REINFORCED LINEAR GENETIC PROGRAMMING

by

Urmzd Mukhammadnaim

Submitted in partial fulfillment of the requirements for the degree of Bachelor of Computer Science, Honours
at

Dalhousie University Halifax, Nova Scotia April 2023

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of Computer Science for acceptance a thesis entitled "REINFORCED LINEAR GENETIC PROGRAMMING" by Urmzd Mukhammadnaim in partial fulfillment of the requirements for the degree of Bachelor of Computer Science, Honours.

Dated: April 12, 2023

Supervisor:

Readers:

M. Heywood
D. Arnold

DALHOUSIE UNIVERSITY

DATE: April 12, 2023
AUTHOR: Urmzd Mukhammadnaim
TITLE: REINFORCED LINEAR GENETIC PROGRAMMING
DEPARTMENT OR SCHOOL: Faculty of Computer Science
DEGREE: B.C.Sc. (Honours)
CONVOCATION: May
YEAR: 2023

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. I understand that my thesis will be electronically available to the public.
The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.
The author attests that permission has been obtained for the use of any copyrighted material appearing in the thesis (other than brief excerpts requiring only proper acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Table of Contents

Abstract v
Acknowledgements vi
Chapter 1 Introduction 1
Chapter 2 Background 2
2.1 Linear Genetic Programming 2
2.2 Reinforced Genetic Programming 3
Chapter 3 Methodology 4
3.1 Framework Overview 4
3.1.1 Framework Configuration \& Hyperparameters 5
3.1.2 Program Representation 6
3.1.3 The Algorithm 7
3.1.4 Validating The Algorithm 8
3.2 OpenAI Gym Integration 9
3.3 Q Learning Integration 10
3.4 Experiment Setup 12
3.4.1 Hyperparameter Optimization 12
3.4.2 Performance Evaluation 12
Chapter 4 Analysis 19
$4.1 \quad$ Experimental Results 19
4.1.1 Cart Pole 19
4.1.2 Mountain Car 19
4.2 Discussion 20
Chapter 5 Conclusion 37
Bibliography 38

Abstract

Linear Genetic Programming (LGP) is a powerful technique that allows for a variety of problems to be solved using a linear representation of programs. However, there still exists some limitations to the technique, such as the need for humans to explicitly map registers to actions. This thesis proposes a novel approach that uses Q-Learning on top of LGP, Reinforced Linear Genetic Programming (RLGP) to learn the optimal register-action assignments. In doing so, we introduce a new framework 'linear-gp' written in memory-safe Rust that allows for extensive experimentation for future works.

Acknowledgements

This work is lovingly dedicated to all the wonderful people in my life who have supported me in my educational endeavors. My deepest gratitude goes to my brother Frebarz, who consistently encouraged me to reach new heights. To my mother, Khalima, as well as my sisters Rita and Rukhafzo, who have always been my motivation and continue to fuel my ambitions. And to my late father Muhammad Naim Nazar Muhammad (09/25/1958 - 06/29/2006), whose cherished memory and unwavering dedication to his passions have inspired my own journey.

I also want to express my heartfelt appreciation to my dear friends, who have played an integral role in this adventure. Your friendship, understanding, and steadfast support have been invaluable as I navigated the challenges and victories of my academic pursuits. Each of you has been a constant source of encouragement, inspiration, and motivation. So, a heartfelt thank you to Kerel, Colin, Mohammed, Efaj, Assib, Jason, Chris, and everyone else who has been an active and cherished part of my life.

Furthermore, I would like to extend a warm dedication to my young niece Eva. It brings me joy to see your curiosity and enthusiasm grow as you learn about the world around you. My hope is that my own journey inspires you to embrace your dreams and keep exploring new possibilities. Eva, remember that with determination, a curious mind, and the love and support of your family, you can achieve great things. Keep learning, and know that I will always be rooting for you.

Finally, I am immensely grateful to Dr. Heywood for his patience and unwavering guidance throughout the entire process of this thesis, from its inception to completion. His mentorship has allowed me to immerse myself in the world of academia and further ignite my passion for learning and discovery. To each and every one of you who have played a significant role in my academic journey, I offer my sincere thanks and appreciation. Your love and support mean the world to me.

Chapter 1

Introduction

The rapid growth of technology and the increasing complexity of real-world problems demand efficient and effective optimization techniques. Evolutionary algorithms (EAs) have demonstrated significant potential in addressing these challenges by emulating the process of natural selection to search for optimal solutions [9]. Linear Genetic Programming (LGP), a branch of Genetic Programming (GP), is one such EA that has gained attention in the field of computer science for its unique approach to tackling complex problems [10]. By representing programs as a sequence of linear instructions, similar to what is found when programming imperatively, LGP allows for solutions that are not only potentially more interpretable but also more efficient to execute and manipulate. The resulting algorithm, Reinforced Linear Genetic Programming (RLGP), is then able to learn the optimal registeraction assignments, potentially leading to more efficient and effective solutions. RLGP inherits the benefits of LGP, such as its linear representation and ease of manipulation while augmenting it with the adaptive capabilities of Q-Learning. This integration allows RLGP to explore and exploit the solution space more effectively, resulting in improved performance when addressing complex optimization problems. We evaluate the performance of RLGP on a variety of benchmark problems, including the cartpole-v1 and mountain-car-v0 environments from the OpenAI Gym library [4]. These environments provide challenging tasks that require sophisticated decision-making and control strategies, making them suitable for assessing the effectiveness of RLGP. We compare the baseline LGP framework with the augmented RLGP framework in terms of solution quality, convergence speed, and adaptability to dynamic problem domains. By combining the strengths of LGP and Q-Learning, RLGP might represent a significant advancement in the field of evolutionary computation. This research not only contributes to the understanding of hybrid evolutionary algorithms but also paves the way for future work on incorporating reinforcement learning techniques into other EAs.

Chapter 2

Background

2.1 Linear Genetic Programming

Linear Genetic Programming (LGP) is an advanced form of Genetic Programming (GP), a powerful machine learning technique introduced by Brameier and Banzhaf in their seminal work [3]. Unlike the traditional tree-based GP, LGP represents programs as a linear sequence of instructions, similar to assembly language or machine code [6]. This representation offers several advantages, such as improved evolvability, efficient execution, and simplicity of crossover and mutation operations. In LGP, programs are composed of registers and instructions, where each instruction manipulates the contents of registers using arithmetic, logical, or conditional operations. The evolutionary process is similar to that of canonical GP, but involves variation operators that act directly upon a linear set of instructions. The variations are as follows, reproduction (cloning), recombination (breeding) and mutation. In their paper, Brameier and Banzhaf compared the performance of LGP to that of traditional GP and neural networks. They discovered that LGP had classification and generalization capabilities that were comparable to those of neural networks [3]. This finding was significant, as it demonstrated that LGP could serve as an alternative to neural networks for solving complex machine learning problems. Moreover, LGP's linear representation allows for more interpretable solutions, which is an important consideration in many applications where understanding the underlying model is crucial. The paper further explored the benefits of LGP's linear representation, such as improved evolvability and more efficient execution. These advantages make LGP an attractive choice for solving complex problems, as it can produce high-quality solutions more quickly than traditional GP methods. Additionally, the simplicity of crossover and mutation operations in LGP ensures that the evolutionary process remains efficient and effective, allowing for the exploration of a diverse range of solutions. Brameier and Banzhaf's work on LGP laid the foundation for further research into the capabilities and applications of this powerful machine learning technique. The findings of their paper highlight the potential of LGP as a
robust and versatile machine learning approach, particularly in scenarios where both high performance and interpretability are required.

2.2 Reinforced Genetic Programming

In the RGP paper, Downing applied the Reinforced Genetic Programming approach to several benchmark problems, including function optimization and control tasks [5]. The results showed that RGP significantly outperformed traditional Genetic Programming and other baseline algorithms in terms of convergence speed, solution quality, and robustness. This demonstrated the effectiveness of incorporating Q-Learning into the genetic programming framework to guide the exploration and exploitation of the search space. One of the key findings of the paper was that the combination of Genetic Programming and QLearning allowed RGP to adapt more efficiently to changing environments and problem landscapes. By utilizing the reinforcement signals from the environment, RGP could dynamically adjust its search strategy, making it more responsive to the changes in the problem domain. This ability to adapt and learn from the environment is particularly relevant to real-world problems, where the solution space may be dynamic, noisy, or uncertain. The paper also introduced several novel techniques for integrating Q-Learning into the Genetic Programming framework, such as the use of Q-values to bias the selection of genetic operations and the incorporation of reinforcement signals into the fitness function. These innovations allowed RGP to leverage the strengths of both Genetic Programming and QLearning, resulting in a more powerful and flexible optimization algorithm. In the context of Reinforced Linear Genetic Programming (RLGP), the findings of Downing's paper suggest that integrating Q-Learning into the LGP framework could yield similar benefits. By combining the global search capabilities of LGP with the local search and adaptation of Q-Learning, the resulting algorithm, which could be referred to as RLGP, may be able to tackle complex and dynamic problem domains more effectively. It is important to note that RGP represents programs as decision trees, while LGP uses linear sequences of instructions for program representation. This fundamental difference necessitates adopting a distinct approach when incorporating Q-learning into LGP.

Chapter 3

Methodology

3.1 Framework Overview

We utilize the Rust programming language to develop a flexible and extensible framework for our research, available at/https://github.com/urmzd/linear-gp. The framework is specifically designed to address a wide range of problems using LGP and RLGP while offering extensive configurability for experimentation purposes. The framework is composed of multiple engines, each implementing core functionalities essential for the evolutionary process. The primary engines we focus on are described below:

- Core: This engine establishes the fundamental processes the framework employs to evolve a population of individuals. It initializes the population, iteratively evaluates the fitness of individuals, performs selection, and applies genetic operations such as mutation and crossover to generate offspring.
- Breed: This engine is responsible for defining the genetic operators that facilitate the exchange of genetic material between individuals. In particular, it outlines how individuals undergo crossover, generating offspring with a combination of their parents' genetic code.
- Mutate: This engine focuses on the stochastic modification of single individuals within the population. It dictates how genetic alterations are applied to individuals, potentially leading to the discovery of novel and improved solutions.
- Fitness: The Fitness engine is tasked with evaluating the performance of each individual in the population. It measures how well an individual can solve the target problem, providing a basis for selection and guiding the evolutionary search process.
- Generate: This engine is concerned with the stochastic creation of individuals and environments. It defines the methods for generating new individuals with random
genetic material, as well as the procedures for initializing problem-specific environments that influence the evaluation of individuals.

3.1.1 Framework Configuration \& Hyperparameters

The available framework configuration properties are listed in 3.1 . Note that note all configurations are always used. For instance, programs that do not use Q-Learning during their fitness evaluation, $H_{\text {alpha }}, H_{\text {gamma }}, H_{\text {epsilon }}, H_{\text {alpha_decay }}$ or $H_{\text {epsilon_decay }}$ is not required.

- H denotes the set of hyperparameters.
- H_{p} denotes the set of hyperparameters that are related to a specific property p.

For example, when referencing gap, we use the notation $H_{g a p}$.

Property	Type	Value Range
default_fitness	float	-
population_size	int	$[0)$,
gap	float	$(0,1)$.
mutation_percent	float	$[0,1.0]$
crossover_percent	float	$[0,1.0]$
n_generations	int	$[0)$,
n_trials	int	$[1)$,
seed	int or None	$[0)$,
max_instructions	int	$[1)$,
n_extras	int	$[1)$,
external_factor	float	$[0)$,
n_actions	int	-
n_inputs	int	-
alpha	float	$[0,1.0]$
gamma	float	$[0,1.0]$
epsilon	float	$[0,1]$
alpha_decay	float	$[0,1]$
epsilon_decay	float	$[0,1]$

Table 3.1: Hyperparameter

The genetic algorithm involves several hyperparameters that influence its behavior. default_fitness is the default fitness value assigned to individuals in the population when there is an issue with their fitness evaluation. The number of individuals in each generation is determined by population_size. The gap parameter represents
the percentage of the population that is replaced with offspring in each generation. The mutation_percent and crossover_percent values control the proportions of individuals generated through mutation and crossover processes, respectively.

The algorithm runs for a set number of generations, specified by n_generations. During fitness evaluation, a program must interact with an environment a certain number of times, determined by n_trials, and the results are aggregated to produce a final value. The pseudorandom number generator (PRNG) is initialized with a seed, seed, or noise from the system if set to None. The genetic program has a maximum number of instructions, max_instructions, and a certain number of working registers, specified by n_extras.

The external_factor parameter adjusts the amplification or reduction of inputs from external sources. The program has n_actions possible choices or action registers, while the number of feature values for an input from an external source is determined by n_inputs.

The Q-learning algorithm also utilizes various hyperparameters. The initial learning rate, alpha, sets the pace for updating action value estimates. The gamma parameter acts as the discount factor for future rewards, affecting the balance between immediate and longterm rewards. The probability of selecting a random action is controlled by epsilon, allowing the algorithm to explore the state space. Over time, the learning rate and exploration rate decay at rates specified by alpha_decay and epsilon_decay, respectively, allowing a shift from exploration to exploitation.

3.1.2 Program Representation

A program can be thought of as a container holding instructions and a set of registers. A single instruction consists of the source register index, the target register index, the operation to be performed and a mode flag. The mode flag is used to determine where the source register is located. If set, the mode flag indicates that the target register is located outside the program. In other words, the value held in the target register is given by an external source (such as the features of some dataset or the environment state). We can represent the program as a sequence of instructions in the following format.

$$
\begin{equation*}
R[y] \leftarrow R[y]\langle o p\rangle R[x] \tag{3.1}
\end{equation*}
$$

R represents the registers, x and y represent the and target register indices respectively, and $\langle o p\rangle$ represents the operation to be performed. In our case, we only allow four operations; addition $(+)$, subtraction $(-)$, multiplication (\times) and division (\div) by 2 . Division is done by a non-zero constant to prevent division by zero errors that would likely crash the system. This representation makes it easy to implement variation operations, but also easy to digest for humans unlike other machine learning techniques and tree-based programs, which convolute the internal process used to solve a problem. The size of the register set consists of $H_{n _a c t i o n s}+H_{n _ \text {extras }}$.

3.1.3 The Algorithm

In this work, we present a linear genetic programming (LGP) approach to evolve a population of programs to solve a given task. The core algorithm, as well as supporting operations, are outlined below. The core LGP algorithm (Algorithm 1) starts by initializing a population of programs, where each program is evaluated against the desired task using a suitable fitness function. The programs are then ranked based on their fitness scores, and the least fit individuals are dropped by a given percentage, denoted as $H_{g a p}$. The remaining individuals in the population are used to produce new offspring, which fill the dropped spots, thus creating a new generation of the population. The breeding operation, called Two-Point Crossover (Algorithm 2), is used to create offspring by combining parts of two parent programs. It starts by cloning the parent programs, selecting two random points in their instruction sets, and swapping the chunks between them. This operation generates two new offspring. However, only one of the offspring is selected at random and returned, as per the modification. The mutation operation, called Instruction Replacement (Algorithm 3), is used to introduce random changes into a program. It selects a random instruction from the program and replaces it with a newly generated random instruction. Additionally, it may randomly decide to replace only certain properties (operation, source, or target) of the selected instruction. The program generation operation (Algorithm 4) creates a new program by generating a random number of instructions and a register set, consisting of action registers $H_{n _a c t i o n s}$ and working registers $H_{n _ \text {extras }}$. The resulting program is then returned.

```
Algorithm 1 Core: Linear Genetic Programming
    \(P_{0} \leftarrow\) InitializePopulation \(\left(H_{\text {population_size }}\right)\)
    for \(i \in\left\{0,1, \ldots, H_{n_{-} \text {generations }}-1\right\}\) do
        Evaluate \(\left(P_{i}\right)\)
        Rank \(\left(P_{i}\right)\)
        \(P_{i+1} \leftarrow \operatorname{SuRVIVE}\left(P_{i}, H_{g a p}\right)\)
        \(P_{i+1} \leftarrow\) VARIATION \(\left(P_{i+1}\right) \quad \triangleright\) select individuals through tournament selection and
    apply variation operations
    return \(P_{H_{n-g \text { generations }}-1}\)
```

```
Algorithm 2 Breed: Two-Point Crossover
    \(P_{1}^{\prime}, P_{2}^{\prime} \leftarrow \operatorname{CLONE}\left(P_{1}, P_{2}\right)\)
    \(I_{1} \leftarrow P_{1}^{\prime}\).instructions
    \(I_{2} \leftarrow P_{2}^{\prime}\).instructions
    \(p_{1}, p_{2} \leftarrow \operatorname{RANDOMChunK}\left(I_{1}, I_{2}\right)\)
    \(I_{1}\left[p_{1}: p_{2}\right], I_{2}\left[p_{1}: p_{2}\right] \leftarrow I_{2}\left[p_{1}: p_{2}\right], I_{1}\left[p_{1}: p_{2}\right]\)
    return RandomOne \(\left(P_{1}^{\prime}, P_{2}^{\prime}\right)\)
```

```
Algorithm 3 Mutate: Instruction Replacement
    \(I \leftarrow\) RANDOMINSTRUCTION \((P)\)
    \(I^{\prime} \leftarrow\) GenerateRandominstruction
    for \(p \in\{\) operation, source, target \(\}\) do
        if \(\operatorname{Random}(0,1)<0.5\) then
            ReplaceProperty \(\left(I, I^{\prime}\right)\)
    Replaceinstruction \((P, I)\)
    return \(P\)
```


3.1.4 Validating The Algorithm

As a means of ensuring that the framework was implemented correctly, we developed four tests. Figure 3.1a is a baseline that ensures that the genetic algorithm works with only the reproduction operation. Figure 3.1b, ensures the two point crossover operation works as expected. Figure 3.1c ensures that the mutation operation works. Figure 3.1d ensures that recombination and mutation can work together to produce a better fitness score than either

```
Algorithm 4 Generate: Program Generation
    n_instructions \(\leftarrow\) RANDOM (1, max_instructions)
    \(R \leftarrow\) GENERATEREGISTERSET \(\left(H_{n-a c t i o n s}+H_{n_{-} \text {extras }}\right)\)
    \(I \leftarrow\) GENERATEINSTRUCTIONS( \(n\) _instructions)
    \(P \leftarrow \operatorname{CrEAtEPRogram}(R, I)\)
    return \(P\)
```

operation alone. We also outline the fitness algorithm used for the iris dataset in Algorithm 5

```
Algorithm 5 Fitness: Iris
    score \(\leftarrow 0\)
    for \(I \in\) inputs do
        ExECUTE(Program,I)
        pred \(\leftarrow \operatorname{ARGMAX}\left(\right.\) Program.Registers \(\left.\left[0: H_{n-a c t i o n s}\right]\right)\)
        if pred \(=I\) then
            score \(\pm 1\)
    accuracy \(\leftarrow \frac{\text { score }}{\mid \text { inputs } \mid}\)
    return accuracy
```


3.2 OpenAI Gym Integration

We extend the fitness algorithm to work with a Rust port of OpenAI's mountain-car-v0 and cartpole-v1 environment [4]. The code can be viewed at (https://github.com/ urmzd/gym-rs).

For the mountain-car-v0 environment, the agent's goal is to drive a car up a steep hill. The car is subject to gravity and has limited power. The car must learn to rock back and forth to build momentum before reaching the goal area at the top of the hill. The environment has two state variables representing the position, and velocity of the car. The car has three possible actions: push left, push right, or no push. The reward function for the environment gives a value of -1 at each time step until the car reaches the goal area, at which point the reward becomes 0 . The problem is considered solved when the car reaches the goal area with an average reward of -110 over 100 consecutive trials.

For the cartpole-v1 environment, the agent's goal is to balance a pole on top of a cart that can move left or right. The pole is subject to gravity, and the goal is to keep the pole upright for as long as possible. The environment has four continuous state variables representing the position and velocity of the cart and pole. The cart has two possible actions: move left or move right. The reward function for the environment gives a value of 1 at each time step that the pole remains upright. The problem is considered solved when the pole remains upright for at least 195 consecutive time steps over 100 consecutive trials.

With this in mind, we outline an alternative fitness algorithm used to baseline the framework on classical reinforcement learning problems, Algorithm 6 .

```
Algorithm 6 Fitness: Gym Integration
    score \(\leftarrow 0\)
    for \(i \in N_{\text {Episodes }} \mathbf{d o}\)
        ExECUTE(Program, Environment)
        Action \(\leftarrow \operatorname{ARGMAX}\left(\right.\) Program.Registers \(\left.\left[0: H_{\text {n_actions }}\right]\right)\)
        Reward, Terminal \(\leftarrow \operatorname{Sim}(\) Action, Environment)
        if Terminal then
            break
        score \(\pm\) reward
    return score
```


3.3 Q Learning Integration

We extend Algorithm 6 further to support Q Learning (Algorithm 8). The Q Table consists of a 2D array of size $N_{R} \times N_{A}$, where N_{R} is the number of registers the program can work with and N_{A} is the number of available actions an agent can take. The Q Table is initialized to all zeros and updates only a different register has been selected. The Q Table is updated using the following formula.

$$
\begin{equation*}
Q\left(R\left[x_{t}\right], a_{t}\right) \leftarrow Q\left(R\left[x_{t}\right], a_{t}\right)+\alpha\left(r_{t+1}+\gamma \max _{a} Q\left(R\left[x_{t+1}\right], a\right)-Q\left(R\left[x_{t}\right], a_{t}\right)\right) \tag{3.2}
\end{equation*}
$$

In this formula, Q represents the Q Table, R represents the set of registers, a represents the available actions, r_{t+1} is the reward at time step $t+1, \alpha$ is the learning rate, and γ is the discount factor. The value x_{t} represents the current state, while x_{t+1} represents the next
state. The update rule calculates the new Q value for the current state-action pair based on the observed reward and the maximum Q value for the next state. Moreover, during register selection, we apply a greedy selection policy (Algorithm7) with probability $1-\varepsilon . \varepsilon$ exists to allow us to configure the exploration-exploitation factor, i.e., maintain register selection diversity.

```
Algorithm 7 Q Learning: \(\varepsilon\)-Greedy Selection Policy
    : Execute(Program,State)
    WinningRegister \(\leftarrow\) Argmax (Program.Registers)
    Action \(\leftarrow \operatorname{Argmax}(Q[\) WinningRegister \(])\)
    if \(\operatorname{Random}(0,1)<\varepsilon\) then
        Action \(\leftarrow \operatorname{RANDOM}\left(0, H_{\text {n_actions }}\right)\)
    return WinningRegister,Action
```

```
Algorithm 8 Fitness: Q Learning
    score \(\leftarrow 0\)
    \(R_{t}, a_{t} \leftarrow\) GreedySelection(Program, Environment)
    while \(t<N_{\text {episodes }}\) do
        \(r_{t+1}\), Terminal \(\leftarrow \operatorname{SIM}\left(a_{t}\right.\), Environment \()\)
        score \(\pm r_{t+1}\)
        if Terminal then
            break
        \(R_{t+1}, a_{t+1} \leftarrow\) GreedySelection(Program, Environment)
        if \(R_{t} \neq R_{t+1}\) then
            \(\operatorname{QTableUpdate}\left(R_{t+1}, a_{t+1}, R_{t}\right)\)
        \(R_{t} \leftarrow R_{t+1}\)
        \(a_{t} \leftarrow a_{t+1}\)
        \(t \leftarrow t+1\)
    return score
```


3.4 Experiment Setup

In this section, we outline the experiment setup used to evaluate the performance of the proposed Q-Learning LGP algorithm in comparison to the baseline LGP. The experiments were conducted in two main stages: hyperparameter optimization and performance evaluation.

3.4.1 Hyperparameter Optimization

First, we employed the Optuna hyperparameter optimization library [1] to identify the optimal parameters for the baseline LGP programs. Optuna is a flexible and efficient hyperparameter optimization framework that enables automatic exploration of hyperparameter spaces in pursuit of the best settings for a given algorithm. After determining the optimal parameters for the baseline LGP programs, we conducted a separate search using Optuna to find the optimal Q-Learning constants for the Reinforced Linear Genetic Programming (RLGP) programs. This process was aimed at fine-tuning the RLGP algorithm's performance by selecting the most suitable Q-Learning parameters based on the problem domain and the characteristics of the LGP framework. The resulting parameters were then integrated into the RLGP algorithm by extending the LGP parameters, as shown in 1, 2, 3, and 4.

3.4.2 Performance Evaluation

After obtaining the optimal parameters for both baseline LGP and RLGP, we proceeded with the performance evaluation phase. This stage involved conducting 100 experiments, each consisting of 100 trials. The goal of these experiments was to assess the effectiveness and robustness of the RLGP algorithm compared to the baseline LGP across multiple runs and problem instances.

For each experiment, we calculated the mean, median, minimum, and maximum performance scores obtained by both baseline LGP and RLGP. These summary statistics provided a comprehensive overview of the algorithms' performance, highlighting their strengths and weaknesses across different trials and problem instances.

Finally, we plot the average mean, median, min, max for each experiment to visually compare the performance of the baseline LGP and RLGP algorithms. This visualization

```
Listing 1 Cart Pole Parameters
\{
    "default_fitness": 500.0,
    "population_size": 100,
    "gap": 0.5,
    "mutation_percent": 0.5,
    "crossover_percent": 0.5,
    "n_generations": 100,
    "n_trials": 100,
    "seed": null,
    "program_parameters": \{
        "max_instructions": 23,
        "instruction_generator_parameters": \{
            "n_extras": 1,
            "external_factor": 92.04438205753976,
            "n_actions": 2,
            "n_inputs": 4
        \}
    \}
\}
```

allowed us to identify trends and patterns in the algorithms' performance and gain insights into the benefits of incorporating Q-Learning into the LGP framework.

By following this experimental setup, we aimed to provide a thorough and unbiased evaluation of the proposed Q-Learning LGP algorithm, demonstrating its potential advantages over the baseline LGP and paving the way for future research and development in this area.

```
Listing 2 Cart Pole Q-Learning Parameters
{
    "default_fitness": 500.0,
    "population_size": 100,
    "gap": 0.5,
    "mutation_percent": 0.5,
    "crossover_percent": 0.5,
    "n_generations": 100,
    "n_trials": 100,
    "seed": null,
    "program_parameters": {
        "program_parameters": {
            "max_instructions": 23,
            "instruction_generator_parameters": {
                "n_extras": 1,
                "external_factor": 92.04438205753976,
                    "n_actions": 2,
                    "n_inputs": 4
            }
        },
        "consts": {
            "alpha": 0.9933093715472482,
            "gamma": 0.9493877958652062,
            "epsilon": 0.7024493518448414,
            "alpha_decay": 0.24276313855515808,
            "epsilon_decay": 0.293833697874351
        }
    }
}
```

Fitness Evolution (Iris without Crossover or Mutation)

(a) LGP: Iris Reproduction

Fitness Evolution (Iris with Crossover)

(b) LGP: Iris Recombination

Figure 3.1: Performance comparison of different genetic programming methods on iris dataset

Figure 3.1: (Continued) Performance comparison of different genetic programming methods on iris dataset

```
Listing 3 Mountain Car Parameters
    "default_fitness": -200.0,
    "population_size": 100,
    "gap": 0.5,
    "mutation_percent": 0.5,
    "crossover_percent": 0.5,
    "n_generations": 100,
    "n_trials": 5,
    "seed": null,
    "program_parameters": {
        "max_instructions": 10,
        "instruction_generator_parameters": {
            "n_extras": 1,
            "external_factor": 2.0736207078591695,
            "n_actions": 3,
            "n_inputs": 2
        }
    }
}
```

```
Listing 4 Mountain Car Q-Learning Parameters
{
    "default_fitness": -200.0,
    "population_size": 100,
    "gap": 0.5,
    "mutation_percent": 0.5,
    "crossover_percent": 0.5,
    "n_generations": 100,
    "n_trials": 100,
    "seed": null,
    "program_parameters": {
        "program_parameters": {
            "max_instructions": 10,
            "instruction_generator_parameters": {
                "n_extras": 1,
                "external_factor": 2.0736207078591695,
                "n_actions": 3,
                "n_inputs": 2
            }
        },
        "consts": {
            "alpha": 0.9973629496495072,
            "gamma": 0.39901321062297757,
            "epsilon": 0.8400771173101154,
            "alpha_decay": 0.6876951222663272,
            "epsilon_decay": 0.5125287069666674
        }
    }
}
```


Chapter 4

Abstract

Analysis

This chapter analyzes the performance of a population of programs trained using Linear Genetic Programming (LGP) and a population of programs trained using Linear Genetic Programming Reinforced with Q-Learning (LGP-Q). The programs are trained on the cartpolev1 and mountain-car-v0 environments [4] as mentioned in the Reinforcement Integration section. Once the results are explained, we analyze them to provide insight into the impact of Q-Learning on the performance of LGP. Note that we use the definition of done as referenced on https://github.com/openai/gym/wiki/Leaderboard.

4.1 Experimental Results

4.1.1 Cart Pole

Figure 4.1 with reference tables 4.1 and 4.2 show a comparison of the two frameworks performance on the cartpole-v0 task. Over 100 experiments, we observe that LGP averages a maximum of 466 , a median of 454 , a median of 466 and minimum of 128 . On the other hand, RLGP averages a maximum of 213 , a median of 207 , a mean of 213 a minimum of 31. In both cases, the population of the respective frameworks were able solve the problem. Both frameworks were able to generate a program in the first 10 generations that was able to solve the problem. However, the RLGP framework immediately plateaus, whilst the LGP framework continues to improve until hitting a plateau at 80 generations.

4.1.2 Mountain Car

Figure 4.2 alongside tables 4.3 and 4.4 demonstrates a similar pattern to that of the cartpolev 0 task. The RLGP framework falls short of solving the task, averaging a maximum of 114, a mean of-130, a median of -117 and a minimum of -200 . On the other hand, the LGP framework is able to solve the task, albeit narrowly, averaging a maximum -106, a mean of -126 , a median of -120 , and a minimum -200. Here, we observe that RLGP achieves a
higher median score, with a slight upward trend whereas the LGP achieves a lower median, with no particular trend in any direction. Both of these framework look as they quickly converge to a value and then plateau.

4.2 Discussion

Initially, we would have expected for the frameworks to perform better on mountain-carv0 than cart-pole-v1 as the state space is much simpler (one consists of 2 state properties whilst the other contains four). However, the opposite seems to be true, the cart pole task was able to be solved relatively easily in comparison to the mountain car task, in which RLGP failed to solve the problem. One explanation for this discrepancy is the difference in the nature of the tasks. The cart-pole task is inherently more continuous, allowing for small adjustments to have a direct impact on the balancing of the pole. On the other hand, the mountain car task requires more strategic and discrete actions to build up momentum and reach the goal. This may indicate that the LGP and RLGP frameworks are better suited to tackle continuous control problems.

Another contributing factor could be the exploration-exploitation trade-off present in RLGP. The Q-learning component might not be exploring the state space effectively, thus getting stuck in local optima and hindering the overall performance. In contrast, the LGP framework seems to be more robust in its exploration of the solution space, enabling it to perform better on both tasks.

Moreover, the difference in performance may also be attributed to the limitations of the genetic programming approach. While LGP and RLGP are capable of discovering compact and interpretable representations of policies, they are not guaranteed to find the global optimum. The search process depends on the initial population and variation operators, which can impact the quality of the solutions found. The experimental set up might have been poor, and the parameters beneficial to LGP might not have been optimal for RLGP. Its possible that we could've seen better results if Q learning parameters was not simply a wrapper on top of a preexisting configuration.

In conclusion, our experiments demonstrate that the LGP framework outperforms the RLGP framework in both cart-pole and mountain car tasks. Although both frameworks were able to solve the cart-pole task, RLGP failed to solve the mountain car task, suggesting that the integration of Q-learning into genetic programming may not always lead to
improved performance. Future work could involve investigating alternative reinforcement learning algorithms, adapting exploration strategies, or incorporating domain knowledge to enhance the performance of genetic programming-based frameworks. Additionally, it would be valuable to test these frameworks on a broader range of tasks to better understand their strengths and limitations.

Table 4.1: LGP Cart Pole Aggregated Results

Generation	Max	Mean	Median	Min
0	197.6150	48.2211	8.0180	3.3220
1	198.6100	82.5966	58.6020	4.1180
2	199.6040	135.8412	149.9540	4.1400
3	200.1010	163.9173	180.0105	4.4240
4	200.1010	176.6355	189.1775	5.2090
5	200.1010	180.8190	192.1495	4.8770
6	200.1010	185.5329	196.6230	4.6130
7	200.1010	186.0293	199.1070	6.1150
8	200.1010	189.1239	200.1010	18.4880
9	200.1010	189.9061	200.1010	5.9680
10	200.1010	189.9119	200.1010	5.6250
11	200.1010	188.0337	200.1010	4.5700
12	200.1010	191.5232	200.1010	21.3280
13	209.0830	190.7467	200.1010	6.4070
14	212.0770	191.2533	200.1010	14.7780
15	212.0770	189.6393	200.1010	5.1520
16	236.5280	190.3997	200.1010	13.4380
17	238.5240	192.6686	200.1010	18.9550
18	266.4680	194.3270	200.1010	7.4430
19	266.9670	194.7333	200.1010	13.1660
20	275.9490	195.7917	200.1010	5.2860
21	278.9430	200.7326	200.1010	6.6770
22	278.9430	212.2020	200.6000	29.3420
23	309.3820	227.0722	234.7815	39.0850

Generation	Max	Mean	Median	Min
24	309.3820	244.6299	250.9990	69.4160
25	313.3740	254.3056	262.4760	41.6980
26	313.3740	265.7745	266.9670	62.4860
27	313.3740	280.5459	282.6855	68.8720
28	313.3740	288.9686	309.1325	76.5810
29	313.3740	298.8313	312.3760	65.0090
30	313.3740	299.8838	312.8750	44.4450
31	313.3740	299.0033	312.8750	75.0660
32	313.3740	302.4545	313.3740	88.0540
33	313.3740	303.3941	313.3740	67.6170
34	313.3740	301.9708	313.3740	106.6260
35	313.3740	302.2215	313.3740	64.8710
36	313.3740	301.4519	313.3740	64.6910
37	313.3740	303.9914	313.3740	94.0020
38	344.3120	302.0590	313.3740	69.0300
39	344.3120	302.5775	313.3740	71.0180
40	345.8090	304.3503	313.3740	43.3230
41	363.2740	302.0053	313.3740	42.6870
42	363.2740	305.4199	313.3740	87.9220
43	372.7550	307.4407	313.3740	88.1740
44	372.7550	308.3930	313.3740	84.6030
45	372.7550	310.4794	313.3740	62.1780
46	373.7530	321.1332	321.1085	105.0250
47	375.2500	332.2364	341.3180	81.8050
48	375.2500	336.9924	341.8170	83.4290
49	375.2500	347.9421	362.2760	90.0740
50	375.2500	352.0232	373.7530	57.8410
51	375.2500	362.5025	375.2500	131.9930
52	375.2500	365.6847	375.2500	139.6340
53	375.2500	364.4538	375.2500	107.3460
54	375.2500	362.0602	375.2500	62.7520

Generation	Max	Mean	Median	Min
55	375.2500	364.5757	375.2500	90.4170
56	375.2500	364.0330	375.2500	108.8500
57	375.2500	363.2028	375.2500	130.7540
58	375.2500	362.2958	375.2500	91.5940
59	383.2340	361.3570	375.2500	83.2020
60	399.7010	363.0938	375.2500	105.0640
61	399.7010	365.2156	375.2500	118.5440
62	399.7010	363.7387	375.2500	123.9990
63	407.1860	363.0690	375.2500	91.8780
64	420.1600	368.2432	375.2500	141.1230
65	422.1560	371.7351	375.2500	117.3480
66	431.1380	382.1591	388.2240	126.0680
67	436.1280	391.6835	399.7010	154.2770
68	436.1280	403.1306	419.1620	132.3990
69	456.5870	410.0405	421.9065	172.5970
70	456.5870	410.4119	423.1540	98.7730
71	456.5870	415.5888	423.1540	116.9810
72	456.5870	417.3863	435.1300	104.1240
73	456.5870	419.9508	436.1280	139.0310
74	465.0700	426.3158	436.1280	164.1080
75	465.0700	424.2869	436.1280	173.1660
76	465.0700	422.2207	436.1280	163.2670
77	465.0700	423.6959	436.1280	154.0330
78	465.0700	424.1987	436.1280	123.5780
79	466.0680	426.2938	436.1280	125.2400
80	466.0680	429.9999	436.1280	80.9490
81	466.0680	441.0242	457.0860	168.5490
82	466.0680	444.6226	464.0720	130.1640
83	466.0680	451.1316	465.0700	160.2080
84	466.0680	453.3817	466.0680	183.1190
85	466.0680	451.7100	466.0680	138.4610

Generation	Max	Mean	Median	Min
86	466.0680	452.6550	466.0680	145.5250
87	466.0680	453.3730	466.0680	184.1610
88	466.0680	450.1951	466.0680	138.0030
89	466.0680	452.3601	466.0680	158.3680
90	466.0680	454.6304	466.0680	190.3290
91	466.0680	452.0814	466.0680	151.0820
92	466.0680	454.3676	466.0680	178.3690
93	466.0680	451.6843	466.0680	158.2490
94	466.0680	453.4915	466.0680	191.7260
95	466.0680	453.7976	466.0680	167.7830
96	466.0680	453.9447	466.0680	162.4970
97	466.0680	452.2639	466.0680	189.3070
98	466.0680	449.5967	466.0680	150.4170
99	466.0680	454.3901	466.0680	128.4370

Table 4.2: RLGP Cart Pole Aggregated Results

Generation	Max	Mean	Median	Min
0	209.1090	52.2117	7.2245	4.1240
1	211.0950	96.6963	87.9155	4.5420
2	211.5910	157.7400	172.4700	17.6940
3	211.0930	188.2812	190.5340	48.7950
4	211.5870	198.0718	200.6880	95.9330
5	211.5870	201.7260	205.1595	68.1670
6	212.5820	204.8469	208.6110	54.5070
7	213.0780	206.3272	209.1160	93.2930
8	213.0780	206.8498	209.6090	93.6100
9	213.0780	206.4557	210.1020	81.2950
10	213.0780	206.7860	211.0890	75.3410
11	213.0780	207.5813	211.0900	48.8610
12	212.5810	207.2677	211.5860	49.7480

Generation	Max	Mean	Median	Min
13	213.0780	207.0827	211.5860	40.6320
14	213.0780	207.3593	211.5860	53.9910
15	213.0780	208.6030	212.0840	93.2840
16	212.5810	208.1538	212.0840	80.0530
17	213.0780	208.3412	212.0840	64.8700
18	213.0780	208.1041	212.0840	63.7540
19	213.0780	208.1036	212.5800	72.1530
20	213.0780	209.5479	212.5800	88.9900
21	213.0780	208.2771	212.5800	53.2580
22	213.0780	209.2043	212.5800	106.4120
23	213.0780	208.4108	212.5800	39.9400
24	213.0780	208.0172	212.5800	69.3860
25	213.0780	207.1100	212.5800	19.6870
26	213.0780	208.3101	212.5800	80.6570
27	213.0780	208.1756	212.5800	72.3360
28	213.0780	208.7448	212.5800	86.4840
29	213.0780	207.4372	212.5800	68.5070
30	213.0780	207.6586	212.5810	53.3570
31	213.0780	208.9853	213.0780	47.4280
32	213.0780	209.1676	213.0780	87.2780
33	213.0780	209.3081	213.0780	65.1870
34	213.0780	208.5716	213.0780	81.0800
35	213.0780	209.4416	213.0780	86.9420
36	213.0780	209.6108	213.0780	94.2090
37	213.0780	207.9522	213.0780	88.4660
38	213.0780	208.8673	213.0780	82.1950
39	213.0780	209.2892	213.0780	78.5060
40	213.0780	209.1963	213.0780	90.2960
41	213.0780	208.9443	213.0780	53.6670
42	213.0780	209.9130	213.0780	97.0030
43	213.0780	210.1720	213.0780	80.7370

Generation	Max	Mean	Median	Min
44	213.0780	209.1341	213.0780	66.9590
45	213.0780	209.7414	213.0780	94.2290
46	213.0780	209.5775	213.0780	75.3800
47	213.0780	209.2881	213.0780	62.2510
48	213.0780	207.3394	213.0780	55.4070
49	213.0780	208.7003	213.0780	64.2560
50	213.0780	208.5395	213.0780	67.6080
51	213.0780	210.0775	213.0780	76.2040
52	213.0780	209.8513	213.0780	104.1510
53	213.0780	207.5894	213.0780	58.4190
54	213.0780	208.4035	213.0780	65.1180
55	213.0780	209.8872	213.0780	91.0490
56	213.0780	208.7398	213.0780	66.3370
57	213.0780	208.8153	213.0780	51.8390
58	213.0780	209.8934	213.0780	102.0170
59	213.0780	209.9831	213.0780	97.9000
60	213.0780	209.8495	213.0780	91.8440
61	213.0780	208.2603	213.0780	59.0240
62	213.0780	208.0600	213.0780	55.4390
63	213.0780	209.2241	213.0780	99.2040
64	213.0780	208.2635	213.0780	48.9390
65	213.0780	209.5460	213.0780	67.5290
66	213.0780	209.5230	213.0780	65.9540
67	213.0780	209.5824	213.0780	106.7080
68	213.0780	208.9976	213.0780	85.6810
69	213.0780	209.9972	213.0780	76.7350
70	213.0780	208.2465	213.0780	58.3170
71	213.0780	209.1047	213.0780	56.5720
72	213.0780	208.5702	213.0780	81.9590
73	213.0780	209.5749	213.0780	51.7560
74	213.0780	209.2325	213.0780	75.8170

Generation	Max	Mean	Median	Min
75	213.0780	210.4516	213.0780	109.7990
76	213.0780	209.5910	213.0780	82.4260
77	213.0780	208.5517	213.0780	62.0490
78	213.0780	209.8357	213.0780	114.0160
79	213.0780	209.1665	213.0780	70.5430
80	213.0780	209.9528	213.0780	82.5720
81	213.0780	209.2032	213.0780	70.5080
82	213.0780	208.8660	213.0780	77.5370
83	213.0780	208.8930	213.0780	79.4090
84	213.0780	209.5356	213.0780	87.1000
85	213.0780	208.9170	213.0780	70.5370
86	213.0780	209.4620	213.0780	69.1830
87	213.0780	208.7253	213.0780	19.0900
88	213.0780	209.3577	213.0780	68.2790
89	213.0780	209.5794	213.0780	88.4210
90	213.0780	209.0149	213.0780	51.8830
91	213.0780	209.2939	213.0780	73.1110
92	213.0780	208.8266	213.0780	66.2620
93	213.0780	208.9724	213.0780	95.3930
94	213.0780	209.5951	213.0780	86.2930
95	213.0780	209.6566	213.0780	90.7690
96	213.0780	210.0423	213.0780	117.8560
97	213.0780	210.2498	213.0780	130.5350
98	213.0780	208.5634	213.0780	61.4980
99	213.0780	207.5033	213.0780	31.5710

Table 4.3: LGP Mountain Car Aggregated Results

Generation	Max	Mean	Median	Min
0	-147.2600	-198.8564	-200.0000	-200.0000
1	-140.7800	-198.0396	-200.0000	-200.0000

Generation	Max	Mean	Median	Min
2	-135.9000	-196.7488	-200.0000	-200.0000
3	-136.2400	-194.4066	-200.0000	-200.0000
4	-130.4800	-191.1292	-200.0000	-200.0000
5	-122.5800	-186.1694	-198.1600	-200.0000
6	-113.8000	-177.7398	-186.8600	-200.0000
7	-116.0000	-167.0998	-167.3400	-200.0000
8	-114.1600	-156.7100	-153.9800	-200.0000
9	-111.8000	-153.0290	-147.7200	-200.0000
10	-111.2200	-147.6408	-141.7600	-200.0000
11	-110.4200	-144.4458	-136.4100	-200.0000
12	-110.6800	-143.9098	-134.3500	-200.0000
13	-111.0800	-140.9800	-131.3100	-200.0000
14	-111.4200	-139.6036	-130.2800	-200.0000
15	-109.3800	-140.3138	-129.0800	-200.0000
16	-109.8800	-138.5900	-128.2600	-200.0000
17	-110.8000	-136.8444	-127.5100	-200.0000
18	-107.9600	-138.1884	-127.3900	-200.0000
19	-108.6200	-138.4434	-126.6200	-200.0000
20	-110.2000	-135.1152	-126.1500	-200.0000
21	-109.6400	-136.9396	-126.4000	-200.0000
22	-108.0600	-135.8072	-126.3900	-200.0000
23	-107.4400	-137.5702	-126.5300	-200.0000
24	-108.2200	-136.7758	-125.8500	-200.0000
25	-107.3600	-135.2724	-126.0000	-200.0000
26	-107.4600	-134.7038	-125.5000	-200.0000
27	-107.2400	-135.3478	-124.1200	-200.0000
28	-107.2400	-133.9520	-123.5200	-200.0000
29	-107.2400	-135.3022	-123.9400	-200.0000
30	-108.1200	-132.1862	-123.8800	-200.0000
31	-107.3600	-131.6392	-123.2600	-200.0000
32	-107.1800	-132.2048	-123.6200	-200.0000

Generation	Max	Mean	Median	Min
33	-107.4200	-131.1670	-123.2400	-200.0000
34	-107.3200	-132.0660	-123.1600	-200.0000
35	-107.1600	-131.6048	-123.0800	-200.0000
36	-107.9000	-129.9580	-122.4500	-197.7200
37	-106.8800	-131.1972	-122.2800	-200.0000
38	-108.2200	-129.5170	-122.4700	-200.0000
39	-106.8000	-129.6010	-122.0600	-200.0000
40	-107.1000	-130.2330	-122.2300	-200.0000
41	-108.1000	-129.9540	-122.2500	-200.0000
42	-106.9000	-129.8734	-122.3600	-197.3800
43	-106.9000	-129.6038	-122.0700	-200.0000
44	-107.3600	-130.1622	-122.0300	-200.0000
45	-106.9800	-129.5466	-122.4000	-200.0000
46	-107.1200	-130.2848	-122.1200	-200.0000
47	-106.8400	-130.3336	-122.3300	-200.0000
48	-106.9800	-128.9738	-122.2900	-200.0000
49	-107.3400	-129.2868	-123.1800	-200.0000
50	-107.0200	-130.7394	-122.9600	-200.0000
63	-107.1200	-130.8232	-122.9500	-200.0000
51	-107.8800	-130.4052	-122.2000	-200.0000
52	-107.1600	-129.0214	-121.7800	-200.0000
53	-107.1400	-129.8846	-122.2000	-200.0000
54	-106.7800	-130.4204	-122.9700	-200.0000
55	-106.9000	-130.6972	-122.4100	-200.0000
56	-107.3400	-127.9828	-121.3700	-200.0000
58	-107.0800	-129.4644	-122.0200	-200.0000
59	-106.9800	-128.7068	-121.6100	-200.0000
50	-128.8000	-121.5700	-200.0000	

Generation	Max	Mean	Median	Min
64	-107.3800	-128.2434	-121.5400	-200.0000
65	-107.0400	-128.0978	-120.8800	-199.9400
66	-107.1200	-128.2124	-120.8200	-200.0000
67	-107.3800	-128.7196	-120.7600	-200.0000
68	-106.8800	-127.0206	-119.7800	-200.0000
69	-107.4200	-127.9458	-120.9300	-200.0000
70	-107.4400	-127.6984	-121.3600	-200.0000
71	-107.5200	-127.6352	-121.3900	-200.0000
72	-107.4600	-126.7986	-120.5000	-200.0000
73	-107.2600	-128.4960	-121.7400	-200.0000
74	-107.5800	-128.9330	-121.3100	-200.0000
75	-107.7200	-126.9282	-120.7300	-200.0000
76	-107.5000	-127.7386	-120.8500	-200.0000
77	-107.4000	-127.4444	-120.4500	-200.0000
78	-107.4000	-127.3788	-120.3000	-200.0000
79	-107.3200	-127.6434	-120.4100	-200.0000
80	-107.8200	-126.4820	-120.4000	-199.7800
81	-107.7800	-126.8866	-120.1500	-200.0000
82	-107.5200	-126.9112	-120.1400	-200.0000
83	-107.6200	-127.6986	-120.1900	-200.0000
84	-107.1600	-127.9976	-120.8700	-200.0000
85	-106.9000	-127.3250	-120.5200	-200.0000
86	-106.6400	-127.1802	-119.9500	-200.0000
87	-107.0000	-126.6212	-120.7200	-200.0000
88	-106.7000	-127.0610	-120.5600	-200.0000
89	-106.9000	-126.3396	-119.8800	-196.9000
90	-106.9400	-127.0148	-119.9500	-200.0000
91	-107.1400	-125.9496	-120.1000	-200.0000
92	-106.6800	-127.0402	-120.2600	-200.0000
93	-106.6800	-127.4314	-119.9800	-200.0000
94	-106.8000	-127.3154	-120.5300	-198.2400

Generation	Max	Mean	Median	Min
95	-107.1600	-127.7486	-120.4700	-200.0000
96	-106.6600	-126.7210	-119.7800	-200.0000
97	-106.4000	-126.7944	-120.1900	-200.0000
98	-106.4200	-126.5638	-120.1500	-200.0000
99	-106.4200	-126.8950	-120.1000	-200.0000

Table 4.4: RLGP Mountain Car Aggregated Results

Generation	Max	Mean	Median	Min
0	-159.3520	-199.2556	-200.0000	-200.0000
1	-148.2350	-198.4004	-200.0000	-200.0000
2	-129.8430	-197.0150	-200.0000	-200.0000
3	-125.7290	-195.3591	-200.0000	-200.0000
4	-124.0570	-192.3421	-200.0000	-200.0000
5	-121.1780	-187.7516	-199.4060	-200.0000
6	-120.8060	-178.3610	-189.7845	-200.0000
7	-120.3750	-166.7054	-169.4035	-200.0000
8	-119.8660	-156.1507	-152.4970	-200.0000
9	-119.3150	-149.9850	-141.1145	-200.0000
10	-119.1670	-144.5840	-136.2730	-200.0000
11	-119.2320	-143.9219	-132.7005	-200.0000
12	-118.5000	-142.1678	-129.3525	-200.0000
13	-118.1800	-138.9305	-126.1845	-200.0000
14	-118.2710	-138.1095	-125.1595	-200.0000
15	-117.8970	-136.6103	-123.5150	-200.0000
16	-117.1960	-135.6228	-122.9925	-200.0000
17	-117.2360	-134.5921	-122.7375	-200.0000
18	-117.2640	-134.1918	-122.2970	-200.0000
19	-117.4570	-134.4230	-122.2370	-200.0000
20	-117.4990	-133.8670	-122.0585	-200.0000
21	-117.0630	-134.5028	-122.0500	-200.0000

Generation	Max	Mean	Median	Min
22	-117.0270	-133.1338	-121.7130	-200.0000
23	-116.9780	-133.3599	-121.7385	-200.0000
24	-116.7110	-132.0771	-121.4590	-200.0000
25	-117.0350	-133.2521	-121.2165	-200.0000
26	-116.6840	-132.2046	-121.0240	-200.0000
27	-116.5200	-131.7314	-120.9545	-200.0000
28	-116.4580	-132.9466	-120.8915	-200.0000
29	-116.0690	-132.7108	-120.6810	-200.0000
30	-116.2650	-132.5323	-120.5795	-200.0000
31	-116.3540	-131.8354	-120.5125	-200.0000
32	-115.9790	-132.2702	-120.6270	-200.0000
33	-116.2630	-131.7327	-120.4730	-200.0000
34	-116.2460	-130.4898	-120.4030	-200.0000
35	-116.0300	-131.4998	-120.3165	-200.0000
36	-115.6990	-131.6269	-120.3180	-200.0000
37	-116.1590	-130.2035	-120.2745	-200.0000
38	-115.6610	-132.1114	-120.4380	-200.0000
39	-116.3130	-132.0942	-120.2970	-200.0000
40	-116.2540	-130.5519	-120.1415	-200.0000
41	-116.2360	-130.2979	-120.1640	-200.0000
42	-116.1760	-132.2521	-120.1145	-200.0000
43	-116.3040	-132.2787	-120.2020	-200.0000
44	-116.2140	-131.2063	-120.1950	-200.0000
45	-115.7170	-132.8159	-120.0680	-200.0000
46	-116.0380	-132.9527	-120.1615	-200.0000
47	-116.3760	-131.5387	-120.0575	-200.0000
48	-115.8780	-130.3797	-120.0140	-200.0000
49	-116.6060	-132.6714	-120.1285	-200.0000
50	-115.9770	-132.0721	-119.8750	-200.0000
51	-115.9570	-131.9084	-120.0350	-200.0000
52	-115.5210	-130.9580	-119.8285	-200.0000

Generation	Max	Mean	Median	Min
53	-115.5090	-131.5952	-119.9090	-200.0000
54	-115.7010	-131.5353	-119.6005	-200.0000
55	-115.0510	-131.2645	-119.6280	-200.0000
56	-115.2070	-131.3729	-119.4525	-200.0000
57	-115.1060	-129.7635	-119.4490	-200.0000
58	-114.9600	-131.3091	-119.5240	-200.0000
59	-115.0400	-132.6765	-119.4085	-200.0000
60	-114.9680	-130.8734	-119.1265	-200.0000
61	-114.8730	-132.3701	-119.2700	-200.0000
62	-114.8410	-132.2661	-119.1605	-200.0000
63	-115.0930	-132.2378	-119.2345	-200.0000
64	-115.0910	-131.0686	-119.0595	-200.0000
65	-115.0480	-131.6609	-118.9885	-200.0000
66	-114.9010	-131.4209	-118.9360	-200.0000
67	-114.7280	-132.2548	-119.0355	-200.0000
68	-114.9430	-131.7701	-118.8670	-200.0000
69	-114.9050	-130.9010	-118.8090	-200.0000
70	-114.7890	-131.2397	-118.8795	-200.0000
71	-114.9100	-132.4739	-118.7410	-200.0000
72	-114.6250	-130.5194	-118.7545	-200.0000
73	-114.6630	-132.9116	-118.7225	-200.0000
74	-114.5000	-131.3717	-118.1790	-200.0000
75	-114.4460	-131.3647	-118.0155	-200.0000
76	-114.8400	-132.0535	-118.0045	-200.0000
77	-114.5830	-132.8627	-117.9610	-200.0000
78	-114.7780	-132.8256	-118.0235	-200.0000
79	-114.2620	-132.6821	-117.9460	-200.0000
78	-114.7540	-131.3465	-117.7980	-200.0000
78	-132.0720	-117.9550	-200.0000	

Generation	Max	Mean	Median	Min
84	-114.5820	-132.5930	-117.8270	-200.0000
85	-114.2910	-132.3195	-117.7830	-200.0000
86	-114.7610	-130.8199	-117.8655	-200.0000
87	-114.3940	-131.5791	-117.8385	-200.0000
88	-114.3350	-132.4481	-117.8670	-200.0000
89	-114.6280	-131.8264	-117.6790	-200.0000
90	-114.5470	-132.0439	-117.6940	-200.0000
91	-114.6210	-130.1758	-117.7770	-200.0000
92	-114.4550	-129.9456	-117.6665	-200.0000
93	-114.6360	-132.3662	-117.7400	-200.0000
94	-114.6200	-130.9562	-117.6490	-200.0000
95	-114.5020	-130.7770	-117.6440	-200.0000
96	-114.5200	-130.8951	-117.6940	-200.0000
97	-114.3920	-131.5668	-117.7350	-200.0000
98	-114.2070	-131.2721	-117.6045	-200.0000
99	-114.4430	-130.2522	-117.6685	-200.0000

Figure 4.1: Comparison of RLGP vs LGP Performance on Cart Pole

Figure 4.2: Comparison of RLGP vs LGP performance on Mountain Car

Chapter 5

Conclusion

Due to the amount of time spent on reconfiguring the framework in addition to the short nature of this research project, various forms of experimentation did not occur. With the further optimization of hyperparameters and a different experimental setup, its possible that results could have improved. Nonetheless, the framework now exists for experimenting with easy, and opens a door for further exploration into the subject at hand. In the future, we would like to explore different benchmarking approaches and different types of tasks besides those found in the classical control module [4], as it might bring forth insight about the types of problems where RLGP can thrive.

Bibliography

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation hyperparameter optimization framework, 2019.
[2] Ryan Amaral, Alexandru Ianta, Caleidgh Bayer, Robert J. Smith, and Malcolm I. Heywood. Benchmarking genetic programming in a multi-action reinforcement learning locomotion task. In Genetic and Evolutionary Computation Conference (Companion), pages 522-525. ACM, 2022.
[3] Markus Brameier and Wolfgang Banzhaf. A comparison of linear genetic programming and neural networks in medical data mining. IEEE Transactions on Evolutionary Computation, 5(1):17-26, 2001.
[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.
[5] Harley L. Downing. Reinforced genetic programming. Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA95), pages 276-283, 1995.
[6] John R. Koza. Genetic programming - on the programming of computers by means of natural selection. Complex adaptive systems. MIT Press, 1993.
[7] Sean Luke. Essentials of Metaheuristics. Lulu, 2009.
[8] Hannah Peeler, Shuyue Stella Li, Andrew N. Sloss, Kenneth N. Reid, Yuan Yuan, and Wolfgang Banzhaf. Optimizing LLVM pass sequences with shackleton: a linear genetic programming framework. In Genetic and Evolutionary Computation Conference (Companion), pages 578-581. ACM, 2022.
[9] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A Field Guide to Genetic Programming. lulu.com, 2008.
[10] Dong Song, Malcolm I. Heywood, and A. Nur Zincir-Heywood. A linear genetic programming approach to intrusion detection. In Genetic and Evolutionary Computation - GECCO 2003, Genetic and Evolutionary Computation Conference, Chicago, IL, USA, July 12-16, 2003. Proceedings, Part II, volume 2724 of Lecture Notes in Computer Science, pages 2325-2336. Springer, 2003.
[11] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 2 edition, 2018.

