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Abstract

A model for problem decomposition in Genetic Programming based
classification is proposed consisting of four basic components: competi-
tive coevolution, local Gaussian wrapper operators, evolutionary multi-
objective (EMO) fitness evaluation, and an explicitly cooperative objec-
tive. The framework specifically emphasizes the relations between dif-
ferent components of the model. Thus, both the local wrapper operator
and cooperative objective components work together to establish exem-
plar subsets against which performance is evaluated and the decomposi-
tion of the problem domain is achieved. Moreover, the cost of estimating
fitness over multiple objectives is mitigated by the ability to associate
specific subsets of exemplars with each classifier. The competitive coevo-
lutionary model, in combination with a balanced sampling heuristic guides
the identification of relevant exemplars and retention of the best classi-
fiers; whereas the EMO component drives the application of selection and
variation operators to maintain the diversity of the classifier population.
Empirical evaluation is conducted over twelve data sets representative of
different application domains, class distributions and feature counts. A
benchmarking methodology is developed in order to provide comparison
between the proposed model and the deterministic classifier paradigm in
general, and the SVM method in particular. Moreover, by adopting per-
formance metrics for classification, model complexity and training scala-
bility, we are able to provide a more informative assessment of the relative
merits of each model.
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1 Introduction

Classification represents one of the most widely studied domains of machine
learning. The current state-of-the-art is generally considered to take the form
of the Support Vector Machine (SVM), where such models are both very accu-
rate and effective across large data sets or those having unbalanced class rep-
resentations [11]. Conversely, canonical Genetic Programming (GP) does not
scale well as the number of training exemplars or classes increases, and has no
implicit resilience to unbalanced representation of exemplar classes. Naturally,
the class imbalance issue may be addressed by assuming problem dependent
cost functions, whereas various heuristics have been proposed to address multi-
class classification and large data sets (including hardware specific solutions).
However, the only implicit advantage that canonical GP is able to maintain rel-
ative to the generic SVM model is a bias towards indexing subsets of features,
thus providing the potential for more transparent solutions than the ‘black box’
generally associated with SVM models.

On the other hand, one of the strengths of the GP paradigm is the freedom
with which the basic machine learning design questions – cost function, rep-
resentation, and credit assignment – may be addressed. In this work, we are
interested in using this freedom to provide a framework for encouraging GP to
actually decompose the problem domain as part of the evolutionary cycle. Thus,
solutions might take the form of multiple intra-class mappings per class, each
individual associated with the solution responding to a non-overlapping subset
of class consistent exemplars. Individuals are therefore explicitly rewarded for
correct but also unique behaviors. Moreover, the resulting model should also
be scalable. That is to say, tens or hundreds of thousands of training exem-
plars should not result in recourse to hardware specific solutions. The resulting
framework is based on a canonical GP kernel, in this case Grammatical Evolu-
tion [20], but makes extensive use of Pareto coevolution and a mechanism for
evolving the properties of a ‘local’ Gaussian wrapper operator. Key character-
istics of the resulting Cooperative Multi-objective GE framework – hereafter
denoted CMGE – are summarized in Section 2.

In order to evaluate the proposed CMGE framework, we are interested in
performing an assessment under multiple criteria: classification, model simplic-
ity and scalability, Section 3. By doing so we demonstrate that the CMGE
framework is able to provide competitive classification performance, while also
returning parsimonious solutions and scaling gracefully to large data sets, Sec-
tion 4. Related work on evolutionary methods and problem decomposition are
summarized in Section 5. Overall conclusions in which some opportunities for
future work are identified in Section 6.
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2 A Coevolutionary Multi-objective Framework
for Problem Decomposition

In order to develop the proposed approach to GP classification we will introduce
the framework in terms of the high level pseudo code listing provided in Figure
1. This establishes the proposed framework in terms of a five step algorithm
having two basic components: cooperative coevolution for fitness evaluation
and problem decomposition (step 2(c) and 2(e), Figure 1) and a competitive
coevolution archiving for training exemplar subset selection and model building
(step 2(d), Figure 1).

An interaction between a GP individual and a single exemplar is defined by
executing the GP program using the exemplar features as arguments. The result
of executing a single program on an exemplar (the interaction) is a real-valued
output; mapping the exemplar (from a typically multi-dimensional feature do-
main) to a one dimensional number line that we refer to as the ‘GP Output’
space, or simply gpOut. Naturally, the mapping process is repeated to map n
exemplars to n points on gpOut. Such a mapping alone naturally conveys no
class information. To do so, canonical GP employs a global membership func-
tion (wrapper operator) to impart class labels on the distribution of points in
gpOut. Such an approach effectively casts all points on the gpOut axis that are
greater than (less than) zero as in-class (out-class) exemplars, and weights the
number of misclassifications by way of a cost function. Such a model implicitly
assumes that partitioning the class labels about the origin of the gpOut axis
is appropriate for the problem domain in question. Under the CMGE model,
label assignment is realized by means of a local membership function (LMF)
such that class consistent subsets of exemplars should be mapped to the same
local neighborhood on the gpOut axis.

The basic features of the Competitive Multi-objective multi-objective Gram-
matical Evolution (CMGE) classifier are now summarized as follows relative to
the pseudo code listing provided in Figure 1:

Feature 1: A class-wise random balanced sampling heuristic is enforced
such that each class has equal representation in the point population, step 2(a).
This policy is assumed as individuals (in the point population) represent exem-
plar indexes. Such a representation means that there is no structure on which
to build search operators, whereas there is evidence that a balanced sampling
heuristic provides a bias towards optimizing the AUC performance metric [24];

Feature 2: The local membership function is derived from the distribution
of points on the gpOut axis, step 2(c).i to iv. As such, no attempt is made
to incorporate the concept of class labels when deriving the characterization of
the individual’s local membership function. Instead, we assume that the local
membership function is expressed by a Gaussian, the parameters of which are
derived by first applying a clustering routine to the individual’s point distribu-
tion on the gpOut axis. Having identified the subset of points associated with
the most dense cluster, the mean and variance of the Gaussian local member-
ship function for that particular individual are established. Only the subset of

3



1. Initialize Learner Population (LP);

2. WHILE ! (Stop criteria)

(a) Point Population (PP) := random balance sample of training parti-
tion;

(b) Training Subset (TS ) := PP concatenated with Point Archive con-
tents (PA);

(c) FOR j := 1 to sizeof(C )

i. Establish phenotype of individual I [j ];
ii. Map TS to 1-d number line ‘gpOut ’ of I [j ];
iii. Cluster gpOut of I [j ];
iv. Parameterize Gaussian Local Membership Function (LMF) of

I [j ];
v. Evaluate I [j ] with respect to:

SSE, Overlap wrt. Learner Archive (LA), Parsimony.
vi. Rank I [j ] with respect to LP and assign fitness;

vii. Replacement (insert I [j ] into LP);

(d) Archive PP, LP members based on outcomes (according to IPCA)

i. Points in PP enter PA if they provide a distinction;
ii. Learners in LP enter LA if they ar non-dominated wrt. LA;

(e) Evaluate Stop Criteria (method of consecutive Rank Histogram as-
sessment);

Figure 1: CMGE Algorithm. TS, training subset; LP, learner pop.; PP, point
pop.; LA, learner, archive; PA point archive; I [j ], classifier ‘j ’.
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points within the cluster as evaluated on a specific individual’s gpOut axis are
associated with the local membership function. This is the first property by
which we establish problem decomposition;

Feature 3: At this point we have a set of individuals with their corre-
sponding local membership functions and therefore possibly unique subsets of
exemplars established. The class label associated with the individual is estab-
lished by assuming that the individual takes the label of the exemplar with
maximum membership of the Gaussian. With the introduction of class labels
we may now characterize fitness over multiple objectives, albeit for the subset
of exemplars actually mapped to the Gaussian alone, step 2(c).v. Moreover,
the multi-objective view provides the opportunity to reward non-overlapping
behaviors as well as error minimization; the second property by which prob-
lem decomposition is encouraged. However, there is a ‘trick’ to this process:
the estimation of overlap is performed relative to the contents of the learner
archive, as established by competitive coevolution, Feature 4. Naturally, having
established the relative fitness of individuals, selection and reproduction takes
place under a Pareto multi-objective model [12] which encourages diversity with-
out recourse to distance based metrics, step 2(c).vi to vii. This completes the
explicitly cooperative aspect of the framework.

Feature 4: Competitive coevolution is now used to identify the best points
and classifiers to retain outside of the point and learner populations, step 2(d).
To do so, an outcome vector is constructed over the current contents of the point
archive and population, relative to the current contents of the learner archive
and population. As such this process follows the IPCA algorithm of de Jong [6],
however, any form of this class of competitive coevolution would be appropriate.
Special attention is necessary to the derivation of an appropriate mechanism for
establishing the outcome vector. In particular this is a real-valued pairwise
matrix of the behavior of each individual relative to points. Only individuals
that are non-dominated in the Pareto sense (with respect to outcome vectors)
represent candidates for archiving. Similarly, only the points making the dis-
tinction between dominated and non-dominated learners represent candidates
for the point archive. It is the contents of the learner archive that represents
the set of individuals comprising the solution.

Feature 5: Stop criteria is established in a problem independent manner by
making use of the concept of Pareto rank histograms, step 2(e), as established
in the Pareto multi-objective technique adopted in Feature 2 above. Unlike the
original GA context in which this concept was derived [12], we also deploy it in
a class wise manner. This enables us to declare classes converged class-by-class,
thus providing the ability to redeploy the individuals associated with that class,
such that they are reassigned to classes as yet not converged.

Further algorithmic details are available in [18] and [17].
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3 Evaluation

Empirical evaluation is generally considered the basis for establishing the sig-
nificance of different machine learning algorithms. As such the typical approach
takes the form of a ‘bake-off’ between the proposed model and a ‘straw man’
alternative, as evaluated on a handful of a priori selected data sets. When
one algorithm is able to establish significance of a one sided statistical test on
more of the data sets than the other, a winner is declared. Such an approach
is increasingly being questioned [7]. Under such a context, we consider factors
central to establishing a better basis for evaluation of GP methods relative to
classical deterministic machine learning methods as follows:

Performance measure: Depending on the characteristics of the under-
lying data set, assuming a single performance metric may lead to very biased
results. The poor performance of ‘error’ or ‘accuracy’ based metrics has long
been recognized [22], yet such metrics continue to be employed as the sole ba-
sis for comparison. Moreover, this has also lead to ignoring other performance
factors such as model complexity, in favor of metrics purely associated with
classification performance. Unfortunately this can lead to ‘black box’ solutions
in which the complexity of the resulting model is ignored, leading to a low
acceptance rate of machine learning based solutions;

Inappropriate use of statistical tests: Aside from the relevance of null
hypothesis based statistical testing as a whole [7], a machine learning prac-
titioner is frequently left with an implicit experimental design problem. The
non-deterministic methodology of GP requires that evaluation be conducted
over multiple runs per data partition. Conversely, deterministic machine learn-
ing algorithms only require one evaluation per partition (for a given selection of
learning parameters). The evaluation design problem of interest here therefore
comes down to establishing how the single performance point from the deter-
ministic algorithm may be compared to multiple points from the evolutionary
method;

Data sets: Benchmarking against well known data sets may provide sev-
eral advantages, including the development of a body of knowledge regarding
the attainable level of performance associated with each data set, the implicit
biases inherent in the data, and how well particular learning algorithms perform.
Conversely, focusing on the same set of data sets also tends to result in learning
algorithms ‘over fitting’ the characteristics specific to the subset of popular data
sets.

In this work we are interested in assessing how the proposed CMGE frame-
work compares to an SVM classifier. As such this could result in the classical
‘bake off.’ In order to avoid this we attempt to address the above generic prob-
lems with the bake off approach, at least in part, by adopting the following
measures:

Multifaceted performance evaluation: Performance will be considered
from three perspectives: Classification performance, model complexity and CPU
training time. In the case of specific classification performance metrics, we are
again faced with the inherent problem of choosing a metric that provides an
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effective summarization for both binary and multi-class domains and unbalanced
class distributions [10]. One approach might be to utilize Receiver Operating
Characteristic curves. However, this also implies adopting a suitable heuristic
for defining performance thresholds over a set of models (c.f. CMGE intra-class
solutions), as well as being limited to pairwise comparisons (thus, not scaling
gracefully under multi-class domains). In this work we will therefore build a
‘score’ metric that measures the class-wise detection rate under an equal class
significance weighting assumption:

score =
∑

i∈C DRi

| C |
(1)

where DRi is the detection rate of class ‘i ’; and | C | is the number of classes.

Model complexity will be assessed through a count of the number of ‘ele-
ments’ used to construct the model; where the elements are naturally a func-
tion of the representation assumed by each machine learning model. In the case
of CMGE ‘elements’ are considered synonymous with a normalized instruction
count over all individuals participating in a solution, whereas in the case of the
SVM paradigm we count the number of support vectors. The CMGE normal-
ization reflects the implicit bias of support vectors to index all features, whereas
GP instructions may only index a maximum of two features. This implies that,
given a two argument instruction, there are F −1 instructions required to index
all features, where ‘F ’ is the feature count. The CMGE element count therefore
takes the form:

CMGEcomplexity =
NumIndividuals×NumInstructions

F − 1
(2)

Naturally, equivalence is not implied, as it is in the hands of the practitioner to
decide how transparent the ensuing solution might be.

CPU training time will be assessed in terms of a common computational
platform (dual core iMac with 2GB RAM, Tiger OS) for four different training
data sets, corresponding to thousands, tens of thousands, 150 thousand and 200
thousand exemplars respectively. As such this is designed to provide feedback
in terms of the trade off between fixed memory footprint of CMGE – at the
possible expense of accuracy – versus the increasing memory footprint of the
SVM implementation.

Normalize relative to deterministic performance point: Models of
machine learning such as an SVM, C4.5, or Naive Bayes apply a deterministic
procedure for building a model; whereas evolutionary methods may make dif-
ferent design choices on account of their stochastic policy of credit assignment.
This results in an inherent disjunction in the number of performance points
available for comparison. For each training partition we have one performance
point care of the deterministic model, versus fifty or so points under an evolu-
tionary method; performing cross validation does not change this. To this end
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Table 1: Data Set Characterization. | T | is the total number of exemplars in
the data set; Train (Test) indicate the exemplar count for training (test) sets,
or whether a stratified ‘10-fold’ is deployed; ‘F’ denotes the number of features;
and | C | the number of classes; ‘†’ denotes a class with a representation at less
than 0.7% of the training partition

Dataset | T | Train Test F | C | % Distribution
Boston 506 10-fold 10-fold 13 3 ≈ balanced
Breast 675 10-fold 10-fold 10 2 (65):(45)
Census 295 173 196 294 98 879 41 2 (94):(6)
Contra 1 425 10-fold 10-fold 9 3 (43):(22):(35)
Image 2 310 210 2 086 19 7 ≈ balanced

Iris 147 10-fold 10-fold 4 3 ≈ balanced
KDD99 222 871 145584 77 287 41 5 (60):†:(37):(1.5):†
Liver 341 10-fold 10-fold 6 2 (42):(58)
Pima 768 10-fold 10-fold 8 2 65:35

Shuttle 58 000 43 500 14 500 9 7 (78):†:†:(15.5):
(5.65):†:†

Thyroid 7 129 3709 3420 21 3 (2):(5):(93)
Wine 178 10-fold 10-fold 13 3 (33):(40):(27)

we will use the performance point from the deterministic model to normalize the
distribution of points provided by the evolutionary model. Plotting the result
as a box plot establishes the likelihood of the evolutionary method performing
any better than the deterministic. Thus, by retaining the distribution of points
we are able to directly resolve the significance or cost of assuming a stochastic
model relative to the a priori post-training performance metric. Naturally, the
deterministic model will be evaluated under multiple parameterizations of learn-
ing parameters and the best case selected with respect to the same performance
function under the training partition.

Seek out a ‘diverse’ cross section of data sets: Multiple sources for
benchmarking data sets are now available e.g., UCI and KDD. Moreover, the
major sources are receiving additional data sets on a continuous basis. As
such this provides the opportunity to sample data sets with properties such as:
different application domains, different exemplar distributions, multiple classes,
or feature counts. In addition, various benchmark studies have identified data
sets that are in some way ‘difficult’ to classify [15]. In this case a total of twelve
data sets are utilized, Table 1, with the goal of retaining some ‘old favorites’
with varying degrees of difficulty (e.g., Breast, Iris, Liver, Pima, Wine) as well as
introducing large multi-class / multi-feature / very unbalanced data sets (e.g.,
Census-Income, Contraceptive, ImgSeg, KDD Cup 99, Shuttle, Thyroid).
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Table 2: CMGE Parameters. ‘Archive’ sizes are quoted per class.

Clustering value Archive or Pop. value
α 150 Learner Pop. Size 50
β 155 Learner Archive Size 30

γlower 0.5 Point Pop. Size 30
γupper 0.75 Point Archive Size 30

GE value Early Stopping value
max. prog. length 4,096 Min. Difference 0.1
max. Codon count 256 Min. Pop. 20

max. Epochs 500 Faction Evolved 1
5

Crossover and Mutation rates: canonical, (structural)
P(crossover) 0.5, (0.9) P(mutate) 0.01, (0.9)

3.1 Parameterization

3.1.1 CMGE

The CMGE model requires parameterization of the basic Grammatical Evolu-
tion (GE) model, archive and population sizes, cluster algorithm parameters,
and definitions for early stopping, Table 2. GE parameters set limits on the
maximum length of an individual before and after codon transcription [20].
Variation operators take two basic forms: canonical and structure preserving.
Canonical crossover and mutation tend to be global in their behavior, on account
of the action of the grammar, and are therefore applied with a comparatively
low likelihood, Table 2. Structure preserving variation operators make use of
context information returned by genes associated with building terminals during
application of the grammar [9]. As such this provides the basis for local variants
of crossover and mutation, designed such that the impact is more likely to be
restricted to single ‘subtrees,’ and are therefore applied at a higher frequency.
The context free grammar itself is designed to support the four arithmetic op-
erators, sine and cosine, exponential and natural log, square root and index the
data set features.

Point and learner archives enforce a fixed upper bound on the memory mech-
anism used to retain points supporting the Pareto front of Learners identified
during competitive coevolution. Separate point and learner archives are retained
for each class, whereas a single population is maintained for establishing search
diversity, as per the original IPCA algorithm [6]. A constant archive and popu-
lation limit is maintained for all cases other than the learner population, which
is larger to encourage greater learner diversity. The early stopping parameters
are modeled on a simplified version of the Pareto histogram method [12] and
effectively declare the degree of similarity between sequential generations of the
EMO inner loop of CMGE. Learners and points from other classes continue to
evolve, and search resources associated with the converged class are reassigned
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to the remaining classes. The final set of parameters from Table 2 define the
radii (α and β) and stop conditions (γ) for the Potential function clustering
algorithm [5] used in CMGE to independently configure the local membership
function of each learner.

All of the above remain fixed across all runs, irrespective of data set. Needless
to say, no claims are made regarding the optimality of the parameter selection or
grammar. Relative to the training partitions of Table 1, fifty runs are performed
in each case, thus data sets defined in terms of 10-fold cross validation imply a
total of 500 runs under CMGE.

3.1.2 SVM

The method of Support Vector Machines (SVM) is based on a quadratic op-
timization problem designed about a ‘kernel function’ that maps the original
input space to an orthogonal space, the support vectors. Much of the research
for providing improved SVM approaches is directed towards establishing more
efficient methods for performing the process of optimization. One of the first
breakthroughs in this respect was to consider the process as a series of decompo-
sitions in which the Sequential Minimal Optimization method provided a very
efficient paradigm [21]. More recent refinements have included the use of second
order information to speed the rate of convergence, while also addressing the
additional computational cost of doing so [8]. The LIBSVM implementation
(release 2.85) supports the use of the aforementioned second order model [4]
(see also Chapter 1 in [1]) and is therefore adopted in this benchmarking study.

Unlike the GP scenario, sources of variation in the model are now limited to
the SVM learning parameters, of which the principal parameters are the kernel
function and regularization parameter C. Two of the most widely utilized kernel
functions take the form of the Gaussian (or radial basis) and Sigmoidal function,
hence the following evaluation will consider both cases. Three values for the
C parameter will be employed {1, 10, 100} under each data set, with the SVM
model selected corresponding to the best post training performance as evaluated
by the ‘score’ metric of Equation (1). In addition the input features will be
normalized to the unit interval relative to the default application values (no
such normalization is applied under the evolutionary model); the SVM output
will take real valued responses, where this represents a significant improvement
over the default of binary values for multi-class domains.

One significant difference between SVM and CMGE methodologies with re-
gards to computational resource is the requirement for extensive cache memory
support with the SVM paradigm. Under the data sets previously benchmarked
by [8], two cache memory limits were considered: 40 MB and 100KB, when
the largest data set considered consisted of around 15,000 exemplars. In this
study the Census data set consists of around 200,000 training exemplars. The
resulting SVM memory utility went up to 2 GB; whereas the CMGE model
has a constant memory utility, as defined by the union of point population and
class archives. The impact of this from a computational perspective will be
considered in the following performance evaluation.
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4 Performance Evaluation

Following the above discussion, for each kernel function, three SVM models are
trained per partition (reflecting different values for C ) and then the score metric
of Equation (1) employed to select the representative solution. Performance of
that model is then evaluated on the test partition, again in terms of the score
metric. This establishes either a single performance point, or ten performance
points, as in the case of the cross-validation data sets i.e., those without an
a priori defined training partition, Table 1. In the latter case we therefore
establish a single SVM performance point by assuming the median of the ten
test results. The single SVM performance point is then used to normalize the
distribution of CMGE solutions. A CMGE distribution is established by taking
the fifty best solutions as defined by the score metric over the training partition,
post training, and evaluating the model under test. Naturally, data sets with
a single training partition will utilize all fifty initializations, whereas the runs
from the seven 10-fold cross validation scenarios will assume a sample from the
500 CMGE solutions.

4.1 Classification Performance

Figures 2 and 3 detail the distribution of SVM normalized CMGE test par-
tition performance on each of the twelve data sets with respect to Gaussian
and Sigmoid kernels respectively. Naturally, results above unity imply that the
SVM performance point was bettered, whereas values below unity imply an
SVM score bettering the CMGE distribution. Moreover, CMGE distributions
are summarized in terms of a box plot, thus we are able to establish the contri-
bution of any outlier behavior and explicitly identify the quartile performance
points of each data set.

It is clear that of the two SVM models, the Gaussian kernel results in stronger
scores than the Sigmoid on all but the Shuttle data set. Generally, the CMGE
model is as capable as the best of the two SVM models for Breast, Iris, Shuttle,
Thyroid and Wine data sets. In the case of the Liver and Puma data sets a
minimum of twenty five percent of the CMGE results might be expected to
perform better. However, the SVM is clearly much stronger under the Boston,
Image Segmentation and KDD-99 data sets; and depending on the kernel Census
and Contraceptive.

Table 3 details the numerical score for each of the twelve data sets; as such
we can discern the specific data sets on which the SVM and CMGE models are
most likely missing entire classes, as score values tend towards a multiple of
| C |. In the case of both models, a tendency to ignore all but the major class
exists on Census, and the two major classes on KDD99 (plus half of the third
larger class). On Shuttle, the SVM tends to classify the four larger classes and
half of a fifth; whereas the CMGE model focuses on two of the three in Boston
and five of seven under Image Segmentation. In short, both CMGE and SVM
models have specific strengths and weaknesses, or no free lunch.
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Figure 2: Gaussian kernel SVM performance point normalized CMGE score on
test. CMGE distribution is summarized in terms of rank statistics of 1st, 2nd
(median), and 3rd quartile, with wiskers indicating the limits of the distribution
after which outliers are identified. Notches imply the 95th percentile associated
with the variance of the median.

Table 3: Median SVM score per data set. Corresponds to the normalization
factors used in Figures 2 and 3

Kernel Boston Breast Census Contra Image Iris
Sigmoid 0.789 0.963 0.592 0.452 0.904 0.904
Gaussian 0.788 0.972 0.657 0.500 0.906 1.00

– KDD99 Liver Pima Shuttle Thyroid Wine
Sigmoid 0.554 0.616 0.707 0.637 0.784 0.948
Gaussian 0.589 0.704 0.713 0.607 0.807 0.952
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Figure 3: Sigmoid kernel SVM performance point normalized CMGE score on
test. For comments on the Box Plot, see previous figure.
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4.2 Model Complexity

In the case of model complexity, we again use the SVM performance point as
the normalizing factor. As per the discussion in the previous section, an SVM
element is considered a support vector, whereas an element under the CMGE
model will be considered to be a normalized instruction count taken across
all individuals comprising a solution, Equation (2). Figure 4 summarizes the
resulting SVM normalized median complexity of CMGE solutions on each data
set with respect to Gaussian and Sigmoid kernel functions. A log scale was
necessary on account of the resulting wide variation in solution complexities.
Values less (more) than unity imply a model with a lower (higher) count of
CMGE elements than SVM elements. In eight of the twelve cases, CMGE
models had a lower count, whereas in four cases the SVM solution utilized less.
However, the factor by which CMGE solutions where deemed simpler was up
to an order of magnitude in three cases, and over three orders of magnitude in
one case (Census).

The underlying theme in Figure 4 is that the SVM ‘simplicity’ is generally
correlated with the smaller data sets; Breast, Image, Iris, Liver, and Wine cor-
responding to the 5th, 3rd, 1st, 4th, and 2nd smallest data sets respectively.
However, after this it more difficult to identify specific second order relations;
with the easier Breast, Iris and Wine data sets having a strong preference for
an SVM model from a simplicity perspective, but Breast and Wine benefiting
from the more complex CMGE model in terms of classification. At the other ex-
treme, the CMGE models that were generally simpler than the SVM solutions
returned both weaker and stronger classification scores than the correspond-
ing SVM models (Census and KDD99 classification performance was generally
weaker, whereas Shuttle and Thyroid were generally stronger).

4.3 Computational Requirements

Computational requirements of each model are summarized for the Thyroid,
Shuttle, KDD99 and Census data sets on account of the relative increments
associated with the training partition; that is approx. {3,700, 44,000, 140,000,
200,000} exemplars respectively. Moreover, we also detail this characteristic in
terms of the duration necessary to conduct a ‘typical’ run and that to build
all the models necessary to make the performance evaluation. This implies fifty
models in the case of CMGE and six models in the case of the SVM (two kernels
by three regularization parameters). Note, this is summarized as a multiple of
the typical run time, some of the SVM regularization parameters resulting in
instability, thus runs of over ten hours. From Figure 5 the trade off between the
SVM and CMGE approaches is again immediately apparent. The constant size
of the point population and archives effectly decouple the CMGE model from the
specific size of the training data set. When combined with the ability to class-
wise introduce early stopping (care of the Pareto front behavior), there is little
increase in computation time when training on tens of thousands of exemplars
to hundreds of thousands. Conversely, the LIBSVM implementation of the SVM
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Figure 4: SVM performance point normalized CMGE. ‘log’ ratio of normalized
CMGE instruction count versus SVM support vector count under Gaussian
kernel. Values less (greater) than unity imply a simpler CMGE (SVM) solution.

model results in an increasing computational overhead as the training exemplar
count increases, where this is also reflected in the strong correlation between
SVM model complexity and size of the training data partition.

5 Related Work

Problem decomposition in GP has been a recurring theme, with one of the
earlier models taking the form of the ‘teaming’ metaphor [2]. All teams were
limited to have the same a priori specified number of individuals per team, thus
providing context for variation operators limited to modifying the same indi-
vidual in both teams. A recent development has been to combine the teaming
metaphor with a multi-population island approach in which team members are
developed independently in each population [23]. Ensemble methods provide a
natural mechanism for establishing multi-individual behaviors. The negative-
correlation model of [16] directly addresses the goal of establishing unique un-
correlated behaviors in the cooperating individuals from a single population,
and does not assume a priori specification of the number of participating indi-
viduals. A recent extension to this added an EMO component for trading off
error minimization and correlation objectives [3]. However, some drawbacks re-
main, such as the cost of estimating the correlation coefficient and post training
imposition of a voting heuristic which may or may not be appropriate. One final
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Figure 5: SVM and CMGE CPU training time in log seconds. Performance is
expressed as a tuple: CMGE and SVM time for a typical run; CMGE and SVM
time for 50 and 6 runs respectively.

model of interest takes the form of a bid based paradigm [13]. At initialization
individuals are assigned a scalar representing class label, whereas the goal of the
evolved program behavior is to identify a bidding strategy for which they receive
most reward under the preassigned class label. Naturally suitable mechanisms
are required to reward diversity in the bid behaviors; with a symbiotic model
being recently adopted to establish a clear model for credit assignment between
teams and programs [14].

6 Conclusions

Advances in areas such as Evolutionary Multi-objective Optimization (EMO)
and competitive coevolution are providing new opportunities for addressing
credit assignment in GP. Specifically, the proposed CMGE model scales to large
data sets using a competitive coevolutionary model in combination with a class-
wise balanced uniform sampling heuristic [24]. A local Gaussian wrapper op-
erator is employed to delimit exactly what subset of exemplars and individual
responds to. This insight enables us to evolve the region over which the Gaus-
sian is built, thus associating it with the most dense set of exemplars on the
gpOut axis. This provides the first mechanism for establishing problem decom-
position. EMO evaluation is then very efficient, as evaluation is only performed
over the exemplars explicitly associated with the region of the Gaussian. One
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EMO objective explicitly rewards behavior that minimizes the overlap of exem-
plars mapped to the Gaussian; the second mechanism for establishing problem
decomposition. However, a second insight is to ‘bootstrap’ this objective, by
evaluating it against the individuals contained in the archives built during com-
petitive coevolution. Thus, the class-wise archive produced by the competitive
coevolutionary model identifies the team of learners; whereas EMO drives the
mechanism by which the diversity of learners is maintained, and class-wise early
stopping is established.

The strength of the proposed CMGE model naturally lies in the ability of
the model to decompose problems such that multiple models support the classi-
fication of a single class. The decomposition is entirely an artifact of the evolu-
tionary model. This is most apparent in the general simplicity of the solutions,
as compared to the SVM model. Moreover, this is also achieved without sac-
rificing the classification performance; with data set preferences being returned
for both CMGE and SVM solutions. Needless to say, alternative SVM models
are available that might result in a different relative weighting of performance
factors. A case in point being SVM models that are based on an active learning
strategy to explicitly address scaling to large data sets [1]. Needless to say, such
models introduce a performance trade off in terms of model accuracy; whereas
the benchmarking comparison conducted here was designed to contrast the rel-
ative merits of a known strong classification implementation (LIBSVM) versus
an evolutionary model designed to address weaknesses in canonical GP. An ad-
ditional evaluation of the problem decomposition property of CMGE in terms of
GP competitive coevolution versus the cooperative-competitive teaming model
of CMGE is made in [19] and [17].

Future work will consider the utility of the CMGE framework to problem
domains with large feature spaces. The intuition being that as the CMGE
model is able to identify intra-class as well as inter-class models, it is now
explicitly possible to decouple features appropriate for models at the intra-
class level, rather than having to tie feature selection to representation for all
class consistent classification (as in one-classifier-per-class frameworks). Such a
property could be of particular importance to bio-informatic and document or
multi-media classification/ categorization domains in which the feature spaces
are both very large, but also sparse and multi-labelled. Results on the data sets
considered in this work have been shown to support the above hypothesis for
strong intra-class feature subset identification by intra-class classifiers [17].
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