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Abstract

Pareto competitive models of coevolution have the potential to provide
a number of distinct advantages over the canonical approach to training
under the Genetic Programming (GP) classifier domain. Recent work has
specifically focused on the reformulation of training as a two-population
competition, that is learners versus training exemplars. Such a scheme
affords, for example, the capacity to decouple the fitness evaluation over-
head from the data set size through sub sampling while naturally encour-
aging ‘teams’ or composite solutions as opposed to solutions based on
a single individual alone. One outstanding question with respect to the
latter characteristic is with regards to the nature of the team (archive)
behavior in terms of pattern coverage. That is to say, which models are
used when, and what are the implications for solution modularity as it
relates, for example, to the assignment of exemplars to solution partici-
pants. The current work investigates two Pareto competitive approaches
to classification under GP, with one configured to employ an explicitly
cooperative multi-objective cost function based and the other employing
the classical (error-based) cost function. We empirically demonstrate a
critical distinction between the two with regards to problem decomposi-
tion, with the capacity to provide a decomposition into unique behaviors
being much more prevalent when co-operative mechanisms are explicitly
supported.

1 Introduction

Pareto competitive coevolution has begun to make the transition from the ge-
netic algorithm (GA) to genetic programming (GP) domain. The basic Pareto
competitive coevolutionary model of relevance to the classification domain en-
courages evolution to take place between one or more populations such that one
set of individuals represent a set of test cases (training exemplar subset) and the
other a set of learners. A Pareto ranking model is established in which the test
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cases are rewarded for their ability to distinguish between the learners, and the
learners are rewarded for their ability to remain non-dominated (with respect to
the set of test conditions) [2], [10], [1]. The end result is that two Pareto fronts
are built, one in which a set of non-dominated test points exist (corresponding
to the minimal set of tests necessary to distinguish between the current set of
learners) and the second details the corresponding set of non-dominated learn-
ers. The advantage that such a model provides is twofold. Fitness evaluation
need no longer be conducted over the entire set of training exemplars, and a
formal process has been established for identifying the ‘best’ training points
and learners. Moreover, it is also possible to interpret convergence in terms of
the behavior of the learner Pareto front, thus addressing the issue of domain
independent stop criterion1. To date, however, the GA bias to this research
has emphasized the issues of diversity maintenance, monotonic progress, and
niching within the learner population.

In a GP setting the same issues exist, enabling some of the solutions to be
carried over from a GA context. In particular, GA Pareto competitive models
have been relatively successful in establishing a basis for coevolving two popula-
tion models under the GP classification domain [5], [6], [12], [8]. In this work we
will examine one of the basic problems unique to the GP classification domain
under a Pareto competitive model, and illustrate how it can be dealt with by
introducing a cooperative model of fitness assignment in addition to the Pareto
competitive coevolutionary model.

Specifically, under the classification domain the Pareto competitive model
results in a front of solutions for both learner and (test) point populations. This
means that the solution will no longer be in the form of a single classifier, but
in terms of a set of classifiers (those in the Pareto front). The basic issue at
stake here is how to determine which model to use when. The problem does not
appear in a GA setting for the most part because individuals take the form of
a co-ordinate in a multi-dimensional space, thus application of an appropriate
distance metric is sufficient to resolve which individual to apply when. Moreover,
the GA domain may also introduce diversity mechanisms based on Euclidean
distance metrics to encourage desirable ‘coverage’ properties in the Pareto front
itself. Finally, although GA domains might utilize a Pareto method to evolve a
front of solutions, they often assume that only one is chosen for deployment by
the user.

Conversely, under a GP classification domain we demonstrate in this work
that a lot depends on how the fitness function and associated wrapper operator
are designed. In particular, the most straightforward approach might assume
a binary (hit) based model on account of the ease with which the associated
Pareto dominance test might be made. We show in this work that this results
in a weak learner type of association between learners and exemplars, with sig-
nificant overlap between the exemplars and responding learners. Conversely, by
assuming a cooperative multi-objective model to fitness evaluation (in addition
to the Pareto competitive model of evolution) we are able to establish an explicit

1Originally proposed under the GA paradigm [4], and reapplied under GP [8].
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decomposition of exemplars to learners. As such, the post training assignment
of learners to exemplars merely takes the form of utilizing the learner providing
maximum class membership.

In the following, models for Pareto competitive coevolutionary and Pareto
cooperative-competitive models of GP coevolution are introduced, Section 2.
In doing so, we contrast the utility of local and global wrapper operators, and
make the case for establishing reward mechanisms that explicitly encourage co-
operative behaviors. Both algorithms provide solutions in the form of a ‘front’
of solutions. Section 3 investigates the nature of the interaction between indi-
viduals within the front under three multi-class classification problems. The ef-
fectiveness of the cooperative–coevolutionary model is now clear, with solutions
typically taking the form of a clear behavioral decomposition of the problem do-
main. Conversely, the competitive–descriminator based model typically results
in solutions in which a complex mixture of classifiers takes place, without any
improvement over the classification accuracy of the former model.

2 Pareto competitive and Pareto cooperative–
competitive Coevolution

In order to illustrate the aforementioned property of competitive coevolutionary
GP classifiers, we compare the operation of two recent frameworks that utilize
a Pareto based model of interaction between points (exemplars) and learners
(classifiers): the Pareto-coevolutionary Genetic Programming Classifier [5], and
Competitive Multi-objective Grammatical Evolution [8], [7]. For consistency
both are implemented in terms of a canonical model of Grammatical Evolution
(GE) [11], although both are entirely independent of the model of evolution
on which they are based. Hereafter we refer to them as PGEC and CMGE
respectively. In the following we establish the principle differences between
the two models, and refer the reader to the original works for the detailed
algorithmic descriptions.

The basic features of the CMGE classifier are summarized as follows relative
to the pseudo code listing provided in Algorithm 1.

1. Identification of the subset of exemplars over which individual (learner)
evaluation will take place (steps 2(a), 2(b));

2. Identification of the local membership function (wrapper operator) for
each individual, relative to the associated gpOut distribution (steps 2(c)ii.A
to D);

3. Fitness evaluation of individuals relative to the learning objectives under
a multiobjective methodology (lines 2(c)ii.E to G);

4. Identification and archiving of the most valuable individual classifiers and
exemplars (steps 2(d));

5. Class-wise assessment of early stopping criteria (steps 2(e)).

3



Conversely, the PGEC model is limited to: steps 2(a) and (b), define the
content of the learner and point archives, after which the outcome vector for
each individual is established, and then step 2(d) is performed, that is the Pareto
assessment for establishing archive content.

2.1 Competitive Multi-objective Grammatical Evolution

The standard initialization process of step 1, Algorithm 1 stochastically creates
GP population members (learners) and prepares the relevant data structures, in-
cluding archives for both learners and exemplars (data points or simply, points).
A while loop (step 2) encloses the main sections of the algorithm, ensuring that
the training of GP is repeated until stopping conditions are met (as evaluated
at the end of each iteration in step 2(e)). Steps 2(a) and 2(b) set up the train-
ing subset at each iteration ensuring a balanced view of data, thus enabling
robustness against problems having unbalanced class distributions.

Algorithm 1 High-level Pareto Coevolution.

1. Initialize Learner Population (LP);

2. WHILE ! (Stop criteria)

(a) Point Population (PP) := random balanced sample of training parti-
tion;

(b) Training Subset (TS) := PP concatenated with Point Archive con-
tents (PA);

(c) FOR i := 1 to sizeof(LP)

i. Apply variation operators to Produce Children (C)
ii. FOR j := 1 to sizeof(C)

A. Establish phenotype of individual C[j];
B. Map TS to 1-d number line ‘gpOut’ of C[j];
C. Cluster gpOut of C[j];
D. Parameterize Gaussian Local Membership Function (LMF)

of child C[j];
E. Evaluate C[j] with respect to:

SSE, Overlap wrt. Learner Archive (LA), Parsimony.
F. Rank C[j] with respect to LP and assign fitness;
G. Replacement (insert C[j] into LP);

(d) Archive PP, LP members based on outcomes (according to IPCA)

i. Points in PP enter PA if they provide a new distinction;
ii. Learners in LP enter LA if they are non-dominated wrt. LA;

(e) Evaluate Stop Criteria (method of Rank Histograms);
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3. Class-wise LA denote solution: Build appropriate weighting scheme;

Line 2(c) of Algorithm 1 begins the cooperative coevolution training loop
which employs an Evolutionary Multi-objective Optimization (EMO) model
loosely based on that of [4] to train GP. On each pass of the loop, selection
and variation operators are applied to the GP population and children are pro-
duced (line 2(c)i). Next, individuals are decoded to their respective phenotype
(line 2(c)ii.A) and the current selection of exemplars are mapped to the gpOut
axis. We now require a mechanism to identify the local membership function
(wrapper operator) neighborhood without resorting to inappropriate or arbi-
trary predefinitions of regions along the gpOut axis. In order to achieve this
goal we assume that the neighborhoods of most relevance are those having the
highest density, a requirement satisfied by a clustering algorithm (step 2(c)ii.C).
The clustering algorithm returns the location of the mid point associated with
the ‘most dense’ set of points and exemplars associated with this cluster, M.
The process itself is independent of class label. We now have the properties
for the local membership function (LMF) defined in terms of a Gaussian with
mean, µ, and variance, σ (line 2(c)ii.D).

A fitness function is now applied to the subset of points of the neighborhood,
M (line 2(c)ii.E, Algorithm 1). The objectives are designed to encourage: least
ambiguity in cluster membership, non overlapping behavior of the exemplars
mapped to different individuals, maximization of the number of in-class exem-
plars mapped to an individual, and simplicity of the GP mapping. Note that,
in common with the findings of other EMO research, we establish a set of objec-
tives that have a degree of implicit ‘tension’ between them. In doing so we are
able to encourage mappings that reduce the likelihood of degenerate solutions.
Moreover, in order to measure these objectives, the mapping is assigned a class,
where this is assumed to correspond to the class of the point at the center of the
LMF. In taking this route we avoid making any assumptions regarding which
individuals are mapping which classes, and effectively let individuals compete
for the right to map exemplars. The inner loop is completed by returning to the
generic PCGA EMO algorithm of [4] in order to complete the Pareto ranking
and replacement policy (lines 2(c)ii.F and G respectively). The significance of
the Pareto ranking and ensuing fitness assignment is that selection operators
proportionately favor individuals of higher fitness (lower ranking) over those
having lower fitness (higher ranking). This tends to encourage the GP algo-
rithm to more frequently sample material corresponding to individuals that lie
closer to the Pareto front, with the goal of establishing improvements in the
objectives. The PCGA model also provides the concept of rank histograms,
which essentially summarizes the content of the population (in objective space)
in terms of the Pareto ranks, so that content can be readily compared between
training epochs. When calculated for each class, this provides the basis for the
detection of class wise early stopping, line 2(e).

The inner loop defined by line 2(c) denotes the cooperative EMO model.
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This portion of the main loop is performed in combination with the Pareto
competitive model2 for the purpose of adapting learner and test point archives
as memories at line 2(d). That is to say, the competitive coevolution model’s
evaluation is conducted over the contents of the subset of training exemplars,
TS (step 2(b)), dynamically identified by a competitive co-operative model for
archiving the most discriminatory test points (step 2(d)i) and non dominated
learners (step 2(d)ii), both from the perspective of a Pareto front. The com-
petitive model thus plays a primarily archival role, acting as a memory for the
cooperative model. The archive entry criteria are evaluated in terms of GP
classification ‘outcomes’ which are directly related to the LMF definition and
it’s associated performance on the training set i.e., the outcome vector is takes
on real values as opposed to the binary case of IPCA.

Deployment of the classifier (step 3) takes the form of copying the contents
of the learner archives and assignment of weights to each on the basis of the
training data. A winner-take-all policy with respect to LMF response determines
the assignment of class labels among the team individuals.

2.2 Discussion

The critical differences between the PGEC and CMGE models are the use of
EMO fitness evaluation in which cooperative behavior is explicitly sought in
the mapping between exemplars and class membership, step 2(c), Algorithm 1.
PGEC instead relies on the standard sigmoid based global wrapper operator for
the purpose of mapping gpOut to class labels. This also implies that PGEC
is a binary classifier, requiring multiple runs to evolve classifiers for each class,
whereas CMGE provides classifiers for all classes from a single run. The inter-
face to IPCA, line 2(d) remains unchanged i.e., the outcome vector. As such the
principle mechanism for encouraging problem decomposition is the competitive
model of Pareto dominance, as expressed between points and learners. Given
that there is no explicitly cooperative mechanism for establishing population
diversity, we maintain that this will generally result in PGEC producing classi-
fiers with overlapping behaviors. That is to say, learners need only differ in one
outcome in order to satisfy the Pareto dominance criterion and appear in the
learner archive.

Unlike IPCA, both CMGE and PGEC make use of heuristics to enforce
finite archive sizes for point and learner archives, PA and LA. In the case of the
point archive, both PGEC and CMGE replace points once the archive limit is
reached using an Euclidean distance metric in which the nearest current point
is replaced [5]. In the case of the learner archive both PGEC and CMGE
replace the individual currently within the archive with largest overall error (as
estimated against the current training subset, TS ).

A second difference resulting from the two models appears in the post train-
ing voting mechanism, step 3, Algorithm 1. PGEC relies on a majority policy,

2A variant of de Jong’s IPCA algorithm [12], although any of this class of algorithm would
be appropriate.
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where this is designed to make use of the expected overlap in learner archive
classifier behavior. Conversely, CMGE learners are expected to be unique, thus
a winner takes all policy is assumed. In the case of PGEC, the merit of assuming
a particular policy is expected to be more significant, as the degree of interac-
tion between learners is likely to be data set specific. Conversely, under CMGE
a winner takes all policy is a natural consequence of the explicitly cooperative
model of evolution, reinforced by the action of the Gaussian local membership
function.

3 Results

The PGEC and CMGE models are implemented using a common grammar and
set of evolutionary parameters, Table 1. The grammar is capable of specify-
ing zero argument (exemplar features), single argument (cosine, square root,
natural log, exponential), and double argument (plus, minus, multiply, divide)
operators. Variation operators take the form of one point crossover and muta-
tion (PXO and PM respectively) and their corresponding context aware variants
(PCXO and PCM respectively) [3]. Classifiers are implemented as a ‘parallel
model’ in which a ‘k’ class problem implies that ‘k’ learner archives are evolved.
A larger study, [7], conducted an evaluation over nine additional multi-class
data sets taken from the UCI repository [9]. In this work, we focus on three
interesting cases that characterized the behavior of all nine cases: Iris (IRIS),
Boston Housing (BOST), and Contraceptive (CONT). Table 2 characterizes the
basic properties of the data sets as deployed in this study. All three data sets
are three class problems, and results employ ten fold cross validation with fifty
runs per fold. The only pre-processing performed involved removing duplicate
and incomplete exemplars from the original data set.

Table 1: GE Parameterization.

Parameter Value Parameter Value
Max Generation 500 Learner Pop Size 50

Max Codon 256 Learner Archive Size 30
Max Codon Trans. 4,096 Point Pop Size 30

– – Point Archive Size 30
PXO (PCXO) 0.5 (0.9) PM (PCM) 0.01 (0.9)

3.1 Evaluating Intra-class Voting Behavior

In order to investigate the effectiveness of the cooperative mechanism in CMGE
versus the PGEC model, a metric for intra-class voting behavior is derived.
In particular we wish to measure the degree to which learners comprising the
Pareto front form constructive interactions, that is decompose the problem into
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Table 2: Data Set Characterization.

Data set num. Exemplars num. Features Class distribution (percent)
IRIS 147 3 33–33–33

BOST 506 12 33–33–33
CONT 1,425 8 43–22–35

non overlapping associations between learners and exemplars. This is inter-
preted in terms of the strength of the class membership operators, Gaussian
and Sigmoid (local and global) for CMGE and PGEC respectively, relative to
the median performance of the set of individuals constituting the ‘team’ of the
same class. That is to say, given a winning classifier (the individual with max-
imum membership on an exemplar) we measure the difference in membership
of the winner relative to the median membership of other classifiers associated
with the same class. Differences would be distributed over the unit interval,
and results in the metric characterizing performance in terms of three generic
outcomes,

• Differences tending towards zero: indicates that there is little difference
between membership of winning classifier and the median classifier per-
formance. Needless to say, this could be associated with the majority of
individuals labeling an in class exemplar correctly or incorrectly;

• Differences tending towards the mid point (0.5): indicates an individual
with strong winning class membership, but with the majority of ‘run-
ner up’ in-class individuals responding with a ‘fifty percent’ membership.
Thus, the winning individual had a membership in the interval [0.5, 1],
with the majority of the remaining intra-class classifiers responding with
membership in the interval [0.25, 0.75]. Such behavior is considered un-
desirable as it is no longer possible to establish a clear difference between
individuals labeling in class behaviors and those associated with out of
class behavior.

• Differences tending towards unity: implies that the class winner responds
with a class membership tending towards unity, whereas the majority of
the other individuals respond with low class membership. Naturally, this
implies a strong uniqueness in the classifier to exemplar decomposition.

The following comparison will first establish the baseline performance of each
model in terms of detection rate, false positive rate and the number of partici-
pating models. This establishes that nothing is lost by assuming a model that
enforces cooperative problem decomposition. The second evaluation character-
izes the nature of the intra-class decomposition.
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3.1.1 Complexity and Classification performance

Table 3 establishes the number of classifiers participating and ensuing detection
/ false positive rates over the test partition in terms of the class-wise median.
Both models clearly utilize multiple classifiers per class. It is also clear that the
CMGE model provides a more reliable classifier, with the significantly higher
per class detection rates more than out weighing any increases in false positive
rate. Moreover, the PGEC model was uncompetitive on both the ‘balanced’ Iris
data set as well as the larger unbalanced data sets. Also of significance is that
this is typically achieved while CMGE utilizes the entire contents of the learner
archive. Thus only on class one of IRIS did CMGE employ a much lower count
of classifiers than that in the remaining cases (all of which tend to the archive
limit of thirty).

Table 3: Median Test Set Performance.

Classifiers per Class
Data set IRIS BOST CONT

Class 1–2–3 1–2–3 1–2–3
CMGE 3–30–30 30–30–30 29–30–30
PGEC 1–5–4 10–14.5–10 14–15–21

Detection Rate
CMGE 100–100–100 87.5–35.3–82.4 73.8–31.2–24
PGEC 0–100–40 17.6–52.9–6.2 18–11.1–32.7

False Positive Rate
CMGE 0–0–0 22.9–9.4–15.2 53.7–14.5–16.3
PGEC 0–50–0 6.1–44.1–2.9 11.1–9.4–28

3.1.2 Intra-class Coverage

The above section established that the explicitly cooperative model of GMGE
is able to build on the competitive coevolutionary paradigm shared by both
models. In this section we characterize the form of the decomposition using the
aforementioned coverage metric. Specifically, we build histograms of the CMGE
and PGEC intra-class coverage over the test partition (no significant differences
appearing between training and test histograms). Figures 1, 2 and 3 summa-
rizing the basic behaviors on the Boston Housing, Iris and Contraceptive data
sets respectively. In the case of the Boston Housing data set, CMGE results
in a bimodal distribution in which there is either a considerable differentiation
between winning classifier and the remainder of the same class classifiers (the
right peek at unity), or the majority of the classifiers have a similar class mem-
bership behavior (the left peek at zero). Moreover, class 2 appears to result
in classifiers demonstrating most behavioral uniqueness, whereas classes 1 and
3 result in behavior distributed equally at the two peeks. PGEC on the other
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hand demonstrates a strong preference for multiple individuals responding at
an intermediate level of class membership (i.e., the peak at 0.5). As such it is
not possible to establish that the majority of in-class individuals respond with a
strong in-class preference or a strong differentiation between in and out of class
behavior, Figure 1(b).
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(a) CMGE (Test)
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(b) PGEC (Test)

Figure 1: Team behavior: Boston data set.

Under the Iris data set, CMGE demonstrates two distinct distributions. In
the case of the linearly separable class (one) a distribution similar to that for
the Boston Housing data set is returned i.e., strong similarity or strong differen-
tiation. The single peak at the mid point is, in this case, produced as an artifact
of an equal number of in-class classifiers returning both maximum (1) and min-
imum (0) differences. On the two non-linearly separable classes the intermixing
of the class boundary results in a bias towards a higher similarity in behavior
between in-class classifier membership. Given the strong classification perfor-
mance of the model as a whole, Table 3, this implies that multiple classifiers
are involved in supplying a correct label. The PGEC model also produces two
distinct distributions under the Iris data set. However, although the linearly
separable class does result in a desirable peak at unity, there are also secondary
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Figure 2: Team behavior: Iris data set.

distributions in the interval 0.8 to 1 and around 0.7. The two non linearly sep-
arable classes (two and three) appear to rely on a complex intermixing of class
votes with no clear differentiation between winner and other in-class classifiers.
In short PGEC appears to find it difficult to encourage individual classifiers
to take a definite policy regarding the subset of exemplars on which they will
respond. This is reinforced by the poor overall classification results, Table 3.

Finally, the Contraceptive data set, Figure 3, is representative of the most
difficult problem domain considered and in the case of CMGE results in a clear
emphasis towards classifiers that respond to very different subsets of exemplars
(high count of large differences). Conversely the PGEC model is generally un-
able to establish a clear differentiation in class membership values, with most
of the distribution again sitting in the mid region of the histogram.
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Figure 3: Team behavior: Contraceptive data set.

4 Conclusion

Coevolutionary models of classification using GP are beginning to appear in
which the test point competitive coevolutionary Pareto models developed under
a GA setting by Watson, Ficici, de Jong, and Pollock frequently serve as the
starting point. The model provides many useful properties, not least that the
inner loop of GP is now decoupled from the size of the original training data
set. In this work we emphasize that there are also several GP and classification
domain specific problems that were not especially relevant in the original GA
domain. In particular, just because the solution (typically) takes the form of
a set of classifiers (the contents of the learner archive or Pareto front), this is
not sufficient to encourage distinct behaviors between the learners themselves.
Related to this property is the need to introduce a mechanism for establishing
post-training class labels from the ensuing classifiers. In this work we revisit
the original Pareto competitive classification model of Lemczyk [5] in which
a global membership function and majority voting are used to establish class
labels, and compare with a local membership function in which members of the
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Pareto front are required to explicitly cooperate under a local wrapper operator
[8],[7]. In order to investigate this property a ‘coverage’ metric is introduced
to establish the degree of differentiation between ‘winning’ class behavior and
the median performance of the remaining classifiers. The resulting evaluation
clearly demonstrates that the competitive-coevolutionary CMGE model is able
to associate specific exemplar subsets with specific classifiers, whereas PGEC is
unable to provide a clear separation between classifier behaviors. Moreover, this
is achieved without compromising the performance of the ensuing classifiers.

Future work will revisit the representation used within the context of the
point population. In particular the GP domain typically employs a GA popula-
tion for the points in which exemplars are directly represented by indices. The
basic problem with this is that although directly supporting the competitive
coevolutionary model, there is no natural mechanism for establishing context
on which a crossover operator could operate. Thus, to date the most effective
model appears to simply re-establish the point population at each generation
using uniform selection with a class balance enforcing heuristic, whereas finding
a representation that permits variation operator context might provide a more
elegant solution.
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