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Abstract — Hierarchical SOMs are applied to the problem of
host based intrusion detection on computer networks. Unlike
systems based on operating system audit trails, the approach
operates on real-time data without extensive off-line training
and with minimal expert knowledge. Specific
recommendations are made regarding the representation of
time, network parameters and SOM architecture.
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I. INTRODUCTION

Defensive information operations and computer
intrusion detection systems (IDS) are primarily designed to
protect the availability, confidentiality, and integrity of
critical networked information systems. These operations
protect computer networks against denial-of-service (DoS)
attacks, unauthorized disclosure of information, and the
modification or destruction of data. The automated
detection and immediate reporting of these events are
required in order to provide a timely response to attacks
[1].

The two main classes of intrusion detection systems are
those that analyze network traffic and those that analyze
operating system audit trails. These systems typically use
either rule-based misuse detection or anomaly detection.
Rule-based misuse detection systems attempt to recognize
specific behaviors that represent known forms of abuse or
intrusion. On the other hand, anomaly detection attempts to
recognize abnormal user behavior [2]. Examples of these
techniques include, pattern templates, threatening behavior
templates, traffic analysis, state-based detection and
statistical methods [1].

In all of these approaches, however, the amount of
monitoring data generated is extensive, thus incurring large
processing overheads. For instance, threatening behavior
templates, as used by general rule-based systems, aim to
search/match for any “known abnormal behavior” within
the monitored data. This process is often too inefficient to
conduct without parallel hardware. In addition, such
systems will not be able to identify any “new abnormal
behavior”. A statistical anomaly detection approach will
actually identify the “normal behavior” by mining the
monitored behavior of each user (for example, each
command that is typed by every user) so that “abnormal
behaviors” can be characterized. Such systems
unfortunately further increase the processing overheads.

A balance therefore exists between the use of resources
and the accuracy and timeliness of intrusion detection
information. The objective of the research presented in this
paper is to construct a UNIX-based anomaly detection
system that will highlight “abnormal behavior” without

incurring extensive computational overheads. Unlike the
previous works, where every user is monitored, the system
uses only “session information” of the users of a host to
detect potential intruders or abusers among the “common
users” of the system.

The remainder of the paper is organized as follows.
Section II introduces the problem addressed by this work
and makes a case for solving this problem using an
unsupervised learning algorithm. Section III presents the
methodology for constructing the system and the testbed on
which experiments are performed. Results are presented in
section IV and conclusions drawn in section V.

II. INTRUSION DETECTION WITH SELF ORGANIZING
MAPS

In this work, we aim to automate the process of
detecting intrusive actions as much as possible. In order to
develop such a system, we first try to identify the
“characteristics of the common user” for the target host.
This information is then used to raise a flag for any user
identified as having a “different characteristic”. To achieve
this, the framework of figure 1 is followed, in which the
core of the approach is to automate the identification of
typical user profiles. The first problem is to establish the
nature of initial information on which the rest of the system
is based. A lot of systems utilize off-line information
(UNIX log-files) that, although exhaustive in the
information collected, is also rather unwieldy. In the case of
this work UNIX “session information” is used as the
features of the system and the characteristics of a common
user are defined based on this information.
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Fig 1. System flowchart.

Steps to achieve Data Reduction and Pre-processing are
driven by the needs of the Pattern Discovery component. In
this case Pattern Discovery employs an unsupervised
learning system — Self Organizing Maps (SOM) — to detect
and visualize the characteristics of a common user. Previous
research has used this technique on user account log files
augmented with the use of additional information detailing
the host service used by each user [2]. One of the main
differences in the system proposed here is we only use
“session information” as the data set. This minimizes
resource management and computational considerations,
i.e. it can be used as an on-line real-time system. Moreover,



specific recommendations regarding the structure of the
Pattern Discovery component are made.

SOMs represent one of the unsupervised learning
techniques for data analysis and visualization. They are of
particular interest here on account of their efficient update
scheme and ability to express topological relationships.
This property of an SOM makes it very convenient for
expressing relationships between different groups of users.
The hypothesis is that typical user characteristics will be
emphasized — densely populated regions of the map —
whereas atypical activities will appear in sparse regions of
the topology.

II1. DATA REDUCTION AND PRE-PROCESSING

The significance of effective pre-processing before
presentation to a neural network cannot be over-
emphasized. The particular interest in this case is in how the
concept of time should be expressed. To this end, two
approaches are considered. In the first approach, the feature
“time” is implicitly input to the system using a “first-in-
first-out” sliding buffer algorithm. This is similar to the
Finite Impulse Response structure employed in digital
filters [3] (except that samples in this case do not appear at
equally spaced intervals). Hereafter this is referred to as the
implicit scheme. In the second approach, “time” is
explicitly fed in as part of the input pattern; hence this
approach is hereafter referred to as the explicit scheme.
This scheme has found widespread use in online pattern
recognition problems such as signature recognition [4]. In
the following the parameters of the data set are
summarized, the nature of the feature vectors detailed and
SOM architectures identified for each of the above schemes
for encoding temporal relations.

A. Data Collection, and Reduction

Data was extracted from the log files of the
undergraduate UNIX host at the authors’ institution. This
host contains nearly 2300 user accounts, and is used
primarily by undergraduate students for email and course
work. However, faculty, graduate students, staff, and
students from other faculties also have access to the
machine.

For both approaches, the data used to train the system
spans a consecutive 11-day period and contains information
on approximately 12000 sessions. Table I shows the default
session information collected by the operating system. Use
of expert knowledge (system administrators’) is used to
select a subset of this information for composing the
training vector on which networks are trained. That is:

1) The identity of the user that logged in or tried to log
in, labeled by a UNIX username;

2) The host from which the connection was made;

3) The type of connection that was made, whether it was
telnet, rlogin, or created when the user opened a host
window after already having logged into a Faculty of
Computer Science workstation;

4) The time that the session was started,;

TABLE I
DEFAULT FIELDS OF THE SESSION INFORMATION FILE
FIELD NUMBER FIELD NAME
1 User name
2 Connection type
3 Dev
4 Pid
5-10 Time - connection made
11-16 Time - logged in
17 -22 Time - connection terminated
23 Host
24 Class

B. SOM Architecture

A hierarchical SOM architecture consisting of two
levels is used. The first level is made up of three maps, with
each map summarizing one feature. The first map in the
first level is based on the location that the connection is
made from. The second map is based on the user account
from which the log in connection is made. The final map in
the first level is based on the connection type. As indicated
above, the difference between the two approaches is the
manner in which “time” information is expressed (appears
in each first layer SOM).

The first level maps provide a concise summary of
features in the three input domains with respect to time. The
second level map is composed from a single network,
receiving input from the three preceding layer maps, and is
therefore responsible for combining results into a unified
summary of user activity. Based on this result, network
managers decide whether a particular session represents
activity that could be considered “abnormal”, i.e., worth
further investigation.

1. Data Pre-processing for the First Level SOMs

Raw data collected from the log files is not in a format
amenable for direct input into the first level SOMs. Certain
items of data, such as the usernames used to log into the
host, are of a string format. These require expression as a
numerical value. In other cases, there was an excess of
information. For example, in the case of domain names,
knowing the top two levels of a name was deemed
sufficient for identifying general trends. Maintaining only
this information provided a significant reduction to the total
number of domain names encoded. Finally, the dynamic
ranges of the parameters input into the same SOM were
normalized. After the input vectors were transformed to
facilitate training, the patterns to be fed to the maps were
generated. There were several differences in the pre-
processing of the data for the encoding of temporal
information, resulting in the two approaches, as indicated
above.

(a)  Implicit representation of time:
Grouping and enumeration is used to convert string data
types into numeric values. The values for location consisted
of domain names, IP addresses, and machine names.




Domain names were enumerated based on the top two
levels of the name. That is, all the domain names with the
same top two levels are lumped under the same group and
given a single (group) number. The IP addresses were
enumerated similarly, but based on the first byte. Each
machine name received a number on its own. Since the
number of locations was in the hundreds, the final values
were scaled to reduce their dynamic range. The user data
was enumerated based on the user group to which a login
was directed. Six groups were defined: undergraduate,
graduate, faculty, math/stat, tech-staff, and other. The first
five are actual UNIX groups on the host, and the last acted
as a catch all for remaining users. Finally, the enumeration
for the connection data consisted of mapping the three
connection types to distinct numerical values.

Patterns input to the first level SOM were formed using
a first-in-first-out (FIFO) buffer. The algorithm is applied to
each feature separately. For a window size of n, the basic
algorithm proceeds as follows:

1) Session information is forwarded to the FIFO in
chronological order;

2) Once all ‘n’ locations of the FIFO are full, the first
pattern is formed. The corresponding SOM sees all ‘n’
entries;

3) Whenever new session information is collected it is
inserted in the first FIFO position (i), remaining
entries shuffled one position, and the oldest entry (i +
n — 1) is lost. The SOM is now said to see a new
pattern.

The structure provides a way to implicitly code
sequence information — as opposed to explicit temporal
stamps. If values for a parameter are input into the SOM
one at a time, there is no way the SOM can reflect how
different values relate to each other within a particular time
frame. A sequence of depth n, on the other hand, shows
how the values are ordered. This method only shows the
order of occurrences, and not their frequency.

For the actual implementation, a window depth of five
was used (n = 5). In addition, to increase the time frame
covered by each pattern, a slight variation on the algorithm
was used. Instead of taking five consecutive values from a
sorted list of values for each pattern, every other value was
taken. That is, for the first pattern, the first, third, fifth,
seventh, and ninth values were taken. For the second
pattern, the second, fourth, sixth, eighth, and tenth values
were taken. (This is equivalent to a 2n FIFO with taps at
every other location.)

(b)  Explicit representation of time:

Temporal information is expressed in log files as six
fields: year, month, day, hour, minute, and second. A lot of
this information is unnecessary for the purpose of intrusion
detection. For example, attempts at hacking into the system
are unlikely to span years, so the year field is considered to
be insignificant.

Three fields are employed to express information to the
SOM. The first was either a value for the location, the user,
or the connection for the session, depending on the map that
the patterns were used to train. The second field indicates
the hour in which a session began, whilst the third field

represents the minute that the session began. Any more
temporal information beyond the hour and minute was
deemed unnecessary for the purpose of intrusion detection.
On the one hand, login attempts associated with intrusions
would most likely fall within hours of each other. On the
other, consecutive login attempts within seconds of each
other would still be recognized because they would fall
under the same minute.

The values for the minute field ranged between zero and
fifty-nine. In order to better match this range, the values for
the hour field is wrapped around at seventy-two instead of
twenty-four. The location, user, and connection values were
scaled to match that of the temporal fields. Finally, values
for the location data are enumerated slightly differently
from the first approach in order to reduce the number of
groups to around seventy.

2. Training for the First Level SOMs

Following preprocessing, patterns were fed directly to
the first level SOMs. The SOM Toolbox for Matlab was
used [5]. For each map, both the dimensions of the map and
the length of the training period were considered. A number
of trials were dedicated to determining a ‘good’ size for the
map, both with regard to the dimension and actual number
of nodes. Once the size of the map was fixed, the map was
trained over increasing epoch limits until no significant
variation in network weights occurred.

3. Data Pre-processing for the Second Level SOMs

The next step was to use the output of the first level
SOMs as input to the second level SOM.

(a) Implicit representation of time:

Each first level map was used to produce a set of vectors
that would be used as input to the second level map. These
vectors were constructed as follows. On presentation of an
input to a layer one map, instead of taking a binary
identification of the winning neuron, the Euclidian distance,
d, was employed. This was then renormalized to make the
closest node represent the largest value and furthest node
the smallest value. Thus,

dy'=1/(1+dy) (1)

where dj; is the original distance from input vector i to
neuron j. Thus, if i is close to j, the value of d;" will
approach one. For each input vector, each node in the map
would have an associated value for d;". The final output
vector was constructed by inserting in position j the value
of dj;". This was repeated for all of the input vectors.

Concatenating corresponding vectors, obtained from the
first level SOMs, formed the final vector as seen by the
second level SOM. The dimension of this final vector was
in the range of three hundred, one dimension per node in
the lower-level maps.

Before using this as the input to the second layer fields
in which the overall variance was small were omitted. The
rationale behind this was that the remaining dimensions



would still contain the most vital features of the underlying
data. The final dimension of the vector that was input to the
second level map was sixty.

(b) Explicit representation of time:

In the second approach, a different method was used to
process the output of the first-level SOMs. Given the size of
first layer maps, 336 neurons for location, 96 neurons for
user, and 625 neurons for connection, prominent features in
the first-level maps are identified using a potential function-
clustering algorithm [6]. That is to say, nodes are clustered
using a clustering algorithm, thus significantly reducing the
amount of information passed to the second layer SOM [7].

For each of the first-level maps, the potential function
clustering algorithm was run several times to establish
clustering parameters (o, 3, Yupper, Yiower) [6]. A good set of
clusters was considered to be one that contained less than
ten clusters where these clusters covered the whole data
space. Also, the cluster centers had to be sufficiently
different so as to avoid redundant information.

Having established cluster centers, nearest neighbor
clustering could take place, effectively partitioning the
input data into several sets. For each of these sets, the
standard deviation was calculated. Knowing the mean and
standard deviation for the vectors in each cluster meant that
it was now possible to use a Gaussian distribution to
measure the level of excitation of each cluster center in
response to an input vector. This was how the input vector
to the second-level map was constructed. In effect, input
vectors close to cluster centers resulted in a high level of
excitation, while input vectors far from any cluster center
produced negligible levels of excitation.

This was repeated for each of the three first-level maps.
In each case, a set of vectors whose dimension was equal to
the number of clusters in that map was produced. For each
input pattern, the corresponding vectors from each map
were concatenated to form the input to the second level
SOM. As mentioned before, this was performed to reduce
the dimension input to the second-level map.

4. Training for the Second Level SOM

Once transformed, the output of the first-level maps
form the input to the single second layer map, where no
further transforms are necessary to represent time.

IV. RESULTS

As indicated above, the systems for both approaches are
trained on the “session information” collected on our UNIX
host over an 11-day period (approximately 12000 patterns).
Figure 2 and figure 4 are the maps of the second-level SOM
for the first and the second schemes respectively. It is
immediately apparent that the first temporal encoding
provides a much more regular distribution of SOM nodes.

The regions of the map shown in figure 2 can be labeled
roughly as follows. Regions with high y-values correspond
to sessions using undergraduate and graduate accounts and

sessions using telnet. Regions with low y-values correspond
to sessions with various connection and user group types.
Regions with low x-values correspond to connections from
unusual or rare hosts, while sessions with high x-values
correspond to sessions with common hosts (such as
machines on campus).

Although this alone can be used to characterize unusual
behavior (most connections should fall in the regions with
high x- and y-values), a better sign that a session is
anomalous is if it falls in the middle regions (circled nodes).
That is to say, as seen in figure-3, very few patterns from
the training data excite this region (half of the circled nodes
are not excited by any of the 12000 plus patterns).
Assuming the training data exhibits normal behavior, our
hypothesis is that this region then represents anomalous
behavior.
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Fig 2. Implicit representation of time — second level SOM
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Fig 3. Implicit representation of time — neural pattern frequency in second
level SOM (Training Data)

The regions of the map shown in figure 4 cannot be so
clearly labeled. Roughly, three extremes can be identified,
one near the origin, one in the upper-left, and one in the
lower right. All three regions correspond to sessions using
undergraduate and graduate accounts. The two regions with
lower x-values have connections that use telnet only, while
the region with high x-values has various connection types.



The regions near the origin contain more of the uncommon
hosts, while the other two regions contain more common
hosts. From these descriptions, it was not possible to clearly
identify regions that could possibly correspond to
anomalous behavior. This effect is attributed to the
domination of the input variance by the temporal
components, whereas inputs representing other properties
are comparatively static. As a consequence, in figure 5,
neurons are effectively encoding temporal aspects of the
data instead of the other features. This suggests that the
second approach results in a system that will not accurately
identify intrusions.
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Fig 4. Explicit representation of time — Second level SOM
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Fig 5. Explicit representation of time — Neural pattern frequency in Second
level SOM (Training Data)

Testing was conducted using a data set containing
patterns that exhibited potentially “suspicious behavior”.
This data set was not seen by either of the systems during
training. The test data set contained 262 sessions spanning a
period of 11 hours. Seven of these sessions represented
suspicious behavior (detailed in table II). The results of the
test data set are seen in figures 6 and 7. Notice that the

peaks in figure 6 often correspond to the hollows in figure
2.
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Fig 6. Implicit representation of time — neuron pattern frequency in second
level SOM (Test Data)

In the first approach, patterns representing “suspicious
behavior” in the test data excited neurons 4, 5, 10, and 11
only. That is, of the twenty patterns that contained a
component that corresponded to an “abnormal” session, all
of them fell in this region. An interesting and unexpected
result is that neuron 16, which was excited by none of the
training patterns, was excited the most by the test patterns.
Despite this anomaly, the fact that the abnormal sessions
were restricted to such a narrow area on the map is
encouraging.

On the other hand, when we input the same test data set
to the second level map of the second approach, the neurons
that were excited by the “suspicious behavior” patterns
were generally neurons 35, 58, 71, 81, 88 and 95 (see figure
7). It is unclear whether these nodes correspond to
suspicious behavior or not because the features in the map
are not sharp enough.
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Fig 7. Explicit representation of time — neural pattern frequency in Second
level SOM (Training Data)



TABLE II
DESCRIPTION OF TEST DATA SET

DESCRIPTION Percentage in the Test

Set as a whole

Same user connecting (telnet)

from different hosts/domains 3%
simultaneously.

Same user connecting (telnet)

from different hosts/domains 2%

at different times.

Different user connecting
(telnet) from a different 2%
domain simultaneously.

V. CONCLUSION

A system has been developed for aiding network
management personnel in the task of computer intrusion
detection. Unlike past approaches this method emphasizes
the use of host “session information”. In contrast to
methods based on operating system audit trails, such a
scheme significantly reduces computational overheads in
identifying a model for ‘normal’ user profiles. Two
methods are investigated for capturing the temporal nature
of session information: implicit and explicit. The implicit
method uses a FIFO or shift register approach in which
each additional event causes the contents of the FIFO to
shift along one position. There is therefore no explicit
relation to time of day or duration between events. The
explicit method on the other hand does provide a time
stamp for each event. Contrary to initial expectations, the
implicit method for representing time is found to provide a
much better separation between user types. In doing so,
SOMs trained under an implicit coding of data are
demonstrated to provide a much clearer identification of
abnormal behaviors.

Future work will apply the technique to a wider cross-
section of benchmark problems from the intrusion detection
community. In addition we are also interested in the
utilization of SOM models capable of incorporating
temporal relations in the network itself.
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