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Abstract 
 
An approach making use of social insect metaphor and 
potential function clustering is employed to identify the 
connectivity pattern between clients and servers in order to 
ease the selection of mirror sites for application servers on 
computer networks. 
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1. INTRODUCTION 
 

The organization of data and services on distributed 
information systems has received interest from many 
perspectives over a long period of time, in particular 
distributed database design [1]. However, as indicated by 
Oates, Corne and Loader, this typically results in the 
problem being expressed as a single database that is 
geographicall y distributed [2]. The ensuing design 
emphasizes a very fine level of granularity – the allocation 
of data to specific files, their organization and the 
associated timing of operations. By doing so the dynamic 
properties of the network on which such systems are based 
is reduced. By taking such a view, the implicit assumption 
is that global knowledge of network load, configuration and 
routing is available. The approach taken by Oates et al. is 
therefore to consider the problem from a different 
perspective. Database servers and client nodes are 
considered to be distributed geographicall y, the variation in 
network parameters is considered to be the most important 
property, and the free parameter in this case is the client 
server interconnectivity as opposed to the movement of 
data between servers [2]. In order to address this problem, a 
matrix of communication times is used to express the time 
taken for a (client) request to be serviced (by a server). 
Such information is used to express server transaction times 
and usage profiles for clients and servers. The design 
problem is therefore to find the client-server connectivity 
pattern optimizing the overall performance of the 
distributed system. Such a problem is naturall y a function 
of the network load profile and subject to change depending 
on usage profiles. In order to address this problem, various 
GA approaches were investigated, with a particular 

emphasis placed on the identification of appropriate 
crossover, mutation, selection and fitness functions [2, 3]. 
Bil chev and Olaffson investigate the same problem, but 
with a specific emphasis on the speed/ quality tradeoff 
between GA and greedy search techniques [4].  

In both works, however, collection of the necessary 
network load profile information is not addressed. This is 
not a trivial problem as the sourcing of such information 
presents a global problem in itself [4]. Moreover, the 
algorithms employed require that reconfiguration be 
governed by a single centralized server. In this work, we 
therefore take a different approach. Firstly the collection of 
load profile information is conducted in a distributed 
manner. To do so we consider the problem from the server 
side. The objective is therefore to find the shortest path 
linking all clients to each server, where this problem is 
solved using a social insect metaphor [5]. Secondly, each 
server clusters the returned shortest path route with the 
objective of identifying potential sites for mirrors. On 
allocation of mirror sites, network load naturally changes 
and the process iterates. 

In the following, section 2 summarizes the approach 
used, detailing the modifications used to define the Ant 
System in this setting, and how the clustering problem is 
solved. Results are presented in section 3 and conclusions 
made in section 4. 

 
2. CLIENT-SERVER 

INTERCONNECTIVITY MODEL 
 

As indicated above, the first objective is to identify the 
connectivity pattern between clients and servers. This 
problem is considered to be an example of the classic 
traveling sales man problem in which distance is now 
measured in terms of time as opposed to miles between 
cities. Sub-section 2.1 details how the original Ant System 
of Dorigo et al. is adapted for this purpose [5]. At this stage 
each server has collected all the information necessary to 
make a judgment regarding its usage profile. The second 
step is to cluster this profile, thus identifying the regions of 
the distributed system most likely to benefit from mirrored 
data. Sub-section 2.2 details how Potential Function 
clustering [6] facilit ates this process. 



 -002- 

2.1 Distributed collection of connectivity 
patterns 
 

The Ant System of Dorgio et al. is a distributed 
optimization algorithm for performing a population-based 
search [5]. The social insect metaphor at the core of the 
approach has been shown to lend itself to several related 
problems, such as the packet routing problem (AntNet) [7] 
and the quadratic assignment problem [8]. Given that the 
central objective here, however, is to identify the shortest 
path linking client nodes to server nodes, without also 
optimizing routing strategies, we retain the original 
formulation of [5] in favor of the AntNet configuration [7]. 
Other instances of the algorithm, such as that for quadratic 
optimization [8] and graph organization [9] where not 
deemed applicable due to their utilization of global 
information that we are not able to infer in this application. 

The basic motivation for such methods is that simple 
agents are able to perform complex tasks through 
interaction with the environment (measurement and payoff) 
and information previously left by other agents (positive 
feedback mechanism). In the context of this work this 
provides the basis using local information (order in which 
clients are visited) to infer global solutions (optimal order 
of visits) without recourse to a random walk (positive 
feedback). 

The algorithm as a whole takes the following form. A 
(application) server is naturall y aware of the most frequent 
users. This represents the set, N, of K (client) nodes for 
which a shortest path tour is required. Such a tour 
represents a full y connected graph (N, E) in which each of 
the K nodes may only be visited once, and E is the set of 
edges between nodes. The distance between any two nodes, 
dij, is expressed as the time a packet takes to travel between 
nodes i and j. The server initializes Ants on each of the K 
contributing nodes and trail intensity between nodes, tij, is 
reset. Each ant is then able to make a tour, subject to the 
following constraints, 
• Each Ant maintains a tabu li st, which keeps a record 

of the nodes visited on the current tour. This stops 
Ants from visiting the same node more than once, 
although passing through a node on route to a 
different destination is permitted; 

• Prospective next destinations are selected 
probabili sticall y as a function of trail positi ve 
feedback, tij, and distance, dij, to the destination;  

The routing tables used to support such information 
correspond to the Open Shortest Path First (OSPF) 
protocol, as is typicall y employed on network backbones. 
Thus, all the above information is readily available in 
practice (more wil l be said of this in the conclusion). 
Transition probabiliti es used to determine the kth  
(forward) ant’s next destination are defined by one of two 
conditions, depending on whether the an has previously 
visited the destination, j ∈ { N-tabu(k)} , in which case, 

 
 

(1) 
 
 

Trail positi ve feedback factor, tij, expresses the popularity 
of a particular edge, E, and 1/ dij biases selection in favor of 
shortest routs. 

In the case of a previously visited destination or a 
destination with probabilit y below 0.0001, then 

0)( =tpk
ij . 

Once ant k has completed its tabu list, then a return path is 
performed (backward ant) during which positi ve feedback 
is supplied, or 
 

tij (t + 1) = ρ tij(t) + Q / Lk          (2) 
 
where Q and ρ are constants and Lk is the tour length. 

Given the above definitions, the ant’s follow the generic 
Ant Cycle algorithm, [5], interpreted as follows, in order to 
identify the shortest route interconnecting the clients 
associated with each application. That is, each application 
server provides a tabu li st of clients they wish to improve 
service against. For a list of ‘K’ nodes, K ‘ forward’ ants are 
created, each with a unique starting node. This forces each 
ant to be initialized at one of the nodes on the server client 
li st. Initial trail feedback, tij(0), is set to small initial values 
and each ant chooses a path in conjunction with (1), node 
‘ i’ is pushed into the ith ant’s tabu li st and ant ‘ i’ travels to 
node ‘ j’ . 

Thereafter, if the ‘k’ th ant is a forward ant, and its tabu 
li st is complete it updates its total path duration and 
becomes a ‘backward’ ant. A forward ant with remaining 
destinations on its tabu list repeats the process for selecting 
a new destination. On reaching the next node record on the 
ant’s tabu list, backward ants update the positi ve feedback 
parameter, (2) recalculate the probabiliti es of all connected 
edges (1) and rewind the tabu li st one entry. When a 
backward ant encounters the start node, in addition to 
updating (2) and (1), it updates the corresponding server of 
the current shortest path and returns to the forward ant 
state. The process repeats until the server is satisfied that a 
best-case path has been identified – maximum number of 
ant cycles or ants all returning the same best-case route. 
 
2.2 Profile clustering 
 

As indicated above the second phase of the algorithm is 
to identify any natural organization, i.e. clustering, of the 
best-case route. Such clusters then define the location for 
mirror sites used by servers should client quality of service 
guarantees be sufficiently improved. To do so implies an 
assumption regarding the characteristics of the shortest 
route. Where it is certainly possible for a path to result in 
more clusters than is actuall y necessary, future work will 
investigate the significance of this. The clustering 
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algorithm used in this case is the Potential Function method 
[6], where this does not require additional a priori 
knowledge regarding the number of cluster centers. The 
clustering algorithm consists of four steps, 
1. Identify the potential of each candidate point, as 

quantified by a suitable distance metric, with respect 
to all other points; 

2. Select the point with highest potential; 

3. Subtract the potential of the point identified at step 
two from the others; 

4. Repeat on step two until end criteria is reached. 

The metric at step one takes the form of a ‘potential 
function’ , Pt(x(j)), or 
 
 
 
 
where x(j) is the ‘ j’ th time stamp associated with visiting 
the ‘ j’ th client from the tabu li st; t is the iteration of the 
algorithm; K is the number of client nodes and; α is the 
cluster radii constant. 

Time stamps, x(i), that are similar to the current 
candidate time, x(j), therefore contribute most to the 
corresponding potential Pt(x(j)). Candidate times that have 
the most neighbors therefore receive the largest Potentials, 
as required at step two of the above process. Step three 
removes the influence of the current best case (largest) 
potential from all others within the same cluster. Thus, on 
identifying the winning (largest) potential, all potentials are 
reduced by a factor proportional to the distance from the 
current winning potential, Pt(x

*(j)), or for all i ∈{ 1…K} , 
 

 

 
 
 
where Pt+1(x(i)) is the updated potential at iteration t + 1 
and; β (< α) is the radii associated with the Potential decay 
process. 

The process now iterates until the stop criteria is 
reached. This is expressed in terms of the ratio of the 
best-case Potential at the current time step and that of the 
first time step, or 
IF Pt (x*(i)) > γ P0(x

*(j)) THEN create a new cluster 
ELSE end 
where γ takes the value 0.5 in the experiments reported 
later. 

The assignment of time stamps, x(i), to a cluster takes 
place by recording which ‘ j’ resulted in the largest decrease 
during the Potential decay step. In the experimental study 
reported below, the clients corresponding to the cluster 
centers represent the candidate set of mirror sites. In 
practice, a further level of analysis could be employed in 

which the neighborhood of clients belonging to the same 
cluster is analyzed for mirror site location. 
 

3. RESULTS 
 

The authors have performed experiments on 5 different 
scenarios, Table-1, to test the approach described above. 
All experiments are employed by simulating a network, 
based on a topology as NTTnet (Japanese backbone – 
fig.1), with 55 nodes, and 71 bi-directional li nks. This 
implies that some nodes have high connectivity (many 
neighbours) and others have low connectivity (1 or 2 
neighbours). Thus, the network also allows the simulation 
of worst-case scenarios (routes through low connectivity 
neighbourhoods) for more robust and reliable experiments.  

Moreover, all of the experiments in this study are 
performed using JavaSim-1.0 a component-based, 
compositional simulation environment [10]. For the purpose 
of network modeling and simulation, JavaSim provides a 
generalized packet switched network model.  The model 
defines the generic structure of a node (either an end host or 
a router) and the generic network components, both of 
which can then be used as base classes to implement 
protocols across various layers. All simulations are run on a 
PC platform (700MHz, 256MB RAM, Windows 2000). 

The following study is performed using bandwidth of 
l.5Mbps per link, and propagation delay of 5ms is used to 
simulate a pessimistic cases. Table-2 presents a summary of 
the scenarios after clustering and table-3 summarises the 
average values for throughput (in bps) and queue lengths 
(in number of packets/s) before and after the mirror sites 
were introduced. 
 
 
 

 
 

Fig.1: Japanese backbone - NTTNet 
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Table-1: The summary of scenarios used in this study 

 
Scenarios 

# of Nodes – 
candidates for 

mirror (s)  

 
Candidate nodes 

S1 12 49, 29, 27, 24, 34, 37, 
19, 44, 40, 47 

S2 18 35, 52, 54, 3, 8, 9, 33, 
32, 27, 23, 24, 41, 39, 

20, 46, 16, 11, 10 
S3 20 1, 0, 52, 50, 53, 36, 33, 

35, 20, 46, 16, 39, 41, 8, 
9, 3, 24, 23, 32, 27 

S4 25 50, 52, 0, 54, 53, 49, 1, 
36, 3, 35, 8, 9, 10, 46, 
20, 16, 11, 39, 41, 27, 

32, 29, 33, 24, 23 
S5 18 39, 20, 46, 9, 8, 3, 23, 

24, 27, 32, 50, 52, 0, 53, 
1, 36, 35, 33 

 

Table-2: The results of clustering for potential mirror site(s)  

Scenarios Total # of 
Nodes – on 
the network 

# of Nodes – 
candidates for 

mirror (s)  

# of Clusters 
– After the 

Potential fun. 
S1 55 12 3 
S2 55 18 3 
S3 55 20 4 
S4 55 25 4 
S5 55 18 4 

 
 

Table-3: Throughput and queue length measurements on the 
network before and after the mirror sites are formed. 

Averages - Before 
Mirror Sites 

Averages - After 
Mirror Sites 

 
Scenarios 

Queue 
Length 

Throughput 
(x105 bps) 

Queue 
Length 

Throughput 
(x105 bps) 

S1 4 4.97 2.8 4.6 
S2 7.7 5.45 5.58 4.95 
S3 3.86 5.2 2.2 4.72 
S4 8.36 5.26 5.21 4.84 
S5 7.2 5.1 5.14 4.82 

 
 

From the results of table-3 it is evident that as the 
number of nodes using an application increases and as their 
diversity (number of clusters) increases, the performance of 
the proposed approach improves. Creating mirror sites, 
using this approach, improves the average throughput by 
10%, which in return improves the response time for the 
users. Moreover, this approach also improves the overall 
load distribution on the network. Thus, the average number 
of packets waiting in node queues (per second) improves by 
approximately 43% as the number of nodes and diversity 
increases. 

4. CONCLUSION 
 

In this study, the authors have proposed and showed an 
approach making use of social insect metaphor and 
potential function clustering. These are employed to 
identify the connectivity pattern between clients and servers 
in order to ease the selection of mirror sites for application 
servers on computer networks. Experimental results show 
that the method works well on the scenarios introduced 
here. However, research work continues to test and 
optimize the method where the clusters are not distinct but 
more widely distributed (in other words, random client 
patterns). Furthermore, comparisons with other work are 
envisaged. 
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