on the Character Recognition data sets. Fea-
ture counts are 649 (Multifeature) and 5,000 (Gisette). × denote solutions from SBB;4 denote
solutions from C4.5; and ♦ denote solutions from MaxEnt.

the out-class and achieve an accuracy of 95%; whereas the CW-detection met-
ric would return a value of 50% or more generally 1

C . Feature count will be
measured in terms of the number of zero argument terms included in the model
i.e., the number of constants and unique domain attributes actually utilized.

5. Benchmarking Results
Benchmarking results will be summarized in terms of 2-D scatter plots of

CW-detection versus Feature count. SBB solutions are plotted per run; C4.5
and MaxEnt solutions are plotted for increasing levels of pruning c.f. the prun-
ing threshold of C4.5 and the post training thresholding of the model free pa-
rameters in the case of MaxEnt. As such the C4.5 and MaxEnt results are
likely to span from complex but most accurate, to the simplest achievable but
(relatively speaking) least accurate. This is further emphasized by linking the
points formed by pruning C4.5 and MaxEnt solutions to provide a correspond-
ing performance curve. Points which tend to the top left of a curve will nat-
urally dominate the performance of other points in a manner similar to that
used to interpret ROC curves. However, the interaction between CW-detection
and attribute count will not necessarily result in a monotonic curve. Finally,
SBB solutions will naturally result in a distribution of points, care of the mul-
tiple stochastic sources of variation implicit in GP, thus the training partition
is used to identify the top 50 percent of solutions for which test evaluation is
performed.

Character Recognition data sets
Figure 1-2 characterizes performance of the three classifiers under the two

Character Recognition data sets considered in this study (Multifeature and



Evolving Coevolutionary Classifiers under large Attribute Spaces 13

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000

Attribute Count (log)

C
la

ss
-w

is
e
 D

e
te

ct
io

n

(a) NIPS
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(b) Enron
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(c) NY Times (SBB and MaxEnt only)

Figure 1-3. Test CW-detection versus complexity on the Bag-of-words data sets. Feature
counts are 12,419 (NIPS), 28,102 (Enron) and 102,660 (NY Times). × denote solutions from
SBB;4 denote solutions from C4.5; and ♦ denote solutions from MaxEnt.

Gisette). In the case of the smaller attribute space of the Multifeature data
set SBB solutions appear to be stronger in terms of both simplicity and classi-
fication performance with the equivalent of up to nine of ten classes correctly
classified while using 10 to 70 of the 649 attributes. C4.5 and MaxEnt man-
aged to classify the equivalent of 6 to 7 of the classes, with MaxEnt degen-
erate under the higher levels of pruning. Moreover, outside of the degenerate
solutions (i.e., CW-detection of 0.1) there is a clear ordering of model fea-
ture count from SBB (simplest) to C4.5 to MaxEnt (largest feature utilization).
This pattern is also reflected under Gisette, with the inclusion of additional
attributes improving CW-detection from 90% (SBB) to 95% (C4.5) to 98%
(MaxEnt). The penalty paid for the increased classification performance ap-
pears in terms of attribute count, where MaxEnt generally utilizes thousands
of attributes whereas SBB generally uses no more then 15. We also note that
all but the larger MaxEnt models managed to index less than half of the at-
tributes under Gisette; where half of the attributes are known to be redundant/
duplicate probes although the exact identity of the probes remains concealed
(Asuncion and Newman, 2008).
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Bag-of-words data set
Figure 1-3 characterizes performance under the NIPS, Enron and NY Times

(NYT) domains from the UCI ‘Bag-of-words’ data set; as formulated in terms
of three independent binary classification problems. In the case of NYT, re-
sults are expressed in terms of MaxEnt and SBB alone; C4.5 requiring more
memory capacity than was available under the 2GB RAM limit imposed by
the computing platform. In this case the simple SBB models are generally able
to reach the classification performance identified under MaxEnt. Indeed, they
are within 1% of MaxEnt under NIPS, about 25% more accurate under Enron
and within 5 to 2% of MaxEnt under NYT while utilizing 15 to 90 out of a
possible 12,419 (NIPS), 28,102 (Enron) or 102,660 (NYT) attributes. More-
over, at each level of model feature count identified by SBB, the SBB models
dominated the corresponding MaxEnt solution. C4.5 found solutions with the
same attribute counts as SBB under NIPS, but were about 15% less accurate;
whereas under Enron C4.5 were as accurate, but only by including 50 more
attributes than SBB.

In the case of MaxEnt one characteristic of interest was the pair of peaks
appearing under the Enron category. Rather than pruning resulting in a mono-
tonic decline in performance (as in all previous cases) a series of two mono-
tonic performance profiles are identified. Moreover, it is the curve from the
more complex MaxEnt model which begins at a lower level of classification
performance and decays to degenerate solutions; whereas the second MaxEnt
peak identified solutions that were simpler and avoided degenerate solutions.

SBB team properties
Figure 1-4 summarizes complexity across the SBB teams as a whole. Gisette

appears to require the lowest team complexity, although some of this charac-
teristic is undoubtedly due to the problem with the smallest attribute count
(Multi-feature) also being a ten class problem; thus requiring a greater diver-
sity in model behavior. The three larger ‘bag-of-words’ data sets did establish
some correlation between total attributes indexed over the entire team and at-
tribute count of the original problem domain, Figure 1-4. However, individual
models participating in the team generally indexed no more than in the case of
Multi-feature or Gisette, Figure 1-5.

Figure 1-5 summaries complexity as measured per individual. It is apparent
that the total number of unique attributes indexed by individual team members
is very low, or typically less than 4 attributes. This makes for very simple rules
that are able to act independently from each other; as opposed to C4.5 which
builds a single monolithic solution from a hierarchy of decisions, thus building
up to quite complex rules as the tree depth increases. Indeed, the simples SBB
rules tend to be of the form “if attribute X appears in document, it is about
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Figure 1-5. Summary of SBB team member (learner) complexity on each data set. Box bound-
aries denote 1st, 2nd (median) and 3rd quartiles. Whiskers denote max and min.

topic Y”. In the case of several data sets we note that some individuals are
returned that do not index any attributes. In these cases, the team member is
bidding a constant value, leaving the bids from the alternate action (class) and/
or same action (class) to provide the counter balancing bid strategy. Finally,
we note that relative simplicity in terms of attribute count is not being traded
for greater model complexity. Specifically, after removal of structural introns,
team members generally consisted of between 4 to 9 instructions, thus, not
detracting from the overall simplicity of SBB solutions, Figure 1-5 (b).

6. Conclusions
A case is made for the utility of evolutionary model based teaming (or en-

sembles) under classification problems described over large attribute spaces.
The initial hypothesis was that when teams are explicitly designed to seek non-
overlapping behaviors, assuming an evolutionary bias to model building would
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enable the resulting teams to provide very simple solutions without compro-
mising classification performance. Benchmarking conducted under data sets
selected from the domains of character recognition and document retrieval (as
represented under a bag-of-words vector space model) appears to support this
hypothesis. In particular the SBB paradigm of evolutionary teaming/ ensemble
generation tends to be more effective at balancing classification performance
versus feature count. Conversely, the domain standard of MaxEnt Classifi-
cation can be counted on to maximize classification performance at the ex-
pense of attributes indexed; whereas the C4.5 model of classification appears
to build models with an intermediate level of complexity and classification per-
formance.

Key properties from SBB supporting this result take at least three forms:
(1) Active learning – evolving solutions directly over the entire training parti-
tion would represent a prohibitively expensive computational overhead. In this
work a Pareto competitive coevolutionary approach was assumed although al-
ternatives such as host-parasite models or stochastic sampling would also be
appropriate. (2) Cooperative problem decomposition – a wide range of ensem-
ble methods exist, however, most do not support non-overlapping models of
problem decomposition. Instead widespread use is made of post training vot-
ing schemes. This results in multiple models responding to each exemplar and
clarity of the solution is lost (c.f. a weak learner metaphor). The SBB algo-
rithm specifically addresses this problem by using fitness sharing to discount
the Pareto evaluation before ranking solutions. A learning bias supporting the
reward of teams consisting of non-overlapping bidding strategies is therefore
established. (3) Clear paths of credit assignment – unlike the traditional pro-
cess of classification through mapping exemplars to a class membership value,
the SBB approach explicitly separates the generally combined tasks of “what
to do” (action) and “when to do it” (bid). Moreover, this is reinforced by
assuming a symbiotic model which explicitly separates the tasks of optimiz-
ing team membership and evolving bidding policy. Without such a separation
the bidding competition responsible for establishing cooperative team behavior
would have to take place across an entire population, thus each time children
are created the current team interaction would face disruption.

Natural extensions of the current study might consider the case of biomed-
ical data sets (More and White, 2007) or investigate the impact of attribute
support on the relative cost of model complexity, where this appears to be of
particular importance to non-linear classifiers such as the SVM (Doucette et al.,
2009). More generally, we are also interested in the utility of the SBB frame-
work to problem domains with temporal discounting (reinforcement learning).
Such a context might also benefit from the ability to pose solutions in terms of
teams, as indicated by ongoing research in multi-agent systems in general.
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