
Evolving Buffer Overflow Attacks with Detector
Feedback∗

Gunes Kayacik, Nur Zincir-Heywood, Malcolm Heywood

March 6, 2008

Abstract

A mimicry attack is an exploit in which basic behavioral objectives of
a minimalist ’core’ attack are used to design multiple attacks achieving
the same objective from the same application. Research in mimicry at-
tacks is valuable in determining and eliminating detector weaknesses. In
this work, we provide a process for evolving all components of a mimicry
attack relative to the Stide (anomaly) detector under a Traceroute ex-
ploit. To do so, feedback from the detector is directly incorporated into
the fitness function, thus guiding evolution towards potential blind spots
in the detector. Results indicate that we are able to evolve mimicry at-
tacks that reduce the detector anomaly rate from ~67% of the original core
exploit, to less than 3%, effectively making the attack indistinguishable
from normal behaviors.

1 Introduction
Our objective is to develop an automated process for building “white-hat” at-
tackers within a mimicry context [1, 2, 3, 4]. By ’mimicry’ we assume the
availability of the ’core’ attack, where this establishes a series of behavioral ob-
jectives associated with the exploit [5, 6]. The goal of the automated white hat
attacker will therefore be to establish as many specific attacks corresponding
to the exploit associated with the ’core’ attack as possible. Candidate mimicry
attacks will take the form of system call sequences that can avoid detection or
at least minimize the anomaly rate at the corresponding detector. By “white
hat”, we imply that the underlying objective is to use the attacks to improve
the design of corresponding detectors.

Previous research has established the suitability of evolutionary computation
as an appropriate process for automating the parameterization of buffer overflow
attacks [5], and for designing a generic buffer overflow attack itself [6]. In
this work, we extend the approach to explicitly incorporate feedback from the
anomaly detector and, in doing so, provide attacks that are specific to a real

∗Appears in EvoCOMNET 2007, LNCS 4448

1



application vulnerability1. In doing so, evolution is guided towards attacks that
are able to make use of unforeseen weaknesses in the detector, thus providing
the basis for improvements in detector design (vulnerability testing).

In the following we detail the process used to configure the anomaly detector,
and characterize the vulnerable application, Section 2, before introducing the
evolutionary mimicry attack framework, Section 3. Results are presented in
Section 4, in which attacks are successfully designed with anomaly rates less than
three percent; in effect making them indistinguishable from normal behavior.
Moreover, specific recommendations are made regarding the construction of
appropriate search operators. Conclusions are drawn in Section 5, with the case
made for the coevolution of (white hat) attacks and detectors.

2 Detector and Vulnerable Application
The general goal of this work is to demonstrate that real (white hat) exploits
may be developed under an evolutionary computation paradigm given a mimicry
attack model. To be of relevance to vulnerability testing of a specific detector,
behavioral goals of an exploit are augmented with feedback from the detector
itself. Thus, for vulnerabilities to exist in the detector we aim to evolve programs
that provide the desired exploit whilst minimizing the detector anomaly rate.
Unlike previous work on mimicry attack generation, no inside knowledge is
utilized in identifying weaknesses in the detector [1, 2, 3, 4]. With these general
guidelines in mind, we first provide the background to the detector on which
vulnerability testing will be conducted, introduce the configuration process, and
establish how a successful attack will be recognized.

2.1 Anomaly Detector
Anomaly detection systems attempt to build models of normal user behavior
and use this as the basis for detecting suspicious activities. This way, known
and unknown (i.e. new) attacks can be detected as long as the attack behavior
deviates sufficiently from the normal behavior. Needless to say, if the attack is
sufficiently similar to the normal behavior, it may not be detected. However,
user behavior itself is not constant, thus even the normal activities of a user may
raise alarms. In this work, Stide was used as the target anomaly detector [7];
where a wide range of related research performed in vulnerability or penetration
testing has employed Stide on the basis of it’s open source availability and
behavioral approach to anomaly detection [1, 2, 3, 4]. That is to say, rather than
take the ’signature’ based approach to detection2, the behavioral methodology
develops a model for normal behavior for specific services using a priori supplied
network trace(s). As such the ensuing detector does not require a direct match

1Previous instances of evolved attacks were designed within the context of a virtual vul-
nerability and verified against the Snort (signature based) detector post training [5, 6].

2Where evading signature based detectors using mimicry methods is already considered
straightforward [1].

2



between modeled behavior and an attack for recognition to take place (as per a
’signature’ based detector), but returns a percent anomaly rate. The user is then
free to interpret the anomaly rate as representing an attack or not (typically by
specifying a threshold). It is this anomaly rate that will be used to guide the
evolutionary process towards any weaknesses in the detector. Section 2.2 details
how Stide was configured within the context of the vulnerable application.

2.2 Vulnerable Application and Configuration of Stide
In the following, Traceroute is employed as the vulnerable application. Tracer-
oute is used to determine the routing path between a source and destination
by sending a set of control packets to the destination with increasing time-to-
live values. A typical use of traceroute involves providing the destination IP,
whereas the application returns information on the route taken between source
and destination.

Redhat 6.2 was shipped with Traceroute version 1.4a5, where this is suscep-
tible to a local buffer overflow exploit that provides a local user with super-user
access [8]; hereafter the ’core’ attack. The attack exploits a vulnerability in mal-
loc chunk, and then uses a debugger to determine the correct return address to
take control of the program. As indicated above, an anomaly detector is used in
conjunction with a threshold (anomaly rate) such that detection and false pos-
itive rates are optimized. The objective of the attacker is to build attacks that
return anomaly rates below the threshold characterizing normal behavior. One
approach to establishing a safe detector threshold might be to set the threshold
to zero. However, this would result in far too many false positive alarms. That
is to say, in practice, the normal behavior model of the detector cannot cover
all possible user scenarios, as configuration is only conducted over a subset of
behavioral traces. However, we also note that the available configurations of
the Traceroute application is also limited; thus only a small number of use cases
are sufficient to provide a complete set of system call sequences to characterize
normal behavior3. In this we consider two scenarios. Scenario 1 configures Stide
using a single use case, the ’nist’ domain, as per previous research in mimicry
research [1, 2, 3, 4]. The principle motivation being that if attacks can be
designed against a minimalist Stide configuration, then designing attacks for a
typical configuration will be easier. Scenario 2 configures Stide using 5 use cases,
as follows: search engines; local servers; a non existent host; the local host; and
the application help screen. The motivation in this case being that an attacker
would not have access to the database of normal behaviors that Stide uses to
characterize normal behavior, an assumption made by all the aforementioned
works on mimicry attack generation. Thus, establishing whether a detector can
be defeated under a typical configuration and without access to the internal
detector data structures is also of practical interest.

3Stide builds a behavioral model based on system call sequences alone; no use is made of
arguments, thus avoiding any sensitivity to specific IP addresses [7].

3



3 Evolutionary Framework for Mimicry Attack
Generation

The case for using evolutionary computation in a mimicry attack context has
previously been made with respect to: the utility of code bloat for obfuscation
of malicious code; freedom in defining fitness functions most appropriate to the
application domain; and solutions taking the direct form of the attack itself
[6]. However, the feasibility of evolving attacks was previously established in
terms of a hypothetical application, and did not incorporate the detector in any
way. In order to evolve attacks targeting a specific application we first need
to identify an instruction set that is not likely to be immediately recognized
as anomalous by the detector. Secondly, a fitness function needs crafting that
focus on the relevant behavioral properties of the ’core’ exploit (Traceroute in
this case). Finally, we need to define the mechanism for integrating both the
behavioral components and the detector feedback into an overall fitness function.
Subsections 3.1 and 3.2 detail the framework used to address these points, with
Subsection 3.3 summarizing the evolutionary model employed in this work.

3.1 Identifying Instruction Set
In order to minimize the likelihood of the exploit being detected, we restrict the
instruction set from which attacks are evolved to those appearing in the target
application (Traceroute). Table 1 details the frequency of the top twenty system
calls executed by the Traceroute application. This accounts for over 90% of the
normal instruction set. The system calls used to construct attacks will therefore
consist of the top 15 from this list.

3.2 Fitness Function
The original attack contains a standard shellcode, which uses the execve system
call to spawn a UNIX shell upon successful execution. Since traceroute never
uses an execve system call (Table 1), the original attack can be easily detected.
To this end, we employ a different attack strategy by eliminating the need
to spawn a UNIX shell. Most programs typically perform I/O operations, in
particular open, write to / read from and close files. Table 1 demonstrates
that traceroute frequently uses open / write / close system calls. We therefore
recognize that performing the following three steps establish the goals of the
original shell code attack:

1. Open the UNIX password file (“/etc/passwd”);

2. Write a line, which provides the attacker a super-user account that can
login without a password;

3. Close the file.

4



Table 1: Frequency of top 20 system calls.
System Call Occurence Frequency
gettimeofday 220 16.73%

write 142 10.8%
mmap 113 8.59%
select 99 7.53%
sendto 99 7.53%
close 93 7.07%
open 86 6.54%
read 75 5.7%
fstat 73 5.55%

munmap 49 3.73%
mprotect 34 2.59%
socket 29 2.21%

recvfrom 28 2.13%
brk 27 2.05%
fcntl 26 1.98%

The objective of the evolutionary search process is to discover a sequence of sys-
tem calls that perform the above three steps in the correct order (i.e. the attack
cannot write to a file that it has not opened) while minimizing the anomaly rate
from Stide. Hence the fitness function has two objectives: evolving successful
as well as undetectable attacks. In particular, the shellcode must contain the
following sequence of ’core’ components in order to conduct the exploit:

1. Contain open (“/etc/passwd”);

2. Contain write (“toor::0:0:root:/root:/bin/bash”)4;

3. Contain close (“/etc/passwd”);

4. Execute close after write and open before write;

5. When the system call sequence is fed to Stide, anomaly rate should be as
low as possible.

This leads to the final composition of the fitness function, Algorithm 1. A
total of 5 ’points’ are awarded for establishing the above components of the
’core’ attack. A further 5 ’points’ are awarded for minimizing the anomaly rate
provided by the Stide detector. A perfect individual would therefore have a
fitness of ’10’.

With regards to the estimation of anomaly rate, we recognize that the above
search process is directed towards the design of exploits as opposed to the entire

4Creates a user ’toor’ with super-user privileges, who can connect remotely without sup-
plying a password.

5



Algorithm 1 Generic Fitness Function
1. Fitness = 0;

(a) IF ({open(′/etc/passwd′)} ∈ sequence)THEN (Fitness += 1);

(b) IF ({write(′toor :: 0 : 0 : root : /root : /bin/bash′)} ∈ sequence)
THEN (Fitness += 1);

(c) IF ({close(′/etc/passwd′)} ∈ sequence) THEN (Fitness += 1);

(d) IF (′open′ precedes ′write′) THEN (Fitness += 1);

(e) IF (′write′ precedes ′close′) THEN (Fitness += 1);

(f) Fitness+ = 100−Anomaly Rate
20

attack. Specifically, an attack is composed from two components, the exploit
and a preamble. The preamble is associated with activities necessary to support
the execution of the exploit. Previous research on mimicry attack generation has
ignored the significance of the preamble, only reporting results for the exploit
itself [1, 2, 3, 4]. In this work, a predefined preamble is appended to the exploit,
and the anomaly rate reported for the combination of the two, where this is more
reflective of the anomaly rate returned by the detector in practice. That is to
say, it is not possible to deploy an attack without the preamble, thus reporting
a combined anomaly rate reflects the true ability of the detector to recognize
the attack as a whole.

3.3 Evolutionary Model
Table 2 defines the instruction set architecture (and parameter types) as per the
earlier analysis of application behavior; thus the instruction set consists of the
fifteen most frequently occurring system calls characterizing normal behavior.
Individuals are defined using a fixed length format, with solutions taking the
form of sequences of system calls. No registers are required to store state, thus,
strictly speaking, this is a Genetic Algorithm as opposed to a (linear) Genetic
Program.

Search operators are used independently (children result from any combi-
nation of the three operators) and take three forms: two point crossover, in-
struction mutation, and instruction swap, Table 3. Crossover takes the form of
single point crossover, with the same crossover point utilized in both individu-
als. The swap operator selects two instructions from the same individual with
equal probability and interchanges their respective positions; thus providing the
basis to investigate different permutations of the same instructions. In the case
of mutation, three forms are investigated.

• Individual-wise mutation: selects a single instruction with uniform proba-
bility and replaces it with a different instruction from the instruction set,
again chosen with uniform probability.

6



Table 2: Instruction Set
System Call Parameter 1 Parameter 2

open {”/etc/passwd”, “/tmp/dummy”} n/a
close {”/etc/passwd”, “/tmp/dummy”} n/a
read {”/etc/passwd”, “/tmp/dummy”} 4 byte space address

write {”/etc/passwd”, “/tmp/dummy”} {“toor::0:0:root:/root:/bin/bash”,
“Hello, world!”}

other n/a n/a

Table 3: Parameters for Evolutionary Search
Parameter Value
Population 500
Crossover 0.9

Mutation (individual wise) 0.5
Mutation (instruction wise) 0.01 with linear decay

Greedy Mutation Every 1 000 tournaments
Swap 0.5 with linear decay

Tournament Size 4
Stop Criterion 100 000 tournaments

• Instruction-wise mutation: tests each instruction independently for the
application of the mutation operator. Following a positive test, the in-
struction is again replaced with another from the instruction set (uniform
probability).

• Greedy mutation: the current best case individual is selected and the single
best one instruction modification accepted. This implies that all 14 alter-
native instructions are evaluated at each instruction position. Given the
computational cost of accessing such an operator the test is only applied
every 1,000 tournaments.

In the case of the individual-wise and instruction-wise mutation operators, a
linear annealing schedule is employed such that at the last tournament, the mu-
tation probability is zero, decaying linearly with increasing tournament count.
The basic motivation being to enable the crossover operator to investigate dif-
ferent contexts of population material as the tournaments advance.

The selection operator takes the form of a steady state tournament, thus the
population is inherently elitist with the best individuals always surviving.

4 Experiments
We begin by establishing the anomaly rate for the original ’core’ attack [8] on
the two use cases used to configure Stide. This defines the minimum perfor-

7



Figure 1: Anomaly rate of attacks (exploit + preamble) against Stide configured
over single ’nist’ use case.

mance for any attack we evolve. Both configurations return an anomaly rate
of approximately 65%; thus in order for evolved mimicry attacks to represent
an improvement over the original attack, they should return an anomaly rate
significantly lower than this.

The principle evolutionary parameter of interest in this work is the signif-
icance of the mutation operators employed. To this end, three scenarios are
considered of increasing complexity: Individual-wise mutation; Instruction-wise
mutation; Instruction-wise mutation with greedy mutation. In all three cases
both crossover and swap operators appear, Table 3. Figures 1 and 2 detail the
corresponding percent anomaly rate over 50 runs for Stide configured under
a single use trace and five use traces respectively. For completeness we also
summarize the anomaly rate of best case attacks, Table 4.

It is immediately apparent that augmenting the search operators with in-
creasingly sophisticated mutation operators results in a direct improvement to
the median anomaly rate of the associated evolved exploits. Moreover, it is
also apparent that although configuring Stide using a single use case represents
a more difficult problem, all attacks returned a lower anomaly rate than the
original core attack. The principle difference between the two use cases appears
to be manifest in the degree of variation in the attacks, with the more difficult
scenario resulting in a lower variance in anomaly rates. Conversely, there is
very little variation in best case attack anomaly rates, with all search opera-
tor combinations returning attacks with anomaly rates lower than 4% under
Stide configured with 5 use cases, and less than 6.5% anomaly rate under Stide
configured using a single use case.

8



Figure 2: Anomaly rate of attacks (exploit + preamble) against Stide configured
over all five use cases.

Table 4: Percent anomaly rate of best case attacks (exploit + preamble) evolved.
use Without With
case Preamble Preamble

Exhaustive Search
nist 2.83% 1.06%
all 5 2.83% 1.06%

Evolutionary Search
nist 7.42% 6.36%
all 5 6.36% 5.3%

9



5 Conclusion
In this work, we developed an evolutionary mimicry attack approach to perform
vulnerability testing on the well known Stide host based anomaly detector whilst
treating the detector as a black box. That is to say, unlike previous approaches
to mimicry attack generation, information from the detector is limited to that
available to a “would be” attacker. Specifically, no use is made of privileged data
structures internal to the detector. This means that the only feedback employed
from the detector during the evolution of attacks is the detector anomaly rate,
where this constitutes open information available to users as part of detector
deployment. Conversely, previous approaches to mimicry attack generation have
concentrated on reverse engineering the normal behavior database from the
detector using an exhaustive search. Such an approach would not be feasible
without access to privileged information.

A central theme in the approach is the utilization of a Genetic Algorithm to
actually automate the process of malicious code design. To do so, a framework
is utilized in which specific emphasis is placed on the: (i) Identification of an ap-
propriate set of system calls from which exploits are built, in this case informed
by the most frequently executed instructions from the vulnerable application.
(ii) Identification of appropriate goals, where these take two basic forms, min-
imization of detector anomaly rate, whilst matching key steps in establishing
the ’core’ exploit. (iii) Support for obfuscation, where in this case this is a
direct side effect of the stochastic search operators inherent in an evolution-
ary search. (iv) Search operators benefit from instruction wise mutation and
an anealing scheme. Inclusion of a greedy instruction wise mutation operator
is also beneficial, but expensive computationally on account of the number of
fitness evaluations necessary to resolve a single application of the operator.

Future work will investigate the optimization of search operators for identi-
fying detector blind spots more effectively than is currently the case. Moreover,
we are interested in integrating attack evolution into a co-evolutionary context.
That is to say, coevolution of attack-detector pairs will enable attacks previ-
ously unseen in the environment to be encountered and appropriate responses
evolved on a continuous basis. A pre-requisite for such a system, however, re-
quires the development of a GP based detection paradigm based on one-class
training. Specifically, in order to avoid the issue of finding an appropriate char-
acterization of normal behavior (an exceptionally difficult task, that typically
results in system specific solutions) we recommend the utilization of classifiers
trained on attack data alone. Such a class of classifier has been demonstrated
using SVMs, but is still outstanding within a GP context.

10



Acknowledgements

References
[1] D. Wagner and P. Soto, Mimicry attacks on host based intrusion detection

systems, ACM Conference on Computer and Communications Security, pp.
255-264, 2002.

[2] Tan, K.M.C., Killourhy, K.S., Maxion, R.A., Undermining an Anomaly-
based Intrusion Detection System using Common Exploits, RAID’2002,
LNCS 2516, pp 54-73, 2002.

[3] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, Automating
mimicry attacks using static binary analysis, Proceedings of the USENIX
Security Symposium, pp. 717-738, 2005.

[4] K. M. C. Tan, John McHugh, Kevin S. Killourhy, Hiding Intrusions: From
the Abnormal to the Normal and Beyond, Symposium on Information Hid-
ing, pp. 1-17, 2002.

[5] H.G. Kayacik, A.N. Zincir-Heywood, M.I. Heywood, Evolving Successful
Stack Overflow Attacks for Vulnerability Testing, 21st Annual Computer
Security Applications Conference, pp. 225-234, 2005.

[6] H.G. Kayacik, M.I. Heywood, A.N. Zincir-Heywood. On Evolving Buffer
Overflow Attacks using Genetic Programming. Proceedings of the Genetic
and Evolutionary Computation Conference, SIGEVO, Volume 2, ACM
Press, 1667-1673, July 8-12, 2006.

[7] University of New Mexico, Computer Science Depart-
ment, Computer Immune Systems Data Sets and Software,
http://www.cs.unm.edu/~immsec/data-sets.htm, Last accessed May
2006.

[8] Securiteam Web Site, Linux Traceroute Exploit Code Released (GDB),
Oct 2002, http://www.securiteam.com/exploits/6A00A1F5QM.html, Last
accessed May 2006.

11


