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Abstract

A novel approach to the classification of large and unbalanced multi-
class data sets is presented where the widely acknowledged issues of scal-
ability, solution transparency, and problem decomposition are addressed
simultaneously within the context of the Genetic Programming (GP)
paradigm. A cooperative coevolutionary training environment that em-
ploys multi-objective evaluation provides the basis for problem decomposi-
tion and reduced solution complexity, while scalability is achieved through
a Pareto competitive coevolutionary framework, allowing the system to
be applied to large data sets (tens or hundreds of thousands of exemplars)
without recourse to hardware-specific speedups. Moreover, a key depar-
ture from the canonical GP approach to classification is utilized in which
the output of GP is expressed in terms of a non-binary, local member-
ship function (e.g. a Gaussian), where it is no longer necessary for an
expression to represent an entire class. Decomposition is then achieved
through reformulating the classification problem as one of cluster consis-
tency, where an appropriate subset of the training patterns can be as-
sociated with each individual such that problems are solved by several
specialist classifiers rather than by a single ‘super’ individual.

1 INTRODUCTION

Classification is a central task in machine learning and data mining applications
and has received considerable attention in the Genetic Programming (GP) com-
munity. While recent results are promising, several problems remain universally
acknowledged, specifically with respect to how GP may be readily employed in
large, ‘real-world’ classification problems. In such instances, training sets con-
sist of tens or hundreds of thousands of exemplars and the class distributions
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may be unbalanced. Ensuing solutions must provide good generality (perfor-
mance on unseen exemplars) yet remain computationally tractable. Moreover,
many real-world classification problems are multi-class (as opposed to binary)
in nature and potentially require several class-specific expressions to collabo-
rate in order to provide adequate coverage over all classes. The conventional
approaches to classification within the GP paradigm do not adequately address
these questions in general, and the current work is intended to provide a more
comprehensive framework for classification under the GP context. Specifically,
we employ tools from the evolutionary multi-objective and coevolution litera-
ture to achieve scalable, multi-class solutions that decompose the problem from
a single population.

Classification problems under the GP paradigm are typically configured to
calculate a single value that is used to characterize the quality of an individual
in terms of a specific performance metric (e.g. accuracy, sum squared error,
weighted combination of sensitivity / specificity etc. . . ) [14]. This value is then
scaled, providing a fitness value that indicates the individual’s probability for
selection during evolution. This naturally leads the search to a single individual
having the largest fitness value, which is then used to solve the classification
problem alone. The implicit assumption in this model however, is that one
expression (moreover, a single objective) is sufficient and / or appropriate to
solve the classification problem. Moreover in the case of binary problems, clas-
sification decisions under GP conventionally take the form of a hard switching
function arbitrarily centered at zero. GP outputs greater than zero indicate
‘in-class’ patterns, while those less than or equal to zero are considered to be
‘out-of-class’. This approach has previously been extended to multi-class prob-
lems by combining binary classifiers to form hierarchies with one individual
assigned to each class. This normally requires a separate set of initializations
for each class and while this is computationally costly, a considerable amount of
effort has been expended in pursuit of extensions to this approach, where none
of these specifically address the large-scale, multi-class nature of the problems
directly [11]. Moreover, the hierarchical model precludes their utility when mul-
tiple labels are required per exemplar. Scalability, particularly with respect to
multi-class problems, thus remains a widely acknowledged issue in the classifi-
cation context of the GP paradigm where recent approaches in the literature
have invoked hardware speedups [7] [17] [1] or sub-sampling of the training sets
[8] [21] [3].

The current work considers the evolution of classifiers comprised of multi-
ple, cooperating models with Evolutionary Multi-objective Optimization (EMO)
providing a basis for comparing the performance of individuals in the presence
of multiple performance objectives using the criterion of Pareto dominance [19].
Unlike previous works, a local membership function (a Gaussian) is employed
within an EMO context to encourage collaborations, providing the basis for au-
tomatic problem decomposition. Moreover, the scalability of GP with respect
to data set size is explicitly addressed through the use of a Pareto competitive
coevolution training framework which provides multi-class solutions in a single
run of GP. The resulting framework extends the previous cooperative coevolu-
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tionary classifier [15] into a competitive-cooperative coevolutionary model, thus
significantly extending the versatility of the model as a whole.

2 ALGORITHMS

2.1 Pareto Dominance

The following terminology from the EMO literature will be employed throughout
the remainder of this paper. An individual A Pareto dominates individual B if A
is no worse than B on any objective and is strictly better than B on at least one
[12]. An individual is non-dominated when it is not Pareto dominated by any
others, and the Pareto front describes the set of all non-dominated individuals.

2.2 Grammatical Evolution

The following work is undertaken using a specific variant of GP, known as Gram-
matical Evolution, or GE (although the algorithm is not specific to the type of
Genetic Programming employed). GE permits automatic and language inde-
pendent evolution of programs of arbitrary complexity [18]. There are obvious
similarities between GE and GP; however, GE does not operate directly on the
expression phenotypes themselves as in traditional GP; rather the programs are
stored as a series of Backus-Naur form (BNF) grammar rule selectors, which
are in turn indirectly represented by a fixed length binary string genotype. In
this sense GE is similar to GA however, the model does benefit from the uti-
lization of context aware variation operators that minimize the disruption of
decoded genotypes [9]. Since the algorithm presented here is not specific to
GE and because of the numerous similarities, the terms GE and GP are used
interchangeably in this paper.

For the classification algorithm presented here, individuals represent sim-
ple arithmetic expressions within our GE framework. A sample context free
grammar for a problem having i features (or attributes) is provided below:

code: exp
exp: exp|(exp)|var|exp op exp|preop(exp)
preop: sin|cos|sqrt|log|expn
op: +|-|*|%
var: x0| ... | x(i-1)

2.3 Classifier Framework

Within the context of this work, classifier individuals take the form of learners
defined as GE expressions and the training points represent indices into the
training data. The interaction between a learner and a point is defined by
evaluating the learner expression using the point data and producing an output
value (gpOut) indicating degree of class membership using a local (Gaussian)
membership function [15]:
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y (gpOut) = exp

(
− (gpOut− µ)2

2σ2

)
(1)

The values of µ and σ for a given learner are established by a clustering function
(the Potential Function [2]), evaluated on the gpOut values corresponding to the
point population at the time of the learner’s creation. The clustering function
identifies:

1. µ: A single value on gpOut, defining the centroid of the largest and most
dense cluster (the learner is then assumed to identify points having the
same class as the gpOut point corresponding to µ);

2. M : The set of cluster member points on gpOut (i.e. the points corre-
sponding to gpOut values near µ).

The set M is then used to estimate the value for σ:

σ =

√√√√ 1
|M | − 1

|M |∑
i=1

(Mi − µ)2 (2)

For a given point, the individual’s classification (i.e. decision output) ô for
a given point mapped on gpOut is estimated by:

ô =
{

1 if y (gpOut) ∈ [y (µ− σ), y (µ)]
0 otherwise (3)

This represents a key departure from the standard GP approach to classification,
where the classifier typically invokes a hard global switching function centered
at zero to render the decision (i.e. if gpOut ≤ 0 then return class 0, else return
class 1 [11]). Here, the use of a local membership function (LMF) permits
expressions to represent a subset of the data such that problem decomposition
is facilitated and solutions take the form of several specialist classifiers rather
than a single super individual. Moreover, at this stage no attempt is made to
incorporate the concept of class membership. Instead the formation of LMFs
with consistent class membership will be enforced through the multi-objective
fitness evaluation, Section 2.6.

2.4 Training Overview

The approach taken for training in this work employs two main components.
The first component provides for a multi-objective evaluation of fitness, Algo-
rithm 1, step 2a. Adopting such a scheme enables the user to encourage, say,
simple as well as accurate classifiers. Moreover, as a natural consequence of the
EMO paradigm, solutions might take the form of more than one classifier for the
same class [15]. The second component addresses the computational overhead
of fitness evaluation by using a Pareto (competitive) coevolutionary algorithm
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to identify minimal sets of training examples to conduct training, Algorithm 1
step 2b.

The use of a Pareto coevolutionary archiving mechanism in our training al-
gorithm was motivated by the work of Lemczyk et al. [13] (work which was
originally based on de Jong’s Incremental Pareto-Coevolution Archive (IPCA)
algorithm [4]). The archiving framework presented here, however, extends be-
yond the original binary context to multi-class, where separate learner and point
archives are introduced for the purpose of supporting learning on the basis of
class-appropriate objectives. Moreover, unlike Lemczyk we also make use of
multiple archives with early stopping criterion based on the behavior of the
classwise Pareto fronts, Algorithm 1 step 2c, enabling class / problem specific
stop points to be identified [12]. The ensuing Pareto competitive archive model
therefore reduces the number of exemplars necessary to perform fitness evalua-
tion as well as providing class wise early stopping.

As outlined in Table 1, the algorithm employs 2c+2 populations and archives,
where c is specified by the number of classes in the problem. That is, separate
point and learner archives are retained for each class. This ensures that point
archives are able to retain the most appropriate tests (training points) for learn-
ers associated with each class. The descriptions that follow employ additional
data evaluation structures which are summarized in Table 1.

Sections 2.5 to 2.11 provide detailed descriptions of the basic steps of Al-
gorithm 1. All parameter values are specified in Table 2. We note that no
attempt was made to optimize these selections. The over-riding interest here is
to provide uniformity across all data sets under consideration.

Algorithm 1 High-level Pareto Coevolution.

1. Initializations;

2. Training loop:

(a) Multi-objective evaluation and reproduction;

(b) IPCA-based archiving;

(c) Check for early stop criteria.

3. Post-training: Assembly of classifiers.

2.5 Initializations

Initialization proceeds as indicated in Algorithm 2. A single GE-based learner
population is initialized by assigning gene values with uniform probability and
attempting to map to a legal expression as defined by the grammar (Section
2.2). This process is repeated until a legal mapping is successful such that no
degenerate GE individuals are defined in the initial population [18]. There are
no requirements on expression length, however the genotype is limited in the
number of rule selection values (by the CODONS parameter) and expressions
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Table 1: Algorithm Data Structures and Parameters
Populations and archives

Description Abbrev. Num Capacity
Point population PP 1 PP MAX SIZE

Learner population LP 1 POP SIZE
Point archives PA c PA MAX SIZE, ea.

Learner archives LA c LA MAX SIZE, ea.
Evaluation structures

Non-converged classes NC 1 c
Current rank histograms RHt c |LP |
Previous rank histograms RHt−1 c |LP |

are constrained to a maximum string length of MAX EXP LEN (see Table 2).
Archives may only accept individuals satisfying the Pareto dominance criteria,
Section 2.8, thus initially contain no individuals. Moreover, the point popula-
tion is required to maximize diversity, hence is reinitialized after each epoch,
Section 2.6. Finally, step 5 of Algorithm 2 represents the initialization of the
data structure used to detect early (class-wise) convergence.

Algorithm 2 Initializations

1. LP := initLearners(LP )

2. LA1 . . . LAc := {∅}

3. PP := {∅}

4. PA1 . . . PAc := {∅}

5. NC := {1 . . . c}

2.6 Training

At the outset of each epoch, the point population (PP ) is filled using random
uniform selection without replacement over the range of all training pattern
indices in step 1a of Algorithm 3. A balanced representation from each classes
of the training data is enforced where such a bias is known to improve the
resilience of decision tree classifiers to the class imbalance problem [22]. The
training set (TS) for the epoch is then the union of all point archives and the
point population, Algorithm 3 step 1b. Following evaluation of fitness using a
multi-objective paradigm (step 1c) in which a Pareto ranking is used to provide
a scalar ranking of individuals in the training population. GE variation oper-
ators take the form of context aware crossover or mutation [9], steps 1(d)ivA
and 1(d)vB respectively. The selection of parents, steps 1(d)i and 1(d)iiiA, is
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fitness proportionate.

Algorithm 3 Evolutionary Training Loop

1. For epoch := 1 to MAX EPOCHS

(a) PP := fillP tPop()

(b) Training set TS := PA1 ∪ . . . PAc ∪ PP
(c) evalLearners(LP, TS):

i. evalObjectives(LP, TS)
ii. rankLearners(LP )

iii. calcF itness(LP )

(d) For 1 to |LP |
i. Select parent p1 ∈ LP

ii. tries := 0; p2 := ∅
iii. While class(p1) 6= class(p2) & tries < c

A. Select parent p2 ∈ LP ;
B. tries++

iv. If testXover(PXO) = true

A. Children C := applyXover(p1, p2)
v. Else

A. C := {p1, p2}
B. applyMutation(C, MR)

vi. performReplacement(LP,C, TS):
A. evalLearners(C, TS)
B. replaceLearners(LP,C)
C. rankLearners(LP )

(e) IPCA-based archiving;

(f) Check for early stop cirteria.

2. Post-training: Assembly of classifiers.

Prior to proceeding to the IPCA-based archiving (step 1e) and evaluation of
early stopping criteria (step 1f) we will describe the nature of point and learner
populations in more detail.

The point population plays an exploratory sampling role in the coevolution
process and maintains a balanced view of the training data from the perspective
of the learners. Specifically, the point generation function (fillP tPop) step 1a of
Algorithm 3 selects exemplar indices (with uniform probability) for each class.
The function explicitly represents each class of the problem with equal exemplar
counts in the population (assuming that there are enough points in the training
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set to do so). The point population thus provides the basis for balancing the
training data. Moreover, scalability of the training algorithm is achieved by the
sampling property of the point population, as it explicitly limits the maximum
number of learner evaluations required at the computationally costly inner loop
of GP (step 1(d)viA of Algorithm 3).

GE is employed to induce classifier expressions through the multi-objective
evolutionary cycle. To begin each epoch (where new point data has been se-
lected into the point population) the learner population is evaluated against
the training set TS, which is the union of the point population and the point
archives in steps 1b and 1c of Algorithm 3. The basic procedure for learner
generation at each iteration of step 1d first involves selection of two parents,
the second parent is a classifier from the same class as the first parent. Genetic
variation operators are then applied to the parents to create children. Replace-
ment follows the rule that children always replace the lowest ranked member of
the learner population. After the replacement step, the learner population is
re-ranked and the next selection iteration begins.

At this stage each learner has an output expressed in terms of a Gaussian
LMF, Section 2.3, or yi = y(gpOuti), i ∈ TS. The mean and variance of this
LMF reflect the region of highest density relative to the mapping

gpOuti = f(xi); i ∈ TS, (4)

where f(·) is the mapping between multidimensional input xi and single dimen-
sional output gpOut and i indexes training examples in the training set TS.
The basic objective is now to incorporate class consistent properties onto the
mapping of (4) and therefore the points associated with the LMF. To this end, a
multi-objective model is utilized. Central to establishing these objectives are the
concepts of 1) error, relative to exemplar class and degree of LMF membership;
2) in-class membership count, where this is defined with respect to the region
defined by the LMF; 3) overlap minimization where in-class exemplars are dis-
couraged from being a member of more than one LMF; 4) solution parsimony.
The definitions of the objectives are summarized as follows:

1. Minimize the sum of squared error (SSE): This objective explicitly
enforces cluster class-consistency by evaluating classification performance
over the cluster member points and rewarding true positive classifications
while discouraging the occurrence of false positives (an individual mistak-
enly labeling a pattern of class 0 as class 1). The SSE for an individual
is calculated over M , the set of cluster member points (defined in Section
2.3):

SSE =
|M |∑
i=1

(labeli − y (gpOuti))2, (5)

with y as defined in (1) and label taking on binary values: 1 when the
current pattern label is the same as the class as that of the current learner
(as determined by the clustering) and 0 otherwise.
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2. Maximize in-class patterns correctly classified: This objective is
designed to encourage survival of individuals that correctly map many
patterns densely in gpOut, while discouraging the case of single point
coverage by classifiers.

3. Minimize pattern overlap: This objective is intended to discourage
intersection in the sets of patterns that are correctly classified between
learner archives and the current learner population. The overlap value for
an individual is defined as a count (i.e. sum) of number of times that each
exemplar that is correctly classified is also correctly classified by members
of the learner archive. This makes a significant improvement relative to
an earlier version of the MOGE classifier at [15].

4. Minimize expression length: Based on results obtained in [19] and [5],
this objective imposes parsimony in learner expressions. The expression
length is defined as the string length of the unsimplified learner expression.

2.7 Pareto Ranking and Fitness Assignment.

The method of ranking with ties is employed to determine fitness of members of
the learner population [12]. When evaluated, the rank of an individual is defined
by the number of individuals by which it is Pareto dominated (as defined in
Section 2.1) plus one. All non-dominated solutions are given the rank of 1 and
in the event of a tie (i.e. two learners having the same value in all objectives),
one of the ranks is randomly increased by one. The fitness of an individual is
assigned in direct proportion to Pareto rank.

2.8 Point and Learner Archive Entry

Based on the IPCA algorithm, archive insertion (step 1e of Algorithm 3) is
driven by the notion of providing distinctions between learners [4]. The concept
of distinctions was shown to specifically address the coevolutionary problem of
disengagement [6], where the point population dominate the learner population
resulting in a loss of training gradient. This can occur when points are rewarded
for explicitly defeating the learners rather than distinguishing between them.

The approach employed here differs from IPCA and Lemczyk et al. [13] in
two respects. First, multiple independent archives are maintained concurrently,
each corresponding to a different class of the problem. This is necessary in
order to ensure interactions maintain a training gradient that is relevant with
respect to each class. Within each point archive, we enforce a 50-50 balance
between {in, out}-of-class points on the archive contents (where the notion
of an ‘in’ or ‘out-of-class’ point is obviously with respect to the class of the
archive). This approach demonstrated superior results in the single archive
binary system, reported in [13], especially on unbalanced data sets, and follows
similar recommendations for other machine learning methods [22].

Secondly, the definition of an outcome has been reformulated to take on
real values as opposed to binary. An outcome is the result of an interaction
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between a learner and a point. The set of outcomes defined for each learner
with respect to its corresponding archive provides the basis for which archive
entry is assessed. In this work, outcomes are evaluated with respect the class of
the learner and take on real values in the range (0,1] based on the the learner’s
membership y as defined in (1). A learner’s outcome for a given point is defined
as:

outcome =
{
y if point is in-class
1− y otherwise (6)

Consistent with IPCA, a point is said to provide a distinction (i.e. it is
considered to be a useful test) if the outcomes of a learner that was previously
Pareto dominated by the outcomes of at least one member of the learner archive
become Pareto equivalent to the learner archive (i.e. it becomes a useful learner)
with the addition of the point to the point archive. If a newly generated point,
p, is useful with respect to a learner, l (of class c) and the class c learner archive,
then p is committed to the point archive corresponding to class c. Similarly,
if a newly generated learner, l, (of class c) is useful with respect to the class c
learner archive when evaluated against the class c point archive, then l enters
the class c learner archive. In order to maintain an upper bound on the archives,
pruning may be necessary prior to insertion of the new member.

2.9 Archive Pruning

A maximum size is imposed on both learner and point archives in order to
sustain computational and resource efficiency in the training algorithm [13].
Efficiency is therefore achieved at the potential expense of accuracy of learner
evaluation. In the case of the learner archive, pruning risks correctly identify-
ing a complete set of expressions that are able to decompose the classification
problem, while in the case of the point archive pruning may introduce errors
in identifying training objectives and cause cycles of forgetting in the learning
process.

When a point archive has reached the maximum capacity for its {in, out}-of-
class contents, a point is chosen for replacement by selecting the archive point of
the same class having the nearest Euclidean distance to the point being inserted
[13]. The distance is calculated over the pattern attributes (feature space) as-
sociated with each point. While a point is lost from the archive through this
process, the assumption is that the point inserted into the archive will provide
an alternative test that maintains the previous distinctions while establishing a
basis for further learning.

When a learner archive has reached the maximum size, a member must be
chosen for replacement. Currently we select for replacement the archive member
having the lowest sum of outcomes over the corresponding point archive.
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2.10 Early Stopping Criteria

To identify a converged state among learner population members (step 1f of Al-
gorithm 3) we employ the convenient stopping criteria identification method of
Pareto-rank histograms, introduced under a GA context by Kumar and Rockett
[12]. For this work, rank histograms are generated from the ratio of the num-
ber of learners at each rank in the learner population between the current and
previous epochs (see Algorithm 4). Separate histograms are generated for each
class, such that c histograms are constructed for a c class problem. A match
between class rank histograms of two successive epochs indicates that further
progress is unlikely on the class.

Algorithm 4 Evaluation of Early Stop Criteria

1. ∀i ∈ NC

(a) RHt
i := rankHist(LP, i)

(b) If dist(RHt
i , RH

t−1
i ) < MIN DIFF

i. NC := NC − i
ii. initLearners({lp ∈ LP : class(lp) = i})

(c) Else

i. RHt−1
i := RHt

i

2. If NC = {∅}

(a) Exit

In step 1.b of Algorithm 4, we also require that the number of learners corre-
sponding to the histogram class under consideration must be beyond a minimum
threshold (CONV MIN POP) and epoch (see Algorithm 3) must be beyond a
minimum fraction (CONV FRAC) of MAX EPOCHS. For parameter specifica-
tions, see Table 2.

2.11 Post-training: Assembly of Classifiers

Post-training, the learner archives are merged to form a solution set which
is then processed to identify the degree to which each of the individuals will
participate in making classifications. In this work, we implement a basic winner-
take-all scheme where the individual’s y values (as defined in (1)) are weighted
with a confidence. The class of the individual having the highest confidence
weighted membership value (w ·y) is predicted by the classifier for a given input
pattern. The confidence weighting (w ∈ [0, 1]) for each individual in the solution
set is defined in terms of its favorability set (F ) as:

w =
max (F )∑

F
. (7)
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The elements of the favorability set Fi for an individual are defined over the
classes (i = 1 . . . c) of the entire set of training data TD as [20]:

Fi =
n̂i

2

ti · N̂
, (8)

where
n̂i = |{pt ∈ TD : ô = 1 ∧ class(pt) = i}|, (9)

ti = |{pt ∈ TD : class(pt) = i}|, (10)

and

N̂ =
c∑

i=1

n̂i. (11)

3 EXPERIMENTS

All experiments are undertaken using large and unbalanced multi-class classi-
fication problems from the University of California at Irvine’s (UCI) Machine
Learning Repository [16]. Two experiments were designed for the current work
and each was run for 50 initializations on the UCI data sets with the parame-
terizations summarized in Table 2.

1. RssGE - A standard binary GE classifier implementation that employs
a sigmoid wrapper function. This provides a computationally tractable
baseline GE model that employs a class-aware (balanced) version of the
random subset selection (RSS) algorithm [8] in place of a point archive.
RSS replaces the notion of point population and training set (PP and TS
of Algorithm 3) and there is no concept of archives or early stopping in
this algorithm (i.e. steps 1e and 1f of Algorithm 3 are removed). Fitness
is based on a single metric that employs the error provided by the sigmoid
wrapper evaluation. All other details of Algorithm 3 remain in place. As
a binary classifier, each class requires a separate classifier expression, and
a winner-take-all voting policy is therefore employed for consistency in
comparisons.

2. CMGE - The Competitve Multi-objective GE described in the current
work.

All experiments were conducted with an upper limit on the total number of
individual evaluations. By holding the number of evaluations constant we are
able to provide comparisons between algorithms such that learning efficiency
per evaluation is taken into consideration. Specifically, the evaluation limit for
each algorithm is defined as:

PP MAX SIZE× POP SIZE×MAX EPOCHS (12)
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per class, where these values are supplied in Table 2. Each run of RssGE
would therefore be permitted the number of evaluations defined in (12) and
the algorithm run for each class of the data set, whereas the equivalent CMGE
result would be from a single run that was permitted a maximum number of
evaluations defined in (12) multiplied by the number of classes.

3.1 Performance Measures

Evaluation will be performed from the perspective of the quality of classifiers in
terms of solution sizes and and predictions made on unseen data. Classification
(prediction) performance will be given class-wise in terms median values for
detection rate (DR) and false positive (FPR), which are defined in terms of
true positive (tp), true negative (tn), false positive (fp) and false negative (fn)
as [10]:

DR =
tp

tp+ fn
(13)

FPR =
fp

fp+ tn
(14)

Solution sizes are reported in terms of median string length of the unsimplified
expression (again the quartiles will indicate variation).

3.2 Data Sets

Evaluation is performed over two well known-data sets, UCI Thyroid (specif-
ically the ‘ann-train’ and ‘ann-test’ data sets) and UCI Statlog Shuttle [16].
The general characteristics are provided in Table 3. Both data sets have pre-
defined partitions for train and test which were used here. Each of the data sets
was pre-processed to convert nominal data to numeric, remove all duplicates,
contradictory patterns and patterns with missing attributes (this is performed
over the combined train and test data). The Statlog Shuttle data set is highly
unbalanced, with approximately 80% of all data coming from class 1, while as
few as 6 patterns are provided for class 6 (in the training data). The Thyroid
data set is also highly unbalanced, having approximately 92% of data belonging
to class 3.

4 RESULTS

Table 4 presents a summary of Student’s T-test results on the overall test ac-
curacies of the two GP classification algorithms for both data sets. The T-test
figues are the values returned using the two-tailed, two-sample with unequal
variance options. Each T-test value indicates the probability of the two sample
means being the same under the assumption that the population means are the
same.
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Table 2: Parameter Specifications
Grammatical evolution

Parameter Value
MAX EXP LEN 4096

CODONS 256
Archives and populations

POP SIZE 50
MAX EPOCHS 500
LA MAX SIZE 30
PP MAX SIZE 30
PA MAX SIZE 30

Crossover and mutation
PXO, PCXO 0.50, 0.90

PM, PTSM 0.01, 0.90
Early stopping
MIN DIFF 0.1

CONV MIN POP 20
CONV FRAC 1

5

Table 3: Data Set Characteristics
Data Sets and Parameters

Parameter UCI Statlog Shuttle UCI Thyroid
# Training exemplars 45,300 3,709

# Test exemplars 14,500 3,420
# Features 9 21

# Classes 7 3
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Table 4: T-Test Results (Overall Test Accuracy)
Test Shuttle Thyroid

RssGE versus CMGE 0.0816 0.0000

Tables 5 and 7 provide a detailed 1st quartile, median, and 3rd quartile
characterization of RssGE and CMGE performance on the Shuttle data set.
It is immediately apparent that the CMGE algorithm provides much better
Detection and False Positive rates, with the RssGE binary classifier only able
to improve on the CMGE results for class 3. Moreover, the CMGE results
are achieved with a much lower spread than that of the RssGE baseline. In
terms of expression lengths, the CMGE paradigm results in simpler solutions, in
spite of combining multiple individuals per class. Based on the median number
of expressions participating in solutions (final section of Table 7), the CMGE
algorithm appears to consistently use the majority of the learner archive capacity
to store solutions in order to decompose the problem. In terms of training times,
both the RssGE and CMGE algorithms returned final results in median times
of under 6 mins per initialization.

Tables 6 and 8 provide the same breakdown of results for the Thyroid data
set. The distinction between CMGE and the RssGE baseline is even more ap-
parent, with both Detection and False Positive rates comfortably improving on
those established by the baseline. As per the Shuttle data set, the CMGE model
is also very consistent, whereas the baseline model results in a wide range of
Detection rates (down to 8%) and False Positive rates (up to 54%). Moreover,
on classes 1 and 2, the CMGE model does so whilst utilizing more complex
solutions than RssGE. This appears to indicate that the parsimony objective
does not impede the accurate of classifiers, in effect CMGE is able to design
classifiers that are suitably complex when warranted, that is without compro-
mising test performance. The CMGE algorithm again appears to consume the
large majority of the learner archive capacity to achieve problem decomposition.
In terms of training time, both the RssGE and CMGE returned final results in
median times of under one minute per initialization.

5 CONCLUSION

A novel algorithm for multi-class classification on large and unbalanced data
sets is presented where the issues of scalability, problem decomposition and
solution transparency are addressed simultaneously within a coevolutionary
multi-objective GP framework. Scalability with respect to training set size is
achieved through a competitive coevolution approach that incorporates multi-
class archives and early stopping criteria. Problem decomposition is facilitated
using two properties. Firstly, the use of a local wrapper function enables indi-
viduals to act as novelty detectors rather than discriminators. Secondly, when
designing the EMO component of the model, care is taken to construct the ob-
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Table 5: RssGE Results (UCI Statlog Shuttle)
Overall Accuracy (Train / Test)

c Q1 Median Q3
- 0.738 / 0.739 0.79 / 0.787 0.83 / 0.833

Detection Rate (Train / Test)
1 0.758 / 0.759 0.803 / 0.805 0.923 / 0.920
2 0.000 / 0.000 0.432 / 0.615 0.838 / 0.923
3 0.295 / 0.333 0.750 / 0.731 0.970 / 0.974
4 0.517 / 0.516 0.681 / 0.680 0.975 / 0.973
5 0.000 / 0.000 0.552 / 0.542 0.903 / 0.897
6 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
7 0.000 / 0.000 0.182 / 0.000 1.000 / 1.000

False Positive Rate (Train / Test)
1 0.003 / 0.004 0.052 / 0.052 0.188 / 0.172
2 0.000 / 0.001 0.002 / 0.002 0.012 / 0.013
3 0.002 / 0.002 0.005 / 0.006 0.035 / 0.035
4 0.063 / 0.065 0.144 / 0.145 0.203 / 0.200
5 0.000 / 0.000 0.000 / 0.000 0.017 / 0.016
6 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
7 0.000 / 0.000 0.000 / 0.000 0.001 / 0.001

Expression Length
1 17 29.5 55
2 13 22.5 42
3 17 27 42
4 18 40 72
5 13 23 42
6 8 12 23
7 26 42 66
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Table 6: RssGE Results (UCI Thyroid)
Overall Accuracy (Train / Test)

c Q1 Median Q3
- 0.405 / 0.417 0.761 / 0.732 0.86 / 0.835

Detection Rate (Train / Test)
1 0.742 / 0.685 0.887 / 0.842 0.968 / 0.973
2 0.084 / 0.090 0.545 / 0.593 0.775 / 0.785
3 0.409 / 0.419 0.779 / 0.747 0.892 / 0.862

False Positive Rate (Train / Test)
1 0.014 / 0.019 0.043 / 0.048 0.121 / 0.145
2 0.041 / 0.048 0.127 / 0.160 0.540 / 0.539
3 0.011 / 0.020 0.074 / 0.058 0.148 / 0.164

Expression Length
1 10 30.5 59
2 10 19 32
3 13 41 83

jectives such that collaborative behavior with respect to other members of the
Pareto front is encouraged.

Two large and unbalanced classification problems were investigated in com-
parison to an active learning approach with results indicating preference for the
proposed system over both problems. Solutions were demonstrated to be of
smaller size than the baseline RssGE on the Shuttle dataset, despite being a
multi-individual model. The proposed system also returned training times on
the order of a few minutes for the large data sets under consideration.

Future work will include the comparison of various parameterizations of
the current algorithm on a wider range of large and unbalanced multi-class
datasets. Moreover, we will investigate the appropriateness of a range of pruning
algorithms for both learner and point archives.
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