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Abstract — A systemis described for applying hierarchical unsupervised neural networks (self organizing
feature maps) to the intruder detection problem. Specific emphasisis given to the representation of time
and the incremental development of a hierarchy. Preliminary results are given for the DARPA 1998
Intrusion Detection Problem.

|. Introduction

Defensive information operations and computer intrusion detedion systems are primarily designed to proted the
avail ahility, confidentiality, and integrity of critical networked information systems. The two main classes of
intrusion detedion systems are those that analyze network traffic and those that analyze operating system audit
trails. In al of these approaches, however, the amount of monitoring data generated is extensive, thusincurring large
processng overheads. For instance general rule-based systems aim to search/match for any “known abnormal
behaviour” within the monitored data. Such systems will not be able to identify any “new abnormal behaviour”. On
the other hand, a statistical anomaly detedion approach aims to identify the “normal behaviour” by mining the
monitored behaviour of each user. Unfortunately, these systems further increase the processng overheads. A
balancetherefore exists between the use of resources and the accuracy and timelinessof intrusion detedion
information. The objedive of the research presented in this paper isto construct an anomaly detedion system that
will highlight “abnormal behaviour” without incurring extensive computational overheads. To achieve this,
hierarchical self-organizing maps (SOMs) are applied to the problem of host-based intrusion detedion on computer
networks. Originally, the proposed system was demonstrated on “real-time sesgon information” of a host to deted
potential intruders or abusers among the “common users’ of the system [5]. In this framework is demonstrated on
the 1998DARPA Intrusion Detedion data set. Spedfic recommendations are made regarding the representation of
time, network parameters and SOM architedure.

2.M ethodology

In this work, we aim to investigate the appli cabilit y of an entirely data driven machine learning paradigm of
unsupervised, hierarchical, neural networks to the intrusion detedion problem. In order to develop such a system,
we first try to identify the “characteristics of thenormal connedion” to thetarget host. Thisinformation isthen used
toraise aflag for any connedion identified as having a“different characteristic’. To achievethis, the framework of
figure 1 isfoll owed, in which the wre of the approach is to automate the identification of typical connedions. The
first problem is to establi sh the nature of initial information on which the rest of the system is based. For
benchmarking purposes use is made of the DARPA 1998Intrusion Detedion Evaluation data set [2]. Thisrepresents
TCP dump data generated over nine weeks of smulated network traffic in a hypothetical military local area
network. This data was processed into some 7 milli on TCP connedion reards for usein the 3 International
Knowledge Discovery and Data Mining Tods Competition in 1999[2].
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Figure 1. System flowchart.



Steps to achieve Data Reduction and Pre-processng are driven by the needs of the Pattern Discovery comporent. In
this case, Pattern Discovery employs an ursupervised leaning system — Self Organizing Maps (SOM) —to detedt
and isudlizethe dharaderistics of a mmmon conredion. SOMs represent an ursupervised leaning technique for
data analysis and visualizaion. They are of particular interest here on acount of their efficient update scheme and
ahility to expresstopdogicd relationships. This property of an SOM makesit very convenient for expressng
relationships between dff erent groups of connedions. The hypahesisisthat typicd connedion characeristics will
be enphasized — densely popuated regions of the map —whereas atypicd adivitieswill appea in sparse regions of
the topdogy.

A. Data Set

The DARPA 1998Intrusion Detedion Evaluation data set consists of about 5 milli on connedions of labeled training
data and 2milli on connedions of test data [2]. Note however that the labels are only used to filter the data utili zed
during training (unsupervised learning does not require alabel) and aid the interpretation of the trained SOM. Each
connedion isdetail ed in terms of 41 features, categorized as foll ows: Basic TCP features, Content features, Time-
based traffic features; and Host-based traffic features [4].

Of these four sets of features only the “Basic TCP features’ were enployed. The threeother sets of features are all
derived using a priori knowledge regarding useful entiti es on which to build data-mining solutions[2]. Asindicated
abowe, in thiswork we are interested in identifying just how much can be achieved using an entirely data driven,
unsupervised learning approach. Six features comprise the Basic TCP information, as follows,

Duration —the length (in seconds) of the cnnedion;

Protocol type — the protocol type of the mnnedions such as TCP or UDP;
Service—the service accessed by the cnnedion such asHTTP or Telnet;

Flag — the status flag of the cmnnedion;

Destination Bytes — the amount of data sent by the destination of the connedion;
Source Bytes — the amount of data sent by the source of the cnnedion.
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Training data either represented a normal connedion or one of 24 dfferent attack types. Test data was augmented
with an additional 14 winseen attack types. All the forms of attack fell into ane of three @tegories: Remote-to-Local
(R2L); User-to-Roat (U2R); Denial-of-service (DOS); or Prohbing [4].

B. SOM Architedure

Previouswork [5] identified the appropriatenessof a hierarchical unsupervised neural network architedure based on
Kohonen's Sdlf Organizing Map (SOM) [1] and Potential function clustering [6]. Thisarchitedure basically consists
of two levels. Level one mnsists of feature spedfic SOMs that is for the six basic TCP featuresindividual SOM’s
are developed to act as feature detedors over afixed temporal horizon. The seand layer consists of an integrating
SOM, which isresponsible for combining features deteded by the six first level mapsinto asingle ‘view'. Between
the two layers, Potential function clustering is employed to quantize the number of inputs‘seen’ by the second layer.
Based on the organization of the second layer map network administrators make dedsions regarding the mwnnedion
behaviors.

1) Data Pre-processing and Training of the First Level SOMs
Threebasic forms of pre-processng are performed before the first level SOMs recave data. Firstly, the attack
connedions are removed from the training data, taking care to preserve order. This means that the foll owing
SOMs spread acrossthe ‘domain’ of normal behaviors. Previous work indicated that nodes of the SOM in
sparse regions of the SOM topol ogy then correspond to unusual behaviors [5]. The second pre-processng step
isto separate the six basic TCP features and enumerate their values. That is, the discrete values of thebasic TCP
featuresin the training set are mapped to an integer. In the ase of a discrete value which was not previously
sean (in the test set), we default to mapping to the next lowest avail able integer. The result of thefirst two pre-
prossessng stagesis therefore six separate sequences of numbers, one for each basic TCP feature, with the nth
entry of a sequence @rresponding to the nth connedion.

Thethird and final pre-processng operation is performed to provide the cncept of time. Thisis particularly
important, as SOMs have no implicit ability to recll temporal information. We note however, that we are not



interested in spedfic time stamp information, but the relative order of arrival. To thisend afirst-in first-out
(FIFO) buffer is employed [5]. Such a FIFO consists of a series of inter-stage delay and ‘tap’ from each stage.
Features propagate | ft to right through the FIFO. The SOM receaves asinput the feature arrently at each ‘tap’
position; asin a shift register structure. Theinter-stage delay is of 4 samples, wherethereareatotal of 20 taps'.
As new connedions are made the aurrent contents of the FIFO shift to the right one location, the value of the
last ‘tap’ being pushed off the end of the FIFO. This means that the SOM hasa‘ sequencehorizon’ spanning the
last 80 connedions, sampled at every fourth connedion. Using such a scheme, the SOM is able to deted
patterns over sequences of connedions. The overall result of level one pre-processng istherefore six sets of 20
dimensional patterns, one for each basic TCP feature.

Each o the six first level SOMs consist of 36 nodks and are trained onapproximately 25000 é the mnrection
patterns from the training set, where thisis roughy 2% of the original DARPA training data. A training cycle

would consist of 4000epochs, extending the training time beyondthis did na appea to significantly improve
the organizaion d the maps. All training was performed under the Matlab computing environment, using the

SOM Toobox developed at the Helsinki University of Techndogy [3].

2) Data Pre-processing for Training Second Level SOMs
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Asindicated abowe, the seaond level SOM acts as an integration stage for providing a unified view of the
network connedion condition. To do so, each SOM node in thefirst layer represents a potential input to the
seaond stage, or atotal input vedor length of 216to the second layer SOM. To this end the Potential Function
clustering method is employed to reducethe dimension of each layer one SOM from 36to 6. That isto say, in
the @se of each layer one SOM, the distance d, to each of the 6 cluster centersis calculated and then

normali zed to the unit interval,

d= i
1+d
Thus SOM activities close to the center of one of the dusterstend to a normalized dstance of unity, whereas
SOM activiti es distant from a center tend to zero. The additional effed of this processis that each of the six

layer one SOMs provide input to the second layer SOM using the same range of activation, avoiding
domination of the seand level SOM by level one SOMs with large dynamic range of activation.

Training Second Level SOM

No additional representation of timeis performed between first and second level SOM. The resulting second
level SOM has 36 nodes. Asin the ase of thefirst level maps, 10000epochs was aufficient to train the second
level map. Figure 2 summarizes the distance between adjacent nodes of the layer two SOM. Of interest are the
light regions of the map, or nodes, which are distant with resped to their neighbors. Thus nodes 31, 32 and 33
arethe most distant with nodes 20, 26 and 27forming a second set of isolated nodes.
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Figure 2. Unified matrix of secondlevel SOM.



3.Resaults

Figure 3 summarizes the number of time that each node of the seand level SOM represented the winning or best
matching unit (BMU) under training data without attack connedions. None of the low frequency BMUs liein the
dark regions of the adjacency distanceplot, figure 2. Figure 4 plots the BMUs for the training datain which only
patterns (ead pettern consists of values from several conredions) with at least one cmponent of attack were
present. This edfically identifies nodes 32 and 33as ynonymous with attack connedions, where these are al'so
two o the threemost distant level two SOM nodes, figure 2.
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Figure 3. BMU frequency onnormal training data (no attack conredions).
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Figure 4. BMU frequency onattack training data (no namal conredions).

We are now in a position to begin to suggest appropriate rules for describing attacks in terms of BMUs. To do so,
the sequence of BMUs preceding and following an attack, aswell asthe BMUs associated with an attack are used.
Tables 1 and 2 summarize the first, secnd and third BMUs occurring most frequently for patterns before and after
node 32 or 33 arethe BMU on training data, exclusive of attack connedions. This provides afilter for normal
behavior currently resulting in false positives. The rule for labeling an attack connedion now has the formulation,

IF (node 32 or 33isthe BMU)
THEN IF (seand and third BMUs do NOT match table 1 or 2)
THEN (label connedion as an attack)



| Previous Current Next

First BMU 32 32 32
Second BMU 25 25 25
Third BMU 26 26 26

Table 1: BMU’ s before and after node 32

| Previous Current Next

First BMU | 32 33 33

Seocond BMU 34 34 34
Third BMU 27 27 27

Table 2: BMU’ s before and after noce 33

Naturally, the number of patterns over which the abowve type of rule is formulated may be extended. Table 3
summarizes the performance of the system on 10% of the test data using dfferent pattern limits. In the ase of zero
patterns (node 32 and 33BMUs aloneindicate an attack), 15308 of the total 250399attacks are missed. Moreover,
in comparison to present best practice[4], the overall best false negative rates previously reported were = 0.33 with
afalse poditive rate of 0.0002 Note however, that the system returning these results utili zed all four categories of
information in the DARPA dataset or atotal of 41 features (only 6 were used here) and was trained over the entire
training data set (only =10% was used in this work), and was tested over the whole test data set.

# of Patterns # of FPs # of FNs FP Rate FN Rate
0 20588 15308 0.3404 0.0611

3 7674 81881 0.1269 0.3270

5 6877 82222 0.1137 0.3284

10 5197 83117 0.0859 0.3319

25 2968 84523 0.0491 0.3376

50 1543 85854 0.0255 0.3429

75 587 86837 0.0097 0.3468

100 121 8745 0.0020 0.3493

Table 3: Final Results

4. Conclusion

Thework presented is naturaly of a preliminary nature, but we beli eve sufficient to warrant continued devel opment.
In particular we have demonstrated that a hierarchically built unsupervised neural network approach is able produce
encouraging results. Future work will naturally extend the nature of the tests conducted and investigate the use of
more advanced SOM architedures and additional |ayers to the hierarchy.
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