

-001-

MIRROR SITE ORGANIZATION ON PACKET SWITCHED NETWORKS USING A SOCIAL

INSECT METAPHOR

P. Shi, A. N. Zincir-Heywood and M. I. Heywood
Faculty of Computer Science, Dalhousie University, Hali fax NS, Canada

{ pshi@cs.dal.ca | zincir@cs.dal.ca | mheywood@cs.dal.ca }

Abstract

An approach making use of social insect metaphor and
potential function clustering is employed to identify the
connectivity pattern between clients and servers in order to
ease the selection of mirror sites for application servers on
computer networks.

Keywords: Information technology and networking

1. INTRODUCTION

The organization of data and services on distributed
information systems has received interest from many
perspectives over a long period of time, in particular
distributed database design [1]. However, as indicated by
Oates, Corne and Loader, this typically results in the
problem being expressed as a single database that is
geographicall y distributed [2]. The ensuing design
emphasizes a very fine level of granularity – the allocation
of data to specific files, their organization and the
associated timing of operations. By doing so the dynamic
properties of the network on which such systems are based
is reduced. By taking such a view, the implicit assumption
is that global knowledge of network load, configuration and
routing is available. The approach taken by Oates et al. is
therefore to consider the problem from a different
perspective. Database servers and client nodes are
considered to be distributed geographicall y, the variation in
network parameters is considered to be the most important
property, and the free parameter in this case is the client
server interconnectivity as opposed to the movement of
data between servers [2]. In order to address this problem, a
matrix of communication times is used to express the time
taken for a (client) request to be serviced (by a server).
Such information is used to express server transaction times
and usage profiles for clients and servers. The design
problem is therefore to find the client-server connectivity
pattern optimizing the overall performance of the
distributed system. Such a problem is naturall y a function
of the network load profile and subject to change depending
on usage profiles. In order to address this problem, various
GA approaches were investigated, with a particular

emphasis placed on the identification of appropriate
crossover, mutation, selection and fitness functions [2, 3].
Bil chev and Olaffson investigate the same problem, but
with a specific emphasis on the speed/ quality tradeoff
between GA and greedy search techniques [4].

In both works, however, collection of the necessary
network load profile information is not addressed. This is
not a trivial problem as the sourcing of such information
presents a global problem in itself [4]. Moreover, the
algorithms employed require that reconfiguration be
governed by a single centralized server. In this work, we
therefore take a different approach. Firstly the collection of
load profile information is conducted in a distributed
manner. To do so we consider the problem from the server
side. The objective is therefore to find the shortest path
linking all clients to each server, where this problem is
solved using a social insect metaphor [5]. Secondly, each
server clusters the returned shortest path route with the
objective of identifying potential sites for mirrors. On
allocation of mirror sites, network load naturally changes
and the process iterates.

In the following, section 2 summarizes the approach
used, detailing the modifications used to define the Ant
System in this setting, and how the clustering problem is
solved. Results are presented in section 3 and conclusions
made in section 4.

2. CLIENT-SERVER

INTERCONNECTIVITY MODEL

As indicated above, the first objective is to identify the
connectivity pattern between clients and servers. This
problem is considered to be an example of the classic
traveling sales man problem in which distance is now
measured in terms of time as opposed to miles between
cities. Sub-section 2.1 details how the original Ant System
of Dorigo et al. is adapted for this purpose [5]. At this stage
each server has collected all the information necessary to
make a judgment regarding its usage profile. The second
step is to cluster this profile, thus identifying the regions of
the distributed system most likely to benefit from mirrored
data. Sub-section 2.2 details how Potential Function
clustering [6] facilit ates this process.

 -002-

2.1 Distributed collection of connectivity
patterns

The Ant System of Dorgio et al. is a distributed
optimization algorithm for performing a population-based
search [5]. The social insect metaphor at the core of the
approach has been shown to lend itself to several related
problems, such as the packet routing problem (AntNet) [7]
and the quadratic assignment problem [8]. Given that the
central objective here, however, is to identify the shortest
path linking client nodes to server nodes, without also
optimizing routing strategies, we retain the original
formulation of [5] in favor of the AntNet configuration [7].
Other instances of the algorithm, such as that for quadratic
optimization [8] and graph organization [9] where not
deemed applicable due to their utilization of global
information that we are not able to infer in this application.

The basic motivation for such methods is that simple
agents are able to perform complex tasks through
interaction with the environment (measurement and payoff)
and information previously left by other agents (positive
feedback mechanism). In the context of this work this
provides the basis using local information (order in which
clients are visited) to infer global solutions (optimal order
of visits) without recourse to a random walk (positive
feedback).

The algorithm as a whole takes the following form. A
(application) server is naturall y aware of the most frequent
users. This represents the set, N, of K (client) nodes for
which a shortest path tour is required. Such a tour
represents a full y connected graph (N, E) in which each of
the K nodes may only be visited once, and E is the set of
edges between nodes. The distance between any two nodes,
dij, is expressed as the time a packet takes to travel between
nodes i and j. The server initializes Ants on each of the K
contributing nodes and trail intensity between nodes, tij, is
reset. Each ant is then able to make a tour, subject to the
following constraints,
• Each Ant maintains a tabu li st, which keeps a record

of the nodes visited on the current tour. This stops
Ants from visiting the same node more than once,
although passing through a node on route to a
different destination is permitted;

• Prospective next destinations are selected
probabili sticall y as a function of trail positi ve
feedback, tij, and distance, dij, to the destination;

The routing tables used to support such information
correspond to the Open Shortest Path First (OSPF)
protocol, as is typicall y employed on network backbones.
Thus, all the above information is readily available in
practice (more wil l be said of this in the conclusion).
Transition probabiliti es used to determine the kth
(forward) ant’s next destination are defined by one of two
conditions, depending on whether the an has previously
visited the destination, j ∈ { N-tabu(k)} , in which case,

(1)

Trail positi ve feedback factor, tij, expresses the popularity
of a particular edge, E, and 1/ dij biases selection in favor of
shortest routs.

In the case of a previously visited destination or a
destination with probabilit y below 0.0001, then

0)(=tpk
ij .

Once ant k has completed its tabu list, then a return path is
performed (backward ant) during which positi ve feedback
is supplied, or

tij (t + 1) = ρ tij(t) + Q / Lk (2)

where Q and ρ are constants and Lk is the tour length.

Given the above definitions, the ant’s follow the generic
Ant Cycle algorithm, [5], interpreted as follows, in order to
identify the shortest route interconnecting the clients
associated with each application. That is, each application
server provides a tabu li st of clients they wish to improve
service against. For a list of ‘K’ nodes, K ‘ forward’ ants are
created, each with a unique starting node. This forces each
ant to be initialized at one of the nodes on the server client
li st. Initial trail feedback, tij(0), is set to small initial values
and each ant chooses a path in conjunction with (1), node
‘ i’ is pushed into the ith ant’s tabu li st and ant ‘ i’ travels to
node ‘ j’ .

Thereafter, if the ‘k’ th ant is a forward ant, and its tabu
li st is complete it updates its total path duration and
becomes a ‘backward’ ant. A forward ant with remaining
destinations on its tabu list repeats the process for selecting
a new destination. On reaching the next node record on the
ant’s tabu list, backward ants update the positi ve feedback
parameter, (2) recalculate the probabiliti es of all connected
edges (1) and rewind the tabu li st one entry. When a
backward ant encounters the start node, in addition to
updating (2) and (1), it updates the corresponding server of
the current shortest path and returns to the forward ant
state. The process repeats until the server is satisfied that a
best-case path has been identified – maximum number of
ant cycles or ants all returning the same best-case route.

2.2 Profile clustering

As indicated above the second phase of the algorithm is
to identify any natural organization, i.e. clustering, of the
best-case route. Such clusters then define the location for
mirror sites used by servers should client quality of service
guarantees be sufficiently improved. To do so implies an
assumption regarding the characteristics of the shortest
route. Where it is certainly possible for a path to result in
more clusters than is actuall y necessary, future work will
investigate the significance of this. The clustering

∑ −∈

=
)}({

)()()(

)(
)(

ktabuNk ikikij

ijk
ij

dtd

t
tp ααα

α

 -003-

algorithm used in this case is the Potential Function method
[6], where this does not require additional a priori
knowledge regarding the number of cluster centers. The
clustering algorithm consists of four steps,
1. Identify the potential of each candidate point, as

quantified by a suitable distance metric, with respect
to all other points;

2. Select the point with highest potential;

3. Subtract the potential of the point identified at step
two from the others;

4. Repeat on step two until end criteria is reached.

The metric at step one takes the form of a ‘potential
function’ , Pt(x(j)), or

where x(j) is the ‘ j’ th time stamp associated with visiting
the ‘ j’ th client from the tabu li st; t is the iteration of the
algorithm; K is the number of client nodes and; α is the
cluster radii constant.

Time stamps, x(i), that are similar to the current
candidate time, x(j), therefore contribute most to the
corresponding potential Pt(x(j)). Candidate times that have
the most neighbors therefore receive the largest Potentials,
as required at step two of the above process. Step three
removes the influence of the current best case (largest)
potential from all others within the same cluster. Thus, on
identifying the winning (largest) potential, all potentials are
reduced by a factor proportional to the distance from the
current winning potential, Pt(x

*(j)), or for all i ∈{ 1…K} ,

where Pt+1(x(i)) is the updated potential at iteration t + 1
and; β (< α) is the radii associated with the Potential decay
process.

The process now iterates until the stop criteria is
reached. This is expressed in terms of the ratio of the
best-case Potential at the current time step and that of the
first time step, or
IF Pt (x*(i)) > γ P0(x

*(j)) THEN create a new cluster
ELSE end
where γ takes the value 0.5 in the experiments reported
later.

The assignment of time stamps, x(i), to a cluster takes
place by recording which ‘ j’ resulted in the largest decrease
during the Potential decay step. In the experimental study
reported below, the clients corresponding to the cluster
centers represent the candidate set of mirror sites. In
practice, a further level of analysis could be employed in

which the neighborhood of clients belonging to the same
cluster is analyzed for mirror site location.

3. RESULTS

The authors have performed experiments on 5 different
scenarios, Table-1, to test the approach described above.
All experiments are employed by simulating a network,
based on a topology as NTTnet (Japanese backbone –
fig.1), with 55 nodes, and 71 bi-directional li nks. This
implies that some nodes have high connectivity (many
neighbours) and others have low connectivity (1 or 2
neighbours). Thus, the network also allows the simulation
of worst-case scenarios (routes through low connectivity
neighbourhoods) for more robust and reliable experiments.

Moreover, all of the experiments in this study are
performed using JavaSim-1.0 a component-based,
compositional simulation environment [10]. For the purpose
of network modeling and simulation, JavaSim provides a
generalized packet switched network model. The model
defines the generic structure of a node (either an end host or
a router) and the generic network components, both of
which can then be used as base classes to implement
protocols across various layers. All simulations are run on a
PC platform (700MHz, 256MB RAM, Windows 2000).

The following study is performed using bandwidth of
l.5Mbps per link, and propagation delay of 5ms is used to
simulate a pessimistic cases. Table-2 presents a summary of
the scenarios after clustering and table-3 summarises the
average values for throughput (in bps) and queue lengths
(in number of packets/s) before and after the mirror sites
were introduced.

Fig.1: Japanese backbone - NTTNet

()∑
=

−−=
K

i
t jxixjxP

1

2
)()(exp))((α

−=+))(())((1 ixPixP tt




 −−
2**)()(exp))((jxixjxPt β

 -004-

Table-1: The summary of scenarios used in this study

Scenarios

of Nodes –
candidates for

mirror (s)

Candidate nodes

S1 12 49, 29, 27, 24, 34, 37,
19, 44, 40, 47

S2 18 35, 52, 54, 3, 8, 9, 33,
32, 27, 23, 24, 41, 39,

20, 46, 16, 11, 10
S3 20 1, 0, 52, 50, 53, 36, 33,

35, 20, 46, 16, 39, 41, 8,
9, 3, 24, 23, 32, 27

S4 25 50, 52, 0, 54, 53, 49, 1,
36, 3, 35, 8, 9, 10, 46,
20, 16, 11, 39, 41, 27,

32, 29, 33, 24, 23
S5 18 39, 20, 46, 9, 8, 3, 23,

24, 27, 32, 50, 52, 0, 53,
1, 36, 35, 33

Table-2: The results of clustering for potential mirror site(s)

Scenarios Total # of
Nodes – on
the network

of Nodes –
candidates for

mirror (s)

of Clusters
– After the

Potential fun.
S1 55 12 3
S2 55 18 3
S3 55 20 4
S4 55 25 4
S5 55 18 4

Table-3: Throughput and queue length measurements on the
network before and after the mirror sites are formed.

Averages - Before
Mirror Sites

Averages - After
Mirror Sites

Scenarios

Queue
Length

Throughput
(x105 bps)

Queue
Length

Throughput
(x105 bps)

S1 4 4.97 2.8 4.6
S2 7.7 5.45 5.58 4.95
S3 3.86 5.2 2.2 4.72
S4 8.36 5.26 5.21 4.84
S5 7.2 5.1 5.14 4.82

From the results of table-3 it is evident that as the
number of nodes using an application increases and as their
diversity (number of clusters) increases, the performance of
the proposed approach improves. Creating mirror sites,
using this approach, improves the average throughput by
10%, which in return improves the response time for the
users. Moreover, this approach also improves the overall
load distribution on the network. Thus, the average number
of packets waiting in node queues (per second) improves by
approximately 43% as the number of nodes and diversity
increases.

4. CONCLUSION

In this study, the authors have proposed and showed an
approach making use of social insect metaphor and
potential function clustering. These are employed to
identify the connectivity pattern between clients and servers
in order to ease the selection of mirror sites for application
servers on computer networks. Experimental results show
that the method works well on the scenarios introduced
here. However, research work continues to test and
optimize the method where the clusters are not distinct but
more widely distributed (in other words, random client
patterns). Furthermore, comparisons with other work are
envisaged.

ACKNOWLEDGEMENTS

A. Nur Zincir-Heywood and Malcolm I. Heywood
gratefull y acknowledge the support of Individual Research
Grants from the Natural Sciences and Engineering
Research Council of Canada.

REFERENCES

[1] S.T. March, S. Rho (1995). Allocating Data and

Operations to Nodes in Distributed Database
Design. IEEE Transactions on Knowlegde and Data
Engineering, 7(2): 305-317.

[2] M. J. Oates, D. Corne, R. Loader (1998).
Investigating Evolutionary Approaches for
Self-Adaption in Large Distributed Databases. IEEE
International Conference on Evolutionary
Computation. pp 452-457.

[3] M. J. Oates, D. Corne. (2000) Exploring
Evolutionary Approaches to Distributed Database
Management. In D. Corne et al.
Telecommunications Optimization: Heuristic and
Adaptive Techniques. Chichester, UK: John Wiley
and Sons. ISBN 0-471-98855-3.

[4] G. Bil chev, S. Olafsson. (2000) Adaptive
Demand-based Heuristics for Traff ic Reduction in
Distributed Information Systems. In D. Corne et al.
Telecommunications Optimization: Heuristic and
Adaptive Techniques. Chichester, UK: John Wiley
and Sons. ISBN 0-471-98855-3.

[5] M. Dorigo, V. Maniezzo, A. Colorni. (1996) Ant
System: Optimization by a Colony of Cooperating
Agents. IEEE Transactions on Systems, Man and
Cybernetics – Part B. 26(1): 29-41.

[6] S.L. Chiu. (1994) Fuzzy Model Identification based
on Cluster Estimation. Journal of Intelligent and
Fuzzy Systems. 2: 267-278.

 -005-

[7] G. D. Caro, M. Dorigo. (1998) AntNet: Distributed
Stigmergetic Control for Communications
Networks. Journal of Artificial Intelligence
Research. 9: 317-365.

[8] V. Maniezzo, A. Colorni. (1999) The Ant System
Applied to the Quadratic Assignment Problem.
IEEE Transactions on Knowledge and Data
Engineering. 11(5): 769-778.

[9] P. Kuntz, D. Snyers. (1999) New Results on an
Ant-Based Heuristic for highlighting he organization
of large graphs. Proceedings of the 1999 IEEE
Congress on Evolutionary Computation. pp
1451-1457.

[10] DRCL, OHIO University, (2002) DRCL JavaSim,
http://javasim.cs.uiuc.edu/index.html

