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Abstract 

A distributed GA (Genetic Algorithm) is designed for the packet switched 

network routing problem under minimal information, i.e., without information 

exchange, every node only knows the existence of its neighboring nodes. The 

requirements of such a problem mean that intelligent packets are required to 

possess more intelligence than was the norm. To this end a distributed GA 

approach is developed and benchmarked against the AntNet algorithm under 

similar information constraints. A profile of AntNet under local and global 

information is developed with the proposed distributed GA clearly improving on 

the AntNet algorithm under local information constraints. 

 
 

Keywords: Network Routing, Swarm Intelligence, Genetic algorithm, 

evolutionary computing, decentralized. 
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1 Introduction 

1.1 The problem – Routing 

Network information systems and telecommunication in general rely on a 

combination of routing strategies and protocols to ensure that information sent 

by a user is actually received at the desired remote location. In addition, the 

distributed nature of the problem means that multiple users can make requests 

simultaneously. This results in delayed response times, information loss or 

other reductions to the quality of service objectives on which users judge 

network service. 

 

For example, the Internet consists of a huge amount of local networks 

interconnected by gateways. Such gateways, generally called routers, usually 

have physical connections (e.g., Fiber, Satellite, coaxial cable) or network 

interface ports (e.g., Ethernet) onto many networks. The determination of the 

appropriate gateway and port for a particular data packet is called routing. By 

exchanging information among the other routers, a router usually maintains a 

list of Internet addresses and their corresponding location in the network. Such 

a list is called routing table. Routers near the center of a network generally 

have very large routing tables; those near the edges have small tables. 

Although the routing table may be configured by hand, it is usually configured 

to automatically use "Routing Protocols". The routing protocol allows routers 

to periodically exchange their knowledge of the network. After a period of 

time, the router becomes aware of all the possible ways to reach any end 

system in the network. It therefore updates its own routing table, building a 

picture of how to reach other parts of the network. 

 

Protocols are used to implement handshaking activities such as error checking 

and receiver acknowledgements. In this work, we are interested in the routing 
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problem on computer networks. In doing so, we do not consider protocol 

issues. 

 

The problem of Routing usually refers to the process used to build the routing 

table on each router, and determine how a packet travels from its source to 

destination. From a single packet’s point of view, the objective is to arrive at 

its destination in the shortest possible time, while from the whole network’s 

point of view, the objective is to deliver maximum number of packets in 

minimum average trip time, use minimum network resources, such as 

memory, network link, router CPU, etc., and prevent traffic congestion from 

happening. What’s more, we should not neglect some important facts of the 

problem, such as the local information constraint (section 3.3.1). Thus, routing 

is an optimization problem yet with many constraints. 

 

1.2 Definitions and Characteristics of the Network Routing Problem 

Before studying the routing problem of the data network, it is necessary to 

mention a bit the two basic connection strategies. The traditional telephone 

network uses circuit switching, whose key techniques are: must have initial 

path setup, path is maintained for the entire duration of communication; 

provides specific amount of dedicated bandwidth to each user, and messages 

are sent in order along the same path. The packet switching of the data 

network, on the contrary, needs no initial path setup, and allows multiple users 

to share the network facilities and bandwidth. Each message is fragmented 

into packets at the source hence each packet is independent. Packets may be 

routed along different paths. However, they are reassembled at the receiver 

end of the message. Therefore, traffic on the network is bursty and can be 

aggregated to maximize the use of the on demand bandwidth resources.  

 

On computer networks, locations are called nodes. There is a link between 

two nodes if there is a path (of one or more connections) between the two 
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locations. The nodes and the links form a network. Thus, the routing problem 

is that of determining routes for transferring information from source to 

destination nodes as efficiently as possible. 

 

There are several queues within a router, such that for each network interface 

port, there are two queues assigned, one for incoming packets, one for the 

outgoing packets. The basic operation upon receiving a data packet p is: the 

router first put p into the incoming queue, when p gets the front the queue and 

the router processor finishes handling the packets with higher priority, the 

processor fetches p into the processor buffer, checks if p has destination to the 

local network, if true, then sends p to the its final destination; if false, the 

processor looks through the routing table, finds an appropriate next hop 

router, then put p into the outgoing queue of the corresponding port. The 

router sends packets one by one onto the outgoing links once the links get 

available. Subject to the limited capacity of memory space, queue lengths are 

limited. Once the limit is reached, any incoming packets are discarded. When 

doing simulation, treating all the incoming queues as one and assuming 

unlimited queue lengths will simplify the model, see Figure 11. 

 

Several properties help make a route efficient. For example, routes passing 

through the same node more than once (a loop) are especially undesirable. 

Thus, a route (e.g., from a to z) with a loop can be represented as {a, s, d, f, 

…, w, d, …, z}. Removing the sub-route {f, …, w, d} gives a shorter route both 

as measured in time and distance. Moreover, it is not unheard of for an infinite 

loop to occur. In this case, packets are continuously forwarded about a sub-

path before their time-to-live (TTL) expires. Thus, a routing algorithm should 

prevent loops from happening. 

 

The routing problem has several generic properties, which make it particularly 

challenging. Specifically, the problem is distributed in nature, every router 

independently stands alone, processing incoming packets, forwarding packets 
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to outgoing links, and multiple users may make requests simultaneously, all 

these result in delayed response times, information loss or other reductions to 

the quality of service objectives. The problem is also dynamic; hence a 

solution that is sufficient for presently experienced network conditions may 

well be inefficient under other loads experienced by the network. Moreover, 

the traffic experienced by networks is subject to widely varying load 

conditions, making it impossible to design for a single ‘typical’ network 

condition. By means of the “Physical” and “Data Link” layers of OSI model, 

every router knows the existence of its neighboring nodes, and this is the only 

knowledge it has about the network before any information exchange 

performed in higher layers. In this thesis, this knowledge is called local 

information. One of the goals of routing is to help the nodes with the local 

information to acquire knowledge about the topology of the network. In this 

work, this knowledge is called global information. However, global 

information implies a priori knowledge, which is not realistic on computer 

networks. For example, nodes of the network are unaware of the network 

connectivity, number of nodes comprising the network, resources associated 

with each node or link. Hence a solution that assumes access to any form of 

global information is not desirable. Therefore, in this work, any further 

information is gathered using ‘agents’ that are responsible for collecting data 

as they travel across the network. In other words, an agent represents the 

intelligent packet in this context.  

 

Since the problem is distributed and dynamic, centralized solutions (e.g., 

OSPF, EIGRP, BGP, etc.) are never good solutions, because such a 

mechanism would heavily rely on the central/designated routers to gather and 

exchange routing information (Minar et. al., 1999). For example, the 

backbone routers, area border routers (ABRs), and anonymous system (AS) 

boundary routers (ASBRs) are the central routers in OSPF. Human 

configuration becomes inevitable for such kinds of solutions, as in a large 

network, it is nearly impossible to achieve the optimum configuration just by 
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hand crafting. Each time network load changes sufficiently to impact quality 

of service, human intervention is necessary to reconfigure the routing 

protocols. This issue will be discussed in section 2. 

1.3 Distributed Genetic Algorithms 

Genetic Algorithms are a class of generic search algorithms that perform a 

parallel search over a fixed “population” of candidate solutions. To do so, 

survival of the fittest and observations from genetics are used to guide the 

general mode of operation. Specifically, a selection operator provides the 

pressure to improve the contents of the population, whereas search operators 

address the exploitation – exploration trade off associated with improving the 

performance of individuals. Such a scheme has proved robust both 

theoretically (Holland’s schema theory (Goldberg, 1989)) and in practice, 

with several international conferences held each year. 

 

A genetic algorithm applies the principles of evolution found in nature to the 

problem of finding an optimal solution. To do so, the problem is encoded in a 

series of bit strings that are manipulated by the algorithm. A genetic algorithm 

for optimization is different from "classical" optimization methods in several 

ways: 

 

- Stochastic Decision Making. Actions taken by the GA (selection of 

individuals for reproduction and application of search operators) are not 

deterministic. That is to say, decisions are stochastic, thus allowing 

individuals to survive that do not necessarily represent the current best-

case solution alone. This avoids greedy search operators such as hill 

climbing, which often become ‘stuck’ at local minima. 

- Population. Holland’s schema theory indicates that solutions are identified 

by different schema solving different components of the problem across 

multiple individuals. The GA therefore improves the overall fitness of the 
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population as a whole such that a single individual is able to solve the 

problem formulated by the fitness function. 

- Mutation. Inspired by the mutation of DNA in natural evolution, 

evolutionary algorithms creates new solutions by periodically making 

random changes or mutations in one or more individuals of the current 

population, yielding a new candidate solution, which may be better or 

worse than existing population members. There are many possible ways to 

perform a mutation, but it typically takes the form of a single point 

operator applied to single genes, Figure 1. Mutation is therefore 

responsible for introducing new candidate solutions into the population 

(exploration operator). 

 

 

Figure 1: Mutation 

 

- Crossover. Inspired by the crossover of DNA that occurs in reproduction 

of nature creatures. An evolutionary algorithm attempts to combine 

elements of existing solutions/individuals to create a new 

solution/individual, with some of the features from each "parent" 

(exploitation operator). As with mutation, there are many ways to choose 

the parents and perform crossover, figure 2 illustrates the action of a single 

point and figure 3 multipoint crossover operators. Crossover is therefore 

responsible for exploiting material (schema) currently available in the 

population to suggest new candidate solutions. 
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parents offspring

 

Figure 2: Single-point Crossover 

 

parents offspring

 

Figure 3: Multi-point Crossover 

 

- Selection. Inspired by the natural selection in evolution -- an evolutionary 

algorithm performs a selection procedure in which the fittest members of 

the population are more likely to survive, and the least fit individuals are 

most likely to be eliminated. In a constrained optimization problem, the 

notion of fitness firstly depends on whether a solution is feasible (i.e. all 

constraints are satisfied), and secondly on the relative solution quality (as 

measured by the fitness function) value. The selection process is the step 

that guides the evolutionary algorithm towards ever-better solutions 

according to the fitness function. 

- Representation. A key step in successfully applying GAs to solve 

problems is identifying a scheme for encoding solutions such that the 

search process itself is efficient. At the very least application of the search 

operators should not result in individuals that cannot be evaluated; 

whereas decoding an individual’s into the equivalent genotype before 

fitness evaluation should not represent a significant computational 

overhead. 
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- Pragmatics. Most machine learning algorithms conduct a single point 

search. This is sufficient when the problem is well behaved to begin with, 

but will lead to either stalls at local minima in the search space (and 

require multipoint sampling processes to direct the restarting of the 

algorithm), or a prolonged search process when the problem non-

deterministic. By non-deterministic we imply that the problem cannot be 

formulated in terms of an objective that is both smooth and continuous. 

Moreover, many-to-one mappings may exist between possible model 

solutions and their corresponding measure of error. Finally, the objective 

may be multimodel or deceptive, in the sense that hill climbing search 

algorithms will typically lead to local minima. If the problem does not 

conform to any of these types, then applying a GA will undoubtedly not be 

computationally efficient. Problems conforming to this context are 

typically only described in terms of data or an environment from which 

reinforcement is available. The objective is usually framed as minimizing 

or maximizing an a priori identified performance metric(s). As such there 

will be many, possibly an infinite, set of models capable of satisfying the 

objective, but only a much smaller set able to actually provide a 

‘generalized’ model solution. It is for these reasons that GA is utilized in 

the case of the packet routing problem under local information constraints 

considered in this work. 

 

Generally, a genetic algorithm can be outlined as follows (Mitchell, 1997): 

 

 

GA (Fitness, Fitness threshold, p, r, m) 

   Initialize: P ← p random hypotheses; 

   Evaluate: for each h in P 

                      compute Fitness(h); 

   Evolve: While [maxh Fitness(h)] < Fitness threshold 

                    Select: Probabilistically select (1 - r)×p members of P to add to PS; 
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                                                                                                 (Con’t) 

where probability Pr(hi) of selecting hi from P is given by 

   Pr(hi) = 
∑ =

p

j
i

i

hFitness
hFitness

1
)(

)(  

                    Crossover: Probabilistically select r×p/2 pairs of hypotheses from P; 

                       For each pair <h1, h2> 

                          produce two offspring by applying the Crossover operator; 

  add all offspring to PS; 

                    Mutate: Invert a randomly selected bit in m×p random members of 

PS; 

                    Update: P ← PS; 

                    Evaluate: for each h in P 

               compute Fitness(h); 

   Return the hypothesis from P that has the highest fitness; 

 

 

In order to enhance the parallel co-evolution, a single population is divided 

into a number of sub-populations or demes (Nowostawski, 1999). Demes 

exchange individuals at a certain rate, called the migration rate. By doing so it 

is possible to avoid premature domination of a single population by one 

schema that reaches a (relatively) high fitness too early in the evolutionary 

cycle. 

 

1.4 The sections 

In this study, we will first introduce the classical routing algorithms and 

protocols that are being widely used in practice. Other research approaches, 

with a discussion of their strengths and weaknesses, are summarized in section 

2. In section 3, we will discuss AntNet, one of the most popular approaches to 

solving the routing problem in a distributed manner. This work belongs to the 

Social Insect Metaphor methodology and provides a major motivation for this 
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study. Specifically, we introduce what happens when a strict local information 

constraint is enforced, the ensuing investigation effectively forming the case 

for incorporating “agents” into the routing process. Section 4 will introduce 

our own GA approach to the routing problem. Section 5 will talk about the 

experiments, and the experimental results will be presented. Section 6 is the 

conclusion and suggestions for future work.   

1.5 Publications 

The work of the thesis resulted in two published papers (with Dr. Nur Zincir-

Heywood and Dr. Malcolm Heywood), they are: 

 

- “The Effect of Routing under Local Information using a Social Insect 

Metaphor”, The 2002 IEEE World Congress on Computational 

Intelligence (Hawaii, U.S.A, May 2002); 

 

- “Intelligent Packets for Dynamic Network Routing Using Evolutionary 

Strategies”, The 2002 Genetic and Evolutionary Computation Conference 

(New York city, U.S.A, July 2002). (Nominated for “Best paper” award) 

 

In the first case, the drawback of the AntNet algorithm under local 

information is emphasized. In the second case, a methodology based on a 

Distributed GA is proposed for directly addressing the problem of routing 

with local information constraints alone. 

 



 

2 Literature Survey 

2.1 Classical Routing Algorithms 

As we know, a network can be denoted as a graph, which consists of a set of 

nodes/vertices and a set of links/edges, which connect the nodes in the manner 

that each link joins two nodes. The following graph (Figure 4) represents the 

network of the Japanese backbone (NTTNet). NTTNet is the NTT (Nippon 

Telephone and Telegraph company) fiber-optic corporate backbone. NTTNet 

is a 55-node, 162-bidirectional link network. Link bandwidth is 6Mbit/sec, 

while propagation delays range around 1 to 5 msec. It is a narrow long 

configuration in which the degree of connectivity is low (from 1 to 5), when 

compared to the US backbone. Hence the Japanese network provides a more 

demanding configuration for testing routing algorithms, as higher degrees of 

connectivity lower the possibility of packet loss due to loops, timeouts, i.e., in 

a narrow long shaped network, once a packet is forwarded in a wrong 

direction, it might never have the chance to be routed to the desired 

destination. 

 

 

Figure 4: NTTNet topology 

 

The nodes and links have capacities, such as buffer size and processing time 

for nodes, bandwidth for links. A non-directed graph G = {N, A} with a node 

set N and an arc set A provides a formal framework for describing network 

11 
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connectivity. Finding the shortest paths among nodes can be solved in 

polynomial time (using Dijkstra’s algorithm, Bellman-Frod’s algorithm), 

while flow optimization, i.e., maximizing packets delivery (throughput) when 

links have transmission limitations is known to be a NP-complete problem 

(Ahuja et. al., 1993). Note, however, this classical definition of the problem 

assumes a static (worst case) load and complete information. In practice 

neither are necessarily known and the problem becomes more difficult. 

 

The routing protocols are responsible for exchanging routing information 

between routers, and helping each router build a routing table for each 

possible destination sub-network. Packet destinations are therefore expressed 

in terms of sub-networks (Norris, Pretty, 2000). Figure 4 represents the node 

connectivity above the sub-network level. It is only at this level that we are 

interested in routing. 

 

The routing protocols being widely used on the Internet are usually based on 

one of the following general principles: Static Routing, Distance Vector 

Routing, Link State Routing, or Path Vector Routing. In small networks, for 

example, a small network of a small business with leased line connection to 

the Internet, Static Routing is commonly used to configure the default route. 

When the topology of a network changes frequently, static routing is no 

longer suitable for such a dynamic environment; distance vector routing and 

link state routing have advantage over static routing. Distance vector routing 

relies on the regular updates of routing information to keep the routing tables 

on every router up to date. The objective of link state routing is to let every 

router maintain a map of the network topology. 

 

Routing protocol RIP2 (Routing Information Protocol version 2, RFC2453, 

STD0056) is widely used in small networks. As the original Interior Gateway 

Routing Protocol (IGRP), RIP is a kind of Distance Vector Routing algorithm, 
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more specifically, based on the distributed Bellman-Ford algorithm for the 

Graph Shortest Path problem. 

 

RIP works well in small networks, but becomes increasingly less efficient as 

network size increases. It also suffers from the count-to-infinity and slow 

convergence problems.  Count-to-infinity is an issue with hop counts, it 

happens in some subtle network failure situation resulting from mutual 

deception routing information updates. All distance vector protocols are 

susceptible to this well-known "count to infinity" problem (Perlman, 1992). 

Look at the following example (Figure 5): 

 

A C

B

D  

Figure 5: A simple example of the count to infinity problem 

 

After convergence, A, B, and C has an entry for route to D, Table 1. 

 

Routing table of A Routing table of B Routing table of C 
Destina

tion 
# of 

Hops 
Next 
hop 

Destin
ation 

# of 
Hops 

Next 
hop 

Destin
ation 

# of 
Hops 

Next 
hop 

…… …… …… 
D 1 D D 2 A D 2 A 

…… 

 

…… 

 

…… 

Table 1: Routing tables after convergence 

 

Consider the situation that link between A and D is down. Suppose link AB is 

much slower than link AC. Then the Update events are: 

 (1) A sets path to D with cost ∞, and sends update to B and C; 

(2) C gets update information from A, sets path to D with cost ∞; 

(3) B tells C path to D with cost 2; C updates; 
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(4) B gets update information from A, sets path to D with cost ∞; 

(5) C tells A path to D with cost 3; A updates; 

(6) A tells B path to D with cost 4; B updates; 

(7) B tells C path to D with cost 5; C updates; 

 …… 

 

This update cycle continues and the cost to D goes to infinity. Slow 

convergence problem is caused by the “count to infinity” problem, in such a 

way that, routers A, B, and C waste time in updates before they realize the 

route to D is unavailable. There are many other network topologies suffer 

these problems. Split Horizon and Split Horizon with poison were then 

proposed, but they can only decrease the possibility of count to infinity 

problem. 

 

OSPF (Open Shortest Path First, RFC2328, STD0054) is a more modern 

protocol from the IGRP family, which is based on the Dijkstra’s algorithm. 

OSPF is much more successful than RIP and is used in many networks, 

although it requires human configuration. That is, a series of assumptions, 

based on global information, is required to configure the protocol. 

 

RIP and OSPF belong to IGRP. IGRP protocols are routing protocols for 

autonomous systems (ASs). These include: RIP, EIGRP, ISIS, OSPF, and 

SPF. An AS is a group of routers that are within one administrative domain 

and that run the same routing protocol. The public Internet nowadays is 

composed of ASs, and EGP (Exterior Gateway Protocol), which are designed 

for routing among the ASs. BGP (Border Gateway Protocol) is a kind of EGP. 

BGP uses path vector routing, where a path is an ordered list of AS numbers. 

Every entry in the routing table contains the destination network, next router, 

and path to reach the destination. 
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As shown above, a range of different routing protocols exist, each with their 

own strengths and weaknesses. Static routing is simple, but has poor 

scalability and robustness properties (which is a key advantage of dynamic 

routing). RIP suffers count-to-infinity and slow convergence problems, and 

takes up a lot of bandwidth. All these make RIP (or other distance vector 

protocols) only good for small networks, and not competent for larger 

networks; OSPF (or other link state protocols) are designed with scalability, 

but their complexity makes it hard to design and configure the network 

efficiently. The path vector routing attribute of BGP leads to some attractive 

features, such as policy routing, loop prevention, and so forth. OSPF and BGP 

have a common weakness in that the design relies on several core routers. As 

discussed in section 1.2, such a centralized design has many drawbacks for the 

case of highly distributed networks. 

2.2 Recent Research Approaches 

Several approaches have been proposed for addressing these objectives 

including: active networking (Tennenhouse et. al., 1997), social insect 

metaphors (Di Caro, Dorigo, 1998), (Dorigo et. al., 1996), cognitive packet 

networks (Gelenbe et. al., 1999), evolutionary approaches (Sinclair, 1993), 

(Munetomo et. al., 1997), and what might be loosely called other ‘adaptive’ 

techniques (Corne et. al., 2000). The evolutionary approaches usually 

represent a route/path by an ordered list of nodes, and then try to achieve the 

routing problem by evolving the “paths” or “routing tables”. Moreover, 

Evolutionary and ‘adaptive’ techniques typically involve using evolutionary 

or neural techniques to produce a ‘routing controller’ as opposed to a ‘routing 

table’ at each node, where the controller typically requires knowledge of the 

global connectivity to ensure a valid route. Both the social insect metaphor 

and the cognitive packet approach provide a methodology for routing, without 

constraints; by using the packets themselves to investigate and report network 

topology and performance. Similarly, mobile agents discover edges by 
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traversing them, and update the routing table on the landed hosts (Minar et. 

al., 1999).  

 

All methods as currently implemented suffer from one drawback or another. 

For example, cognitive packet networks and active networking algorithms 

attempt to provide routing programs at the packet level, hence achieving 

scalable run time efficiency becomes an issue. The Social Insect Metaphor 

approach is discussed in the following section, and limitations investigated 

under a strict local information constraint. This will form the basis for 

combining a multi-agent approach with Genetic Algorithms for avoiding any 

reference to global information. 

 



 

3 Social Insect Metaphor Approach 

3.1 Introduction 

As indicated above active networking (Tennenhouse et. al., 1997) and 

cognitive packet (Gelenbe et. al., 1999) based approaches emphasize a per 

packet mechanism for routing. The aforementioned Evolutionary and  

‘adaptive’ techniques (Corne et. al., 2000) tend to emphasize adding 

‘intelligence’ to the routers leaving the packets unchanged. A social insect 

metaphor provides a middle ground in which the concepts of a routing table 

and data packet still exist, but in addition, intelligent packets – ants – are 

introduced that interact to keep the contents of the routing tables up to date. 

To do so, the operation of ant packets is modeled on observations made 

regarding the manner in which worker ants use chemical trails as a method of 

indirect stigmergic communication. Specifically, ants are only capable of 

simple stochastic decisions influenced by the availability of previously laid 

stigmergic trails. The chemical denoting a stigmergic trail is subject to decay 

over time, and reinforcement proportional to the number of ants taking the 

same path. Trail building is naturally a bi-directional process, ants need to 

reach the food (destination) and make a successful return path, in order to 

reinforce a stigmergic trail (Forward only routing has also been demonstrated 

(Heusse et. al., 1998). Moreover, the faster the route, then the earlier the trail 

is reinforced. An ant on encountering multiple stigmergic trails will 

probabilistically choose the route with greatest stigmergic reinforcement. 

Naturally, this will correspond to the ‘fastest’ route to the food (destination). 

The probabilistic nature of the decision, however, means that ants are still able 

to investigate routes with a lower stigmergic signature (probability). 

 

This approach has proved to be a flexible framework for solving a range of 

problems including the traveling sales man problem (Heusse et al., 1998) and 

the quadratic assignment problem (Maniezzo et al., 1999). The work reported 
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here follows the ‘AntNet’ algorithm of Di Caro and Dorigo (Di Caro, Dorigo, 

1998), and is informally summarized as follows: 

 

1) Each node in the network retains a table of packet destination frequency as 

seen on data packets passing through that node. This is used to 

periodically, but asynchronously, launch ‘forward’ ants with destinations 

stochastically sampled from the collected set of destinations; 

2) Once launched a forward ant uses the routing table information to make 

probabilistic decisions regarding the next hop to take at each node. While 

moving, each forward ant collects time stamp and node identifier 

information and this is later used to update the routing tables along the 

path followed; 

3) If a forward ant re-encounters a node previously visited before reaching 

the destination, it is killed (case of a loop); 

4) On successfully reaching the destination node, total trip time is estimated 

and the forward ant converted into a backward ant; 

5) The backward ant returns to the source using exactly the same route as 

recorded by the forward ant. Instead of using the data packet queues, 

however, the backward ant uses a priority queue; 

6) At each node visited by the backward ant the corresponding routing table 

entries are updated to reflect the relative performance of the path; 

7) When the backward ant reaches the source it dies. 

 

Although providing for a robust ant routing algorithm under simulation 

conditions, an assumption is made, which inadvertently implies the use of 

global information (Di Caro, Dorigo, 1998). Table 2 is the routing table in 

AntNet for the case of a node k with L neighbors. The routing table is 

organized as in vector-distance algorithms, but represents probabilities. The 

definition of a routing table is such that it assumes every node (destination) 

has a unique location in the routing table. In practice this is never the case. To 

do so would assume that it is first feasible, and secondly, should the network 
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configuration ever change, then all nodes should be updated with the new 

configuration information. And, the probabilities of every column add up to 

1.0, which means a certain event that there must be some path from any node 

to any node – a connected graph; but, that fact is, the network could be broken 

into two or more separate components. Moreover, as forward ants propagate 

across the network, the amount of information they need to ‘carry’ also 

increases (node identifier and time stamp). Finally, the availability of globally 

synchronized time is also assumed. Section 3.3 discusses the implementation 

of the AntNet algorithm without recourse to global information. 

 

All Network Nodes (Possible Destinations) 
PN1,1 P N1,2 --- P N1,k-1 P N1,k+1 --- P N1,55 
P N2,1 P N2,2 --- P N2,k-1 P N2,k+1 --- P N2,55 

--- --- --- --- --- --- --- Th
e 

L 
N
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gh
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rs

 

P NL,1 P NL,2 --- P NL,k-1 P NL,k+1 --- P NL,55 

Table 2: Original AntNet Routing Table Tk at network node k (1 ≤ k ≤ 55) on 

the NTTNet 

3.2 AntNet Algorithm 

It is assumed that routing tables, Tk, exist at each node, k, in which a routing 

decision is made. Tables consist of ‘L’ rows, one row for each neighboring 

node/link. As far as a normal data packet is concerned, if the destination d 

from the current node k, is a neighbor then the routing is still a stochastic 

decision. In all other cases, a router is selected based on the neighbor node 

probabilities. 

 

a) New forward ants, Fsd, are created periodically, but independently of the 

other nodes, from source, s, to destination node, d, in proportion to the 

destination frequency of passing data packets. Forward ants travel the 

network using the same priority structures as data packets, hence are 

subject to the same delay profiles; 
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b) Next link in the forward ant route is selected stochastically, p′(j), in 

proportion to the routing table probabilities and length of the 

corresponding output queue. 

( )1||1
)(

)('
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k

j

N
ljp
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where p(j) is the probability of selecting node j as the next hop; α weights 

the significance given to local queue length versus global routing 

information, p(j); lj is the queue length of destination ‘j’ normalized to the 

unit interval; and Nk is the number of links from node k; 

 

c) On visiting a node different from the destination, a forward ant checks for 

a buffer with the same identifier as itself. If such a buffer exists the ant 

must be entering a cycle and dies. If this is not the case, then the ant saves 

the previously visited node identifier and time stamp at which the ant was 

serviced by the current node in a buffer with the forward ant’s identifier. 

The total number of buffers at a node is managed by attaching “an age” to 

buffer space and allowing backward ants to free the corresponding buffer 

space; 

 

d) When the current node is the destination, k = d, then the forward ant is 

converted into a backward ant, Bds. The information recorded at the 

forward ant buffer is then used to retrace the route followed by the 

forward ant; 

 

e) At each node visited by the backward ant, routing table probabilities are 

updated using the following rule, 

IF (node was in the path of the ant) 

THEN p(i) = p(i) + r {1 – p(i)} 

ELSE p(i) = p(i) – r P(i) 

where r ∈ (0, 1] is the reinforcement factor central to expressing path 

quality (length), congestion and underlying network dynamics. 
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As indicated above, the reinforcement factor should be a factor of trip time 

and local statistical model of the node neighborhood. To this end (Di Caro, 

Dorigo, 1998) recommended the following relationship: 
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where tant is the actual trip time taken by the ant; c1 and c2 are constants that 

weigh the importance of each term; Wbest is the best-case trip time to 

destination d over a suitable temporal horizon, W; 

 

Iinf = Wbest; 

Isup = µd + {σd / [W (1 - γ)]0.5}. 

 

In the above equation, γ is a constant, determining the confidence interval. An 

array Mk(µd, σd; Wd), of data structures defines a statistical model for the 

traffic distribution over the network as seen by the local node k. For each 

possible destination d in the network, the estimates for mean, µd, and variant, 

σd, of the trip time reflect the expected trip time to d, and the stability. These 

adaptive values are also made iteratively, using the trip time information. 

Thus, 

 

µd = µd + η(okd – µd) 

(σd)2 = (σd)2 + η{(okd – µd)2 – (σd)2} 

 

where okd is the newly observed trip time from current node k to destination d. 

From the above algorithm, it is, therefore, apparent that ants are required to 

make decisions under more uncertainty than was previously the case. 

Moreover, the trip time information is updated incrementally based on the 
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recorded trip duration between current node, k, and ultimate destination, d. 

This means that it is no longer necessary to carry all node and duration 

information as a ‘stack’ to the target duration as in the original model (Di 

Caro, Dorigo, 1998). Only the previous step information is therefore 

necessary. 

3.3 AntNet Algorithm With Local Information 

3.3.1 Assumptions 

Research has demonstrated that the AntNet algorithm outperforms OSPF 

(Di Caro, Dorigo, 1998), which belongs to link state routing algorithm. 

However, as indicated above it makes some assumptions in terms of the 

information available in the routing table that make it unrealistic in 

practice. First, every node in the network has a column in the AntNet 

algorithm. This implies that every router must know of the existence of the 

rest of the world. That is to say, all routers are aware of the number of 

routers comprising a network and their addresses. This violates the 

shortsighted property (section 1.2) of the routers. Indeed, gaining such 

knowledge of the network is one of targets of the routing problem! 

 

Secondly, its routing table implicitly implies the network connectivity 

assumption. The probabilities of each column in the routing table (Table 

2) always sum up to 1.0, which means a certain event, that is, from any 

source node to any destination node, there is at least one path connecting 

them. The network will never be broken into separate components. But 

this is possible to happen. 

 

In the following, we introduce a local information constraint into the 

AntNet algorithm with the objective of providing a platform for 

investigating these limitations further, section 4. 
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3.3.2 Removing the Global Information Assumption 

One of the goals of our work is to investigate routing algorithms without 

global information. We remove the first assumption, i.e., the global 

information assumption (i.e., the number of routers in the whole network, 

the IDs of all the routers), to identify the sensitivity of the AntNet 

algorithm to this property. 

 

In the AntNet algorithm without the first assumption (i.e., global 

information), the routing table is revised in such a way that it has 2 

columns respectively, one column for the router’s neighbors, and the other 

for the rest of the network nodes. The elements in the routing table are still 

probabilities. For example, Pn,d is the probability to reach destination d via 

neighbor n. Table 3 is the routing table at node k for the AntNet algorithm 

with local information, i.e., every node only “sees” its neighbors. 

 

 Neighbors as 
destinations 

Destinations other 
than neighbors 

PN1, N1 P N1,d 
d ≠ N1 

P N2, N2 
 

P N2,d 
d ≠ N2 

------ ------ 
 

Th
e 
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P NL, NL 
 

P NL,d 
d ≠ NL 

Table 3: Proposed Routing Table at any network node k on the NTTNet 

 

This modification brings changes to the routing table in original AntNet 

algorithm (Liang et. al., May 2002). 

 

� Routing tables only detail the neighboring nodes. Such a limitation 

therefore places greater emphasis on the learning capacity of the ant. 

This is particularly significant during step b) of the ant forward pass 
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(section 3.2). Table 2 and 3 illustrate the difference in available 

information for a node; 

 

� Each node has a buffer in which forward ants deposit time stamp and 

identifier for the previous node. It is only the inter-node information, 

which is important; 

 

� Time synchronization is treated as a protocol issue. That is to say, 

during low load conditions each node is responsible for letting 

neighboring nodes know what their current time clock is. Moreover, 

whenever interruptions to services are sustained, then the first step 

once a node returns to operation will be to reinitiate local time 

references. Usually the time synchronization is achieved by applying 

the Network Time Protocol (RFC 1305) to the routers. 

 



 

4 GA Approach With Local Information to the Routing Problem 

4.1 Discussion of the Problem and Previous Research Work 

As indicated in the introduction, the routing problem is an NP-complete 

problem, and, it has several properties, such as its distributed and dynamic 

nature, which imply that one single static solution does not exist. 

 

Static Routing, limited in its ability as its name indicates and is nowadays only 

used in simple situations; Distance Vector routing algorithms and link state 

routing algorithms are far away from handling the dynamic network 

conditions efficiently, especially when network equipment have many failures 

or network topology changes very often. The traffic and overhead caused by 

the routing protocols will become burdens of the network. Moreover, all the 

currently used routing protocols rely on some critical routers to collect, 

exchange and distribute the routing information to achieve the goal. This 

centralized nature makes the routing protocols incapable for distributed nature 

of the routing problem, because if some of the central routers or just some 

links of them have problem, the network will be affected seriously. Thus, 

experienced network engineers are required to configure the routing protocols 

each time network conditions change. 

 

We have discussed the drawbacks of the AntNet algorithm in a previous 

section. Yet, there are other problems with even the modified AntNet 

algorithm. For example, the routing table is fixed, while the network topology 

is highly dynamic! What if a new node, or a new link is added? In order to let 

other nodes adapt to the change, and be able to find a route to it, according to 

the AntNet algorithm, modification of the node structures (Tk & Mk) on every 

node of the whole network must be carried out: every node must add a new 

entry in the traffic distribution statistics array Mk, every node must add a new 

column in the routing table Tk for the new node, the new node’s neighbors 
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even have to add a new row in Tk. This would be a protocol overhead not 

explicitly addressed in the AntNet algorithm. More significantly, simulation 

results using the local AntNet algorithm indicate that the algorithm no longer 

is able to correctly route data packets without significant loss. In effect, the 

positive feedback mechanism central to the AntNet algorithm is disrupted. 

4.2 Objective and the GA Approach 

Our goal in this work is to remove the significance of global information in 

the AntNet routing algorithms with the help of Genetic Algorithm co-

evolutionary mechanism (Liang et. al., July 2002). 

 

The objective of this work is to investigate a scenario in which the entries 

themselves are identified dynamically. This will be a first step towards a co-

evolutionary model capable of evolving solutions to the packet switched 

routing problem. The ants, in this case, take the form of individuals from a 

distributed Genetic Algorithm (GA), hereafter referred to as GA-agents. 

Individual chromosomes travel the network using a variable length string of 

next hop offsets (detailed in Figure 8: Processing GA-agents), e.g., {1, 5, 0, 4, 

2, 3, 5} over the interval [0, L], where ‘L’ is selected to enable indexing of 

node connectivity. In all the experiments of section 5.3.4, ‘L’ is set to 6. On 

entering a node, a gene (next hop offset) is used to identify the next link using 

a clockwise count from the link, the GA-agent entered the node i.e. the next 

link is selected as the modulus of (gene % # of links). Such a representation is 

then independent of the specific network connectivity, unlike say the GA 

approach in (Munetomo et. al., 1997). For each node encountered, a record of 

the trip time and node ID is made. The process naturally continues until the 

GA-agent executes its last gene, at which point it becomes a backward agent, 

returning to its original source node. In the special case of a GA-agent 

attempting to return down the same link as it entered a node, the router 

randomly selects the next hop from the available links, and changes the gene 

to the new value (deterministic mutation). If no next hop is available, then the 
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chromosome is truncated, and the GA-agent becomes a backward agent (see 

the algorithm “processing agents“). Note, unlike the AntNet algorithm, 

modification of routing tables only takes place once the GA-agents have 

returned to their original source, and modifications only affect the source node 

routing table. The above representation supports single point crossover, 

resulting in variable length individuals. Mutation randomly selects a gene and 

adds/ subtracts an integer such that the new gene is still in the interval [0, L]. 

 

Agent ID Agent Fitness Trip Time (ms) and node ID 
95 0.32 (3, J), (9, C), (21, W) 
234 0.39 (1, B), (7, A), …, (432, Y) 
… … … 
31 0.71 (5, C), (9, K), …, (871, X) 

Table 4: GA-agent Routing Table 

 

At initialization, a router sends out half of the population of GA-agents to 

explore the network. Whenever the number of returned GA-agents reaches 

four, the fitness of the four agents is evaluated. 

 

The fitness function is defined as the normalized node popularity: 

 

∑
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where the node popularity NPk(i) is defined as: 

 

NPk(i) = Dest(i) / TDk 

 

where TDk is the total number of data packets passing through node ‘k’; and 

Dest(i) is the number of data packets with destination ‘i’. 
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The chromosome fitness measures the popularity of nodes visited as well as 

the time taken to reach nodes encountered by GA-agents, both of these 

properties are measured with respect to the original source node. 

 

Node popularity NPk(i) is a dynamic property, measured at the original source 

node k by recording the frequency of different data packet destinations as seen 

by the source node k over a fixed time window (the time window is set 50 

seconds in this work). It reflects the most recent trend of the desired 

destinations. Trip time to each of the explored node is a dynamic property too; 

the returned agents bring back the most recent knowledge of the network 

condition.  

 

Chromosomes, which find shortest paths to frequently used destinations, are 

therefore favored. The best two agents are then chosen – as in a steady state 

tournament, as parents for routing table update and population evolution (See 

Figure 9). 

 

The routing table (Table 4) in the GA approach consists of a list of returned 

agents, every entry corresponds to an evaluated returned agent. On routing a 

data packet (see Figure 10), the router checks the routing table for the agent 

that had experienced shortest trip time to the desired destination (third column 

of Table 4); if such an entry is not found, the entry with the highest fitness 

(second column of Table 4) will be selected as the default route for this data 

packet. The neighboring node, which corresponds to the first gene of the 

selected route/agent, is the next hop for this data packet. 

 

The above constitutes our basic GA-agent approach. In addition, three further 

concepts are introduced. The first is that of demes (Nowostawski, 1999). This 

provides a mechanism for passing useful chromosomes between neighboring 

nodes, thus the nodes share their knowledge of the network. To do so, every 

node will propagate best-case chromosomes to neighboring nodes every 500 
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or 700ms (tuneable parameter, see “propagate freq” in section 5.3.2). 

Secondly, in order to avoid stagnation in the routing tables an aging 

mechanism is introduced. This takes the form of an incremental penalty 

applied to each entry of the routing table, Figure 9. The motivation for such an 

aging mechanism is to ensure that routing tables remain sensitive to the 

dynamic nature of the environment (e.g., changes to network topology, 

network node/link failure, network congestion). Such a mechanism is 

introduced during updates to routing tables: making each routing table subject 

to decaying fitness and an increasing trip time, figure 6. 

 

 

 

for each agent in routing table 

do fitness = original_fitness × c2; 

 for each node in the entry 

 do trip_time = original_trip_time / c2; 

 end for 

end for 

where c2 is a constant ∈ (0.0, 1.0) 

 

Figure 6: GA agent aging mechanism 

 

Finally, when initializing the populations of chromosomes at each node, a 

node with a higher connectivity degree naturally represents a larger search 

problem. Thus, the number of chromosomes of a node is initialized in 

proportion to the square of the number of neighbors (more discussion in 

section 6.3). 

 

The algorithm is outlined as follows from Figure 7 to Figure 10: (c1, c2, and c3 

are constants.) 

 



30 

 

Init 

initialize first generation of agents; 

#agents = #links2 × c1; 

         string of offsets of an agent is a string of non-negative integers, e.g., {3, 1, 5, 2, …} 

clear routing table; 

clear flow pattern statistics; 

send out half population of individuals/chromosomes; 

 

Figure 7: GA Initialization 

 

 

Processing agents 

if it’s a backward agent 

then if it arrives the source 

then if it timeouts 

  then discard it; 

else put it into “back” list; 

   end if 

else if the next hop is down 

then discard it; 

else forward it to the link; 

end if 

end if 

 else agent records the trip time info; 

take out an offset from the appropriate position; 

if the corresponding link is available and no loop (section 1.2) caused 

  then send the agent to the link; 

else randomly (each available link has equal probability) select an            

available link and causing no loop; 
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end if                                                                                                   (Con’t)

  if no such link found 

 then convert the agent into a backward agent; 

  else set the offset to the new value; 

   send agent to the corresponding outgoing buffer; 

  end if 

 end if 

 

Figure 8: Processing GA-agents 

 

 

 

Updating routing table & population (once 4 agents are back) 

         update the performance table by aging mechanism: 

         for each agent in routing table 

         do fitness = original_fitness × c2; 

              for each node in the entry 

             do trip_time = original_trip_time / c2; 

             end for 

         end for 

use the fitness function to evaluate the fitnesses of back agents; 

select the best two agents as parents; 

put/update the fitness’s of the parent agents in the routing table; 

         delete the entries of the worst two agents in the routing table; 

use standard crossover and mutation on the parents to generate two children; 

put the children into the population; 

delete the worst two agents from the population; 

if current time > last clear time + c3 

then clear flow statistics; 

end if 
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          randomly launch 4 agents from the population to explore the network;          (Con’t)

Figure 9: Updating routing table and population 

 

 

Routing data packets 

if routing table is empty 

then randomly choose a link to forward; 

else search routing table for the shortest trip time to desired destination; 

   if no entry found ever explored the desired destination 

   then choose agent with best performance; 

   end if 

end if 

if no route is found 

then discard the packet; 

else forward packet to the neighbor that corresponds to the first gene of 

selected agent; 

         end if 

 

Figure 10: Routing data packets 

 

4.3 Data Structures 

Every agent consists of a string of next hop offsets, and time stamp records. 

Every router (Figure 11) consists of an incoming buffer, an outgoing buffer 

for each neighboring router, a processing buffer (stores a packet at a time), 

and memory space for routing table. For the GA approach, every router has a 

population of chromosomes, a routing table, a flow pattern statistics table, and 

a fitness table. The number of chromosomes per population is in direct 

proportion to the square of number of neighbors. The routing table, which is 

updated whenever four chromosomes return, consists of current fittest 
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individuals. The flow pattern estimates the popularity of data packets passing 

through the node. The fitness table stores the fitness of every chromosome, 

currently a member of the routing table. 

 

CPU
outputinput

A router

 

Figure 11: Schematic representation of a network node (router) 

 

 



 

5 Experiments 

5.1 Settings 

The discrete event driven simulation models the network as routers (nodes) 

and links. The simulation in this work can be considered on the “network” 

layer of OSI model, where only the routing issues are addressed. The memory 

space is assumed always large enough for the buffers and routing table of the 

router (Figure 11). A priority queue is used to store the events. Both AntNet 

(local model and global model) and GA-agent algorithms are simulated under 

the same environmental conditions. That is, an event generator is used to 

generate the events, such as a new packet time of generation, or router’s 

availability. The following are the parameters used in the simulations: 

 

- Network topology takes the form of the Japanese backbone, figure 4; 

- Forward ants are launched every 300ms; 

- The AntNet and GA algorithms are given 5 seconds at the beginning of 

the simulation to converge the initial routing tables, during this period, 

routing packets (ants and GA-Agents) are the only packets traversing the 

network; 

- Data packets are generated by Poisson distribution (mean of 35ms); 

- The seven parameters for the GA based scheme are given in Table 5; 

- Any packets, including data packets, are killed should a loop be detected. 

Given the probabilistic nature of the routing tables this represents a rather 

harsh constraint, but it is utilized to emphasize the properties of different 

routing strategies. 

 

5.2 Baseline – Static Shortest Path algorithm 

To establish a baseline for AntNet and GA-agent algorithms, we implemented 

the Static Shortest Path (SPS) algorithm for this routing problem. The SPS 
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pre-calculates the all-pairs shortest paths, can be regarded as the converged 

routing tables on each router using RIP. Indeed, SPS is different from RIP 

critically in that the latter takes the number of hops to judge the routes, the 

former takes the transmission time, which is more preferable, because some 

links are much slower than others, which should not be equally considered as 

fast links. In order to simplify the problem, we use the Floyd-Warshall 

algorithm (Cormen et. al., 1989) to construct all the shortest path pairs, Figure 

12. 

 

Floyd-Warshall (network W) 

   n = rows(W); 

   distance array D = W; (n × n, filled with element ∞) 

   next hop array Next; (n × n, filled with element ∞) 

   for i = 1 to n 

      for j = 1 to n 

         if i and j are adjacent 

            then        dij = cost(i, j); 

                           nextij = j; 

         end if 

      end for 

   end for 

   for k = 1 to n 

      for i = 1 to n 

         for j = 1 to n 

            if (dij > dik + dkj) 

            then        dij = dik + dkj; 

                           nextij = nextik; 

            end if 

   return D & Next; 

Figure 12: Floyd-Warshall algorithm 
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Each simulation is run for 1250s. As a result, 1985536 data packets are 

generated within 1250s. The queue length is the total number of waiting 

packets, which includes the data packets and the routing packets. In this paper, 

the routing packets refer to the ants in the AntNet algorithm, and to the GA-

agents in the GA approach. 

 

In this work, we will compare three algorithms (see Figure 13): Static Shortest 

Path algorithm (SPS), AntNet (with global information – GlobalAnt, with 

local information – LocalAnt), and GA (with 100% crossover & 100% 

mutation – certainGA, with classical probabilistic 90% crossover & 10% 

mutation – probGA). 

 

Static
Shortest Path

Static
Shortest Path

with crossover
& mutation

with crossover
& mutation

with global info
with global info

GA approachAntNet

with local info
with local info

with probabilistic
crossover & mutation

with probabilistic
crossover & mutation

 

Figure 13: Algorithms for comparison 

 

 

5.3 Experimental Results 

5.3.1 AntNet Parameters 

The following is the list of parameters of AntNet algorithms being used: 

α  = 0.3; 
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c1  = 0.7; 

c2  = 0.3; 

η  = 0.005; 

γ = 0.654; 

where these values follow the recommendation of (Di Caro, Dorigo, 

1998). 

5.3.2 GA Approach Parameters 

In the case of routing using GA-agents, there are five basic parameters, 

- Rates of crossover and mutation; 

- # Agents / link2 – a constant c1, which determines the population of 

chromosomes on every node; 

- Aging – a constant c2 ∈ (0.0, 1.0), rate by which fitness of individuals 

currently populating the routing tables decay; 

- Propagate ratio – the number of chromosomes exchanged between 

populations, expressed as a % node population size; 

- Propagate freq – constant rate/frequency of exchange of chromosomes 

between populations; 

- Flow clear freq – a constant c3, time interval over which data packet 

destination statistics are collected. 

 

Eight different combinations of the above parameters are considered, these 

are initially selected to enable qualification of the sensitivity to population 

size, rate of aging etc. and remain the same across all experiments. Table 5 

summarizes these parameters: 

 

                        Combinations 
Parameters 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8

Probabilitycrossover 1.0 0.9 
Probabilitymutation 1.0 0.1 
# agents / link2 32 32 40 48 32 32 40 48 
Aging rate 0.8 0.9 0.9 0.9 0.8 0.9 0.9 0.9 
Propagate ratio (%) 5 3 3 2 5 3 3 2 
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Propagate freq (ms) 500 500 700 700 500 500 700 700 
Flow clear freq (sec.) 50 

Table 5: combinations of GA parameters 

 

Simulations of the eight combinations are conducted (see Table 5) on five 

network conditions (Table 6 - 10). Combinations involving minimal agent 

count, propagation frequency and ratio with highest aging rate 

(combination No.2 and No.6, table 5) appeared to provide the most 

reliable performance independent of scenario (Appendix B). These two 

cases are therefore detailed in the following results. 

 

5.3.3 Performance Measurements 

A total of 5 simulation scenarios are considered for the SPS, AntNet and 

GA approaches, all of which utilize the Japanese backbone network 

topology, figure 4. In the first case, all routers remain available, Table 6. 

The remaining experiments investigate plasticity of the network by 

removing different router combinations, Tables 7 - 10. First, router R34 is 

removed at a time step of 500s, Table 7. From figure 4, it is apparent that 

router R34 represents a significant node in the topology, although 

alternative paths certainly exist. In Table 8, two routers (R49, R13) are 

removed, whereas in Table 9 the same two routers (R49, R13) are first put 

down asynchronously, but put up later. Finally, in Table 10, three routers 

(R42, R19, R6) experience failure at time 500s. 

 

On measuring the performance of routing algorithms, we focus on the 

following metrics: 

- Network throughput, which is defined as number of data packet bytes 

successfully received at their destination in a two second window; 

- Network Queue size, which is defined as the number of data packets 

and routing packets in the incoming buffers and outgoing buffers on 
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all the routers. So in the case of SPS, there is no routing packets; in the 

case of AntNet algorithms, routing packets refer to the ants; and in the 

case of GA approaches, routing packets refer to the GA agents; 

- Total time to deliver all the data packets (finish time); 

- Number of arrived data packets (short as AP); 

- Average trip time of arrived data packets; 

- Number of routing packets generated during simulation; 

- Average chromosome length on each node (Appendix A); 

- Chromosome fitness on each node (Appendix A); 

- Number of arrived data packets on each node (Appendix A). 

In this work, packet loss happens in these conditions: immediately loss 

due to network failures, e.g., packets which are existing in a failed node, 

or existing in the outgoing buffer to a failed node, or being transmitted via 

links to a failed node; discarded by a node if the packet enters a loop. 

5.3.4 Results 

5.3.4.1 No Network Failure 

No network failure 
Algorithm SPS GlobalAnt LocalAnt CertainGA ProbGA
Finish time (ms) 1318526 1252740 1267002 1252815 1252000
# routing packets 198346 218539 1027884 960601
Arrived packets (AP) 1985536 1979268 902884 1585185 1692813
Lost packets 0 6268 1082652 400351 292723
Average trip time of 
AP (ms) 

1387 566 398 905 1171

Table 6: All network devices remain available 
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Figure 14: queue size - all network devices remain available 

 

 

Figure 15: throughput performance - all network devices remain available 

 

From Figure 14, Queue Length, the following observations are made. 

SPS observes a linear increase in queue length, indicating that the 

algorithm is unable to control this parameter, and suggesting a reliance 
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on routing buffers of sufficient size to absorb this property. From 

Table 6, it is evident that no packets are lost (no loops) – unlike the 

other algorithms. Throughput, figure 15, is high relative to that 

achieved using the other algorithms. 

 

The LocalAnt algorithm is not able to improve on the queue length 

performance of SPS, figure 14. In addition looses more packets than it 

successfully routes, table 6 (packets with loops now exist on account 

of poor routing and probabilistic nature of the routing tables) and 

returns the lowest throughput rates. 

 

After an initial configuration period (typically 100 seconds for the GA 

schemes) the remaining algorithms control queue length effectively, 

figure 14. The global Ant algorithm “looses” the least packets (0.3% 

as opposed to 20% and 15% respectively for certainGA and probGA 

respectively), table 6, and maintains the highest levels of throughput. 

Figure 15. However, the classical selection of crossover and mutation 

rates significantly benefits probGA. 

 

In short, the sequence of comprehensive performance is: GlobalAnt – 

SPS – probGA – certainGA – LocalAnt.  

5.3.4.2 R34 Down at 500s 

R34 down at 500s 
Algorithm SPS GlobalAnt LocalAnt CertainGA ProbGA
Finish time (ms) 1250245 1668469 1369366 1306682 1506900
# routing packets 199075 218823 1086689 1170219
Arrived packets (AP) 1464815 1833184 813913 1298426 1400861
Lost packets 520721 152352 1171623 687110 584675
Average trip time of 
AP (ms) 

1956 998 2899 2613 356

Table 7: Router R34 fails to work at time 500s 
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Figure 16: queue size - Router R34 fails to work at time 500s 

 

 

Figure 17: throughput performance - Router R34 fails to work at time 500s 

 

In this scenario node 34 is removed at time step 500, where node 34 

represents a critical node for connectivity, but bypass routes do exist, 

figure 4. The SPS algorithm is naturally not able to adapt to the change 
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in configuration. As such SPS throughput changes from joint best to 

third, figure 17; SPS queue length gets very small (much smaller than 

20000) as soon as node R34 is removed, reflects that in the static SPS 

routing tables of the nodes direct most data packets through R34, once 

again shows the importance of R34 in the NTTNet. 

 

The LocalAnt algorithm continues to lose more packets than it delivers 

(implying that more packets enter a loop than find a direct path) and in 

addition returns the longest trip time for those packets that are 

delivered, table 7. Possibly on account of the reduction in the number 

of packets delivered, the queue length profile is now better than 

GlobalAnt, figure 16, whereas throughput is still the worst, figure 17. 

The linear increase in global Ant queue length appears to indicate that 

only small changes to the routing strategy have been made to 

accommodate the new network condition. That is to say, the algorithm 

– under the current parameterization – is making use of unconstrained 

queue lengths to soak up the reduced connectivity. 

 

In the case of GA-agents, a clear preference for probGA as opposed to 

certainGA exists, hence comments are made for probGA alone. 

ProbGA returns the fastest average trip time for delivered packets and 

almost betters SPS in terms of ‘lost’ packets, table 7. Queue length, 

figure 16, observes a continued linear increase once the fault is 

introduced, indicating that a suitable alternative routing strategy has 

not been identified. Both local Ant and certainGA have minimal queue 

length profiles on account of the high packet losses, table 7. 

 

In summary, the distinction between GlobalAnt and probGA is less 

clear. All the remaining algorithms however perform significantly 

worse. 
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5.3.4.3 R13 and R49 Down at 500s 

R49 & R13 down at 500s 
Algorithm SPS GlobalAnt LocalAnt CertainGA ProbGA
Finish time (ms) 1250239 1465837 1300468 1444549 1252000
# routing packets 198030 218713 972622 1025141
Arrived packets (AP) 1370605 1871469 827125 1369264 1417205
Lost packets 614931 114067 1158411 616272 568331
Average trip time of 
AP (ms) 

2161 1325 1617 1301 861

Table 8: Routers R49 and R13 fail at time 500s 

 

 

Figure 18: queue size - Routers R49 and R13 fail at time 500s 
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Figure 19: performance - Routers R49 and R13 fail at time 500s 

 

In this experiment Routers R13 and R49 were put down at 500s. 

Routers R13 and R49 are not as important as R34 (R13 has 

connectivity degree 4, R49 has connectivity degree 3, whereas R34 has 

connectivity degree 5.). However, we wanted to know how the 

algorithms would behave under multiple network failure conditions. 

 

SPS is again naturally unable to reconfigure following the introduction 

of faults. Moreover, the number and position of faults results in the 

highest number of lost packets, table 8 (in the case of SPS due to the 

retention of routes which lead to nodes which no longer function). 

Furthermore, average trip time of the delivered packets is now the 

worst of the five algorithms. LocalAnt is still losing far more packets 

than it is delivering, table 8, which naturally results in low throughput 

and queue length profiles, figures 18 and 19. The GlobalAnt algorithm 

still looses the least number of packets, table 8. The probGA algorithm 

provides the best queue profile, figure 18, whilst returning the second 

best lost packet count and best case average trip time, table 8. In effect 
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queue length minimization appears to be prioritized more in the GA 

scheme. 

 

Thus the sequence of comprehensive performance is: GlobalAnt – 

probGA – certainGA – SPS – LocalAnt. 

5.3.4.4 R13 Down at 300s, R49 Down at 500s, Both Up at 800s 

R13 down at 300s, R49 down at 500s, both up at 800s 
Algorithm SPS GlobalAnt LocalAnt CertainGA ProbGA
Finish time (ms) 1284363 1252262 1288776 1261363 1252000
# routing packets 198742 217659 1043279 1082799
Arrived packets (AP) 1740080 1915162 865033 1334514 1554835
Lost packets 245456 70374 1120503 651022 430701
Average trip time of 
AP (ms) 

1503 677 3259 1202 1012

Table 9: Router R13 fails at 300s, R49 fails at 500s, both up at 800s. 

 

 

Figure 20: queue size - Router R13 fails at 300s, R49 fails at 500s, both up at 800s. 
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Figure 21: throughput performance - Router R13 fails at 300s, R49 fails at 500s, both up 

at 800s. 

 

This scenario is to test the ability of the algorithms to adapt themselves 

to the more drastically dynamic network situations. In this case, 

routers experience failures, and are recovered. 

 

SPS again establishes the baseline performance level. In contrasting 

Ant verses GA-agent algorithms significant differences are evident. 

Both the Ant type algorithms make use of queues, figure 20, possibly 

implying the utilization of a small number of preferred routes. GA-

agent based strategies appear to minimize queue lengths at the expense 

of higher lost (looping) packet counts, table 9. Throughput profiles 

follow the same general pattern as previously encountered – 

GlobalAnt consistently has the highest throughput, with SPS dropping 

to the same level as probGA under fault conditions and the remaining 

algorithms returning significantly lower throughputs – figure 21. 
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From Table 9, we can see that GlobalAnt is the best among the five 

algorithms, LocalAnt is the worst, and the two GA approaches are 

better than LocalAnt. 

 

5.3.4.5 R42, R19 and R6 Down at 500s 

R42, R19 & R6 down at 500s 
Algorithm SPS GlobalAnt LocalAnt CertainGA ProbGA
Finish time (ms) 1297102 1250849 1283775 1253750 1252504
# routing packets 198360 219116 1122024 954765
Arrived packets (AP) 1645627 1845743 816190 1410263 1413077
Lost packets 339909 139793 1169346 575273 572459
Average trip time of 
AP (ms) 

1931 381 375 1065 2085

Table 10: Routers R42, R19 & R6 fail at 500s 

 

 

Figure 22: queue size - Routers R42, R19 & R6 fail at 500s. 
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Figure 23: throughput performance - Routers R42, R19 & R6 fail at 500s. 

 

In this scenario, the failures of three routers (R42, R19, & R6) happen 

at the same time (500s) in three different areas of NTTNet. Moreover, 

the failures occur at nodes associated with the boarder of the topology. 

 

As in previous fault conditions, the GlobalAnt algorithm returns the 

lowest ‘lost’ packet count, but queue length, figure 22, no longer 

observes the linearly increasing characteristic associated with each of 

the previous fault scenarios. Moreover, the queue length and 

throughput profiles are very similar to those in the no failure scenario. 

In effect the GlobalAnt algorithm is able to maximize its global 

information benefits to solve the routing problem with little 

modification to the pre-fault strategy.  

 

On the other hand, probGA queue lengths increase following the 

disturbance; until a new strategy is identified around the 675th second 

and the original queue profiles are achieved around the 840th second, 

figure 22. It is interesting to note that the GA-agent scheme with 100% 
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mutation provides a better solution than probGA in this specific 

scenario, table 10. 

 

By way of an overall ranking, it is clear that the utilization of global 

information in the ant algorithm plays a central role in its performance. 

Without this – LocalAnt – more packets are lost (loops are identified) 

than delivered, irrespective of whether there are missing links or not. 

GA-agents clearly perform far better than LocalAnt, typically 

delivering twice as many packets, irrespective of the scenario. It is also 

apparent, however, that the different cost functions controlling AntNet 

and GA-agents may also be playing a role in determining the 

characteristics of the approaches. The AntNet algorithm explicitly 

incorporates temporal and queue lengths, with a pre-selected 

parameter, α, determining the relative weighting given to each. Di 

Caro and Dorigo recommend a value in the interval 0.2 to 0.5, where a 

value of 0.3 was used in this work. The fitness function of the 

distributed GA is much more straightforward, with no direct 

representation of queue lengths. Future work will investigate the utility 

of more complex cost functions. 

 



 

6 Conclusions and Future Work 

6.1 Criteria 

On comparing the routing algorithms, we should not focus on a separate 

measurement index, but consider them comprehensively. An ideal algorithm 

would be able to deliver more data packets (number of arrived packets) 

irrespective of the network scenario, send the packets to their destinations 

using shorter trip times (average trip time, finish time, and throughput), while 

the queue size is minimized. In order to achieve these goals, the routing 

algorithm must be capable of finding the appropriate routes, recognizing 

dynamic changes to network traffic and topology, adapt the routers to the new 

conditions, route the data packets efficiently while distributing the work load 

among the network. Therefore, we believe that network resources must work 

as a cooperative team. In addition, it is important to include system/network 

overheads, such as buffer occupations, CPU usage, or network resources 

needed to support the algorithm. 

 

6.2 Conclusions 

The performance (arrived packets, network queue size, network throughput, 

etc.) reflects the routing ability and adaptability of the algorithms. AntNet was 

proven to outperforms OSPF (Di Caro et al., 1998). We first looked at the 

comparison of the following pairs. 

6.2.1 Static vs. Adaptive 

As we discussed in section 2, RIP is a form of static routing algorithm, 

thus the routing tables of the routers will not change after the convergence, 

as long as the network topology is not changed. The difference between 

RIP and SPS is that RIP makes use of hop counts in measuring 

distance/cost between two routers, while SPS makes use of the trip time, 

which is pre-calculated based on the assumption of global information. 

51 
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The first experimental scenario (Section 5.3.4.1, Table 6, Figure 14 and 

Figure 15) represents a static network topology without network failure. 

Even in this static situation, SPS does not give perfect queue size 

performance, the queue size keeps growing linearly, which is effectively 

indicating that the algorithm is not able to control traffic load. This 

indicates the necessity of adaptive routing algorithms, which can make use 

of additional paths as network load varies. 

 

However, the other four adaptive routing algorithms, except Local AntNet, 

did demonstrate (section 5.3.4) abilities to adaptively route data packets 

with load balancing. Their principal weakness is the loss of some data 

packets. For the AntNet algorithm, its probabilistic character causes the 

loops (section 1.2). For the GA approaches, the possibility of loop exists 

in the situation that no GA-agent ever explored the route to the desired 

destination, then, by following the default gateway may lead the data 

packet into a loop or, wrong direction. We could expect the elimination of 

such possibility for GA in the future by improving the routers’ sense of 

direction.  

6.2.2 Global AntNet vs. Local AntNet 

The most significant difference between these two algorithms is in their 

routing tables (Table 2, Table 3), i.e., global information assumption in the 

Global AntNet is removed in the Local AntNet. 

 

The experimental program (section 5) demonstrated the importance of the 

global information assumption: 

- The LocalAnt loses many more data packets than the GlobalAnt; 

- The GlobalAnt has the highest throughput, and the LocalAnt has the 

lowest throughput under the five network scenarios; 

- The queue size graphs (section 5.3.4) imply that the LocalAnt can not 

route the data packets correctly, because in the normal situation and 
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light or medium network failure situations, its queue size keeps 

increasing linearly in trend and arrived data packets are less then loss 

packets, and in the serious network failure conditions, low queue size 

and small amount of arrived data packets imply that a lot of packets 

are identified as looping very soon after they enter the network. 

- The global AntNet shows more capable to recognize the network 

failure – least amount of lost data packets in all experiments. But only 

in the light failure situation (section 5.3.4.5), global AntNet shows 

ability in adapting nodes to new efficient routing tables. The large 

queue size in the other three failure (medium to severe level) 

experiments (section 5.3.4.2 – 5.3.4.4) implies that it’s not highly 

adaptive. 

 

In real world situations, however, it is impossible for the routers to acquire 

the global information because each router knows only the existence of its 

neighbor routers, by means of the physical and data link layers in the OSI 

model. However, the removal of global information was shown to degrade 

the performance of AntNet algorithm. 

6.2.3 Local AntNet vs. GAs 

The Local AntNet algorithm follows the Global AntNet algorithm in every 

way other than the global information assumption. The distributed Genetic 

Algorithm (D-GA) approach proposed in this work makes use of only the 

local information. Their performance is significantly different, both D-

GAs are much better than Local AntNet in that: 

 

- They successfully deliver much more data packets in shorter average 

trip time (section 5.3.4); 

- Their network throughput is much higher than Local AntNet (section 

5.3.4); 
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- Their network queue sizes performance is also better than Local 

AntNet in the experiments of the five network situation scenarios 

(section 5.3.4). 

 

The price for higher performance in D-GA is that the greater autonomy 

represents an overhead to network and router resources. There are about 

four times more routing packets in D-GAs than in Local AntNet. The 

statistics in the previous section indicate this does not detract from the 

quality of service guaranteed, because the queue size (defined as the 

number of data packets and routing packets) performance of D-GAs is 

more desirable than that of Local AntNet even when comparing D-GA to 

the Global AntNet algorithm. 

6.2.4 Summary of Contribution 

This work presents a D-GA approach to solve the challenging network 

routing problem subject to the local information constraint. Access to 

Global information is never the case in the real world; however, this is the 

first work we are aware of to reach these objectives using a multi-agent 

framework. 

 

The original (Global) AntNet algorithm (Di Caro, Dorigo, 1998) was 

proved to outperform some currently used (in practice) routing protocols 

(such as OSPF). However, if its global information assumption is 

removed, leading to the so-called Local AntNet algorithm studied as part 

of this work, we show that performance degrades by about half (section 

5.3.4). On the other hand, the proposed D-GA approach yields superior 

performance in many aspects, such as number of arrived data packets, 

network throughput, average trip time of arrived data packets, and, it 

appears to minimize network queue size at the expense of higher packet 

loss (section 5.3.4). Moreover, the second assumption of AntNet algorithm 
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(network connectivity assumption, section 3.3.1) is not used in the D-GA 

algorithm. 

 

The advantages of the D-GA approach over the existing routing protocols 

are that GA-agents are completely distributed, thus routing is not 

dependent on the designated central routers; and are purely automatic, i.e., 

no human configuration is necessary, which avoids the mis-configuration 

or non-efficient configuration problems caused by insufficient human 

knowledge of the network. 

 

Indeed, security is a problem in mobile agent methods as a whole (Minar 

et. al., 1999). In short, the task is to protect hosts from agents, protect 

agents from hosts, and protect agents from each other. Since the agents in 

the D-GA approaches are not executable binary codes, the major problem 

is almost avoided. Moreover, an agent carries a string of genes, together 

with the time stamps of every visited router; it is not likely to be harmed 

by other agents. The principle problem of the method, however, lies in 

routers permitting agents to update routing table information. This 

problem is true for both AntNet and the D-GA solution detailed here. 

6.3 Future Work 

The GA approach has given us some encouraging results, yet there are still 

many unanswered questions. For example, fitness function plays a very 

important role in GA, the current factors taken into account by the fitness 

function are trip times and destination statistics. A more comprehensive 

fitness function has the potential to incorporate a wider range of quality of 

service objectives. 

 

Another example would be the population of agents on each router. At the 

very beginning of the D-GA approach, every router has same number of 

agents, that is, no matter how important a router is in the network, it still has 

 



56 

the same number of agents as other routers. The routing ability turned out 

pretty low, just at the comparable level of Local AntNet. We found that the 

important routers did not sufficiently evolve. A direct proportional relation 

was then used (section 5.3.2), performance improved, but critical routers still 

did not evolve in line with their importance to the network. The quadratic 

relation, which is currently being used in D-GA, finally lets the routers make 

corresponding contribution. The question is how to adjust the population of 

agents to a router? What other factors should be included? 

 

The size of the routing table is always an important factor, because it has 

direct influence on the efficiency of a router. Nowadays a core router (e.g., a 

ASBR) in the Internet may have one hundred twenty thousand or even more 

routes in its routing table (Huston, 2001). And according to 

http://bgp.potaroo.net/, the most recent size is over one hundred thirty 

thousand. This is a huge routing table. We now look at the size of the routing 

table and the next hop look up time of the algorithms, for a router having l 

neighbors in a network having n routers. 

- A SPS router will have (n – 1) records, each record has two fields: 

destination and the next-hop router, so the size of the routing table is Θ(n); 

Sequential search of the routing table will take Θ(n) time. 

- A GlobalAnt router has l records, each has (n – 1) fields, each for a node 

in the network, thus, the size of the routing table is l × (n – 1), i.e., Θ(l × 

n), usually l << n, so, the size of the routing table is Θ(n); Since the 

routing table is a two-dimensional array, the next hop look up time is only 

Θ(1). 

- A LocalAnt router has l records (number of neighboring links), each has 

only two fields, one for the neighbor itself, one for the rest of network. 

Thus, the size of the routing table is l × 2, i.e., Θ(l); the next hop look up 

time is also only Θ(1). 

- A D-GA router has a population of c1 × l2 chromosomes, thus the routing 

table has O(l2) records, and each represents an explored route. According 

 

http://bgp.potaroo.net/
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to the statistics of the experiments, the routes have 2 to 12 genes, 

approximately, this fits relation Θ(l). Thus the size of routing table is 

O(l3). Sequential search of the routing table will take O(l3) time. 

 

But in our experiments with NTTNet, the routing table of D-GA is quite a lot 

larger than that of GlobalAnt, because n and c1 are very close (n = 55, c1 = 

32), which means D-GAs takes more memory space and requires more next 

hop look up time. Thus, the question rises: how to decrease the size of the 

routing table and the next hop look up time in D-GA? 

 

One emphasis should be placed on the co-evolution mechanism of the GA 

approach, which means the algorithm would make the whole network work 

like a team by keeping sharing their knowledge (topology, congestion, etc.) 

about the network. The outcome would be that the routers need not know the 

exact routes to any destination across the whole network, but only to the next 

local node that is more likely to know the correct route. The current GA 

approach provided have such a mechanism, or be it indirectly – demes 

(section 4). We believe the whole performance of the routing ability would be 

greatly improved if stronger forms of co-evolution were introduced. 

 

Finally, we note that the discrete event simulation utilized here deletes any 

packet that enters a loop, where such a property was introduced to emphasize 

differences in routing strategy. A more practical approach would be to apply 

such a constraint to Ant or GA-agent as opposed to data packets. This would 

have the effect of increasing the network load for the adaptive schemes and 

therefore increase the average time taken for packet delivery. Moreover, the 

only lost packets would then be those, which are routed down links subject to 

failure, or whose TTL expires. 
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Appendices 

A. Auxiliary Measure Metrics 

In addition to the measure metrics discussed in section 5, some other auxiliary 

features of the D-GA were recorded for analysis, they are: 

- Agent fitness on each node; 

- Average agent length on each node; 

- Number of arrived data packets on each node; 

 

For example, the following graphs are collected under the no network failure 

scenario of probGA Figure 24 to Figure 26. 

 

 

Figure 24: agent fitness - all network devices remain available 
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Figure 25: average agent length - all network devices remain available 

 

The distribution of the average agent length on each node is between 2 and 10, 

Figure 25, and their average is 6.33. It’s interesting that although the allowed 

maximum length of each chromosome is 30 genes, the average length is far 

shorter. And the other interesting fact is the average agent length of the five 

edge nodes (whose connectivity degree is 1) is 4.8. These reflect the 

adaptivity of the D-GA from the agent length aspect. 
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Figure 26: number of arrived packets - all network devices remain available 

 

The upper curve tells the numbers of packets heading to each node, and the 

lower one shows the number of actual arrived packets. Those edge nodes 

(connectivity degree 1) have fewer arrived packets, for example, the nodes 

R52, R53, and R54 have degree 1 in Figure 4, they have least arrived packets, 

as shown in Figure 26. 
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B. Performance Graphs of the 8 Combination of GAs 

Figure 27 to Figure 36 are the queue size and throughput performance graphs 

of the eight combination (Table 5) of the GA algorithm. 

 

Figure 27: queue size of the eight combinations of GA - all network devices remain 

available 

 

Figure 28: throughput of the eight combinations of GA - all network devices remain 

available 
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Figure 29: queue size of the eight combinations of GA – R34 down at time 500s 

 

 

Figure 30: throughput of the eight combinations of GA – R34 down at time 500s 
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Figure 31: queue size of the eight combinations of GA – R49 & R13 down at time 500s 
 

 

Figure 32: throughput of the eight combinations of GA – R49 & R13 down at time 500s 
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Figure 33: queue size of the eight combinations of GA – R13 down at time 300s, R49 
down at 500s, both up at 800s 

 

 

Figure 34: throughput of the eight combinations of GA – R13 down at time 300s, R49 
down at 500s, both up at 800s 
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Figure 35: queue size of the eight combinations of GA – R42, R19 & R6 down at time 
500s 

 

 

Figure 36: throughput of the eight combinations of GA – R42, R19 & R6 down at time 
500s 
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