
On Multi-Class Classification by Way of Niching

A. R. McIntyre and M. I. Heywood

Faculty of Computer Science, Dalhousie University
Halifax, Nova Scotia, Canada B3H 1W5
{armcnty, mheywood}@cs.dal.ca

Abstract. In recent literature, the niche enabling effects of crowding and the
sharing algorithms have been systematically investigated in the context of Ge-
netic Algorithms and are now established evolutionary methods for identifying
optima in multi-modal problem domains. In this work, the niching metaphor is
methodically explored in the context of a simultaneous multi-population GP
classifier in order to investigate which (if any) properties of traditional sharing
and crowding algorithms may be portable in arriving at a naturally motivated
niching GP. For this study, the niching mechanisms are implemented in Gram-
matical Evolution to provide multi-category solutions from the same population
in the same trial. Each member of the population belongs to a different niche in
the GE search space corresponding to the data classes. The set of best individu-
als from each niche are combined hierarchically and used for multi-class classi-
fication on the familiar multi-class UCI data sets of Iris and Wine. A distinct
preference for Sharing as opposed to Crowding is demonstrated with respect to
population diversity during evolution and niche classification accuracy.

1 Introduction

Genetic Programming is increasingly being applied to data mining tasks [1], with ad-
vances proposed for encouraging simple solutions [2] and the provision of confidence
intervals as well as class labels [3]. One of the major impediments to the wide spread
utilization of GP methods in real world data mining applications, however, is still as-
sociated with scalability. That is, given the computational overheads associated with
the inner loop of GP, how may the algorithm be efficiently applied to solve multi-
class problems or problems based on exceptionally large datasets. In this work we are
interested in the case of the multi-class problem. That is, how to evolve multi-class
classifiers from single GP trials, where the standard approach is to evolve separate bi-
nary classifiers for each class [4]. Dividing this job across a Beowulf cluster, for ex-
ample, provides a brute force method to arrive at a classifier for an arbitrary number
of classes on the same dataset.

In this work we investigate the provision of multi category classifiers in a single
GP trial through the use of niching metaphors, using algorithms derived from the Ge-
netic Algorithm literature [5-8]. That is, each GP run provides a set of binary classifi-
ers solving the multi-class problem as a group. To do so, this paper investigates the
feasibility of a crowding / sharing hybrid algorithm that naturally extends the basic
GP framework to a multi-class classifier. A comparative analysis of the niching prop-

erties of the GP model with the GA crowding experiments of Mahfoud [5] is provided
along with an extension to a hybrid model using deterministic crowding and dynamic
sharing [8]. We demonstrate that such a scheme is indeed capable of yielding multi-
category classifiers with properties broadly in line with those originally observed by
Mahfoud.

The remainder of this paper is organized as follows: Section 2 provides the back-
ground information and previous work in this area, Section 3 describes the basic ob-
jective and the methodology of this research. Section 4 summarizes the results and
provides an analysis of the study and section 5 concludes the paper.

2 Background

Genetic Programs typically identify one single ‘super individual’ representing a single
peak in the search space. Moreover, the standard Canonical Genetic Algorithm (GA)
will converge to a single peak even in multimodal domains characterized by peaks of
equivalent fitness. This effect is known as genetic drift. Mechanisms that allow GAs
to evolve solutions that do not only converge to a single peak are known here as ‘di-
versity mechanisms’.

The multi-modal problem has been of interest within the context of optimization
problems for a considerable period of time, with modifications proposed for both
Evolutionary Programming [9] and Genetic Algorithms [5-8]. In the case of this
work, multimodal GAs provide a natural path for incorporating diversity mechanisms
into the GP multi-category classification context. Traditional mechanisms considered
as the basis for this work include Deterministic crowding [7], and Sharing [6, 8].

Crowding algorithms were originally defined in terms of a form of tournament.
However, rather than tournaments taking place to define individuals to reproduce they
were used to define the individuals to be replaced; the number of individuals taking
place in such a tournament being denoted the crowding factor [5]. The concept of
crowing was thoroughly reviewed and revised by Mahfoud, when a series of experi-
ments were performed on a set of basic multimodal problems, resulting in the defini-
tion of a ‘Deterministic Crowding’ algorithm [7]. These experiments form the basis
for the first part of the study conducted here with multi-category classification prob-
lems, Section 3 algorithms A1 to A5. The method does however have some shortcom-
ings. Specifically, population drift on more taxing problems is still observed [8]. As a
consequence, we extend our review to include the concept of sharing, and demon-
strate this within the context of GP, Section 3 algorithm A6.

2.1 Grammatical Evolution

The following study is performed using Grammatical Evolution (although results are
not specific to the type of Genetic Programming employed). Grammatical Evolution
(GE) permits automatic and language independent evolution of programs of arbitrary
complexity [10]. To some extent, there are obvious similarities between GE and GP.
However GE does not operate directly on the programs themselves (as in traditional
GP), rather the programs are stored as a series of Backus-Naur form (BNF) grammar

rule selectors, which are in turn indirectly represented by a fixed length binary string
individual. In this sense, GE is similar to GA and consequently permits the use of
simple GA search operators. Based on the findings of Kishore et al. regarding their
success with minimal functional sets [4], we constrain the expression of our GE indi-
viduals to the following simple BNF grammar (for an i-input classification problem):

code : exp
exp : var | const | exp op var | exp op exp
op : + | - | * | /
var : x1 | x2 | … | xi
const: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The fitness of an individual for a given class is calculated by proportionally incre-

menting the total fitness score (starting from zero) for each correct training set classi-
fication (binary class of 1 or 0, where the increment is weighted to equate the value of
in and out of class exemplars when they are unequal in number). The details of GE
and further comparisons with traditional evolutionary computing methods have been
considered elsewhere [10] and will not be re-examined in this paper.

2.2 Classification and GP

A distinction is typically made between binary classifiers and multi-class (or multi-
category) classifiers. A multi-class classifier predicts a single label for each example
from a set of many mutually exclusive candidate labels, while a binary classifier pre-
dicts each example as either in or out of class (in other words, the prediction is bi-
nary).

GP has been successfully applied to binary and, more recently, to multi-class clas-
sifiers. However, research has only recently begun to address the multi-class nature of
the problem directly [11]. To do so, fitness is explicitly evaluated with respect to each
class and the individual assigned to the fittest category. Although providing a deter-
ministic solution to the problem for the dataset considered, no investigation is made
of the robustness of the algorithm (e.g. sensitivity to drift, dynamics of niche mainte-
nance). The objective of this work is to investigate the multi-class problem from a
wider perspective of a niche metaphor as developed by the Genetic Algorithm litera-
ture.

3 Methodology

The approach taken for k-class classification is to formulate the problem as k binary
classification problems and hierarchically process the examples through each classi-
fier. Using this approach allows us to separately evolve the k binary classifiers where
each classifier can distinguish a given example as in or out of its particular class. The
cumulative effect of hierarchically combining the k classifiers is to discriminately
place each example into the class of the highest accepting classifier, while those ex-

amples that are deemed out of class for all classifiers are placed into a collection to be
reclassified or labeled as indeterminate or other.

In these experiments, we present a set of necessarily modified versions of
Mahfoud’s crowding algorithms, A1-A5 that have been re-designed for multi-
population GP (specifically a GE multi-class classifier). A0 has been omitted due to
its reliance on genotypic similarity metrics, which has no obvious, meaningful GP
counterpart. Finally, algorithm A6 is introduced to investigate the potential for
sharing based maintenance of niches where this has the potential to provide more
robust niche maintenance [8].

3.1 Establishing phenotypic similarity

The main modification for these experiments was in defining the notion of phenotypic
similarity between individuals. For Mahfoud’s experiments, phenotypic similarity
takes the form of a distance calculation between pairs of real-valued, decoded pa-
rameters (the expression of phenotype in a canonical GA). In the case of this work,
we are interested in comparing the effectiveness of programs at solving a series of
problems (each of which correspond to a niche, or pattern class, where an individual
may acquire fitness).

Our design choice was to establish the concept of phenotypic similarity by evaluat-
ing each individual for each problem (niche), so that an individual effectively has k
fitnesses (corresponding to a k niche problem). Accordingly, each individual in the
population can be considered a point in k dimensional space. This approach was cho-
sen because it seems to provide a straightforward extension of Mahfoud’s phenotypic
similarity measure, where we are simply extending the concept of phenotype into
problem-specific fitness, giving multiple dimensions (one for each problem to be
solved by GP). Finally we apply a multi-dimensional Euclidean norm to establish
distance between pairs.

3.2 Niching Parameters

All parameters used in our experimental runs are taken directly from those established
by Mahfoud [7] or have been changed as little as possible in an attempt to recreate
similar incremental testing conditions. All algorithms use phenotypic comparison (as
described in section 3.1), crossover rate of 0.9 (in the case of A1) or 1.0 (A2-A6) and
no mutation. Each algorithm is run for the equivalent of 20,000 evaluations and re-
sults are averaged over 100 runs. To maintain consistency with population sizes, we
have scaled population sizes as presented in Mahfoud (5 peak multi-modal functions
were allowed 100 individuals [7]) down to 80 in order to fit the number of classes in
the problems considered.

3.3 Performance Criteria

For the purposes of comparative analysis, this study is primarily concerned with
measures of performance that are more general in nature than the sensitivity and
specificity figures (defined in terms of true positive (tp), true negative (tn), false posi-
tive (fp) and false negative (fn)) that are traditionally associated with classification:

fntp
tpysensitivit
+

=
(1)

fptn
tnyspecificit
+

=
(2)

 Although these measures will be established class wise for the test sets of the

problems under consideration, here the focus will be on the degree of success of the
niching algorithm in question, particularly as it relates to preserving population diver-
sity, maintaining multiple niche optima, and minimizing effects of genetic drift in the
GE. These criteria are assessed via the niche population distributions, number of
peaks maintained and number of replacement errors made.

Population distributions are simply defined as the counts of population members
whose best fitness performance corresponds to the given niche. As defined by
Mahfoud, a peak is considered maintained at any iteration if its corresponding sub-
population contains at least one member whose fitness is 80% of the peak’s optimal
value. Finally, a replacement error refers to the event where a child belonging to
niche Ni replaces a parent belonging to niche Nj where i ≠ j.

3.4 Data Sets and Partitioning

In the following experiments, data sets were partitioned into training and test sets.
Partitioning is performed by randomly assigning patterns without replacement to
training or test such that 50% of patterns appear in training and 50% appear in test. In
and out of class data are stratified in order to achieve proportional representation from
each class within the two partitions. Note that the test partition represents a disjoint
set (‘unseen’ exemplars) from the classifier’s perspective (the training set). This
property of the partitioning affords analysis of the classifier’s generalization ability.

Two widely utilized multi-category classification benchmarks from the UCI re-
pository [12] are considered,
1. Iris: Fisher’s iris plant database. 150 exemplars each of four continuous inputs and

one of three output classes (Iris Setosa, Iris Versicolor, or Iris Verginica);
2. Wine: Wine recognition database; using chemical analysis to determine origin of

wine. 178 exemplars each of 13 continuous inputs and one of three output classes.

3.5 Crowding Algorithms as Adapted for GE

3.5.1 Algorithm A1 (equivalent to A0 from [7], with phenotypic similarity): This
approach is representative of the original crowding algorithm [5]. Generation gap, G,
defines the percentage of the population (size POP_SIZE) that is chosen for crossover
via fitness proportionate selection. Following the application of crossover (or copy of
parents in the event of failed test for crossover), G × POP_SIZE individuals are
chosen randomly for replacement. For each child, a random sample of CF (crowding
factor) individuals is chosen without replacement. From this sample, the child
replaces the most similar, phenotypically. For algorithm A1 G = 0.1, PC (Probability
of application of crossover) is 0.9 and CF = 3:

1. FOR(POP_SIZE)

a. Randomly initialize individual
b. Evaluate raw fitness (one for each niche) and best fitness

(best case of raw fitnesses)
2. FOR(GENS)

a. Proportionally select G = 0.1 (PAIRS) of the population
for reproduction

b. FOR(PAIR)
i. Test / Apply crossover (PC = 0.9)
ii. Evaluate children (c1, c2) (raw fitnesses, best fit-

ness)
iii. FOR (child)

1. Randomly choose CF(= 3) individuals of
population for possible replacement and cal-
culate their distance (dci) by phenotype (raw
fitnesses) from c

2. Replace the nearest of the CF individuals
with c

3.5.2 Algorithm A2 Here the algorithm maintains the basic procedure of A1,
with the following simplifications: Crossover is applied deterministically (PC = 1.0)
and the generation gap (G) is reduced to the minimum to allow for selection of a
single pair. The original algorithm is therefore modified by changing step 2 as
follows:

2. FOR(GENS)

a. Proportionally select 1 PAIR (Gmin%) of the population for
reproduction

b. FOR(PAIR)
i. Test / Apply crossover (PC = 1.0)

This simplification was originally chosen in order to rule out parameter settings (G,
PC) that may otherwise detract from the thorough analysis of results [7]. The motiva-
tion for this also simplification holds here.

3.5.3 Algorithm A3 This algorithm is the same as A2, but here the CF is
increased to that of POP_SIZE. Although this is a more costly algorithm in terms of
overall time complexity, the hypothesis is that it will correspond to 100% correct
replacements. Step 2.b.iii.1 of the algorithm now becomes:

1. Randomly choose CF(= POP_SIZE) individuals of population for
possible replacement and calculate their distance (dci) by phe-
notype (raw fitnesses) from c

3.5.4 Algorithm A4 The concept of a crowding factor is removed, instead we
proceed by replacing parents at each generation with the children such that the sum of
similarity between child-parent replacement pairing is maximized [7]. The hypothesis
at this stage is that children will typically be most similar to their parents, thus
removing the computationally expensive CP=POP_SIZE. Step 2.b.iii of the algorithm
is now replaced and extended with:

iii. Compare children and parent distances (dij) by phenotype (raw
fitnesses)

iv. IF(d11 + d22 < d12 + d21)
r1 = p1; r2 = p2

v. ELSE
r1 = p2; r2 = p1

vi. replace r1 with c1
vii. replace r2 with c2

3.5.5 Algorithm A5 Also known as Deterministic Crowding [7], all details
remain the same as A4 except that generation gap and fitness proportionate selection
are dropped. Instead, the population is paired up randomly (without replacement) at
each generation. This algorithm also differs from A4 in that a child can only replace
the chosen parent if the child’s best fitness is an improvement on that of the parent.
Step 2 is now:

2. FOR(GENS)
a. Pair up individuals without replacement (PAIRS)
b. FOR(PAIR)

i. Test / Apply crossover (PC = 1.0)
ii. Evaluate children (c1, c2) (raw fitnesses, best

fitness)
iii. Compare children and parent distances (dij) by

phenotype (raw fitnesses)
iv. IF(d11 + d22 < d12 + d21)

r1 = p1; r2 = p2
v. ELSE

r1 = p2; r2 = p1
vi. IF(best fitness(c1) > best fitness (r1))

replace r1 with c1
vii. IF(best fitness(c2) > best fitness (r2)) re-

place r2 with c2

3.5.6 Algorithm A6 Adding the element of sharing to the deterministic crowding
algorithm (A5) takes the form of calculating the sharing parameters following each
new generation and replacing the chosen parent only if the child has a larger value of
dynamic shared fitness (DSF) [8]. Section 2.b.vi and vii become:

vi. IF(DSF(best fitness(c1)) > DSF(best fitness (r1)))
replace r1 with c1

vii. IF(DSF(best fitness(c2)) > DSF(best fitness (r2)))
replace r2 with c2

4 Results and Analysis

Results for the GE algorithms (A1-A6) are summarized in Tables 1 and 2 as mean
performance over 100 runs. These results report on performance criteria in terms of
both classifier quality (sensitivity, specificity, denoted SENS and SPEC respectively,
over each problem and class, C1-C3) as well as the relative success of each niching
algorithm on a per problem basis as characterized by total replacement errors (TRE),
total peaks maintained (TPM), and final niche sizes (FNS, over classes C1-C3).

Table 1 indicates a general decreasing trend to the replacement error over algo-
rithms A1 to A6. However, in terms of the average number of niches maintained, A3
and A6 always retain the correct niche count, where this is also reflected in the final
niche sizes for each class. It is interesting to note that of the various niching algo-
rithms investigated, Deterministic Crowding (A5) did not provide particularly strong
niche identification.

Table 1. Mean niching properties for algorithms A1 – A6 on Wine and Iris Training Data.

 FNS
 TRE TPM C1 C2 C3
IRIS A1 4626.6 1.29 47.33 17.96 14.71
 A2 5803.26 1.46 45.34 17.74 16.92
 A3 188.44 2.1 42.95 19.04 18.01
 A4 712.46 0.97 75.8 2.63 1.57
 A5 135.11 1.89 76.89 0.03 3.08
 A6 295.16 2.44 36.89 16.14 26.97
WINE A1 4779.69 1.24 24.58 14.3 29.12
 A2 6134.01 1.52 29.33 19.7 30.97
 A3 125.24 2.6 22.58 20.3 36.32
 A4 1689.03 0.57 19.3 3.89 56.81
 A5 224.04 2.18 5.43 1.97 72.6
 A6 343.29 3 27.12 25.63 27.25

From Table 2, it is clear that algorithm A3 does not result in a particularly effective

classifier in spite of the comparatively good niche characterization from Table 1. In

effect A3 would consistently become stuck in a set of suboptimal niches. Algorithm
A6, the sharing algorithm, provides the best overall performance, with Deterministic
Crowding (A5) also very effective. Classifier results for separate binary runs (SB)
have been included for comparative purposes, where the population size was reduced
by a factor of 1/k that of the niching runs in order to balance computational costs; k
(=3) being the number of classes. From Table 2, it appears that the reduced popula-
tion size was detrimental to the success of the separate binary runs, establishing the
value of the niching approach over separate runs under similar resource constraints.

Table 2. Mean classification results for algorithms A1 - A6: Wine and Iris Test Data

 SENS SPEC
 C1 C2 C3 C1 C2 C3
IRIS A1 0.98 0.76 0.81 0.95 0.93 0.93
 A2 0.99 0.87 0.82 0.99 0.91 0.95
 A3 0.97 0.71 0.70 0.93 0.88 0.96
 A4 0.95 0.88 0.85 0.98 0.93 0.97
 A5 1.00 0.85 0.83 0.99 0.92 0.97
 A6 0.99 0.85 0.85 0.99 0.93 0.96
 SB 0.71 0.53 0.76 0.93 0.68 0.67
WINE A1 0.82 0.73 0.93 0.92 0.94 0.89
 A2 0.76 0.74 0.90 0.93 0.91 0.89
 A3 0.46 0.50 0.73 0.88 0.93 0.66
 A4 0.90 0.82 0.96 0.95 0.97 0.93
 A5 0.79 0.76 0.87 0.93 0.97 0.89
 A6 0.82 0.80 0.97 0.96 0.96 0.93
 SB 0.48 0.46 0.70 0.77 0.75 0.64

4.1 Analysis of Niche Maintenance

This analysis concentrates on the Wine results, although similar properties were dem-
onstrated for the case of Iris. The cumulative replacement error profile illustrates
some important differences with respect to the original GA multimodal optimization
context [7]. Firstly, 100% crossover resulted in A2 making substantially more re-
placement errors than the 90% crossover of A1. Secondly, algorithm A4 in which
parents were always over-written with the most similar child actually resulted in an
increase in the replacement error, emphasizing the difficulty in comparing programs
in GP. In the case of niche maintenance profile, Figure 2, algorithm A4 is again high-
lighted, thus reinforcing the observation that children of a GP parent often perform
much worse. Algorithms A2, A3 and A6 all provide incremental advantages over
their respective predecessor. Performance of Deterministic Crowding, A5, relative to
Dynamic Niche Sharing, A6, demonstrates a tendency of Deterministic Crowding to
drift after initially identifying the correct number of niches. This latter observation is
further demonstrated by Figures 3 and 4 that summarize the evolution of each niche
under A5 and A6 respectively.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500

Generation

A2

A1

A3

A4

A5
A6

Fig. 1. Mean Cumulative Replacement Errors, A1 to A6 on Wine Training Dataset

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500

Generation

A2

A1

A3

A4

A5

A6

Fig. 2. Mean Niches Maintained, A1 to A6 on Wine Training Dataset

5 Conclusions

The utility of crowding and sharing algorithms as developed for multi-objective opti-
mization with GAs has been demonstrated under GP multi-category classification.
Dynamic Niche Sharing appears to provide the best support for the GP context. De-
terministic Crowding appears to suffer from a combination of poor child fitness and
genetic drift, the combination of which results in the correct number of niches first be-
ing located, but thereafter the largest niche continues to consume the majority of
population diversity.

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

Generation

N3

N2
N1

Fig. 3. Mean Niche Count with A5, Deterministic Crowding on Wine Training Dataset

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Generation

N3

N2N1

Fig. 4. Mean Niche Count with A6, Dynamic Niche Sharing on Wine Training Dataset

Acknowledgements

The authors gratefully acknowledge the support of NSHRF and NSERC Research
Grants and a CFI New Opportunities Infrastructure Grant.

References

1. Ghosh A., Freitas A.A.: Data Mining and Knowledge Discovery with Evolutionary
Algorithms: Guest Editorial, IEEE Transactions on Evolutionary Computation.
7(6) (2003) 517-518

2. Zhou C., Xiao W., Tirpak T.M., Nelson P.C.: Evolving Accurate and Compact
Classification Rules with Gene Expression Programming, IEEE Transactions on
Evolutionary Computation. 7(6) (2003) 519-531

3. Au W.-H., Chan K.C.C., Yao X.: A Novel Evolutionary Data Mining Algorithm
with Applications to Churn Prediction, IEEE Transactions on Evolutionary Com-
putation. 7(6) (2003) 532-545

4. Kishore, J. K., Patnaik, L. M., Mani, V., Agrawal, V. K.: Application of Genetic
Programming for Multicategory Pattern Classification. IEEE Transactions on Evo-
lutionary Computation, Vol. 4, No. 3 (2000) 242-258

5. De Jong, K. A.: An Analysis of the Behaviour of a Class of Genetic Adaptive Sys-
tems. Dissertation Abstracts International, Vol 36 No 10 (1975)

6. Deb, K., Goldberg, D. E.: An Investigation of Niche and Species Formation in
Genetic Function Optimization. In: Schaffer, J. D. (ed.): Proceedings of Third
International Conference of Genetic Algorithms, Morgan Kaufmann, San Mateo,
CA (1989) 42-50

7. Mahfoud, S. W.: Crowding and Preselection Revisited. In: Manner, R. and Man-
derick, B (eds.): Parallel Problem Solving from Nature, 2, Amsterdam, Elsevier
Science (1992) 27-36

8. Miller B.L., Shaw M.J.: Genetic Algorithms with dynamic Niche Sharing for Mul-
timodal Function optimization. Uni. Of Illinois at Urbana-Champaign, Dept. Gen-
eral Engineering, IlliGAL Report 95010 (1995) 11 pages

9. Yao X., Liu Y., Lin G.: Evoutionary Programming Made Faster. IEEE Transac-
tions on Evolutionary Computation. 3(2), (1999) 82-102

10.O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Pro-
gramming in an Arbitrary Language. Kluwer Academic Publishers. (2003)

11.Bojarczuk, C. C., Lopes, H. S., Freitas, A. A.: An Innovative Application of a
Constrained Syntax Genetic Programming System to the Problem of Predicting
Survival of Patients. In C. Ryan et al. (eds.) EuroGP 2003, Lecture Notes in Com-
puter Science, Vol. 2610. Springer-Verlag, Berlin Heidelberg (2003) 11-21

12.Blake, C. L., Merz, C. J.: UCI Repository of Machine Learning Databases. Uni-
versity of California, Irvine, Dept. of Information Computer Sciences,
http://www.ics.uci.edu/~mlearn (1998)

