
Scaling Genetic Programming to Large Datasets

using Hierarchical Dynamic Subset Selection∗

Robert Curry, Peter Lichodzijewski, and Malcolm I. Heywood†

July 26, 2007

Abstract

The computational overhead of Genetic Programming (GP) may be

directly addressed without recourse to hardware solutions using active

learning algorithms based on the Random or Dynamic Subset Selection

heuristics (RSS or DSS). This work begins by presenting a family of hierar-

chical DSS algorithms: RSS-DSS, cascaded RSS-DSS, and the Balanced

Block DSS algorithm; where the latter has not been previously intro-

duced. Extensive benchmarking over four unbalanced real-world binary

classification problems with 30,000 to 500,000 training exemplars demon-

strates that both the cascade and Balanced Block algorithms are able

to reduce the likelihood of degenerates, whilst providing a significant im-

provement in classification accuracy relative to the original RSS-DSS algo-

rithm. Moreover, comparison with GP trained without an active learning

algorithm indicates that classification performance is not compromised,

while training is completed in minutes as opposed to half a day.

∗Paper published in IEEE Transactions on Systems, Man, and Cybernetics: Part B. 37(4)
2007

†Faculty of Computer Science, Dalhousie University, NS. Canada

1

1 Introduction

Genetic Programming (GP) is a supervised machine learning paradigm in which

multiple candidate solutions are investigated concurrently (the population) [1].

Such an approach provides the practitioner with unique opportunities for re-

solving the principle machine learning questions of cost (fitness) function de-

sign, credit assignment (exploration-exploitation tradeoff), and representation.

However, such flexibility comes at a significant computational cost, typically

limiting the application of the approach to relatively small datasets; that is, at

most thousands of training exemplars. This is basically a factor of the cost as-

sociated with evaluating the performance of a population of individuals across

the training dataset and the stochastic nature of the learning algorithm i.e.,

multiple runs are required over different initial populations in order to establish

the statistical significance of results. Thus, typical parameters for a canonical

GP [1] might imply 50 iterations of a population of 4,000 individuals over at

least 30 runs, or a total of six million fitness evaluations; where each evaluation

requires that the error be evaluated across the entire training dataset. Each

time a parameter is modified the entire process is repeated.

In this work we are interested reducing the significance of the computational

overhead in evaluating fitness without recourse to hardware speedups. The basic

model investigated in this work is that of active learning. Such a paradigm

recognizes that as the model(s) produced by the learning algorithm improve

at each iteration, why not use the performance of the models to guide the

selection of exemplars used for training. Thus, as model performance improves

the number of exemplars over which training is conducted also decreases. Within

the context of GP the active learning paradigm most widely used is that of

Random Subset Selection (RSS) and Dynamic Subset Selection (DSS) [2]. The

DSS framework introduces the concepts of exemplar age and difficulty to bias

2

the stochastic selection of training exemplars appearing in the subset over which

GP individuals are actually trained. Recently, the concept of hierarchical DSS

active learning algorithms for GP was introduced in order to scale the DSS

approach to very large datasets (i.e., those that exceed cache memory) [3, 4, 5].

One disadvantage of the hierarchical DSS approach to active learning is that

relationships between minor and major class distributions are fixed. This can

lead to degenerate solutions in which all exemplars are labeled as the major

class. In this work a hierarchical model for constructing training subsets is

proposed for which the distribution of class exemplars is no longer fixed, the

Balanced Block DSS algorithm. In addition, the concept of a cascaded model

building is investigated, where the computational cost of such a scheme has

previously precluded the use of such a model under a GP context. Extensive

benchmarking over large unbalanced real-world binary classification datasets

(30,000 to 500,000 training exemplars) demonstrate the superiority of the Bal-

anced Block and cascaded schemes at avoiding degenerate solutions. Ultimately,

the cascaded model provides the highest accuracy, whereas the Balanced Block

algorithm provides better accuracies than the original hierarchical active learn-

ing scheme whilst maintaining the same computational cost.

In the following, Section II provides a short survey of related work. Section

III establishes pertinent background to GP supervised learning, and summarizes

the previous and proposed DSS based active learning algorithms. Details of

the original hierarchical RSS-DSS active learning algorithm [3, 4, 5] and the

Balanced-Block DSS algorithm proposed by this work are given in Section IV.

In addition a Cascaded GP methodology [6, 7] is also summarized, where this

requires the hierarchical RSS-DSS scheme to maintain computational feasibility.

The experimental methodology is established in Section V, and performance

detailed in Section VI. Section VII concludes the paper.

3

2 Related Work

2.1 Ensemble Methods

Within the context of supervised learning, the significance of data sampling al-

gorithms have been widely acknowledged albeit with the motivation to improve

error performance. Bagging and boosting are both data sampling algorithms

that have the capacity to improve weak learners in that they exploit the insta-

bility inherent in the learning algorithms. Although GP is not a weak learner,

favorable results have been reported using ensemble methods. Specifically, Iba

and then Paris et al. applied boosting to GP with an emphasis on error min-

imization, and indeed found that boosting greatly improved GP performance

[8, 9]. Their focus did not concern large datasets and indeed the use of large

datasets would not be feasible under the scheme proposed. Furthermore, both

bagging and boosting, as originally defined, do not directly address the com-

putational overhead of GP fitness evaluation or the overhead associated with

dealing with datasets that do not fit within RAM alone. However, recent work

has combined parallel implementaions of GP (i.e., explicit hardware support in

the form of a Beowulf cluster) with ensemble learning. The technique requires

that the training data be partitioned and spatially distributed, with different

partitions of the dataset appearing at different nodes in the Beowulf cluster. Dif-

ferent classifiers are trained on different subsets of the dataset and recombined

using a suitable voting scheme [10].

2.2 Limited Error Fitness

Using the limited error fitness (LEF) algorithm of [11] a GP individual’s fitness

is related to how many of the ordered set of training exemplars it classifies cor-

rectly before it makes a certain number of misclassifications. After exceeding

4

this error limit any cases not yet covered by the individual are counted as mis-

classified. The fitness score is then the total number of misclassified exemplars;

thus, it is quicker to find the fitness of a poor GP individual than a good GP in-

dividual which saves CPU time. However, the LEF algorithm introduced several

parameters for controlling the change in difficulty of the problem in response

to the performance of the population in the previous generation [11]. LEF was

sensitive to the choice of values for these parameters. Furthermore, even though

individual fitness evaluations are quick, LEF was found to require many more

generations, further impacting the computational overhead of the algorithm.

2.3 Topology-Based Subset Selection

The authors of [12] developed a subset selection method that gathers information

about the problem structure being examined during the evolutionary search.

Such information is expressed as a topology on the set of fitness cases, where the

topology is represented by an undirected weighted graph. The authors maintain

that this topology-based selection (TBS) helps to improve the performance of

GP by allowing dynamically smaller and more suitable subsets to be selected.

The most computationally expensive tasks in TBS are the adaptation of the

topology and the requirement that the edge values in the graph need to be sorted

to select the subset at each generation. This scales approximately quadratically

with training set size. The sorting of the edge weights for a dataset of size N in

just one generation would be on the order of O(N2 log N2) [12].

3 Genetic Programming and Active Learning

GP is a supervised machine learning algorithm based on the neo-Darwinian con-

cepts of natural selection and survival of the fittest [1]. Operators responsible

for addressing the credit assignment problem therefore take the form of a popu-

5

1. Initialize population of Programs;

2. Read training dataset;

3. while (stop criteria NOT satisfied)

(a) Select programs for fitness evaluation (members of the tournament);

(b) while (program < TournamentSize)

i. while (pattern < NumPatterns)
A. Run program on pattern;

ii. Update fitness of program;

(c) Apply search operators;

(d) Update population;

Figure 1: Generic Genetic Programming Training Algorithm

lation based selection operator and genetically motivated search operators. The

algorithm is inherently iterative, with the population of candidate solutions first

being ranked using their relative fitness i.e., performance on the training data

(Figure 1). A selection operator stochastically selects individuals for reproduc-

tion, Step 3(a). Search operators are stochastically applied to build children

appearing in the next population, Step 3(c). Such search operators take their

motivation from genetics and typically take the form of mutation and crossover.

Steps 3(a) to 3(d) constitute a training epoch or ‘tournament’ and repeat until

the termination criterion is satisfied i.e., when a predefined performance target

is reached or after a fixed number of tournaments has elapsed.

From Figure 1 it is apparent that the time required to build solutions is

proportional to the number of tournaments and the size of the dataset. In fact,

relatively little CPU time is expended on other tasks of the algorithm, such

as the creation of the initial random population and the application of search

operators. In this work it is proposed that there are at least two aspects to

the problem of efficiently training GP on large datasets. Firstly, there is the

widely acknowledged computational overhead associated with establishing pro-

6

gram fitness, or the GP inner loop (Figure 1 Step 3(b)). This overhead has

traditionally been addressed by some form of hardware solution. Specific exam-

ples include evolution at the level of machine language [13] or by parallelizing

fitness evaluation using systems such as Beowulf clusters [14, 10], super com-

puters [15], and Field Programmable Gate Arrays [16]. Secondly, there is a less

widely acknowledged overhead, that of managing datasets that cannot reside

within RAM alone. For datasets of much more than a thousand or so records,

reading the entire dataset into cache may not be possible. Therefore, sequen-

tially presenting the entire dataset to each individual at each generation (Figure

1, 3(b)i) will not make efficient use of the localized spatial and temporal access

patterns on which cache memory and memory hierarchies are based [17]. As

mentioned in the introduction these problems will be addressed through recog-

nizing that any learning algorithm need only see a subset of the total dataset,

where the sampling process used to identify such a subset of exemplars should

also be sympathetic to the memory hierarchy of the computing platform.

In order to address these points we build on the Dynamic Subset Selection

(DSS) active learning algorithm [2] and a hierarchical variant RSS-DSS [3, 4, 5].

This provides the motivation for the Balanced Block DSS algorithm introduced

in this work. Moreover, in order to provide a complete picture of the various

performance tradeoffs, the cascaded variant of the RSS-DSS algorithm [6, 7] is

also benchmarked.

3.1 Hierarchical Subset Selection Algorithms

3.1.1 Hierarchical Random and Dynamic Subset Selection

For very large datasets that do not fit within RAM alone, the use of subset

selection algorithms will still require multiple slow hard disk accesses in or-

der to support the selection of subsets. Therefore, in the work of [3, 4] the

7

Figure 2: RSS-DSS Hierarchical Subset Selection Architecture.

Dynamic Subset Selection (DSS) algorithm was extended into a hierarchy of

subset selections, to match the concept of memory hierarchies as supported in

modern computers. This hierarchical subset selection algorithm has been re-

implemented in this work for benchmarking purposes. First the entire training

dataset is partitioned into blocks that are small enough to fit within RAM (Fig-

ure 2 level 0). Blocks are then chosen from the partitioned dataset with uniform

probability, that is Random Subset Selection (RSS). This forms level 1 of the

selection hierarchy. Level 2 of the selection hierarchy used the method of DSS

to stochastically select exemplars form the block identified at level 1, biased by

exemplar difficulty and age. Multiple level 2 subsets are selected for each level

1 block selection. Hereafter we refer to this as the RSS-DSS algorithm.

3.1.2 Cascaded GP

The availability of active learning algorithms, such as the RSS-DSS algorithm,

provide the opportunity to build classifiers with a greater degree of accuracy

than was previously the case. To do so, use was made of the cascade cor-

relation architecture originally proposed within the context of neural networks

[18, 19]. The approach provides the basis for incrementally building increasingly

8

sophisticated classifiers. Such a scheme provides the opportunity to refocus each

additional classifier on the remaining residual error, with respect to models pre-

viously built. Naturally, classifiers comprising the cascade are trained over the

entire training dataset, with the feature set being augmented with the results

from each previous GP model output, resulting in an increase in the dimen-

sionality of the original training dataset. Needless to say, such a scheme is only

feasible for GP when utilizing an active learning algorithm, in this case RSS-DSS

[6, 7].

3.1.3 Balanced Block Dynamic Subset Selection

A potential drawback of the original RSS-DSS algorithm was that no attempt

was made to explicitly ensure that subsets over which GP classifiers are trained

contain both in and out of class exemplars. As a consequence degenerate solu-

tions might well dominate the population. To this end we introduce the Bal-

anced Block Dynamic Subset Selection algorithm, or BB-DSS. The principle

motivation for this scheme is to organize the content of each block such that

the distribution of exemplar classes has a fixed ratio, where this need not be

limited to the original class distribution. Indeed, in the case of very unbalanced

datasets, it may be advantageous for the minor class to be over represented rel-

ative to the original distribution. To do so, the BB-DSS algorithm first divides

the training dataset into its separate classes (Figure 3 level 0). The separate

classes are then divided into ‘partitions’ corresponding to the distribution of that

class for representation in the block. Level 1 block selections are then defined

in terms of selecting a partition from each class by means of the DSS algorithm.

This requires that the concepts of age and difficulty be extended to the parti-

tions of each exemplar class. Partitions are now chosen stochastically, with a

bias towards partition difficulty and age. This naturally relaxes the assumption

made by the RSS-DSS hierarchy that all blocks are equally difficult [3, 4, 5].

9

Figure 3: Balanced Block DSS Architecture

Detailed descriptions of all three hierarchical subset selection algorithms will

follow in Section 4.

4 Algorithm Details

As indicated above, our principle interest lies in the investigation of exemplar

sub-sampling algorithms, which filter the dataset in proportion to the ‘age’

and ‘difficulty’ of exemplars as viewed by the learning algorithm, while also

incorporating the concept of a memory hierarchy. To this end, the methodologies

for the three hierarchical subset selection techniques are detailed in Sections 4.2,

4.3 and 4.4. However, we begin by summarizing the specific type of GP utilized

in this work (for a tutorial level presentation of GP see [21]), although any

generic form of GP will suffice, Section 4.1.

4.1 Linearly-structured GP

In this work the GP representation takes the form of a linear structure, hereafter

referred to as L-GP [13, 20, 21]. That is to say, rather than expressing individu-

10

als using the tree like structure popularized by the work of Koza [1], individuals

are expressed as a linear list of instructions which are executed sequentially.

Execution of an individual therefore mimics the process of program execution

normally associated with a simple register machine. Instructions are defined in

terms of an opcode and operand that modify the contents of general purpose

registers {R[0],...,R[k]}, memory and program counter. Output of a program is

taken from a predefined register upon completion of program execution.

The selection operator takes the form of a steady state tournament (Figure

1, Step 3(a)). This means that rather than attempting to build an entirely new

population at each ‘generation’ using a roulette wheel and fitness proportional

selection [1], we select a much smaller subset of individuals of size T (the size

of the tournament). Only these individuals have their fitness evaluated, with

the best T/2 individuals providing children through application of the search

operators. The children replace the individuals in the original population cor-

responding to the worse performing T/2 individuals of the tournament. Such

steady state schemes have been shown to have higher takeover rates than genera-

tional based selection operators and have been applied in both L-GP [13, 21, 22]

and GA contexts [23].

In an attempt to make the action of the crossover operator less destruc-

tive, the location of crossover points remains constant [22]. An individual is

described in terms of a number of pages, where each page has the same number

of instructions. Crossover is limited to the exchange of single pages between

two parents. Moreover, a mechanism for dynamically changing page size was

introduced, thus avoiding problems associated with the a priori selection of a

specific number of instructions per page at initialization.

Mutation operators take two forms. In the first case the ‘mutation’ operator

selects an instruction for modification with uniform probability and replaces

11

it with a different instruction from the instruction set. The second mutation

operator ‘swap’ is designed to provide sequence modification. To do so, two

instructions are selected within the same individual with uniform probability

and their positions exchanged. The motivation behind the swap operator is

that the sequence in which instructions are executed within a program has

a significant effect on the solution. Thus, a program may have the correct

composition of instructions but specified in the wrong order.

The above constraints on the operation of the crossover operator implies

that once initialized the length of an individual (the number of pages multiplied

by the number of instructions per page) never changes. As a consequence the

population is initialized over the permitted range of program lengths ([8, ...,

256] in this work).

4.2 RSS-DSS Algorithm

The basic formulation for the hierarchical sampling of training exemplars divides

the problem into three levels (Figure 2). Level 0 divides the training set into a

sequence of equal blocks. Blocks reside in memory and are chosen stochastically

with uniform probability or RSS (Figure 2). Dynamic Subset Selection (DSS)

samples the exemplars of the selected block stochastically, with a bias towards

selecting the more difficult or older exemplars [2, 3, 4, 5]. Figure 4 outlines

the general relationship between GP learning algorithm, Steps 2 and 3(b).ii to

3(b).v (highlighted in italic), and the generic form of the hierarchical active

learning algorithm.

In the case of the RSS-DSS algorithm, a block of exemplars is selected with

uniform probability (RSS) at level 1, Step 3(a). This set of exemplars is then

sub-sampled by way of DSS at level 2, Step 3(b).i, to form the set of exem-

plars over which fitness evaluation is actually performed. Updating of the DSS

12

parameters takes place at Step 3(b).iii (exemplar difficulty) and 3(b).vi (exem-

plar age). The process is then iterated for different tournament individuals and

subset composition. On reaching the stop criterion for DSS sub-samples taken

from the current block, the block error is updated, Step 3(c). Specifically, as

the ‘block’ error decreases the number of DSS iterations per block decreases,

resulting in a corresponding computational speedup [2, 3, 4, 5]. Block error is

approximated by evaluating the error of the best performing individual from

DSS, Step 3(b), but over all exemplars in the current block.

It is apparent that blocks are selected with uniform probability, level 1,

whereas subsets are selected at level 2 with a bias towards the more difficult

or least frequently selected (block) exemplars. Implicit in this model is the

assumption that all blocks are equally difficult, and that a sufficient distribution

of minor (major) class exemplars exists per block during training. Moreover,

the algorithm also assumes that the distribution of class exemplars per block is

fixed. These assumptions are a natural consequence of the block based model

used to support an efficient memory access model.

4.3 Cascaded GP Algorithm

The cascade architecture, hereafter CasGP [6, 7], adopts the scheme popularized

by the cascade correlation neural network architecture [18] and further inves-

tigated by Litmann and Ritter [19]. Figure 5, summarizes the basic process.

Models are built incrementally with the output from the best individual at each

model augmenting the dataset (Figure 5, Step 1(b)). Thus, model ‘m’ receives

an exemplar composed of the original features plus the output from the ‘m –

1’ previous models on the same exemplar (i.e., the final solution consists of a

‘cascade’ of up to ‘m’ independent GP models). Naturally, an active learning

algorithm is necessary to ensure the computational feasibility of the approach

13

1. Stratify training data (level 0);

2. Initialize population of Programs;

3. While (stop criterion == FALSE)

(a) Select Block (level 1);

(b) While (DSStermination == FALSE)

i. IF (DSSiteration MOD (SubsetFrequency))
A. THEN (Identify training subset using DSS (level 2));

ii. Select programs for fitness evaluation (members of the tourna-
ment);

iii. while (program < TournamentSize)
A. while (pattern < NumSubsetPatterns)

Run program on pattern;
Update error ;
Update exemplar difficulty;

iv. Rank programs;
v. Apply search operators;
vi. Update exemplar age;

(c) Update block error;

i. DSStermination = f(MaxDSSiteration, BlockError);

Figure 4: Generic Hierarchical DSS Algorithm. Standard GP training algorithm
steps in italic.

14

1. for (model = 0; model < maxModel; model++)

(a) GP(model) ← TrainRSS−DSS(data);

(b) cat(data, GP(model).output);

(c) IF (minERR > GP(model).SSE) THEN

i. minERR = GP(model).SSE;
ii. bestModel = model;

Figure 5: Cascade Algorithm for incrementally building GP models.

(Figure 5 Step 1(a)). The RSS-DSS algorithm is utilized for this purpose, in

line with the original CasGP algorithm [6, 7]. In addition, a record is taken

of which model (i.e., layer) minimizes the training error. That is to say, given

the stochastic nature of the GP paradigm there is no guarantee of monotonic

improvements in performance across models. Test set performance is therefore

evaluated using the model that performed best during training (Figure 5 Step

1(c)).

4.4 BB-DSS Algorithm

One approach to the problem of unevenly distributed data might be to stratify

the data such that each level one block has the same distribution as the original

data [5]. Unfortunately, when an exemplar class is very rare this scheme will also

fail since rare exemplars are still encountered very infrequently. The approach

taken here is to always have class 0 and class 1 exemplars represented in the

Level 1 block at a fixed ratio. In this way both classes can always be represented

regardless of the original size and distribution of the dataset. This approach is

termed the Balanced Block DSS algorithm, or BB-DSS.

The first stage of the BB-DSS algorithm is to stratify the original dataset

and to select the desired ratio of class 0 and class 1 exemplars to appear in

the Level 1 balanced block. Once a ratio has been selected, say 25/75 (25%

15

of the block class 1 and 75% of the block class 0), the class 1 and class 0

exemplars in the stratified dataset can be divided up into partitions (Figure 3

level 0). For example, a block size of 1000 with a 25/75 block partition ratio

would require class 1 partitions of 250 exemplars and class 0 partitions of 750

exemplars. A block can now be created by selecting a partition from each class

and combining the two partitions (Figure 3 level 1). Moreover, the number of

class 1 and 0 partitions need not be equal. The net effect is that every ‘block’ is

constructed dynamically and consists of a set of exemplars at a predefined class

ratio, independent of the initial data distribution.

4.4.1 Partition Selection

Partitions are selected for inclusion in the (level 1) block by extending the DSS

algorithm, i.e., selection is biased through the concepts of partition difficulty

and age. Specifically, partition age merely takes the form of a count, with

the least frequently selected partition having a higher probability of selection.

Partition difficulty is proportional to the difficulty of exemplars associated with

the partition. Again the most difficult partitions will have a higher probability

of selection.

In line with the above model, the probability of selecting partition i to

represent its class in the level 1 block (Figure 4 Step 3(a)), takes the form:

Prob (Part(i)) =
Partweight(i)∑
j Partweight(j)

(1)

Partweight(i) = diff × Partdiff (i)∑
j

Partdiff (j)
+ age× Partage(i)∑

j
Partage(j)

where diff is the fixed percent difficulty weighting; age is the percent age weight-

ing or, age = (1−diff); Partdiff (i) and Partage(i) are the respective partition

16

difficulty and age for partition i ; and j indexes all partitions in a class.

At initialization each partition has an age of one and a worst-case difficulty.

Therefore partition selection will initially be uniform. The age of a partition

is the number of partition selections for that class since the partition was last

selected. The difficulty of a partition, Partdiff (i), takes the form of an exponen-

tially weighted running average, thus persistent across partition selections and

robust to the performance on any one partition. Naturally, partition difficulty

is initialized with the previous value, or

Parttemp diff (i, 0) = Partdiff (i− 1); (2)

Once initialized, the partition difficulty receives an incremental update from

each exemplar evaluated (Figure 4 Step 3(b).iii.A),

Parttemp diff (i, t) = α exemplardiff (t)

+(1− α) Parttemp diff (i, t− 1);
(3)

When the last loop on the current block is performed, the partition difficulty

is recorded, ready for initialization of the partition next time it appears in a

block, or

Partdiff (i) = Parttemp diff (i, t) (4)

where t indexes all exemplars in the current subset associated with partition i ;

exemplardiff (t) is the difficulty of exemplar t ; and α is a constant (0 < α < 1)

17

set to 0.1 in this case.

4.4.2 Subset Sampling Limit

It is now necessary to define the number of subset selections performed at level

2 of the hierarchy (Figure 4 Step 3(b)). To do so, use is made of the error on

each partition last time they were evaluated. Let Ep denote the error rate of

partition p, as defined by evaluating the program with best subset error over all

exemplars in the block (Figure 4 Step 3(c)). The previous instance of a level

1 block in which the partition was a participant is indexed by ip. The number

of subset selections is now defined in proportion to the previous performance

on each partition comprising the block. Thus the number of subset selections,

SubsetLimit, on the current block is,

SubsetLimit =
Imax

2

∑
p∈Block

Ep(ip − 1) (5)

where Imax is the maximum number of subset selections allowed per block,

and Ep is normalized to the unit interval, hence the factor of ‘2’. When both

partitions comprising the block return maximum error (i.e., both unity) Sub-

setLimit= Imax. Defining the number of subset selections in this way allows GP

to reduce the number of training rounds over partitions that were previously

found to produce a low error rate and thereby reduces computational overhead.

4.4.3 Block Sampling Limit or Global Stopping Criterion

A method is now necessary for determining the number of level 1 block selections

made (Figure 4 Step 3). Similar to the approach used for establishing updates

to partition difficulty, an exponential weighted running average is again used,

18

AvgClassErr(i) = β ErrDiff + (1− β)AvgClassErr (6)

This error is updated at the end of a level 2 round (Figure 4 Step 3(c)),

where β is a constant (set to 0.1), and ErrDiff is the absolute difference in error

before and after training partitions comprising the level 1 block:

ErrDiff = |4[Ep(i)− Ep(i− 1)]| (7)

The absolute difference in the Average Class Error, (6), after training is com-

pleted on a level 1 block provides a gradient, (8). This gradient is compared to

a predefined threshold, ξ, to characterize whether convergence on the current

block has taken place:

Gradient(i)=|4AvgClassError|;

IF ((Gradient(i)<ξ) AND (Gradient(i−1)<ξ))

THEN (BlockCount++)ELSE (BlockCount=0);

(8)

Moreover, by requiring that the block stop criterion is satisfied over consecutive

level 1 block selections, in this case 15, we provide the overall stopping criterion

for the Balanced Block Algorithm (Figure 4 Step 3). The corresponding block

convergence threshold, ξ, is set to 0.0025, with index i denoting the count

of consecutive block selections. Finally, given that there are two classes (i.e.,

partitions) comprising any block, we also require that the stopping criterion

holds true for both classes.

19

Table 1: Characterization of Datasets
Dataset Adult Census
Partition Training Test Training Test
Class 0 7,474 3,700 5,479 2,683
Class 1 22,688 11,360 89,651 44,708
Total 30,162 15,060 95,130 47,391

Dataset Shuttle KDD’99
Class 0 9,392 3,022 97,249 60,577
Class 1 34,108 11,478 396,744 250,424
Total 43,500 14,500 493,993 311,001

5 Experimental Methodology

5.1 Experimental Setup

As indicated in the introduction, the principle interest of this work is to sur-

vey a family of DSS active learning algorithms used for applying GP to large

datasets. To this end, experiments are reported using four large binary clas-

sification datasets: the KDD’99 Intrusion Detection dataset (the 10% KDD’99

dataset is used for training while the corrected KDD’99 dataset is used for test-

ing), taken from the 5th ACM SIGKDD Knowledge Discovery and Data Mining

Competition (1999) [24]; the Adult dataset, the Census Income dataset and the

Shuttle dataset all taken from the UCI Machine Learning Repository [25, 26].

The distribution and sizes of the four datasets is shown in Table 1. The Shuttle

dataset is originally a multi-class classification problem which was converted to

a binary classification problem by labeling class 1 exemplars as negative and all

remaining classes as positive exemplars. Moreover, in the case of the KDD’99

dataset, we are only interested in classifying normal behaviour (i.e., anomaly

detection), thus also simplifying this dataset to a binary classification problem.

The Census dataset is particularly unbalanced, with the minor class represented

at 5.76%; whereas the most balanced dataset was Adult with 24.7% representing

the minor class.

20

The stochastic basis adopted by the GP paradigm provides a mechanism for

investigating different decisions given the same search state. Unlike determinis-

tic machine learning algorithms it is then important to establish that solutions

are not due to random chance; implying that runs be conducted over at least

30 different initializations [27]. Runs differ only in their choice of random seeds

used for initializing the population, with all other parameters remaining un-

changed. Moreover, given the significance of class imbalance, the number of

degenerate solutions returned is recorded and performance metrics are reported

over the remaining runs.

The output provided by each classifier takes the form of a real value over

the interval (-1, 1). Such a scheme provides the basis for quantifying the degree

of separation associated with classifier behavior as opposed to relying on a mere

count of correctly classified exemplars. To do so, each classifier is based on a

sigmoid wrapper function, mapping the raw GP output (GPout) to the required

interval,

y =
2

(1 + exp(−GPout))
− 1 (9)

with fitness established using a sum square error fitness function, estimated over

all ‘P ’ training exemplars in the current subset,

JSSE =
∑
p∈P

(d(p)− y(p))2 (10)

For the CasGP algorithm such a fitness function was previously observed to

perform significantly better than a cross-section of alternative wrapper-fitness

function pairs [6], as well as matching the performance of fitness functions ex-

plicitly designed to promote fitness sharing between cascade layers [7].

Training was performed on a dual G4 1.33 GHz Mac Server with 1 GB

21

RAM. The best individual program of a GP run was determined by running all

programs in the population on the training dataset and selecting the program

that minimized the training error rate. The performance of the best individual

from each of the 30 GP runs was recorded in terms of training time in minutes,

error rate on the training dataset and error rate, detection rate (DR) and false

positive rate (FPR) on the test dataset. Detection rates and false positive rates

are estimated as follows,

Detection Rate = 1− # False Negatives

Total # of Positives

False Positive Rate =
False Positives

Total # of Negatives

5.2 Instruction Set

The GP instructions employ a 2-address format in which provision is made for:

up to 16 internal registers, up to 64 inputs, 8 opcodes, and an 8-bit integer

field representing constants (0-255) [22]. Two mode bits toggle between one of

three instruction types: opcode with internal register reference; opcode with

reference to input; target register with integer constant. Extension to include

further inputs or internal registers merely increases the size of the associated

instruction field. Table 2 lists the common parameter settings for all GP runs.

5.3 BB-DSS Partition Parameterization

In order to compare the results of the RSS-DSS, CasGP and BB-DSS algorithms

the parameterization of the BB-DSS algorithm in terms of the ratio of class 0 to

class 1 exemplars in the level 1 block was investigated. T-tests estimated over

the performance metrics for partition ratios of 20/80 and 37.5/62.5 on each of

22

Table 2: Parameter Settings for Dynamic Page-based Linear GP
Page Based Linear GP

Parameter Setting
Population size 125

Maximum # of pages 32
Page size 8 instructions

Maximum working page size 8 instructions
Crossover, Mutation, Swap

probability 0.9, 0.5, 0.9

Tournament size 4
Number of registers 8

Instruction type 1, 2 or 3
probability 1/11, 8/11, 2/11

Function set {+, -, ×,÷}

Terminal set {0, ..., 255} ∪
{exemplar features}

Hierarchical Subset Selection Parameters
Level 2 subset size 50
Max block selection

iterations 1000

Max subset selection
iterations (6

tournaments/iteration)
100

Level 1 block size 1000 (5000 KDD’99)

23

the four classification problems demonstrated no significant difference in the

results. However, experimentation indicated that for imbalanced datasets it is

beneficial to increase the distribution of the least represented class exemplars

in the level 1 block compared to the original data distribution. In light of this

observation, when using the BB-DSS algorithm for the following experiments

the 37.5/62.5 partition ratio was chosen for comparison.

6 Results

6.1 Adult Dataset

Table 3 summarizes training and test performance over the various metrics.

Overall it is apparent that both the RSS-DSS and CasGP algorithms have given

more emphasis to FP rate minimization; whereas BB-DSS typically emphasizes

maximization of detection rate. Under the distribution of major/minor class

exemplars associated with the Adult dataset this BB-DSS policy results in an

inferior overall error rate. Moreover, the performance of the CasGP algorithm

is much more consistant, emphasizing the benefit of incrementally building so-

lutions from multiple classifiers.

6.2 Census Dataset

Once again the CasGP algorithm has the lowest median error rates on both

the training and test datasets (Table 4). The RSS-DSS algorithm, on the other

hand, rarely achieves better than the degenerate error rate of approximately

5.66% on the test dataset (the degenerate error rate can be achieved by a solution

labeling every exemplar as the major class). The BB-DSS algorithm has the

tightest quartiles in terms of error rates and has medians that, although better

than the RSS-DSS algorithm, do not approach that of the CasGP algorithm. T-

24

Table 3: Adult Results
RSS-DSS CasGP BB-DSS

Training Error
1st Quartile 17.698 16.091 19.273

Median 18.891 16.284 21.378
3rd Quartile 20.718 16.524 23.016

Test Error
1st Quartile 17.839 16.212 19.170

Median 19.031 16.378 21.295
3rd Quartile 20.624 16.570 22.430

Test DR
1st Quartile 91.637 92.232 92.685

Median 92.694 92.742 95.845
3rd Quartile 97.364 93.418 96.347

Test FPR
1st Quartile 46.176 42.736 55.297

Median 51.541 44.689 71.541
3rd Quartile 73.378 45.757 78.919

tests for training and test error rates between the CasGP and BB-DSS algorithm

return p-values of 8.57×10−5 and 4.97×10−4 respectively, therefore the results

are statistically independent at the 95% confidence interval under both training

and test conditions.

In summary, for the Census dataset the CasGP and the BB-DSS algorithm

result in better test error rates than the RSS-DSS algorithm due to an improved

detection rate distribution. However, the CasGP algorithm also appears to

benifit from having a little better FP distribution thereby resulting in a better

overall error rate on the Census dataset than the BB-DSS algorithm.

6.3 Shuttle Dataset

Table 5 summarizes performance on the Shuttle dataset. Both the CasGP

and BB-DSS algorithms are significantly better than the RSS-DSS algorithm

in terms of median error rate and consistency. For this dataset the CasGP al-

gorithm had the best median error rate on the training dataset although this

25

Table 4: Census Results
RSS-DSS CasGP BB-DSS

Training Error
1st Quartile 5.625 5.173 5.468

Median 5.788 5.252 5.512
3rd Quartile 5.978 5.356 5.591

Test Error
1st Quartile 5.707 5.099 5.292

Median 5.551 5.169 5.391
3rd Quartile 5.904 5.270 5.440

Test DR
1st Quartile 98.308 98.999 99.096

Median 98.960 99.312 99.312
3rd Quartile 99.547 99.512 99.522

Test FPR
1st Quartile 78.466 74.953 80.339

Median 81.327 79.240 83.340
3rd Quartile 88.744 82.864 86.974

did not translate into the best median error rate on the test dataset, which

was returned by the BB-DSS algorithm. The CasGP algorithm was the most

consistent algorithm in terms of training and test error rates.

All three algorithms show a very high median detection rate with the BB-

DSS algorithm having the highest and the CasGP algorithm being the most

consistent (Table 5). In terms of false positive rates the RSS-DSS algorithm fares

the worst again, with the CasGP and BB-DSS algorithms being competitive in

terms of median FPR and the BB-DSS algorithm being the most consistent.

On the Shuttle dataset the BB-DSS algorithm outperforms the RSS-DSS

algorithm. Furthermore, the CasGP algorithm does not seem to improve on

the results achieved by the BB-DSS algorithm. This results in the BB-DSS

algorithm providing the best classifier for the Shuttle dataset.

26

Table 5: Shuttle Results
RSS-DSS CasGP BB-DSS

Training Error
1st Quartile 0.957 0.312 1.081

Median 2.184 0.914 1.267
3rd Quartile 4.723 1.154 2.821

Test Error
1st Quartile 0.948 0.284 0.186

Median 2.214 0.917 0.493
3rd Quartile 5.019 1.084 2.183

Test DR
1st Quartile 97.761 99.124 97.687

Median 99.207 99.525 99.834
3rd Quartile 99.948 99.965 99.991

Test FPR
1st Quartile 0.728 0.695 0.670

Median 2.697 1.158 0.893
3rd Quartile 15.139 2.813 1.456

6.4 KDD’99 Dataset

Table 6 summarizes performance on the KDD’99 dataset. As on the Shuttle

dataset, despite the CasGP algorithm having the lowest median error rate on

the training dataset the BB-DSS algorithm has the lowest median test error

rate. T-tests between BB-DSS and RSS-DSS for test error rates gives a p-value

of 5.71×10−4 and between BB-DSS and CasGP a p-value of 6.50×10−13, which

indicates that there is a significant statistical difference between the algorithms’

results. Also the RSS-DSS algorithm is competitive with the CasGP algorithm

in terms of median test error rate. The CasGP and BB-DSS algorithms were

more consistent than the RSS-DSS algorithm for both training and test.

Despite the CasGP algorithm having the lowest median error rate on the

training dataset the BB-DSS algorithm provides the best classifier of the three

algorithms on the KDD’99 dataset having the lowest median test dataset er-

ror rate and the lowest median false positive rate, which again is statistically

significant with t-tests returning a p-value of 2.82 × 10−2 when compared to

27

Table 6: KDD’99 Results
RSS-DSS CasGP BB-DSS

Training Error
1st Quartile 1.238 0.581 1.034

Median 1.553 0.641 1.201
3rd Quartile 2.285 0.758 1.238

Test Error
1st Quartile 8.631 8.675 7.641

Median 8.847 8.851 7.868
3rd Quartile 9.372 8.968 7.974

Test DR
1st Quartile 89.500 89.535 90.298

Median 90.077 89.730 90.491
3rd Quartile 90.301 89.915 90.763

Test FPR
1st Quartile 2.314 2.113 0.271

Median 3.662 2.757 0.807
3rd Quartile 5.937 3.402 1.124

RSS-DSS and 1.47× 10−3 when compared to CasGP. Furthermore BB-DSS has

the highest median detection rate which is statistically significant compared to

CasGP with a t-test returning a p-value of 3.57× 10−8. Given the disparity be-

tween training and test performance it is possible that CasGP has overlearned

the training data; whereas the partition based stopping criteria associated with

the BB-DSS algorithm might decrease the likelihood of this.

6.5 Run Times and Degenerate Solution Frequencies

Table 7 shows the quartile run times for the BB-DSS algorithm on the Adult,

Census and Shuttle dataset and the run times of the RSS-DSS, CasGP and BB-

DSS algorithms on the KDD’99 dataset. On the KDD’99 datasets the CasGP

algorithm clearly costs the most to train. However, a contributing factor to

this is not so much GP as the routine used to append the training data with

an additional ‘feature’ each time a new classifier is added to the cascade (the

current routine uses a perl script). The BB-DSS algorithm was very effective

28

Table 7: 1st, 2nd (median) and 3rd quartile run times in minutes
Dataset Adult Census Shuttle

Algorithm BB-DSS
1st Quartile 2.18 5.12 1.61

Median 4.52 10.63 2.53
3rd Quartile 8.84 10.70 5.07

Dataset KDD’99
Algorithm RSS-DSS CasGP BB-DSS

1st Quartile 75.95 1071.50 20.09
Median 87.97 1121.11 28.36

3rd Quartile 102.88 1161.67 32.65

Table 8: Degenerates
Adult Census Shuttle KDD’99

RSS-DSS 6.6% 80% 0% 10%
CasGP 0% 0% 0% 0%
BB-DSS 3.3% 73.3% 0% 0%

on the Shuttle dataset, where the combination of an active learning algorithm

and an early stopping criteria resulted in a median training time nearly twice

as fast as on the Adult dataset despite there being 13,000 more exemplars in

the Shuttle dataset.

Table 8 lists the total number of degenerate solutions found by each GP

algorithm on each of the four datasets. The RSS-DSS and BB-DSS algorithms

appear to have particular difficulty with the imbalanced Census dataset; however

the BB-DSS algorithm is more consistant at avoiding degenerate solutions as a

whole than RSS-DSS (lower degenerate counts over more datasets). The CasGP

algorithm clearly fares the best in terms of avoiding degenerate solutions. We

attribute this to the process of repeated error refinement over multiple layers as

opposed to the one shot approach to learning taken by the RSS-DSS and BB-

DSS algorithms. In addition, degenerate models that might exist in the cascade

can be corrected by models added later in the architecture, thus not reflected

in Table 8.

29

Table 9: Best Case Results on Adult dataset
Active Learning

Model RSS-DSS CasGP BB-DSS
Error 16.55 16.02 16.45

Canonical GP
Node limit 256 1024 4096

Error 16.85 16.61 16.77
Time(hrs) 15.74 41.0 371.45

6.6 Canonical Tree GP without Active Learning

Results were also obtained on the adult dataset for a tree GP implementa-

tion (as opposed to linear GP) that does not use hierarchical subset selection.

Specifically, the results were obtained using lilGP, which is an efficient C-based

implementation of the original tree-structured GP [28]. Populations of 4000

individuals were used and the crossover, reproduction, and mutation probabili-

ties were set to 90%, 10% and 0% respectively (i.e., Koza’s canonical GP). The

function set was limited to the case of arithmetic operators, as in the above

results. Three cases were considered: the first used a node limit of 256, the

second used a node limit of 1024 and the third used a node limit of 4096. This

latter node limit corresponds to the case of a CasGP solution with 16 layers

(each layer having an instruction limit of 256). Simulations were performed on

an iMac desktop computer with a 1.25GHz G4 processor and 1 GB of RAM.

For each case, ten runs of lilGP were performed and the results for the run with

the lowest training error rate are shown in Table 9. The error rates are given

in percent and training time is in hours. The extensive computational overhead

limited the number of runs to ten per lilGP configuration.

The comparison provided by Table 9 indicates that GP algorithms with

hierarchical subset selection provide competitive accuracies with canonical GP.

In terms of run times the median BB-DSS results took less than 5 minutes (see

Table 7) when compared to the 15 hours and above required for the standard GP

30

algorithm. Thus, the family of GP active learning algorithms are successfully

able to decrease run time while maintaining competitiveness with canonical

tree-based GP trained over the entire dataset.

7 Conclusion

This work benchmarks a family of Dynamic Subset Selection algorithms for scal-

ing binary classifiers built under the GP paradigm to large unbalanced datasets

without recourse to hardware specific speedups. The principle observation sup-

porting this is that not all exemplars are created equal. Thus, as the current

solution improves, then the number of exemplars of relevance for distinguishing

between the performance of (GP) learners also decreases. Two heuristics are

used to identify appropriate exemplars, age and difficulty. Age ensures that

exemplars previously correctly classified are not forgotten, whereas difficulty is

used to provide feedback on how frequently an exemplar is misclassified. Sup-

port for very large datasets is incorporated by introducing the concept of blocks

of training data, where a block is small enough to reside in cache alone.

Three formulations of this hierarchical model are considered, the RSS-DSS

algorithm, CasGP, and the Balanced Block DSS algorithm. The baseline RSS-

DSS algorithm assumes an a priori relation between training exemplars and

blocks, only utilizing the Dynamic Subset Selection algorithm to select suitable

training subsets relative to the fixed block content. The CasGP algorithm uses

the RSS-DSS algorithm to provide the basis for building cascades of GP classi-

fiers, up to a predefined number of layers. The serial nature of constructing the

CasGP model does, however, imply that the overall training time exceeds that

for both RSS-DSS and the Balanced Block algorithms, but remains significantly

faster than canonical GP.

The proposed Balanced Block algorithm results in a model based on a sin-

31

gle classifier, but introduces a more sophisticated methodology for building the

blocks than the original RSS-DSS algorithm. This enables blocks and the en-

suing Dynamic Subset Selection process to increase the representation of the

minor class, whilst also carrying the concept of exemplar difficulty and age to

the original dataset (both RSS-DSS and CasGP assume block selection of uni-

form probability). As such the Balanced Block algorithm is able to approach

the classification performance of the CasGP algorithm, whilst retaining the com-

putational speedup of the original RSS-DSS algorithm (i.e., a single classifier

model). Key to achieving this was the partition based stop criterion of the

BB-DSS algorithm, where this was able to successfully avoid over-learning on

two of the datasets considered. A natural extension of the Balanced Block and

cascade architectures would therefore be to replace the RSS-DSS algorithm in

CasGP with the BB-DSS algorithm.

References

[1] J.R. Koza, Genetic Programming: On the Programming of Computers by

Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[2] C. Gathercole, and P. Ross, “Dynamic Training Subset Selection for Su-

pervised Learning in Genetic Programming,” in Proc. 3rd Conf. Parallel

Problem Solving from Nature, Lecture Notes in Computer Science, vol.

866, pp. 312-321, 1994.

[3] D. Song, M. I. Heywood, and A. N. Zincir-Heywood, “A Linear Genetic

Programming Approach to Intrusion Detection,” in Proc. Genetic and Evo-

lutionary Computation Conference, Lecture Notes in Computer Science,

vol. 2724, pp. 2324-2336, 2003.

32

[4] D. Song, M. I. Heywood, and A. N. Zincir-Heywood, “Training Genetic

Programming on Half a Million Patterns: An Example from Anomaly De-

tection,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 3,

pp. 225-239, 2005.

[5] R. Curry, and M. I. Heywood, “Towards Efficient Training on Large

Datasets for Genetic Programming,” in 17th Can. Soc. Comp. Stud. Intel.

Conf. Adv. Artificial Intelligence, Lecture Notes in Artificial Intelligence,

vol. 3060, pp. 161-174, 2004.

[6] P. Lichodzijewski, M. I. Heywood, and A. N. Zincir-Heywood, “Cascaded

GP Models for Data Mining,” in IEEE Congress on Evolutionary Compu-

tation vol. 2, pp. 2258-2264, 2004.

[7] P. Lichodzijewski, M. I. Heywood, and A. N. Zincir-Heywood, “CasGP:

Building Cascaded Hierarchical Models using Niching,” in IEEE Congress

on Evolutionary Computation, vol. 2, pp. 1180-1187, 2005.

[8] G. Paris, D. Robilliard, and C. Fonlupt, “Applying Boosting Techniques to

Genetic Programming,” in Int. Conf. Artificial Evolution, Lecture Notes in

Computer Science, vol. 2310, pp. 267-278, 2001.

[9] H. Iba, “Bagging, Boosting and Bloating in Genetic Programming,” in

Proc. 1st Genetic and Evolutionary Computation Conference, pp. 1053-

1060, 1999.

[10] G. Folino, C. Pizzuti, and G. Spezzano, “GP Ensembles for Large-Scale

Data Classification,” IEEE Transactions on Evolutionary Computation,

vol. 10, no. 5, pp. 604-616, 2006.

33

[11] C. Gathercole, and P. Ross, “Tackling the Boolean Even N Parity Problem

with Genetic Programming and Limited-Error Fitness,” in Proc. 2nd Ann.

Conf. Genetic Programming, pp. 119-127, 1997.

[12] C. Lasarczyk, P. Dittrich, and W. Banzhaf, “Dynamic Subset Selection

Based on a Fitness Case Topology,” Evolutionary Computation, vol. 12,

no. 2, pp. 223-242, 2004.

[13] P. Nordin, “A Compiling Genetic Programming System that Directly Ma-

nipulates the Machine Code,” in Advances in Genetic Programming, Kin-

near K.E. (ed.), Chpt. 14, Cambridge, MA: MIT Press, pp. 311-334, 1994.

[14] F.H. Bennett III, J. R. Koza, J. Shipman, and O. Stiffelman, “Building

a Parallel Computer System for $18,000 that Performs a Half Petra-Flop

per Day”, in Proc. Genetic and Evolutionary Computation Conference, pp.

1484-1490, 1999.

[15] H. Julle, and J. B. Pollack, “Massively Parallel Genetic Programming,” in

Advances in Genetic Programming 2 Chapter 17, P.J. Angeline, and K.E.

Kinnear (eds.), Chpt. 17, Cambridge, MA: MIT Press, 339-358, 1996.

[16] J. R. Koza, F.H. Bennett III, J. L. Hutchings, S. L. Bade, M. A. Keane

M.A., and D. Andre, “Evolving Computer Programs using Rapidly Recon-

figurable Field Programmable Gate Arrays and Genetic Programming,”

in Proc. ACM 6th International Symposium on Field Programmable Gate

Arrays, ACM Press, pp. 209-219, 1998.

[17] J. L. Hennessy, and D. A. Patterson, Computer Architecture: A Quantita-

tive Approach. 3rd Ed., San Francisco, CA: Morgan Kaufmann, 2002.

34

[18] S. E. Fahlman S.E., and C. Lebiere, “The Cascade-Correlation Learning

Architecture,” in Proc. Advances in Neural Information Processing Systems

2, pp. 524-532, 1990.

[19] E. Litmann, and H. Ritter, “Cascade Network Architectures,” in Proc.

IEEE-INNS Int. J. Conf. Neural Networks, pp. 398-404, 1992.

[20] L. Huelsbergen, “Finding General Solutions to the Parity Problem by

Evolving Machine-Language Representations,” in Proc. 3rd Conf. Genetic

Programming, San Francisco, CA: Morgan Kaufmann, pp. 158-166, 1998.

[21] M. Brameier, and W. Banzhaf, Linear Genetic Programming: Genetic and

Evolutionary Computation Series, Berlin: Springer-Verlag, 2007.

[22] M. I. Heywood, and A. N. Zincir-Heywood, “Dynamic Page-Based Linear

Genetic Programming,” IEEE Transactions on Systems, Man and Cyber-

netics - PartB: Cybernetics, vol. 32, no. 3, pp. 380-388, 2002.

[23] G. Syswerda, “A Study of Reproduction in Generational and Steady-State

Generational Algorithms,” in Foundations of Genetic Algorithms 1, G.J.E.

Rawlins (ed), San Francisco, CA: Morgan Kaufmann, pp 94-101, 1991.

[24] C. Elkan, “Results of the KDD’99 Classifier Learning Contest,” SIGKDD

Explorations, ACM SIGKDD, vol. 1, no. 2, pp. 63-54, 2000.

[25] D. J. Newman, S. Hettich, C. L. Blake, and C. J.

Merz, “UCI Repository of machine learning databases,”

[http://www.ics.uci.edu/˜mlearn/MLRepository.html]. Irvine, CA:

University of California, Department of Information and Computer

Science, 1998.

35

[26] S. Hettich, and S. D Bay, “The UCI KDD Archive,”

[http://kdd.ics.uci.edu]. Irvine, CA: University of California, Depart-

ment of Information and Computer Science, 1999.

[27] M. Wineberg, and S. Christensen, “Using Appropriate Statistics.” in Tu-

torial Program of the Genetic and Evolutionary Computation Conference,

J. Foster (ed), pp. 339-358, 2003.

[28] B. Punch, and E. Goodman, lilgp Genetic Programming System, v1.1

http://garage.eps.msu.edu/software/lil-gp/lilgp-index.html.

36

