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Abstract

Linear Genetic Programming (LGP) is a powerful technique that allows for a variety of

problems to be solved using a linear representation of programs. However, there still exists

some limitations to the technique, such as the need for humans to explicitly map registers

to actions. This thesis proposes a novel approach that uses Q-Learning on top of LGP,

Reinforced Linear Genetic Programming (RLGP) to learn the optimal register-action as-

signments. In doing so, we introduce a new framework ‘linear-gp’ written in memory-safe

Rust that allows for extensive experimentation for future works.
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Chapter 1

Introduction

The rapid growth of technology and the increasing complexity of real-world problems de-

mand efficient and effective optimization techniques. Evolutionary algorithms (EAs) have

demonstrated significant potential in addressing these challenges by emulating the pro-

cess of natural selection to search for optimal solutions [9]. Linear Genetic Programming

(LGP), a branch of Genetic Programming (GP), is one such EA that has gained attention in

the field of computer science for its unique approach to tackling complex problems [10]. By

representing programs as a sequence of linear instructions, similar to what is found when

programming imperatively, LGP allows for solutions that are not only potentially more

interpretable but also more efficient to execute and manipulate. The resulting algorithm,

Reinforced Linear Genetic Programming (RLGP), is then able to learn the optimal register-

action assignments, potentially leading to more efficient and effective solutions. RLGP in-

herits the benefits of LGP, such as its linear representation and ease of manipulation while

augmenting it with the adaptive capabilities of Q-Learning. This integration allows RLGP

to explore and exploit the solution space more effectively, resulting in improved perfor-

mance when addressing complex optimization problems. We evaluate the performance of

RLGP on a variety of benchmark problems, including the cartpole-v1 and mountain-car-v0

environments from the OpenAI Gym library [4]. These environments provide challenging

tasks that require sophisticated decision-making and control strategies, making them suit-

able for assessing the effectiveness of RLGP. We compare the baseline LGP framework

with the augmented RLGP framework in terms of solution quality, convergence speed,

and adaptability to dynamic problem domains. By combining the strengths of LGP and

Q-Learning, RLGP might represent a significant advancement in the field of evolutionary

computation. This research not only contributes to the understanding of hybrid evolu-

tionary algorithms but also paves the way for future work on incorporating reinforcement

learning techniques into other EAs.
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Chapter 2

Background

2.1 Linear Genetic Programming

Linear Genetic Programming (LGP) is an advanced form of Genetic Programming (GP),

a powerful machine learning technique introduced by Brameier and Banzhaf in their sem-

inal work [3]. Unlike the traditional tree-based GP, LGP represents programs as a linear

sequence of instructions, similar to assembly language or machine code [6]. This repre-

sentation offers several advantages, such as improved evolvability, efficient execution, and

simplicity of crossover and mutation operations. In LGP, programs are composed of reg-

isters and instructions, where each instruction manipulates the contents of registers using

arithmetic, logical, or conditional operations. The evolutionary process is similar to that

of canonical GP, but involves variation operators that act directly upon a linear set of in-

structions. The variations are as follows, reproduction (cloning), recombination (breeding)

and mutation. In their paper, Brameier and Banzhaf compared the performance of LGP

to that of traditional GP and neural networks. They discovered that LGP had classifica-

tion and generalization capabilities that were comparable to those of neural networks [3].

This finding was significant, as it demonstrated that LGP could serve as an alternative to

neural networks for solving complex machine learning problems. Moreover, LGP’s linear

representation allows for more interpretable solutions, which is an important considera-

tion in many applications where understanding the underlying model is crucial. The paper

further explored the benefits of LGP’s linear representation, such as improved evolvability

and more efficient execution. These advantages make LGP an attractive choice for solving

complex problems, as it can produce high-quality solutions more quickly than traditional

GP methods. Additionally, the simplicity of crossover and mutation operations in LGP

ensures that the evolutionary process remains efficient and effective, allowing for the ex-

ploration of a diverse range of solutions. Brameier and Banzhaf’s work on LGP laid the

foundation for further research into the capabilities and applications of this powerful ma-

chine learning technique. The findings of their paper highlight the potential of LGP as a

2
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robust and versatile machine learning approach, particularly in scenarios where both high

performance and interpretability are required.

2.2 Reinforced Genetic Programming

In the RGP paper, Downing applied the Reinforced Genetic Programming approach to

several benchmark problems, including function optimization and control tasks [5]. The

results showed that RGP significantly outperformed traditional Genetic Programming and

other baseline algorithms in terms of convergence speed, solution quality, and robustness.

This demonstrated the effectiveness of incorporating Q-Learning into the genetic program-

ming framework to guide the exploration and exploitation of the search space. One of

the key findings of the paper was that the combination of Genetic Programming and Q-

Learning allowed RGP to adapt more efficiently to changing environments and problem

landscapes. By utilizing the reinforcement signals from the environment, RGP could dy-

namically adjust its search strategy, making it more responsive to the changes in the prob-

lem domain. This ability to adapt and learn from the environment is particularly relevant

to real-world problems, where the solution space may be dynamic, noisy, or uncertain. The

paper also introduced several novel techniques for integrating Q-Learning into the Genetic

Programming framework, such as the use of Q-values to bias the selection of genetic op-

erations and the incorporation of reinforcement signals into the fitness function. These

innovations allowed RGP to leverage the strengths of both Genetic Programming and Q-

Learning, resulting in a more powerful and flexible optimization algorithm. In the context

of Reinforced Linear Genetic Programming (RLGP), the findings of Downing’s paper sug-

gest that integrating Q-Learning into the LGP framework could yield similar benefits. By

combining the global search capabilities of LGP with the local search and adaptation of

Q-Learning, the resulting algorithm, which could be referred to as RLGP, may be able to

tackle complex and dynamic problem domains more effectively. It is important to note

that RGP represents programs as decision trees, while LGP uses linear sequences of in-

structions for program representation. This fundamental difference necessitates adopting a

distinct approach when incorporating Q-learning into LGP.



Chapter 3

Methodology

3.1 Framework Overview

We utilize the Rust programming language to develop a flexible and extensible frame-

work for our research, available at https://github.com/urmzd/linear-gp. The

framework is specifically designed to address a wide range of problems using LGP and

RLGP while offering extensive configurability for experimentation purposes. The frame-

work is composed of multiple engines, each implementing core functionalities essential for

the evolutionary process. The primary engines we focus on are described below:

• Core: This engine establishes the fundamental processes the framework employs to

evolve a population of individuals. It initializes the population, iteratively evaluates

the fitness of individuals, performs selection, and applies genetic operations such as

mutation and crossover to generate offspring.

• Breed: This engine is responsible for defining the genetic operators that facilitate the

exchange of genetic material between individuals. In particular, it outlines how indi-

viduals undergo crossover, generating offspring with a combination of their parents’

genetic code.

• Mutate: This engine focuses on the stochastic modification of single individuals

within the population. It dictates how genetic alterations are applied to individuals,

potentially leading to the discovery of novel and improved solutions.

• Fitness: The Fitness engine is tasked with evaluating the performance of each in-

dividual in the population. It measures how well an individual can solve the target

problem, providing a basis for selection and guiding the evolutionary search process.

• Generate: This engine is concerned with the stochastic creation of individuals and

environments. It defines the methods for generating new individuals with random

4
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genetic material, as well as the procedures for initializing problem-specific environ-

ments that influence the evaluation of individuals.

3.1.1 Framework Configuration & Hyperparameters

The available framework configuration properties are listed in 3.1. Note that note all con-

figurations are always used. For instance, programs that do not use Q-Learning during their

fitness evaluation, Hal pha, Hgamma, Hepsilon, Hal pha decay or Hepsilon decay is not required.

• H denotes the set of hyperparameters.

• Hp denotes the set of hyperparameters that are related to a specific property p.

For example, when referencing gap, we use the notation Hgap.

Property Type Value Range
default fitness float -
population size int [0,)
gap float (0, 1.)
mutation percent float [0, 1.0]
crossover percent float [0, 1.0]
n generations int [0,)
n trials int [1,)
seed int or None [0,)
max instructions int [1,)
n extras int [1,)
external factor float [0,)
n actions int -
n inputs int -
alpha float [0, 1.0]
gamma float [0, 1.0]
epsilon float [0, 1]
alpha decay float [0, 1]
epsilon decay float [0, 1]

Table 3.1: Hyperparameter

The genetic algorithm involves several hyperparameters that influence its behavior.

default fitness is the default fitness value assigned to individuals in the popula-

tion when there is an issue with their fitness evaluation. The number of individuals in

each generation is determined by population size. The gap parameter represents
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the percentage of the population that is replaced with offspring in each generation. The

mutation percent and crossover percent values control the proportions of in-

dividuals generated through mutation and crossover processes, respectively.

The algorithm runs for a set number of generations, specified by n generations.

During fitness evaluation, a program must interact with an environment a certain num-

ber of times, determined by n trials, and the results are aggregated to produce a final

value. The pseudorandom number generator (PRNG) is initialized with a seed, seed, or

noise from the system if set to None. The genetic program has a maximum number of

instructions, max instructions, and a certain number of working registers, specified

by n extras.

The external factor parameter adjusts the amplification or reduction of inputs

from external sources. The program has n actions possible choices or action registers,

while the number of feature values for an input from an external source is determined by

n inputs.

The Q-learning algorithm also utilizes various hyperparameters. The initial learning

rate, alpha, sets the pace for updating action value estimates. The gamma parameter acts

as the discount factor for future rewards, affecting the balance between immediate and long-

term rewards. The probability of selecting a random action is controlled by epsilon,

allowing the algorithm to explore the state space. Over time, the learning rate and explo-

ration rate decay at rates specified by alpha decay and epsilon decay, respectively,

allowing a shift from exploration to exploitation.

3.1.2 Program Representation

A program can be thought of as a container holding instructions and a set of registers. A

single instruction consists of the source register index, the target register index, the opera-

tion to be performed and a mode flag. The mode flag is used to determine where the source

register is located. If set, the mode flag indicates that the target register is located outside

the program. In other words, the value held in the target register is given by an external

source (such as the features of some dataset or the environment state). We can represent

the program as a sequence of instructions in the following format.

R[y]← R[y]⟨op⟩R[x] (3.1)
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R represents the registers, x and y represent the and target register indices respectively, and

⟨op⟩ represents the operation to be performed. In our case, we only allow four operations;

addition (+), subtraction (−), multiplication (×) and division (÷) by 2. Division is done

by a non-zero constant to prevent division by zero errors that would likely crash the system.

This representation makes it easy to implement variation operations, but also easy to digest

for humans unlike other machine learning techniques and tree-based programs, which con-

volute the internal process used to solve a problem. The size of the register set consists of

Hn actions +Hn extras.

3.1.3 The Algorithm

In this work, we present a linear genetic programming (LGP) approach to evolve a popu-

lation of programs to solve a given task. The core algorithm, as well as supporting oper-

ations, are outlined below. The core LGP algorithm (Algorithm 1) starts by initializing a

population of programs, where each program is evaluated against the desired task using a

suitable fitness function. The programs are then ranked based on their fitness scores, and

the least fit individuals are dropped by a given percentage, denoted as Hgap. The remain-

ing individuals in the population are used to produce new offspring, which fill the dropped

spots, thus creating a new generation of the population. The breeding operation, called

Two-Point Crossover (Algorithm 2), is used to create offspring by combining parts of two

parent programs. It starts by cloning the parent programs, selecting two random points in

their instruction sets, and swapping the chunks between them. This operation generates two

new offspring. However, only one of the offspring is selected at random and returned, as

per the modification. The mutation operation, called Instruction Replacement (Algorithm

3), is used to introduce random changes into a program. It selects a random instruction

from the program and replaces it with a newly generated random instruction. Additionally,

it may randomly decide to replace only certain properties (operation, source, or target) of

the selected instruction. The program generation operation (Algorithm 4) creates a new

program by generating a random number of instructions and a register set, consisting of

action registers Hn actions and working registers Hn extras. The resulting program is then

returned.
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Algorithm 1 Core: Linear Genetic Programming

1: P0← INITIALIZEPOPULATION(Hpopulation size)

2: for i ∈ {0,1, . . . ,Hn generations−1} do

3: EVALUATE(Pi)

4: RANK(Pi)

5: Pi+1← SURVIVE(Pi,Hgap)

6: Pi+1← VARIATION(Pi+1) ▷ select individuals through tournament selection and

apply variation operations

7: return PHn generations−1

Algorithm 2 Breed: Two-Point Crossover

1: P′1,P
′
2← CLONE(P1,P2)

2: I1← P′1.instructions

3: I2← P′2.instructions

4: p1, p2← RANDOMCHUNK(I1, I2)

5: I1[p1 : p2], I2[p1 : p2]← I2[p1 : p2], I1[p1 : p2]

6: return RANDOMONE(P′1,P
′
2)

Algorithm 3 Mutate: Instruction Replacement

1: I← RANDOMINSTRUCTION(P)

2: I′← GENERATERANDOMINSTRUCTION

3: for p ∈ {operation,source, target} do

4: if RANDOM(0,1)< 0.5 then

5: REPLACEPROPERTY(I, I′)

6: REPLACEINSTRUCTION(P, I)

7: return P

3.1.4 Validating The Algorithm

As a means of ensuring that the framework was implemented correctly, we developed four

tests. Figure 3.1a is a baseline that ensures that the genetic algorithm works with only the

reproduction operation. Figure 3.1b, ensures the two point crossover operation works as

expected. Figure 3.1c ensures that the mutation operation works. Figure 3.1d ensures that

recombination and mutation can work together to produce a better fitness score than either
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Algorithm 4 Generate: Program Generation

1: n instructions← RANDOM(1,max instructions)

2: R← GENERATEREGISTERSET(Hn actions +Hn extras)

3: I← GENERATEINSTRUCTIONS(n instructions)

4: P← CREATEPROGRAM(R, I)

5: return P

operation alone. We also outline the fitness algorithm used for the iris dataset in Algorithm

5.

Algorithm 5 Fitness: Iris
1: score← 0

2: for I ∈ inputs do

3: EXECUTE(Program, I)

4: pred← ARGMAX(Program.Registers[0 : Hn actions])

5: if pred = I then

6: score±1

7: accuracy← score
|inputs|

8: return accuracy

3.2 OpenAI Gym Integration

We extend the fitness algorithm to work with a Rust port of OpenAI’s mountain-car-v0

and cartpole-v1 environment [4]. The code can be viewed at (https://github.com/

urmzd/gym-rs).

For the mountain-car-v0 environment, the agent’s goal is to drive a car up a steep hill.

The car is subject to gravity and has limited power. The car must learn to rock back and

forth to build momentum before reaching the goal area at the top of the hill. The envi-

ronment has two state variables representing the position, and velocity of the car. The car

has three possible actions: push left, push right, or no push. The reward function for the

environment gives a value of −1 at each time step until the car reaches the goal area, at

which point the reward becomes 0. The problem is considered solved when the car reaches

the goal area with an average reward of -110 over 100 consecutive trials.

https://github.com/urmzd/gym-rs
https://github.com/urmzd/gym-rs
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For the cartpole-v1 environment, the agent’s goal is to balance a pole on top of a cart that

can move left or right. The pole is subject to gravity, and the goal is to keep the pole upright

for as long as possible. The environment has four continuous state variables representing

the position and velocity of the cart and pole. The cart has two possible actions: move left

or move right. The reward function for the environment gives a value of 1 at each time step

that the pole remains upright. The problem is considered solved when the pole remains

upright for at least 195 consecutive time steps over 100 consecutive trials.

With this in mind, we outline an alternative fitness algorithm used to baseline the frame-

work on classical reinforcement learning problems, Algorithm 6.

Algorithm 6 Fitness: Gym Integration
1: score← 0

2: for i ∈ NE pisodes do

3: EXECUTE(Program,Environment)

4: Action← ARGMAX(Program.Registers[0 : Hn actions])

5: Reward,Terminal← Sim(Action,Environment)

6: if Terminal then

7: break

8: score± reward

9: return score

3.3 Q Learning Integration

We extend Algorithm 6 further to support Q Learning (Algorithm 8). The Q Table consists

of a 2D array of size NR×NA, where NR is the number of registers the program can work

with and NA is the number of available actions an agent can take. The Q Table is initialized

to all zeros and updates only a different register has been selected. The Q Table is updated

using the following formula.

Q(R[xt ],at)← Q(R[xt ],at)+α

(
rt+1 + γ max

a
Q(R[xt+1],a)−Q(R[xt ],at)

)
(3.2)

In this formula, Q represents the Q Table, R represents the set of registers, a represents the

available actions, rt+1 is the reward at time step t + 1, α is the learning rate, and γ is the

discount factor. The value xt represents the current state, while xt+1 represents the next
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state. The update rule calculates the new Q value for the current state-action pair based on

the observed reward and the maximum Q value for the next state. Moreover, during register

selection, we apply a greedy selection policy (Algorithm 7) with probability 1−ε . ε exists

to allow us to configure the exploration-exploitation factor, i.e., maintain register selection

diversity.

Algorithm 7 Q Learning: ε-Greedy Selection Policy

1: EXECUTE(Program,State)

2: WinningRegister← ARGMAX(Program.Registers)

3: Action← ARGMAX(Q[WinningRegister])

4: if RANDOM(0,1)< ε then

5: Action← RANDOM(0,Hn actions)

6: return WinningRegister,Action

Algorithm 8 Fitness: Q Learning
1: score← 0

2: Rt ,at ← GREEDYSELECTION(Program,Environment)

3: while t < Nepisodes do

4: rt+1,Terminal← SIM(at ,Environment)

5: score± rt+1

6: if TERMINAL then

7: break

8: Rt+1,at+1← GREEDYSELECTION(Program,Environment)

9: if Rt ̸= Rt+1 then

10: QTABLEUPDATE(Rt+1,at+1,Rt)

11: Rt ← Rt+1

12: at ← at+1

13: t← t +1

14: return score
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3.4 Experiment Setup

In this section, we outline the experiment setup used to evaluate the performance of the

proposed Q-Learning LGP algorithm in comparison to the baseline LGP. The experiments

were conducted in two main stages: hyperparameter optimization and performance evalu-

ation.

3.4.1 Hyperparameter Optimization

First, we employed the Optuna hyperparameter optimization library [1] to identify the op-

timal parameters for the baseline LGP programs. Optuna is a flexible and efficient hyper-

parameter optimization framework that enables automatic exploration of hyperparameter

spaces in pursuit of the best settings for a given algorithm. After determining the optimal

parameters for the baseline LGP programs, we conducted a separate search using Optuna

to find the optimal Q-Learning constants for the Reinforced Linear Genetic Programming

(RLGP) programs. This process was aimed at fine-tuning the RLGP algorithm’s perfor-

mance by selecting the most suitable Q-Learning parameters based on the problem domain

and the characteristics of the LGP framework. The resulting parameters were then inte-

grated into the RLGP algorithm by extending the LGP parameters, as shown in 1, 2, 3, and

4.

3.4.2 Performance Evaluation

After obtaining the optimal parameters for both baseline LGP and RLGP, we proceeded

with the performance evaluation phase. This stage involved conducting 100 experiments,

each consisting of 100 trials. The goal of these experiments was to assess the effectiveness

and robustness of the RLGP algorithm compared to the baseline LGP across multiple runs

and problem instances.

For each experiment, we calculated the mean, median, minimum, and maximum perfor-

mance scores obtained by both baseline LGP and RLGP. These summary statistics provided

a comprehensive overview of the algorithms’ performance, highlighting their strengths and

weaknesses across different trials and problem instances.

Finally, we plot the average mean, median, min, max for each experiment to visually

compare the performance of the baseline LGP and RLGP algorithms. This visualization
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Listing 1 Cart Pole Parameters

{

"default_fitness": 500.0,

"population_size": 100,

"gap": 0.5,

"mutation_percent": 0.5,

"crossover_percent": 0.5,

"n_generations": 100,

"n_trials": 100,

"seed": null,

"program_parameters": {

"max_instructions": 23,

"instruction_generator_parameters": {

"n_extras": 1,

"external_factor": 92.04438205753976,

"n_actions": 2,

"n_inputs": 4

}

}

}

allowed us to identify trends and patterns in the algorithms’ performance and gain insights

into the benefits of incorporating Q-Learning into the LGP framework.

By following this experimental setup, we aimed to provide a thorough and unbiased

evaluation of the proposed Q-Learning LGP algorithm, demonstrating its potential advan-

tages over the baseline LGP and paving the way for future research and development in this

area.
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Listing 2 Cart Pole Q-Learning Parameters

{

"default_fitness": 500.0,

"population_size": 100,

"gap": 0.5,

"mutation_percent": 0.5,

"crossover_percent": 0.5,

"n_generations": 100,

"n_trials": 100,

"seed": null,

"program_parameters": {

"program_parameters": {

"max_instructions": 23,

"instruction_generator_parameters": {

"n_extras": 1,

"external_factor": 92.04438205753976,

"n_actions": 2,

"n_inputs": 4

}

},

"consts": {

"alpha": 0.9933093715472482,

"gamma": 0.9493877958652062,

"epsilon": 0.7024493518448414,

"alpha_decay": 0.24276313855515808,

"epsilon_decay": 0.293833697874351

}

}

}
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(a) LGP: Iris Reproduction

(b) LGP: Iris Recombination

Figure 3.1: Performance comparison of different genetic programming methods on iris
dataset
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(c) LGP: Iris Mutation

(d) LGP: Iris Recombination & Mutation

Figure 3.1: (Continued) Performance comparison of different genetic programming meth-
ods on iris dataset
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Listing 3 Mountain Car Parameters

{

"default_fitness": -200.0,

"population_size": 100,

"gap": 0.5,

"mutation_percent": 0.5,

"crossover_percent": 0.5,

"n_generations": 100,

"n_trials": 5,

"seed": null,

"program_parameters": {

"max_instructions": 10,

"instruction_generator_parameters": {

"n_extras": 1,

"external_factor": 2.0736207078591695,

"n_actions": 3,

"n_inputs": 2

}

}

}
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Listing 4 Mountain Car Q-Learning Parameters

{

"default_fitness": -200.0,

"population_size": 100,

"gap": 0.5,

"mutation_percent": 0.5,

"crossover_percent": 0.5,

"n_generations": 100,

"n_trials": 100,

"seed": null,

"program_parameters": {

"program_parameters": {

"max_instructions": 10,

"instruction_generator_parameters": {

"n_extras": 1,

"external_factor": 2.0736207078591695,

"n_actions": 3,

"n_inputs": 2

}

},

"consts": {

"alpha": 0.9973629496495072,

"gamma": 0.39901321062297757,

"epsilon": 0.8400771173101154,

"alpha_decay": 0.6876951222663272,

"epsilon_decay": 0.5125287069666674

}

}

}



Chapter 4

Analysis

This chapter analyzes the performance of a population of programs trained using Linear Ge-

netic Programming (LGP) and a population of programs trained using Linear Genetic Pro-

gramming Reinforced with Q-Learning (LGP-Q). The programs are trained on the cartpole-

v1 and mountain-car-v0 environments [4] as mentioned in the Reinforcement Integration

section. Once the results are explained, we analyze them to provide insight into the im-

pact of Q-Learning on the performance of LGP. Note that we use the definition of done as

referenced on https://github.com/openai/gym/wiki/Leaderboard.

4.1 Experimental Results

4.1.1 Cart Pole

Figure 4.1 with reference tables 4.1 and 4.2 show a comparison of the two frameworks

performance on the cartpole-v0 task. Over 100 experiments, we observe that LGP averages

a maximum of 466, a median of 454, a median of 466 and minimum of 128. On the other

hand, RLGP averages a maximum of 213, a median of 207, a mean of 213 a minimum of

31. In both cases,the population of the respective frameworks were able solve the problem.

Both frameworks were able to generate a program in the first 10 generations that was able

to solve the problem. However, the RLGP framework immediately plateaus, whilst the

LGP framework continues to improve until hitting a plateau at 80 generations.

4.1.2 Mountain Car

Figure 4.2 alongside tables 4.3 and 4.4 demonstrates a similar pattern to that of the cartpole-

v0 task. The RLGP framework falls short of solving the task, averaging a maximum of -

114, a mean of-130, a median of -117 and a minimum of -200. On the other hand, the LGP

framework is able to solve the task, albeit narrowly, averaging a maximum -106, a mean

of -126, a median of -120,and a minimum -200. Here, we observe that RLGP achieves a
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higher median score, with a slight upward trend whereas the LGP achieves a lower median,

with no particular trend in any direction. Both of these framework look as they quickly

converge to a value and then plateau.

4.2 Discussion

Initially, we would have expected for the frameworks to perform better on mountain-car-

v0 than cart-pole-v1 as the state space is much simpler (one consists of 2 state properties

whilst the other contains four). However, the opposite seems to be true, the cart pole task

was able to be solved relatively easily in comparison to the mountain car task, in which

RLGP failed to solve the problem. One explanation for this discrepancy is the difference

in the nature of the tasks. The cart-pole task is inherently more continuous, allowing for

small adjustments to have a direct impact on the balancing of the pole. On the other hand,

the mountain car task requires more strategic and discrete actions to build up momentum

and reach the goal. This may indicate that the LGP and RLGP frameworks are better suited

to tackle continuous control problems.

Another contributing factor could be the exploration-exploitation trade-off present in

RLGP. The Q-learning component might not be exploring the state space effectively, thus

getting stuck in local optima and hindering the overall performance. In contrast, the LGP

framework seems to be more robust in its exploration of the solution space, enabling it to

perform better on both tasks.

Moreover, the difference in performance may also be attributed to the limitations of the

genetic programming approach. While LGP and RLGP are capable of discovering compact

and interpretable representations of policies, they are not guaranteed to find the global

optimum. The search process depends on the initial population and variation operators,

which can impact the quality of the solutions found. The experimental set up might have

been poor, and the parameters beneficial to LGP might not have been optimal for RLGP.

Its possible that we could’ve seen better results if Q learning parameters was not simply a

wrapper on top of a preexisting configuration.

In conclusion, our experiments demonstrate that the LGP framework outperforms the

RLGP framework in both cart-pole and mountain car tasks. Although both frameworks

were able to solve the cart-pole task, RLGP failed to solve the mountain car task, suggest-

ing that the integration of Q-learning into genetic programming may not always lead to
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improved performance. Future work could involve investigating alternative reinforcement

learning algorithms, adapting exploration strategies, or incorporating domain knowledge

to enhance the performance of genetic programming-based frameworks. Additionally, it

would be valuable to test these frameworks on a broader range of tasks to better understand

their strengths and limitations.

Table 4.1: LGP Cart Pole Aggregated Results

Generation Max Mean Median Min

0 197.6150 48.2211 8.0180 3.3220

1 198.6100 82.5966 58.6020 4.1180

2 199.6040 135.8412 149.9540 4.1400

3 200.1010 163.9173 180.0105 4.4240

4 200.1010 176.6355 189.1775 5.2090

5 200.1010 180.8190 192.1495 4.8770

6 200.1010 185.5329 196.6230 4.6130

7 200.1010 186.0293 199.1070 6.1150

8 200.1010 189.1239 200.1010 18.4880

9 200.1010 189.9061 200.1010 5.9680

10 200.1010 189.9119 200.1010 5.6250

11 200.1010 188.0337 200.1010 4.5700

12 200.1010 191.5232 200.1010 21.3280

13 209.0830 190.7467 200.1010 6.4070

14 212.0770 191.2533 200.1010 14.7780

15 212.0770 189.6393 200.1010 5.1520

16 236.5280 190.3997 200.1010 13.4380

17 238.5240 192.6686 200.1010 18.9550

18 266.4680 194.3270 200.1010 7.4430

19 266.9670 194.7333 200.1010 13.1660

20 275.9490 195.7917 200.1010 5.2860

21 278.9430 200.7326 200.1010 6.6770

22 278.9430 212.2020 200.6000 29.3420

23 309.3820 227.0722 234.7815 39.0850
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Generation Max Mean Median Min

24 309.3820 244.6299 250.9990 69.4160

25 313.3740 254.3056 262.4760 41.6980

26 313.3740 265.7745 266.9670 62.4860

27 313.3740 280.5459 282.6855 68.8720

28 313.3740 288.9686 309.1325 76.5810

29 313.3740 298.8313 312.3760 65.0090

30 313.3740 299.8838 312.8750 44.4450

31 313.3740 299.0033 312.8750 75.0660

32 313.3740 302.4545 313.3740 88.0540

33 313.3740 303.3941 313.3740 67.6170

34 313.3740 301.9708 313.3740 106.6260

35 313.3740 302.2215 313.3740 64.8710

36 313.3740 301.4519 313.3740 64.6910

37 313.3740 303.9914 313.3740 94.0020

38 344.3120 302.0590 313.3740 69.0300

39 344.3120 302.5775 313.3740 71.0180

40 345.8090 304.3503 313.3740 43.3230

41 363.2740 302.0053 313.3740 42.6870

42 363.2740 305.4199 313.3740 87.9220

43 372.7550 307.4407 313.3740 88.1740

44 372.7550 308.3930 313.3740 84.6030

45 372.7550 310.4794 313.3740 62.1780

46 373.7530 321.1332 321.1085 105.0250

47 375.2500 332.2364 341.3180 81.8050

48 375.2500 336.9924 341.8170 83.4290

49 375.2500 347.9421 362.2760 90.0740

50 375.2500 352.0232 373.7530 57.8410

51 375.2500 362.5025 375.2500 131.9930

52 375.2500 365.6847 375.2500 139.6340

53 375.2500 364.4538 375.2500 107.3460

54 375.2500 362.0602 375.2500 62.7520
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Generation Max Mean Median Min

55 375.2500 364.5757 375.2500 90.4170

56 375.2500 364.0330 375.2500 108.8500

57 375.2500 363.2028 375.2500 130.7540

58 375.2500 362.2958 375.2500 91.5940

59 383.2340 361.3570 375.2500 83.2020

60 399.7010 363.0938 375.2500 105.0640

61 399.7010 365.2156 375.2500 118.5440

62 399.7010 363.7387 375.2500 123.9990

63 407.1860 363.0690 375.2500 91.8780

64 420.1600 368.2432 375.2500 141.1230

65 422.1560 371.7351 375.2500 117.3480

66 431.1380 382.1591 388.2240 126.0680

67 436.1280 391.6835 399.7010 154.2770

68 436.1280 403.1306 419.1620 132.3990

69 456.5870 410.0405 421.9065 172.5970

70 456.5870 410.4119 423.1540 98.7730

71 456.5870 415.5888 423.1540 116.9810

72 456.5870 417.3863 435.1300 104.1240

73 456.5870 419.9508 436.1280 139.0310

74 465.0700 426.3158 436.1280 164.1080

75 465.0700 424.2869 436.1280 173.1660

76 465.0700 422.2207 436.1280 163.2670

77 465.0700 423.6959 436.1280 154.0330

78 465.0700 424.1987 436.1280 123.5780

79 466.0680 426.2938 436.1280 125.2400

80 466.0680 429.9999 436.1280 80.9490

81 466.0680 441.0242 457.0860 168.5490

82 466.0680 444.6226 464.0720 130.1640

83 466.0680 451.1316 465.0700 160.2080

84 466.0680 453.3817 466.0680 183.1190

85 466.0680 451.7100 466.0680 138.4610
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Generation Max Mean Median Min

86 466.0680 452.6550 466.0680 145.5250

87 466.0680 453.3730 466.0680 184.1610

88 466.0680 450.1951 466.0680 138.0030

89 466.0680 452.3601 466.0680 158.3680

90 466.0680 454.6304 466.0680 190.3290

91 466.0680 452.0814 466.0680 151.0820

92 466.0680 454.3676 466.0680 178.3690

93 466.0680 451.6843 466.0680 158.2490

94 466.0680 453.4915 466.0680 191.7260

95 466.0680 453.7976 466.0680 167.7830

96 466.0680 453.9447 466.0680 162.4970

97 466.0680 452.2639 466.0680 189.3070

98 466.0680 449.5967 466.0680 150.4170

99 466.0680 454.3901 466.0680 128.4370

Table 4.2: RLGP Cart Pole Aggregated Results

Generation Max Mean Median Min

0 209.1090 52.2117 7.2245 4.1240

1 211.0950 96.6963 87.9155 4.5420

2 211.5910 157.7400 172.4700 17.6940

3 211.0930 188.2812 190.5340 48.7950

4 211.5870 198.0718 200.6880 95.9330

5 211.5870 201.7260 205.1595 68.1670

6 212.5820 204.8469 208.6110 54.5070

7 213.0780 206.3272 209.1160 93.2930

8 213.0780 206.8498 209.6090 93.6100

9 213.0780 206.4557 210.1020 81.2950

10 213.0780 206.7860 211.0890 75.3410

11 213.0780 207.5813 211.0900 48.8610

12 212.5810 207.2677 211.5860 49.7480
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Generation Max Mean Median Min

13 213.0780 207.0827 211.5860 40.6320

14 213.0780 207.3593 211.5860 53.9910

15 213.0780 208.6030 212.0840 93.2840

16 212.5810 208.1538 212.0840 80.0530

17 213.0780 208.3412 212.0840 64.8700

18 213.0780 208.1041 212.0840 63.7540

19 213.0780 208.1036 212.5800 72.1530

20 213.0780 209.5479 212.5800 88.9900

21 213.0780 208.2771 212.5800 53.2580

22 213.0780 209.2043 212.5800 106.4120

23 213.0780 208.4108 212.5800 39.9400

24 213.0780 208.0172 212.5800 69.3860

25 213.0780 207.1100 212.5800 19.6870

26 213.0780 208.3101 212.5800 80.6570

27 213.0780 208.1756 212.5800 72.3360

28 213.0780 208.7448 212.5800 86.4840

29 213.0780 207.4372 212.5800 68.5070

30 213.0780 207.6586 212.5810 53.3570

31 213.0780 208.9853 213.0780 47.4280

32 213.0780 209.1676 213.0780 87.2780

33 213.0780 209.3081 213.0780 65.1870

34 213.0780 208.5716 213.0780 81.0800

35 213.0780 209.4416 213.0780 86.9420

36 213.0780 209.6108 213.0780 94.2090

37 213.0780 207.9522 213.0780 88.4660

38 213.0780 208.8673 213.0780 82.1950

39 213.0780 209.2892 213.0780 78.5060

40 213.0780 209.1963 213.0780 90.2960

41 213.0780 208.9443 213.0780 53.6670

42 213.0780 209.9130 213.0780 97.0030

43 213.0780 210.1720 213.0780 80.7370



26

Generation Max Mean Median Min

44 213.0780 209.1341 213.0780 66.9590

45 213.0780 209.7414 213.0780 94.2290

46 213.0780 209.5775 213.0780 75.3800

47 213.0780 209.2881 213.0780 62.2510

48 213.0780 207.3394 213.0780 55.4070

49 213.0780 208.7003 213.0780 64.2560

50 213.0780 208.5395 213.0780 67.6080

51 213.0780 210.0775 213.0780 76.2040

52 213.0780 209.8513 213.0780 104.1510

53 213.0780 207.5894 213.0780 58.4190

54 213.0780 208.4035 213.0780 65.1180

55 213.0780 209.8872 213.0780 91.0490

56 213.0780 208.7398 213.0780 66.3370

57 213.0780 208.8153 213.0780 51.8390

58 213.0780 209.8934 213.0780 102.0170

59 213.0780 209.9831 213.0780 97.9000

60 213.0780 209.8495 213.0780 91.8440

61 213.0780 208.2603 213.0780 59.0240

62 213.0780 208.0600 213.0780 55.4390

63 213.0780 209.2241 213.0780 99.2040

64 213.0780 208.2635 213.0780 48.9390

65 213.0780 209.5460 213.0780 67.5290

66 213.0780 209.5230 213.0780 65.9540

67 213.0780 209.5824 213.0780 106.7080

68 213.0780 208.9976 213.0780 85.6810

69 213.0780 209.9972 213.0780 76.7350

70 213.0780 208.2465 213.0780 58.3170

71 213.0780 209.1047 213.0780 56.5720

72 213.0780 208.5702 213.0780 81.9590

73 213.0780 209.5749 213.0780 51.7560

74 213.0780 209.2325 213.0780 75.8170
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Generation Max Mean Median Min

75 213.0780 210.4516 213.0780 109.7990

76 213.0780 209.5910 213.0780 82.4260

77 213.0780 208.5517 213.0780 62.0490

78 213.0780 209.8357 213.0780 114.0160

79 213.0780 209.1665 213.0780 70.5430

80 213.0780 209.9528 213.0780 82.5720

81 213.0780 209.2032 213.0780 70.5080

82 213.0780 208.8660 213.0780 77.5370

83 213.0780 208.8930 213.0780 79.4090

84 213.0780 209.5356 213.0780 87.1000

85 213.0780 208.9170 213.0780 70.5370

86 213.0780 209.4620 213.0780 69.1830

87 213.0780 208.7253 213.0780 19.0900

88 213.0780 209.3577 213.0780 68.2790

89 213.0780 209.5794 213.0780 88.4210

90 213.0780 209.0149 213.0780 51.8830

91 213.0780 209.2939 213.0780 73.1110

92 213.0780 208.8266 213.0780 66.2620

93 213.0780 208.9724 213.0780 95.3930

94 213.0780 209.5951 213.0780 86.2930

95 213.0780 209.6566 213.0780 90.7690

96 213.0780 210.0423 213.0780 117.8560

97 213.0780 210.2498 213.0780 130.5350

98 213.0780 208.5634 213.0780 61.4980

99 213.0780 207.5033 213.0780 31.5710

Table 4.3: LGP Mountain Car Aggregated Results

Generation Max Mean Median Min

0 -147.2600 -198.8564 -200.0000 -200.0000

1 -140.7800 -198.0396 -200.0000 -200.0000
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Generation Max Mean Median Min

2 -135.9000 -196.7488 -200.0000 -200.0000

3 -136.2400 -194.4066 -200.0000 -200.0000

4 -130.4800 -191.1292 -200.0000 -200.0000

5 -122.5800 -186.1694 -198.1600 -200.0000

6 -113.8000 -177.7398 -186.8600 -200.0000

7 -116.0000 -167.0998 -167.3400 -200.0000

8 -114.1600 -156.7100 -153.9800 -200.0000

9 -111.8000 -153.0290 -147.7200 -200.0000

10 -111.2200 -147.6408 -141.7600 -200.0000

11 -110.4200 -144.4458 -136.4100 -200.0000

12 -110.6800 -143.9098 -134.3500 -200.0000

13 -111.0800 -140.9800 -131.3100 -200.0000

14 -111.4200 -139.6036 -130.2800 -200.0000

15 -109.3800 -140.3138 -129.0800 -200.0000

16 -109.8800 -138.5900 -128.2600 -200.0000

17 -110.8000 -136.8444 -127.5100 -200.0000

18 -107.9600 -138.1884 -127.3900 -200.0000

19 -108.6200 -138.4434 -126.6200 -200.0000

20 -110.2000 -135.1152 -126.1500 -200.0000

21 -109.6400 -136.9396 -126.4000 -200.0000

22 -108.0600 -135.8072 -126.3900 -200.0000

23 -107.4400 -137.5702 -126.5300 -200.0000

24 -108.2200 -136.7758 -125.8500 -200.0000

25 -107.3600 -135.2724 -126.0000 -200.0000

26 -107.4600 -134.7038 -125.5000 -200.0000

27 -107.2400 -135.3478 -124.1200 -200.0000

28 -107.2400 -133.9520 -123.5200 -200.0000

29 -107.2400 -135.3022 -123.9400 -200.0000

30 -108.1200 -132.1862 -123.8800 -200.0000

31 -107.3600 -131.6392 -123.2600 -200.0000

32 -107.1800 -132.2048 -123.6200 -200.0000
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Generation Max Mean Median Min

33 -107.4200 -131.1670 -123.2400 -200.0000

34 -107.3200 -132.0660 -123.1600 -200.0000

35 -107.1600 -131.6048 -123.0800 -200.0000

36 -107.9000 -129.9580 -122.4500 -197.7200

37 -106.8800 -131.1972 -122.2800 -200.0000

38 -108.2200 -129.5170 -122.4700 -200.0000

39 -106.8000 -129.6010 -122.0600 -200.0000

40 -107.1000 -130.2330 -122.2300 -200.0000

41 -108.1000 -129.9540 -122.2500 -200.0000

42 -106.9000 -129.8734 -122.3600 -197.3800

43 -106.9000 -129.6038 -122.0700 -200.0000

44 -107.3600 -130.1622 -122.0300 -200.0000

45 -106.9800 -129.5466 -122.4000 -200.0000

46 -107.1200 -130.2848 -122.1200 -200.0000

47 -106.8400 -130.3336 -122.3300 -200.0000

48 -106.9800 -128.9738 -122.2900 -200.0000

49 -107.3400 -129.2868 -123.1800 -200.0000

50 -107.0200 -130.7394 -122.9600 -200.0000

51 -107.1200 -130.8232 -122.9500 -200.0000

52 -107.8800 -130.4052 -122.2000 -200.0000

53 -107.1600 -129.0214 -121.7800 -200.0000

54 -107.1400 -129.8846 -122.2000 -200.0000

55 -106.7800 -130.4204 -122.9700 -200.0000

56 -106.9000 -130.6972 -122.4100 -200.0000

57 -107.3400 -127.9828 -121.3700 -200.0000

58 -107.0800 -129.4644 -122.0200 -200.0000

59 -106.9800 -128.7068 -121.6100 -200.0000

60 -107.1200 -127.6184 -122.0900 -200.0000

61 -107.1200 -128.2956 -121.3300 -200.0000

62 -107.0600 -129.2262 -121.6300 -200.0000

63 -107.3600 -128.8000 -121.5700 -200.0000
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Generation Max Mean Median Min

64 -107.3800 -128.2434 -121.5400 -200.0000

65 -107.0400 -128.0978 -120.8800 -199.9400

66 -107.1200 -128.2124 -120.8200 -200.0000

67 -107.3800 -128.7196 -120.7600 -200.0000

68 -106.8800 -127.0206 -119.7800 -200.0000

69 -107.4200 -127.9458 -120.9300 -200.0000

70 -107.4400 -127.6984 -121.3600 -200.0000

71 -107.5200 -127.6352 -121.3900 -200.0000

72 -107.4600 -126.7986 -120.5000 -200.0000

73 -107.2600 -128.4960 -121.7400 -200.0000

74 -107.5800 -128.9330 -121.3100 -200.0000

75 -107.7200 -126.9282 -120.7300 -200.0000

76 -107.5000 -127.7386 -120.8500 -200.0000

77 -107.4000 -127.4444 -120.4500 -200.0000

78 -107.4000 -127.3788 -120.3000 -200.0000

79 -107.3200 -127.6434 -120.4100 -200.0000

80 -107.8200 -126.4820 -120.4000 -199.7800

81 -107.7800 -126.8866 -120.1500 -200.0000

82 -107.5200 -126.9112 -120.1400 -200.0000

83 -107.6200 -127.6986 -120.1900 -200.0000

84 -107.1600 -127.9976 -120.8700 -200.0000

85 -106.9000 -127.3250 -120.5200 -200.0000

86 -106.6400 -127.1802 -119.9500 -200.0000

87 -107.0000 -126.6212 -120.7200 -200.0000

88 -106.7000 -127.0610 -120.5600 -200.0000

89 -106.9000 -126.3396 -119.8800 -196.9000

90 -106.9400 -127.0148 -119.9500 -200.0000

91 -107.1400 -125.9496 -120.1000 -200.0000

92 -106.6800 -127.0402 -120.2600 -200.0000

93 -106.6800 -127.4314 -119.9800 -200.0000

94 -106.8000 -127.3154 -120.5300 -198.2400
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Generation Max Mean Median Min

95 -107.1600 -127.7486 -120.4700 -200.0000

96 -106.6600 -126.7210 -119.7800 -200.0000

97 -106.4000 -126.7944 -120.1900 -200.0000

98 -106.4200 -126.5638 -120.1500 -200.0000

99 -106.4200 -126.8950 -120.1000 -200.0000

Table 4.4: RLGP Mountain Car Aggregated Results

Generation Max Mean Median Min

0 -159.3520 -199.2556 -200.0000 -200.0000

1 -148.2350 -198.4004 -200.0000 -200.0000

2 -129.8430 -197.0150 -200.0000 -200.0000

3 -125.7290 -195.3591 -200.0000 -200.0000

4 -124.0570 -192.3421 -200.0000 -200.0000

5 -121.1780 -187.7516 -199.4060 -200.0000

6 -120.8060 -178.3610 -189.7845 -200.0000

7 -120.3750 -166.7054 -169.4035 -200.0000

8 -119.8660 -156.1507 -152.4970 -200.0000

9 -119.3150 -149.9850 -141.1145 -200.0000

10 -119.1670 -144.5840 -136.2730 -200.0000

11 -119.2320 -143.9219 -132.7005 -200.0000

12 -118.5000 -142.1678 -129.3525 -200.0000

13 -118.1800 -138.9305 -126.1845 -200.0000

14 -118.2710 -138.1095 -125.1595 -200.0000

15 -117.8970 -136.6103 -123.5150 -200.0000

16 -117.1960 -135.6228 -122.9925 -200.0000

17 -117.2360 -134.5921 -122.7375 -200.0000

18 -117.2640 -134.1918 -122.2970 -200.0000

19 -117.4570 -134.4230 -122.2370 -200.0000

20 -117.4990 -133.8670 -122.0585 -200.0000

21 -117.0630 -134.5028 -122.0500 -200.0000
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Generation Max Mean Median Min

22 -117.0270 -133.1338 -121.7130 -200.0000

23 -116.9780 -133.3599 -121.7385 -200.0000

24 -116.7110 -132.0771 -121.4590 -200.0000

25 -117.0350 -133.2521 -121.2165 -200.0000

26 -116.6840 -132.2046 -121.0240 -200.0000

27 -116.5200 -131.7314 -120.9545 -200.0000

28 -116.4580 -132.9466 -120.8915 -200.0000

29 -116.0690 -132.7108 -120.6810 -200.0000

30 -116.2650 -132.5323 -120.5795 -200.0000

31 -116.3540 -131.8354 -120.5125 -200.0000

32 -115.9790 -132.2702 -120.6270 -200.0000

33 -116.2630 -131.7327 -120.4730 -200.0000

34 -116.2460 -130.4898 -120.4030 -200.0000

35 -116.0300 -131.4998 -120.3165 -200.0000

36 -115.6990 -131.6269 -120.3180 -200.0000

37 -116.1590 -130.2035 -120.2745 -200.0000

38 -115.6610 -132.1114 -120.4380 -200.0000

39 -116.3130 -132.0942 -120.2970 -200.0000

40 -116.2540 -130.5519 -120.1415 -200.0000

41 -116.2360 -130.2979 -120.1640 -200.0000

42 -116.1760 -132.2521 -120.1145 -200.0000

43 -116.3040 -132.2787 -120.2020 -200.0000

44 -116.2140 -131.2063 -120.1950 -200.0000

45 -115.7170 -132.8159 -120.0680 -200.0000

46 -116.0380 -132.9527 -120.1615 -200.0000

47 -116.3760 -131.5387 -120.0575 -200.0000

48 -115.8780 -130.3797 -120.0140 -200.0000

49 -116.6060 -132.6714 -120.1285 -200.0000

50 -115.9770 -132.0721 -119.8750 -200.0000

51 -115.9570 -131.9084 -120.0350 -200.0000

52 -115.5210 -130.9580 -119.8285 -200.0000
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Generation Max Mean Median Min

53 -115.5090 -131.5952 -119.9090 -200.0000

54 -115.7010 -131.5353 -119.6005 -200.0000

55 -115.0510 -131.2645 -119.6280 -200.0000

56 -115.2070 -131.3729 -119.4525 -200.0000

57 -115.1060 -129.7635 -119.4490 -200.0000

58 -114.9600 -131.3091 -119.5240 -200.0000

59 -115.0400 -132.6765 -119.4085 -200.0000

60 -114.9680 -130.8734 -119.1265 -200.0000

61 -114.8730 -132.3701 -119.2700 -200.0000

62 -114.8410 -132.2661 -119.1605 -200.0000

63 -115.0930 -132.2378 -119.2345 -200.0000

64 -115.0910 -131.0686 -119.0595 -200.0000

65 -115.0480 -131.6609 -118.9885 -200.0000

66 -114.9010 -131.4209 -118.9360 -200.0000

67 -114.7280 -132.2548 -119.0355 -200.0000

68 -114.9430 -131.7701 -118.8670 -200.0000

69 -114.9050 -130.9010 -118.8090 -200.0000

70 -114.7890 -131.2397 -118.8795 -200.0000

71 -114.9100 -132.4739 -118.7410 -200.0000

72 -114.6250 -130.5194 -118.7545 -200.0000

73 -114.6630 -132.9116 -118.7225 -200.0000

74 -114.5000 -131.3717 -118.1790 -200.0000

75 -114.4460 -131.3647 -118.0155 -200.0000

76 -114.8400 -132.0535 -118.0045 -200.0000

77 -114.5830 -132.8627 -117.9610 -200.0000

78 -114.7780 -132.8256 -118.0235 -200.0000

79 -114.2620 -132.6821 -117.9460 -200.0000

80 -114.7990 -131.5703 -117.8335 -200.0000

81 -114.7540 -131.3465 -117.7980 -200.0000

82 -114.6150 -131.1181 -117.9350 -200.0000

83 -114.5720 -132.0720 -117.9550 -200.0000
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84 -114.5820 -132.5930 -117.8270 -200.0000

85 -114.2910 -132.3195 -117.7830 -200.0000

86 -114.7610 -130.8199 -117.8655 -200.0000

87 -114.3940 -131.5791 -117.8385 -200.0000

88 -114.3350 -132.4481 -117.8670 -200.0000

89 -114.6280 -131.8264 -117.6790 -200.0000

90 -114.5470 -132.0439 -117.6940 -200.0000

91 -114.6210 -130.1758 -117.7770 -200.0000

92 -114.4550 -129.9456 -117.6665 -200.0000

93 -114.6360 -132.3662 -117.7400 -200.0000

94 -114.6200 -130.9562 -117.6490 -200.0000

95 -114.5020 -130.7770 -117.6440 -200.0000

96 -114.5200 -130.8951 -117.6940 -200.0000

97 -114.3920 -131.5668 -117.7350 -200.0000

98 -114.2070 -131.2721 -117.6045 -200.0000

99 -114.4430 -130.2522 -117.6685 -200.0000
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(a) Performance of LGP on Cart Pole

(b) Performance of RLGP on Cart Pole

Figure 4.1: Comparison of RLGP vs LGP Performance on Cart Pole
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(a) Using LGP on Mountain Car

(b) Using RLGP on Mountain Car

Figure 4.2: Comparison of RLGP vs LGP performance on Mountain Car



Chapter 5

Conclusion

Due to the amount of time spent on reconfiguring the framework in addition to the short

nature of this research project, various forms of experimentation did not occur. With the

further optimization of hyperparameters and a different experimental setup, its possible that

results could have improved. Nonetheless, the framework now exists for experimenting

with easy, and opens a door for further exploration into the subject at hand. In the future,

we would like to explore different benchmarking approaches and different types of tasks

besides those found in the classical control module [4], as it might bring forth insight about

the types of problems where RLGP can thrive.
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