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Abstract

An approach making use of social insect metaphor and
potential function clustering is employed to identify the
connectivity pattern between clients and serversin order to
ease the selection of mirror sites for application servers on
computer networks.
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1. INTRODUCTION

The organization of data and services on distributed
information systems has recéved interest from many
perspedives over a long period of time, in particular
distributed database design [1]. However, as indicated by
Oates, Corne and Loader, this typically results in the
probdem being expresed as a single database that is
geographicdly distributed [2]. The eisuing design
emphasizes a very fine level of granularity — the allocation
of data to spedfic files, their organization and the
asciated timing o operations. By doing so the dynamic
properties of the network on which such systems are based
is reduced. By taking such a view, the implicit assuimption
isthat global knowledge of network load, configuration and
routing is available. The approach taken by Oates et d. is
therefore to consider the probem from a different
perspedive. Database servers and client nodes are
considered to be distributed geographicdly, the variation in
network parametersis considered to be the most important
property, and the free parameter in this case is the client
server interconnedivity as opposed to the movement of
data between servers[2]. In order to addressthis problem, a
matrix of communication times is used to expressthe time
taken for a (client) request to be serviced (by a server).
Such information is used to express grver transaction times
and usage profiles for clients and servers. The design
probem is therefore to find the client-server connedivity
pattern optimizing the overal peformance of the
digtributed system. Such a problem is naturaly a function
of the network load profile ad subject to change depending
on usage profiles. In order to addressthis probem, various
GA approaches were investigated, with a particular

emphasis placed on the identification of appropriate
crosover, mutation, seledion and fitness functions [2, 3].
Bilchev and Olaffson investigate the same problem, but
with a spedfic emphasis on the speed/ quality tradeoff
between GA and grealy search techniques [4].

In bath works, however, colledion of the necessary
network load profile information is not addressed. This is
not a trivial problem as the sourcing of such information
presents a global problem in itself [4]. Moreover, the
agorithms employed require that remnfiguration be
governed by a singe entralized server. In this work, we
therefore take a different approach. Firstly the coll edion of
load profile information is conducted in a distributed
manner. To do so we mnsider the problem from the server
side. The objective is therefore to find the shortest path
linking al clients to each server, where this problem is
solved using a socia insed metaphor [5]. Seaondly, each
server clusters the returned shortest path route with the
objedive of identifying potential sites for mirrors. On
alocation of mirror sites, network load naturally changes
and the processiterates.

In the following, sedion 2 summarizes the approach
used, detailing the modifications used to define the Ant
System in this stting, and how the dustering problem is
solved. Results are presented in sedion 3 and conclusions
madein sedion 4.

2. CLIENT-SERVER
INTERCONNECTIVITY MODEL

As indicated above, the first objective is to identify the
connedivity pattern between clients and servers. This
probem is considered to be an example of the dassc
traveling sdes man probem in which distance is now
measured in terms of time as opposed to miles between
cities. Sub-sedion 2.1 details how the origina Ant System
of Dorigo et d. isadapted for this purpose [5]. At this stage
each server has colleded all the information necessary to
make a judgment regarding its usage profile. The second
step isto cluster this profil e, thus identifying the regions of
the digributed system most likely to benefit from mirrored
data. Sub-sedion 2.2 details how Potential Function
clustering [6] facilit ates this process
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2.1 Didributed collection of connectivity
patterns

The Ant System of Dorgio et a. is a distributed
optimization agorithm for performing a population-based
search [5]. The social insed metaphor at the core of the
approach has been shown to lend itself to several related
probems, such as the packet routing problem (AntNet) [7]
and the quadratic assgnment problem [8]. Given that the
central objective here, however, is to identify the shortest
path linking client nodes to server nodes, without also
optimizing routing drategies, we retain the origina
formulation of [5] in favor of the AntNet configuration [7].
Other ingtances of the dgorithm, such as that for quadratic
optimization [8] and gaph organization [9] where not
deamed applicable due to their utilizaion of global
information that we are not able to infer in this appli cation.

The basic motivation for such methods is that simple
agents are able to peform complex tasks through
interaction with the environment (measurement and payoff)
and information previously left by other agents (positive
feedback mechanism). In the ntext of this work this
provides the basis using local information (order in which
clients are visited) to infer global solutions (optimal order
of visits) without remurse to a random walk (positive
feedback).

The agorithm as a whole takes the following form. A
(application) server is naturally aware of the most frequent
users. This represents the set, N, of K (client) nodes for
which a shortest path tour is required. Such a tour
represents a fully conneded graph (N, E) in which each of
the K nodes may only be visited once and E is the set of
edges between nodes. The distance between any two nodes,
d;;, is expressed as the time apacket takes to travel between
nodes i and j. The server initializes Ants on each of the K
contributing nodes and trail intensity between nodes, t;j, is
reset. Each ant is then able to make atour, subjed to the
following constraints,
¢ Each Ant maintains a tabu ligt, which keeps a record

of the nodes visited on the airrent tour. This stops
Ants from visiting the same node more than once
although passng through a node on route to a
different destination is permitted;

e« Prospedive next destinations ae sdeded
probabilisticdly as a function of tral positive
feadback, t;;, and dstance, d;;, to the destination;

The routing tables used to support such information
correspond to the Open Shortest Path First (OSPH
protocol, as is typically employed on network backbones.
Thus, al the above information is readily available in
practice (more will be said d this in the conclusion).
Transtion probabilities used to determine the k"
(forward) ant’s next destination are defined by one of two
conditions, depending on whether the an has previously
visited the destination, j 00 { N-tabu(k)}, in which case,

(tij )a (1)
()73 enrmgy () /(@)

Trail positive feedback factor, t;;, expresses the popularity
of aparticular edge, E, and ¥ d; biases sledion in favor of
shortest routs.

In the @se of a previously visited destination or a
destination with  probebility below 0.0001, then

k —
P () =0
Once at k has completed its tabu list, then areturn peth is

performed (backward ant) during which positi ve feedback
is supdied, or

piij'( (t) =

tij (t + 1) = ptij(t) + Q/ Lk (2)

where Q and p are mnstants and L is the tour length.

Given the above definitions, the ant’s follow the generic
Ant Cycle algorithm, [5], interpreted as follows, in order to
identify the shortest route interconneding the dients
asciated with each application. That is, each applicaion
server provides atabu list of clients they wish to improve
serviceagaing. For alist of ‘K’ nodes, K ‘forward’ ants are
created, each with a unique starting node. This forces each
ant to beinitialized at one of the nodes on the server client
list. Initial trail feedback, t;(0), is st to small initial values
and each ant chooses a path in conjunction with (1), node
‘I" is pushed into the ith ant’s tabu list and ant ‘i’ travels to
node‘j’.

Thereafter, if the ‘K'th ant is a forward ant, and its tabu
list is complete it updates its total path duration and
becomes a ‘backward’ ant. A forward ant with remaining
destinations on its tabu list repeats the processfor seleding
anew destination. On reaching the next node record on the
ant’s tabu list, backward ants updete the positi ve feedback
parameter, (2) recalculate the probabiliti es of all conneded
edges (1) and rewind the tabu list one entry. When a
backward ant encounters the gstart node, in addition to
upckting (2) and (1), it updates the crresponding server of
the arrent shortest path and returns to the forward ant
state. The process repeds until the server is stisfied that a
best-case path has been identified — maximum number of
ant cycles or ants all returning the same best-case route.

2.2 Profile clustering

As indicated above the seand phase of the agorithm is
to identify any natural organization, i.e. clustering, of the
best-case route. Such clusters then define the location for
mirror sites used by servers should client quality of service
guarantees be sufficiently improved. To do so implies an
asumption regarding the daracteristics of the shortest
route. Where it is certainly possble for a path to result in
more dusters than is actualy necessry, future work will
investigate the dgnificance of this The clustering
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algorithm used in this case is the Potential Function method

[6], where this does not require additional a priori

knowledge regarding the number of cluster centers. The

clustering algorithm consists of four steps,

1. Identify the potential of each cendidate point, as
quentified by a suitable distance metric, with resped
to al other points;

Seled the point with highest potential;

Subtract the potential of the point identified at step
two from the others;

4. Repeat on step two until end criteriais reached.

The metric at step one takes the form of a ‘potential
function’, Py(x(j)), or

RO = 5 exd-alxi) - X))

where X(j) is the ‘j'th time samp associated with visiting
the ‘j'th client from the tabu list; t is the iteration of the
agorithm; K is the number of client nodes and; a is the
cluster radii constant.

Time stamps, x(i), that are smilar to the current
candidate time, X(j), therefore contribute most to the

corresponding potential Py(X(j)). Candidate times that have
the most neighbors therefore receve the largest Potentials,
as required at step two o the above process Step three
removes the influence of the airrent best case (largest)
potential from all others within the same duster. Thus, on
identifying the winning (largest) potential, all potentials are
reduced by a factor proportiongl to the distance from the
current winning potential, Py(X (j)), or for all i O{1...K},

Pa(x(1)) = R(x(0)) -
R(X (Nexpt BJx() - x (i) E

where Py 1(X(1)) is the updated potential at iteration t + 1
and; B (< a) istheradii associated with the Potential decay
process

The process now iterates until the stop criteria is
reached. This is expresed in terms of the ratio o the
best-case Potential at the aurrent time step and that of the
first time step, or
IF Pt (X (1)) > y Po(X (j)) THEN create a new cluster
ELSE end
where y takes the value 0.5 in the experiments reported
later.

The assgnment of time stamps, x(i), to a cluster takes
place by recording which ‘j’ resulted in the largest deaease
during the Potentia decay step. In the experimental study
reported below, the dients corresponding to the duster
centers represent the candidate set of mirror sites. In
practice a further level of analysis could be employed in

which the neighborhood of clients belonging to the same
cluster is analyzed for mirror site location.

3.RESULTS

The authors have performed experiments on 5 dfferent
scenarios, Table-1, to test the approach described above.
All experiments are employed by smulating a network,
based on a topology as NTTnet (Japanese backbone —
fig.1), with 55 nodes, and 71 bi-dirediona links. This
implies that some nodes have high connedivity (many
neighbours) and ahers have low connedivity (1 or 2
neighbours). Thus, the network also dlows the simulation
of worst-case scenarios (routes through low connedivity
neighbourhoads) for more robust and reliable experiments.

Moreover, all of the eperiments in this gudy are
performed usng JavaSm10 a @mponent-based,
compositional simulation environment [10]. For the purpose
of network modeling and simulation, JavaSm provides a
generalized packet switched network model. The model
defines the generic structure of anode (either an end host or
a router) and the generic network components, bath of
which can then be used as base dases to implement
protocols acrossvarious layers. All simulationsarerun on a
PC platform (700MHz, 256MB RAM, Windows 2000.

The following study is performed using bandwidth of
|.5Mbps per link, and propagation delay of 5ms is used to
simulate a pessmistic cases. Table-2 presents a summary of
the scenarios after clustering and table-3 summarises the
average values for throughput (in bps) and queue lengths
(in number of packets/s) before and after the mirror Stes
were introduced.

Fig.1: Japanese backbone - NTTNet
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Table-1: The summary of scenarios used in this gudy

# of Nodes —
Scenarios candidates for Candidate nodes
mirror (S)
S1 12 49, 29, 27, 24, 34, 37,
19, 44, 40, 47
2 18 35,52 54, 3,8,9, 33,
32,27, 23, 24, 41, 39,
20, 46, 16, 11, 10
3 20 1, 0,52, 50, 53, 36, 33,
35, 20, 46, 16, 39, 41, 8,
9, 3,24, 23,32, 27
% 25 50, 52,0, 54, 53,49, 1,
36, 3, 35, 8, 9, 10, 46,
20, 16, 11, 39, 41, 27,
32,29, 33,24, 23
S5 18 39, 20, 46, 9, 8, 3, 23,

24,27, 32,50, 52,0, 53,
1, 36, 35, 33

Table-2: The results of clustering for potential mirror site(s)

Scenarios  Total # of # of Nodes — # of Clusters
Nodes —on candidates for — After the
the network mirror (S) Potential fun.
S1 55 12 3
2 55 18 3
3 55 20 4
% 55 25 4
S5 55 18 4

Table-3: Throughpu and queue length measurements on the
network before and after the mirror sites are formed.

Averages - Before Averages - After
Scenarios Mirror Sites Mirror Sites
Queue Throughpu Queue Throughpu
Length (x10°bps)  Length  (x10°bps)
S1 4 4.97 2.8 4.6
S2 7.7 5.45 5.58 4.95
S3 3.86 5.2 2.2 4.72
A 8.36 5.26 5.21 4.84
S5 7.2 5.1 5.14 4.82

From the results of table-3 it is evident that as the
number of nodes using an appli caion increases and as their
diversity (number of clusters) increases, the performance of
the proposed approach improves. Creating mirror Stes,
using this approach, improves the average throughpu by
10%, which in return improves the response time for the
users. Moreover, this approach also improves the overall
load distribution on the network. Thus, the average number
of packets waiting in node queues (per second) improves by
approximately 43% as the number of nodes and diversity
increases.

4. CONCLUSION

In this study, the authors have proposed and showed an
approach making we of social insed metaphor and
potential function clugtering. These ae employed to
identify the connedivity pattern between clients and servers
in order to ease the seledion of mirror sites for application
servers on computer networks. Experimental results show
that the method works well on the scenarios introduced
here. However, reseach work continues to test and
optimize the method where the dusters are not distinct but
more widely distributed (in other words, random client
patterns). Furthermore, comparisons with other work are
envisaged.
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