

INTELLIGENT PACKETS FOR

DYNAMIC NETWORK ROUTING

by

Suihong Liang

Submitted in partial fulfillment of the requirements
For the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2002

© Copyright by Suihong Liang, 2002

DALHOUSIE UNIVERSITY

Faculty OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and

recommend to the Faculty of Graduate Studies for

acceptance a thesis entitled “ Intelligent Packets for

Dynamic Network Routing ” by Suihong Liang in

partial fulfillment of the requirements for the degree of

Master of Computer Science.

Dated:

Co-Supervisor:
Dr. Nur A. Zincir-Heywood

Co-Supervisor:
Dr. Malcolm I. Heywood

Reader:
Dr. Evangelos E. Milios

ii

DALHOUSIE UNIVERSITY

DATE: April 2002

AUTHOR: Suihong Liang

TITLE: Intelligent Packets in Dynamic Routing Network

DEPARTMENT OR SCHOOL: Faculty of Computer Science

DEGREE: Master of Computer Science CONVOCATION: May YEAR: 2002

 Permission is herewith granted to Dalhousie University to

circulate and to have copied for non-commercial purposes, at its

discretion, the above title upon the request of individuals or

institutions.

Signature of Author

 The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or otherwise
reproduced without the author’s written permission.

 The author attests that permission has been obtained for the use
of any copyrighted material appearing in the thesis (other than the
brief excerpts requiring only proper acknowledgement in scholarly
writing), and that all such use is clearly acknowledged.

iii

Table of Contents

Table of Contents ... iv
List of Figures... vi
List of Tables ... vii
List of Abbreviations and Symbols Used... viii
List of Interchangeable Terms.. viii
Abstract... ix
Acknowledgements ... x
1 Introduction... 1

1.1 The problem – Routing ... 1
1.2 Definitions and Characteristics of the Network Routing Problem 2
1.3 Distributed Genetic Algorithms.. 5
1.4 The sections .. 9
1.5 Publications... 10

2 Literature Survey.. 11
2.1 Classical Routing Algorithms ... 11
2.2 Recent Research Approaches.. 15

3 Social Insect Metaphor Approach... 17
3.1 Introduction... 17
3.2 AntNet Algorithm ... 19
3.3 AntNet Algorithm With Local Information.. 22

3.3.1 Assumptions.. 22
3.3.2 Removing the Global Information Assumption.. 23

4 GA Approach With Local Information to the Routing Problem 25
4.1 Discussion of the Problem and Previous Research Work................................. 25
4.2 Objective and the GA Approach... 26
4.3 Data Structures.. 32

5 Experiments... 34
5.1 Settings.. 34
5.2 Baseline – Static Shortest Path algorithm... 34
5.3 Experimental Results .. 36

5.3.1 AntNet Parameters .. 36
5.3.2 GA Approach Parameters ... 37
5.3.3 Performance Measurements.. 38
5.3.4 Results... 39

5.3.4.1 No Network Failure .. 39
5.3.4.2 R34 Down at 500s... 41
5.3.4.3 R13 and R49 Down at 500s .. 44
5.3.4.4 R13 Down at 300s, R49 Down at 500s, Both Up at 800s..................... 46
5.3.4.5 R42, R19 and R6 Down at 500s.. 48

6 Conclusions and Future Work... 51
6.1 Criteria .. 51
6.2 Conclusions... 51

iv

6.2.1 Static vs. Adaptive .. 51
6.2.2 Global AntNet vs. Local AntNet .. 52
6.2.3 Local AntNet vs. GAs... 53
6.2.4 Summary of Contribution ... 54

6.3 Future Work .. 55
References.. 58
Appendices... 61

A. Auxiliary Measure Metrics ... 61
B. Performance Graphs of the 8 Combination of GAs.. 64

v

List of Figures

Figure 1: Mutation.. 6
Figure 2: Single-point Crossover... 7
Figure 3: Multi-point Crossover.. 7
Figure 4: NTTNet topology.. 11
Figure 5: A simple example of the count to infinity problem 13
Figure 6: GA agent aging mechanism... 29
Figure 7: GA Initialization... 30
Figure 8: Processing GA-agents .. 31
Figure 9: Updating routing table and population.. 32
Figure 10: Routing data packets.. 32
Figure 11: Schematic representation of a network node (router) 33
Figure 12: Floyd-Warshall algorithm ... 35
Figure 13: Algorithms for comparison ... 36
Figure 14: queue size - all network devices remain available..................................... 40
Figure 15: throughput performance - all network devices remain available............ 40
Figure 16: queue size - Router R34 fails to work at time 500s 42
Figure 17: throughput performance - Router R34 fails to work at time 500s 42
Figure 18: queue size - Routers R49 and R13 fail at time 500s 44
Figure 19: performance - Routers R49 and R13 fail at time 500s.............................. 45
Figure 20: queue size - Router R13 fails at 300s, R49 fails at 500s, both up at 800s. 46
Figure 21: throughput performance - Router R13 fails at 300s, R49 fails at 500s,
both up at 800s. ... 47
Figure 22: queue size - Routers R42, R19 & R6 fail at 500s. 48
Figure 23: throughput performance - Routers R42, R19 & R6 fail at 500s. 49
Figure 24: agent fitness - all network devices remain available 61
Figure 25: average agent length - all network devices remain available 62
Figure 26: number of arrived packets - all network devices remain available......... 63
Figure 27: queue size of the eight combinations of GA - all network devices remain
available ... 64
Figure 28: throughput of the eight combinations of GA - all network devices remain
available ... 64
Figure 29: queue size of the eight combinations of GA – R34 down at time 500s 65
Figure 30: throughput of the eight combinations of GA – R34 down at time 500s .. 65
Figure 31: queue size of the eight combinations of GA – R49 & R13 down at time
500s 66
Figure 32: throughput of the eight combinations of GA – R49 & R13 down at time
500s 66
Figure 33: queue size of the eight combinations of GA – R13 down at time 300s, R49
down at 500s, both up at 800s .. 67
Figure 34: throughput of the eight combinations of GA – R13 down at time 300s,
R49 down at 500s, both up at 800s .. 67
Figure 35: queue size of the eight combinations of GA – R42, R19 & R6 down at
time 500s .. 68

vi

Figure 36: throughput of the eight combinations of GA – R42, R19 & R6 down at
time 500s .. 68

List of Tables

Table 1: Routing tables after convergence ... 13
Table 2: Original AntNet Routing Table Tk at network node k (1 ≤ k ≤ 55) on the
NTTNet .. 19
Table 3: Proposed Routing Table at any network node k on the NTTNet................ 23
Table 4: GA-agent Routing Table ... 27
Table 5: combinations of GA parameters... 38
Table 6: All network devices remain available .. 39
Table 7: Router R34 fails to work at time 500s.. 41
Table 8: Routers R49 and R13 fail at time 500s... 44
Table 9: Router R13 fails at 300s, R49 fails at 500s, both up at 800s......................... 46
Table 10: Routers R42, R19 & R6 fail at 500s ... 48

vii

List of Abbreviations and Symbols Used

GA Genetic Algorithms
TTL Time to Live
RIP Routing Information Protocol
OSI Open System Interconnect Reference Model
OSPF Open Shortest Path First
ISIS Intermediate System to Intermediate System
EIGRP Enhanced Interior Gateway Router Protocol
EGP Exterior Gateway Protocol
BGP Border Gateway Protocol
ABR Border routers
AS Autonomous system
ASBR AS boundary router
SPF Shortest Path First
SPS Static Path Shortest
AP Arrived Packet

List of Interchangeable Terms

Node & Router;
Path & Route;
Ant & Agent;
GA agent, Chromosome & Agent.

viii

Abstract

A distributed GA (Genetic Algorithm) is designed for the packet switched

network routing problem under minimal information, i.e., without information

exchange, every node only knows the existence of its neighboring nodes. The

requirements of such a problem mean that intelligent packets are required to

possess more intelligence than was the norm. To this end a distributed GA

approach is developed and benchmarked against the AntNet algorithm under

similar information constraints. A profile of AntNet under local and global

information is developed with the proposed distributed GA clearly improving on

the AntNet algorithm under local information constraints.

Keywords: Network Routing, Swarm Intelligence, Genetic algorithm,

evolutionary computing, decentralized.

ix

Acknowledgements

I am very grateful to the people who helped me with this work. First of all, I

would like to acknowledge Dr. Nur A. Zincir-Heywood & Dr. Malcolm I.

Heywood, for their instructive guidance and their availability with their precious

time. Many thanks are due to Min Shi, for her professional yet unique

suggestions, and constant encouragement during all the phases of the work. For

help with reviewing this thesis, I thank Phyllis Chubb MA & William Chubb.

x

1 Introduction

1.1 The problem – Routing

Network information systems and telecommunication in general rely on a

combination of routing strategies and protocols to ensure that information sent

by a user is actually received at the desired remote location. In addition, the

distributed nature of the problem means that multiple users can make requests

simultaneously. This results in delayed response times, information loss or

other reductions to the quality of service objectives on which users judge

network service.

For example, the Internet consists of a huge amount of local networks

interconnected by gateways. Such gateways, generally called routers, usually

have physical connections (e.g., Fiber, Satellite, coaxial cable) or network

interface ports (e.g., Ethernet) onto many networks. The determination of the

appropriate gateway and port for a particular data packet is called routing. By

exchanging information among the other routers, a router usually maintains a

list of Internet addresses and their corresponding location in the network. Such

a list is called routing table. Routers near the center of a network generally

have very large routing tables; those near the edges have small tables.

Although the routing table may be configured by hand, it is usually configured

to automatically use "Routing Protocols". The routing protocol allows routers

to periodically exchange their knowledge of the network. After a period of

time, the router becomes aware of all the possible ways to reach any end

system in the network. It therefore updates its own routing table, building a

picture of how to reach other parts of the network.

Protocols are used to implement handshaking activities such as error checking

and receiver acknowledgements. In this work, we are interested in the routing

1

http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-address.html

2

problem on computer networks. In doing so, we do not consider protocol

issues.

The problem of Routing usually refers to the process used to build the routing

table on each router, and determine how a packet travels from its source to

destination. From a single packet’s point of view, the objective is to arrive at

its destination in the shortest possible time, while from the whole network’s

point of view, the objective is to deliver maximum number of packets in

minimum average trip time, use minimum network resources, such as

memory, network link, router CPU, etc., and prevent traffic congestion from

happening. What’s more, we should not neglect some important facts of the

problem, such as the local information constraint (section 3.3.1). Thus, routing

is an optimization problem yet with many constraints.

1.2 Definitions and Characteristics of the Network Routing Problem

Before studying the routing problem of the data network, it is necessary to

mention a bit the two basic connection strategies. The traditional telephone

network uses circuit switching, whose key techniques are: must have initial

path setup, path is maintained for the entire duration of communication;

provides specific amount of dedicated bandwidth to each user, and messages

are sent in order along the same path. The packet switching of the data

network, on the contrary, needs no initial path setup, and allows multiple users

to share the network facilities and bandwidth. Each message is fragmented

into packets at the source hence each packet is independent. Packets may be

routed along different paths. However, they are reassembled at the receiver

end of the message. Therefore, traffic on the network is bursty and can be

aggregated to maximize the use of the on demand bandwidth resources.

On computer networks, locations are called nodes. There is a link between

two nodes if there is a path (of one or more connections) between the two

3

locations. The nodes and the links form a network. Thus, the routing problem

is that of determining routes for transferring information from source to

destination nodes as efficiently as possible.

There are several queues within a router, such that for each network interface

port, there are two queues assigned, one for incoming packets, one for the

outgoing packets. The basic operation upon receiving a data packet p is: the

router first put p into the incoming queue, when p gets the front the queue and

the router processor finishes handling the packets with higher priority, the

processor fetches p into the processor buffer, checks if p has destination to the

local network, if true, then sends p to the its final destination; if false, the

processor looks through the routing table, finds an appropriate next hop

router, then put p into the outgoing queue of the corresponding port. The

router sends packets one by one onto the outgoing links once the links get

available. Subject to the limited capacity of memory space, queue lengths are

limited. Once the limit is reached, any incoming packets are discarded. When

doing simulation, treating all the incoming queues as one and assuming

unlimited queue lengths will simplify the model, see Figure 11.

Several properties help make a route efficient. For example, routes passing

through the same node more than once (a loop) are especially undesirable.

Thus, a route (e.g., from a to z) with a loop can be represented as {a, s, d, f,

…, w, d, …, z}. Removing the sub-route {f, …, w, d} gives a shorter route both

as measured in time and distance. Moreover, it is not unheard of for an infinite

loop to occur. In this case, packets are continuously forwarded about a sub-

path before their time-to-live (TTL) expires. Thus, a routing algorithm should

prevent loops from happening.

The routing problem has several generic properties, which make it particularly

challenging. Specifically, the problem is distributed in nature, every router

independently stands alone, processing incoming packets, forwarding packets

4

to outgoing links, and multiple users may make requests simultaneously, all

these result in delayed response times, information loss or other reductions to

the quality of service objectives. The problem is also dynamic; hence a

solution that is sufficient for presently experienced network conditions may

well be inefficient under other loads experienced by the network. Moreover,

the traffic experienced by networks is subject to widely varying load

conditions, making it impossible to design for a single ‘typical’ network

condition. By means of the “Physical” and “Data Link” layers of OSI model,

every router knows the existence of its neighboring nodes, and this is the only

knowledge it has about the network before any information exchange

performed in higher layers. In this thesis, this knowledge is called local

information. One of the goals of routing is to help the nodes with the local

information to acquire knowledge about the topology of the network. In this

work, this knowledge is called global information. However, global

information implies a priori knowledge, which is not realistic on computer

networks. For example, nodes of the network are unaware of the network

connectivity, number of nodes comprising the network, resources associated

with each node or link. Hence a solution that assumes access to any form of

global information is not desirable. Therefore, in this work, any further

information is gathered using ‘agents’ that are responsible for collecting data

as they travel across the network. In other words, an agent represents the

intelligent packet in this context.

Since the problem is distributed and dynamic, centralized solutions (e.g.,

OSPF, EIGRP, BGP, etc.) are never good solutions, because such a

mechanism would heavily rely on the central/designated routers to gather and

exchange routing information (Minar et. al., 1999). For example, the

backbone routers, area border routers (ABRs), and anonymous system (AS)

boundary routers (ASBRs) are the central routers in OSPF. Human

configuration becomes inevitable for such kinds of solutions, as in a large

network, it is nearly impossible to achieve the optimum configuration just by

5

hand crafting. Each time network load changes sufficiently to impact quality

of service, human intervention is necessary to reconfigure the routing

protocols. This issue will be discussed in section 2.

1.3 Distributed Genetic Algorithms

Genetic Algorithms are a class of generic search algorithms that perform a

parallel search over a fixed “population” of candidate solutions. To do so,

survival of the fittest and observations from genetics are used to guide the

general mode of operation. Specifically, a selection operator provides the

pressure to improve the contents of the population, whereas search operators

address the exploitation – exploration trade off associated with improving the

performance of individuals. Such a scheme has proved robust both

theoretically (Holland’s schema theory (Goldberg, 1989)) and in practice,

with several international conferences held each year.

A genetic algorithm applies the principles of evolution found in nature to the

problem of finding an optimal solution. To do so, the problem is encoded in a

series of bit strings that are manipulated by the algorithm. A genetic algorithm

for optimization is different from "classical" optimization methods in several

ways:

- Stochastic Decision Making. Actions taken by the GA (selection of

individuals for reproduction and application of search operators) are not

deterministic. That is to say, decisions are stochastic, thus allowing

individuals to survive that do not necessarily represent the current best-

case solution alone. This avoids greedy search operators such as hill

climbing, which often become ‘stuck’ at local minima.

- Population. Holland’s schema theory indicates that solutions are identified

by different schema solving different components of the problem across

multiple individuals. The GA therefore improves the overall fitness of the

6

population as a whole such that a single individual is able to solve the

problem formulated by the fitness function.

- Mutation. Inspired by the mutation of DNA in natural evolution,

evolutionary algorithms creates new solutions by periodically making

random changes or mutations in one or more individuals of the current

population, yielding a new candidate solution, which may be better or

worse than existing population members. There are many possible ways to

perform a mutation, but it typically takes the form of a single point

operator applied to single genes, Figure 1. Mutation is therefore

responsible for introducing new candidate solutions into the population

(exploration operator).

Figure 1: Mutation

- Crossover. Inspired by the crossover of DNA that occurs in reproduction

of nature creatures. An evolutionary algorithm attempts to combine

elements of existing solutions/individuals to create a new

solution/individual, with some of the features from each "parent"

(exploitation operator). As with mutation, there are many ways to choose

the parents and perform crossover, figure 2 illustrates the action of a single

point and figure 3 multipoint crossover operators. Crossover is therefore

responsible for exploiting material (schema) currently available in the

population to suggest new candidate solutions.

7

parents offspring

Figure 2: Single-point Crossover

parents offspring

Figure 3: Multi-point Crossover

- Selection. Inspired by the natural selection in evolution -- an evolutionary

algorithm performs a selection procedure in which the fittest members of

the population are more likely to survive, and the least fit individuals are

most likely to be eliminated. In a constrained optimization problem, the

notion of fitness firstly depends on whether a solution is feasible (i.e. all

constraints are satisfied), and secondly on the relative solution quality (as

measured by the fitness function) value. The selection process is the step

that guides the evolutionary algorithm towards ever-better solutions

according to the fitness function.

- Representation. A key step in successfully applying GAs to solve

problems is identifying a scheme for encoding solutions such that the

search process itself is efficient. At the very least application of the search

operators should not result in individuals that cannot be evaluated;

whereas decoding an individual’s into the equivalent genotype before

fitness evaluation should not represent a significant computational

overhead.

8

- Pragmatics. Most machine learning algorithms conduct a single point

search. This is sufficient when the problem is well behaved to begin with,

but will lead to either stalls at local minima in the search space (and

require multipoint sampling processes to direct the restarting of the

algorithm), or a prolonged search process when the problem non-

deterministic. By non-deterministic we imply that the problem cannot be

formulated in terms of an objective that is both smooth and continuous.

Moreover, many-to-one mappings may exist between possible model

solutions and their corresponding measure of error. Finally, the objective

may be multimodel or deceptive, in the sense that hill climbing search

algorithms will typically lead to local minima. If the problem does not

conform to any of these types, then applying a GA will undoubtedly not be

computationally efficient. Problems conforming to this context are

typically only described in terms of data or an environment from which

reinforcement is available. The objective is usually framed as minimizing

or maximizing an a priori identified performance metric(s). As such there

will be many, possibly an infinite, set of models capable of satisfying the

objective, but only a much smaller set able to actually provide a

‘generalized’ model solution. It is for these reasons that GA is utilized in

the case of the packet routing problem under local information constraints

considered in this work.

Generally, a genetic algorithm can be outlined as follows (Mitchell, 1997):

GA (Fitness, Fitness threshold, p, r, m)

 Initialize: P ← p random hypotheses;

 Evaluate: for each h in P

 compute Fitness(h);

 Evolve: While [maxh Fitness(h)] < Fitness threshold

 Select: Probabilistically select (1 - r)×p members of P to add to PS;

9

 (Con’t)

where probability Pr(hi) of selecting hi from P is given by

 Pr(hi) =
∑ =

p

j
i

i

hFitness
hFitness

1
)(

)(

 Crossover: Probabilistically select r×p/2 pairs of hypotheses from P;

 For each pair <h1, h2>

 produce two offspring by applying the Crossover operator;

 add all offspring to PS;

 Mutate: Invert a randomly selected bit in m×p random members of

PS;

 Update: P ← PS;

 Evaluate: for each h in P

 compute Fitness(h);

 Return the hypothesis from P that has the highest fitness;

In order to enhance the parallel co-evolution, a single population is divided

into a number of sub-populations or demes (Nowostawski, 1999). Demes

exchange individuals at a certain rate, called the migration rate. By doing so it

is possible to avoid premature domination of a single population by one

schema that reaches a (relatively) high fitness too early in the evolutionary

cycle.

1.4 The sections

In this study, we will first introduce the classical routing algorithms and

protocols that are being widely used in practice. Other research approaches,

with a discussion of their strengths and weaknesses, are summarized in section

2. In section 3, we will discuss AntNet, one of the most popular approaches to

solving the routing problem in a distributed manner. This work belongs to the

Social Insect Metaphor methodology and provides a major motivation for this

10

study. Specifically, we introduce what happens when a strict local information

constraint is enforced, the ensuing investigation effectively forming the case

for incorporating “agents” into the routing process. Section 4 will introduce

our own GA approach to the routing problem. Section 5 will talk about the

experiments, and the experimental results will be presented. Section 6 is the

conclusion and suggestions for future work.

1.5 Publications

The work of the thesis resulted in two published papers (with Dr. Nur Zincir-

Heywood and Dr. Malcolm Heywood), they are:

- “The Effect of Routing under Local Information using a Social Insect

Metaphor”, The 2002 IEEE World Congress on Computational

Intelligence (Hawaii, U.S.A, May 2002);

- “Intelligent Packets for Dynamic Network Routing Using Evolutionary

Strategies”, The 2002 Genetic and Evolutionary Computation Conference

(New York city, U.S.A, July 2002). (Nominated for “Best paper” award)

In the first case, the drawback of the AntNet algorithm under local

information is emphasized. In the second case, a methodology based on a

Distributed GA is proposed for directly addressing the problem of routing

with local information constraints alone.

2 Literature Survey

2.1 Classical Routing Algorithms

As we know, a network can be denoted as a graph, which consists of a set of

nodes/vertices and a set of links/edges, which connect the nodes in the manner

that each link joins two nodes. The following graph (Figure 4) represents the

network of the Japanese backbone (NTTNet). NTTNet is the NTT (Nippon

Telephone and Telegraph company) fiber-optic corporate backbone. NTTNet

is a 55-node, 162-bidirectional link network. Link bandwidth is 6Mbit/sec,

while propagation delays range around 1 to 5 msec. It is a narrow long

configuration in which the degree of connectivity is low (from 1 to 5), when

compared to the US backbone. Hence the Japanese network provides a more

demanding configuration for testing routing algorithms, as higher degrees of

connectivity lower the possibility of packet loss due to loops, timeouts, i.e., in

a narrow long shaped network, once a packet is forwarded in a wrong

direction, it might never have the chance to be routed to the desired

destination.

Figure 4: NTTNet topology

The nodes and links have capacities, such as buffer size and processing time

for nodes, bandwidth for links. A non-directed graph G = {N, A} with a node

set N and an arc set A provides a formal framework for describing network

11

12

connectivity. Finding the shortest paths among nodes can be solved in

polynomial time (using Dijkstra’s algorithm, Bellman-Frod’s algorithm),

while flow optimization, i.e., maximizing packets delivery (throughput) when

links have transmission limitations is known to be a NP-complete problem

(Ahuja et. al., 1993). Note, however, this classical definition of the problem

assumes a static (worst case) load and complete information. In practice

neither are necessarily known and the problem becomes more difficult.

The routing protocols are responsible for exchanging routing information

between routers, and helping each router build a routing table for each

possible destination sub-network. Packet destinations are therefore expressed

in terms of sub-networks (Norris, Pretty, 2000). Figure 4 represents the node

connectivity above the sub-network level. It is only at this level that we are

interested in routing.

The routing protocols being widely used on the Internet are usually based on

one of the following general principles: Static Routing, Distance Vector

Routing, Link State Routing, or Path Vector Routing. In small networks, for

example, a small network of a small business with leased line connection to

the Internet, Static Routing is commonly used to configure the default route.

When the topology of a network changes frequently, static routing is no

longer suitable for such a dynamic environment; distance vector routing and

link state routing have advantage over static routing. Distance vector routing

relies on the regular updates of routing information to keep the routing tables

on every router up to date. The objective of link state routing is to let every

router maintain a map of the network topology.

Routing protocol RIP2 (Routing Information Protocol version 2, RFC2453,

STD0056) is widely used in small networks. As the original Interior Gateway

Routing Protocol (IGRP), RIP is a kind of Distance Vector Routing algorithm,

13

more specifically, based on the distributed Bellman-Ford algorithm for the

Graph Shortest Path problem.

RIP works well in small networks, but becomes increasingly less efficient as

network size increases. It also suffers from the count-to-infinity and slow

convergence problems. Count-to-infinity is an issue with hop counts, it

happens in some subtle network failure situation resulting from mutual

deception routing information updates. All distance vector protocols are

susceptible to this well-known "count to infinity" problem (Perlman, 1992).

Look at the following example (Figure 5):

A C

B

D

Figure 5: A simple example of the count to infinity problem

After convergence, A, B, and C has an entry for route to D, Table 1.

Routing table of A Routing table of B Routing table of C
Destina

tion
of

Hops
Next
hop

Destin
ation

of
Hops

Next
hop

Destin
ation

of
Hops

Next
hop

…… …… ……
D 1 D D 2 A D 2 A

……

……

……

Table 1: Routing tables after convergence

Consider the situation that link between A and D is down. Suppose link AB is

much slower than link AC. Then the Update events are:

 (1) A sets path to D with cost ∞, and sends update to B and C;

(2) C gets update information from A, sets path to D with cost ∞;

(3) B tells C path to D with cost 2; C updates;

14

(4) B gets update information from A, sets path to D with cost ∞;

(5) C tells A path to D with cost 3; A updates;

(6) A tells B path to D with cost 4; B updates;

(7) B tells C path to D with cost 5; C updates;

 ……

This update cycle continues and the cost to D goes to infinity. Slow

convergence problem is caused by the “count to infinity” problem, in such a

way that, routers A, B, and C waste time in updates before they realize the

route to D is unavailable. There are many other network topologies suffer

these problems. Split Horizon and Split Horizon with poison were then

proposed, but they can only decrease the possibility of count to infinity

problem.

OSPF (Open Shortest Path First, RFC2328, STD0054) is a more modern

protocol from the IGRP family, which is based on the Dijkstra’s algorithm.

OSPF is much more successful than RIP and is used in many networks,

although it requires human configuration. That is, a series of assumptions,

based on global information, is required to configure the protocol.

RIP and OSPF belong to IGRP. IGRP protocols are routing protocols for

autonomous systems (ASs). These include: RIP, EIGRP, ISIS, OSPF, and

SPF. An AS is a group of routers that are within one administrative domain

and that run the same routing protocol. The public Internet nowadays is

composed of ASs, and EGP (Exterior Gateway Protocol), which are designed

for routing among the ASs. BGP (Border Gateway Protocol) is a kind of EGP.

BGP uses path vector routing, where a path is an ordered list of AS numbers.

Every entry in the routing table contains the destination network, next router,

and path to reach the destination.

15

As shown above, a range of different routing protocols exist, each with their

own strengths and weaknesses. Static routing is simple, but has poor

scalability and robustness properties (which is a key advantage of dynamic

routing). RIP suffers count-to-infinity and slow convergence problems, and

takes up a lot of bandwidth. All these make RIP (or other distance vector

protocols) only good for small networks, and not competent for larger

networks; OSPF (or other link state protocols) are designed with scalability,

but their complexity makes it hard to design and configure the network

efficiently. The path vector routing attribute of BGP leads to some attractive

features, such as policy routing, loop prevention, and so forth. OSPF and BGP

have a common weakness in that the design relies on several core routers. As

discussed in section 1.2, such a centralized design has many drawbacks for the

case of highly distributed networks.

2.2 Recent Research Approaches

Several approaches have been proposed for addressing these objectives

including: active networking (Tennenhouse et. al., 1997), social insect

metaphors (Di Caro, Dorigo, 1998), (Dorigo et. al., 1996), cognitive packet

networks (Gelenbe et. al., 1999), evolutionary approaches (Sinclair, 1993),

(Munetomo et. al., 1997), and what might be loosely called other ‘adaptive’

techniques (Corne et. al., 2000). The evolutionary approaches usually

represent a route/path by an ordered list of nodes, and then try to achieve the

routing problem by evolving the “paths” or “routing tables”. Moreover,

Evolutionary and ‘adaptive’ techniques typically involve using evolutionary

or neural techniques to produce a ‘routing controller’ as opposed to a ‘routing

table’ at each node, where the controller typically requires knowledge of the

global connectivity to ensure a valid route. Both the social insect metaphor

and the cognitive packet approach provide a methodology for routing, without

constraints; by using the packets themselves to investigate and report network

topology and performance. Similarly, mobile agents discover edges by

16

traversing them, and update the routing table on the landed hosts (Minar et.

al., 1999).

All methods as currently implemented suffer from one drawback or another.

For example, cognitive packet networks and active networking algorithms

attempt to provide routing programs at the packet level, hence achieving

scalable run time efficiency becomes an issue. The Social Insect Metaphor

approach is discussed in the following section, and limitations investigated

under a strict local information constraint. This will form the basis for

combining a multi-agent approach with Genetic Algorithms for avoiding any

reference to global information.

3 Social Insect Metaphor Approach

3.1 Introduction

As indicated above active networking (Tennenhouse et. al., 1997) and

cognitive packet (Gelenbe et. al., 1999) based approaches emphasize a per

packet mechanism for routing. The aforementioned Evolutionary and

‘adaptive’ techniques (Corne et. al., 2000) tend to emphasize adding

‘intelligence’ to the routers leaving the packets unchanged. A social insect

metaphor provides a middle ground in which the concepts of a routing table

and data packet still exist, but in addition, intelligent packets – ants – are

introduced that interact to keep the contents of the routing tables up to date.

To do so, the operation of ant packets is modeled on observations made

regarding the manner in which worker ants use chemical trails as a method of

indirect stigmergic communication. Specifically, ants are only capable of

simple stochastic decisions influenced by the availability of previously laid

stigmergic trails. The chemical denoting a stigmergic trail is subject to decay

over time, and reinforcement proportional to the number of ants taking the

same path. Trail building is naturally a bi-directional process, ants need to

reach the food (destination) and make a successful return path, in order to

reinforce a stigmergic trail (Forward only routing has also been demonstrated

(Heusse et. al., 1998). Moreover, the faster the route, then the earlier the trail

is reinforced. An ant on encountering multiple stigmergic trails will

probabilistically choose the route with greatest stigmergic reinforcement.

Naturally, this will correspond to the ‘fastest’ route to the food (destination).

The probabilistic nature of the decision, however, means that ants are still able

to investigate routes with a lower stigmergic signature (probability).

This approach has proved to be a flexible framework for solving a range of

problems including the traveling sales man problem (Heusse et al., 1998) and

the quadratic assignment problem (Maniezzo et al., 1999). The work reported

17

18

here follows the ‘AntNet’ algorithm of Di Caro and Dorigo (Di Caro, Dorigo,

1998), and is informally summarized as follows:

1) Each node in the network retains a table of packet destination frequency as

seen on data packets passing through that node. This is used to

periodically, but asynchronously, launch ‘forward’ ants with destinations

stochastically sampled from the collected set of destinations;

2) Once launched a forward ant uses the routing table information to make

probabilistic decisions regarding the next hop to take at each node. While

moving, each forward ant collects time stamp and node identifier

information and this is later used to update the routing tables along the

path followed;

3) If a forward ant re-encounters a node previously visited before reaching

the destination, it is killed (case of a loop);

4) On successfully reaching the destination node, total trip time is estimated

and the forward ant converted into a backward ant;

5) The backward ant returns to the source using exactly the same route as

recorded by the forward ant. Instead of using the data packet queues,

however, the backward ant uses a priority queue;

6) At each node visited by the backward ant the corresponding routing table

entries are updated to reflect the relative performance of the path;

7) When the backward ant reaches the source it dies.

Although providing for a robust ant routing algorithm under simulation

conditions, an assumption is made, which inadvertently implies the use of

global information (Di Caro, Dorigo, 1998). Table 2 is the routing table in

AntNet for the case of a node k with L neighbors. The routing table is

organized as in vector-distance algorithms, but represents probabilities. The

definition of a routing table is such that it assumes every node (destination)

has a unique location in the routing table. In practice this is never the case. To

do so would assume that it is first feasible, and secondly, should the network

19

configuration ever change, then all nodes should be updated with the new

configuration information. And, the probabilities of every column add up to

1.0, which means a certain event that there must be some path from any node

to any node – a connected graph; but, that fact is, the network could be broken

into two or more separate components. Moreover, as forward ants propagate

across the network, the amount of information they need to ‘carry’ also

increases (node identifier and time stamp). Finally, the availability of globally

synchronized time is also assumed. Section 3.3 discusses the implementation

of the AntNet algorithm without recourse to global information.

All Network Nodes (Possible Destinations)
PN1,1 P N1,2 --- P N1,k-1 P N1,k+1 --- P N1,55
P N2,1 P N2,2 --- P N2,k-1 P N2,k+1 --- P N2,55

--- --- --- --- --- --- --- Th
e

L
N

ei
gh

bo
rs

P NL,1 P NL,2 --- P NL,k-1 P NL,k+1 --- P NL,55

Table 2: Original AntNet Routing Table Tk at network node k (1 ≤ k ≤ 55) on

the NTTNet

3.2 AntNet Algorithm

It is assumed that routing tables, Tk, exist at each node, k, in which a routing

decision is made. Tables consist of ‘L’ rows, one row for each neighboring

node/link. As far as a normal data packet is concerned, if the destination d

from the current node k, is a neighbor then the routing is still a stochastic

decision. In all other cases, a router is selected based on the neighbor node

probabilities.

a) New forward ants, Fsd, are created periodically, but independently of the

other nodes, from source, s, to destination node, d, in proportion to the

destination frequency of passing data packets. Forward ants travel the

network using the same priority structures as data packets, hence are

subject to the same delay profiles;

20

b) Next link in the forward ant route is selected stochastically, p′(j), in

proportion to the routing table probabilities and length of the

corresponding output queue.

()1||1
)(

)('
−+

+
=

k

j

N
ljp

jp
α

α

where p(j) is the probability of selecting node j as the next hop; α weights

the significance given to local queue length versus global routing

information, p(j); lj is the queue length of destination ‘j’ normalized to the

unit interval; and Nk is the number of links from node k;

c) On visiting a node different from the destination, a forward ant checks for

a buffer with the same identifier as itself. If such a buffer exists the ant

must be entering a cycle and dies. If this is not the case, then the ant saves

the previously visited node identifier and time stamp at which the ant was

serviced by the current node in a buffer with the forward ant’s identifier.

The total number of buffers at a node is managed by attaching “an age” to

buffer space and allowing backward ants to free the corresponding buffer

space;

d) When the current node is the destination, k = d, then the forward ant is

converted into a backward ant, Bds. The information recorded at the

forward ant buffer is then used to retrace the route followed by the

forward ant;

e) At each node visited by the backward ant, routing table probabilities are

updated using the following rule,

IF (node was in the path of the ant)

THEN p(i) = p(i) + r {1 – p(i)}

ELSE p(i) = p(i) – r P(i)

where r ∈ (0, 1] is the reinforcement factor central to expressing path

quality (length), congestion and underlying network dynamics.

21

As indicated above, the reinforcement factor should be a factor of trip time

and local statistical model of the node neighborhood. To this end (Di Caro,

Dorigo, 1998) recommended the following relationship:

−+−
−

+

=

)()(infinfsup

infsup
21 ItII

II
c

t
Wcr

antant

best

where tant is the actual trip time taken by the ant; c1 and c2 are constants that

weigh the importance of each term; Wbest is the best-case trip time to

destination d over a suitable temporal horizon, W;

Iinf = Wbest;

Isup = µd + {σd / [W (1 - γ)]0.5}.

In the above equation, γ is a constant, determining the confidence interval. An

array Mk(µd, σd; Wd), of data structures defines a statistical model for the

traffic distribution over the network as seen by the local node k. For each

possible destination d in the network, the estimates for mean, µd, and variant,

σd, of the trip time reflect the expected trip time to d, and the stability. These

adaptive values are also made iteratively, using the trip time information.

Thus,

µd = µd + η(okd – µd)

(σd)2 = (σd)2 + η{(okd – µd)2 – (σd)2}

where okd is the newly observed trip time from current node k to destination d.

From the above algorithm, it is, therefore, apparent that ants are required to

make decisions under more uncertainty than was previously the case.

Moreover, the trip time information is updated incrementally based on the

22

recorded trip duration between current node, k, and ultimate destination, d.

This means that it is no longer necessary to carry all node and duration

information as a ‘stack’ to the target duration as in the original model (Di

Caro, Dorigo, 1998). Only the previous step information is therefore

necessary.

3.3 AntNet Algorithm With Local Information

3.3.1 Assumptions

Research has demonstrated that the AntNet algorithm outperforms OSPF

(Di Caro, Dorigo, 1998), which belongs to link state routing algorithm.

However, as indicated above it makes some assumptions in terms of the

information available in the routing table that make it unrealistic in

practice. First, every node in the network has a column in the AntNet

algorithm. This implies that every router must know of the existence of the

rest of the world. That is to say, all routers are aware of the number of

routers comprising a network and their addresses. This violates the

shortsighted property (section 1.2) of the routers. Indeed, gaining such

knowledge of the network is one of targets of the routing problem!

Secondly, its routing table implicitly implies the network connectivity

assumption. The probabilities of each column in the routing table (Table

2) always sum up to 1.0, which means a certain event, that is, from any

source node to any destination node, there is at least one path connecting

them. The network will never be broken into separate components. But

this is possible to happen.

In the following, we introduce a local information constraint into the

AntNet algorithm with the objective of providing a platform for

investigating these limitations further, section 4.

23

3.3.2 Removing the Global Information Assumption

One of the goals of our work is to investigate routing algorithms without

global information. We remove the first assumption, i.e., the global

information assumption (i.e., the number of routers in the whole network,

the IDs of all the routers), to identify the sensitivity of the AntNet

algorithm to this property.

In the AntNet algorithm without the first assumption (i.e., global

information), the routing table is revised in such a way that it has 2

columns respectively, one column for the router’s neighbors, and the other

for the rest of the network nodes. The elements in the routing table are still

probabilities. For example, Pn,d is the probability to reach destination d via

neighbor n. Table 3 is the routing table at node k for the AntNet algorithm

with local information, i.e., every node only “sees” its neighbors.

 Neighbors as
destinations

Destinations other
than neighbors

PN1, N1 P N1,d
d ≠ N1

P N2, N2

P N2,d
d ≠ N2

------ ------

Th
e

L
N

ei
gh

bo
rs

P NL, NL

P NL,d
d ≠ NL

Table 3: Proposed Routing Table at any network node k on the NTTNet

This modification brings changes to the routing table in original AntNet

algorithm (Liang et. al., May 2002).

� Routing tables only detail the neighboring nodes. Such a limitation

therefore places greater emphasis on the learning capacity of the ant.

This is particularly significant during step b) of the ant forward pass

24

(section 3.2). Table 2 and 3 illustrate the difference in available

information for a node;

� Each node has a buffer in which forward ants deposit time stamp and

identifier for the previous node. It is only the inter-node information,

which is important;

� Time synchronization is treated as a protocol issue. That is to say,

during low load conditions each node is responsible for letting

neighboring nodes know what their current time clock is. Moreover,

whenever interruptions to services are sustained, then the first step

once a node returns to operation will be to reinitiate local time

references. Usually the time synchronization is achieved by applying

the Network Time Protocol (RFC 1305) to the routers.

4 GA Approach With Local Information to the Routing Problem

4.1 Discussion of the Problem and Previous Research Work

As indicated in the introduction, the routing problem is an NP-complete

problem, and, it has several properties, such as its distributed and dynamic

nature, which imply that one single static solution does not exist.

Static Routing, limited in its ability as its name indicates and is nowadays only

used in simple situations; Distance Vector routing algorithms and link state

routing algorithms are far away from handling the dynamic network

conditions efficiently, especially when network equipment have many failures

or network topology changes very often. The traffic and overhead caused by

the routing protocols will become burdens of the network. Moreover, all the

currently used routing protocols rely on some critical routers to collect,

exchange and distribute the routing information to achieve the goal. This

centralized nature makes the routing protocols incapable for distributed nature

of the routing problem, because if some of the central routers or just some

links of them have problem, the network will be affected seriously. Thus,

experienced network engineers are required to configure the routing protocols

each time network conditions change.

We have discussed the drawbacks of the AntNet algorithm in a previous

section. Yet, there are other problems with even the modified AntNet

algorithm. For example, the routing table is fixed, while the network topology

is highly dynamic! What if a new node, or a new link is added? In order to let

other nodes adapt to the change, and be able to find a route to it, according to

the AntNet algorithm, modification of the node structures (Tk & Mk) on every

node of the whole network must be carried out: every node must add a new

entry in the traffic distribution statistics array Mk, every node must add a new

column in the routing table Tk for the new node, the new node’s neighbors

25

26

even have to add a new row in Tk. This would be a protocol overhead not

explicitly addressed in the AntNet algorithm. More significantly, simulation

results using the local AntNet algorithm indicate that the algorithm no longer

is able to correctly route data packets without significant loss. In effect, the

positive feedback mechanism central to the AntNet algorithm is disrupted.

4.2 Objective and the GA Approach

Our goal in this work is to remove the significance of global information in

the AntNet routing algorithms with the help of Genetic Algorithm co-

evolutionary mechanism (Liang et. al., July 2002).

The objective of this work is to investigate a scenario in which the entries

themselves are identified dynamically. This will be a first step towards a co-

evolutionary model capable of evolving solutions to the packet switched

routing problem. The ants, in this case, take the form of individuals from a

distributed Genetic Algorithm (GA), hereafter referred to as GA-agents.

Individual chromosomes travel the network using a variable length string of

next hop offsets (detailed in Figure 8: Processing GA-agents), e.g., {1, 5, 0, 4,

2, 3, 5} over the interval [0, L], where ‘L’ is selected to enable indexing of

node connectivity. In all the experiments of section 5.3.4, ‘L’ is set to 6. On

entering a node, a gene (next hop offset) is used to identify the next link using

a clockwise count from the link, the GA-agent entered the node i.e. the next

link is selected as the modulus of (gene % # of links). Such a representation is

then independent of the specific network connectivity, unlike say the GA

approach in (Munetomo et. al., 1997). For each node encountered, a record of

the trip time and node ID is made. The process naturally continues until the

GA-agent executes its last gene, at which point it becomes a backward agent,

returning to its original source node. In the special case of a GA-agent

attempting to return down the same link as it entered a node, the router

randomly selects the next hop from the available links, and changes the gene

to the new value (deterministic mutation). If no next hop is available, then the

27

chromosome is truncated, and the GA-agent becomes a backward agent (see

the algorithm “processing agents“). Note, unlike the AntNet algorithm,

modification of routing tables only takes place once the GA-agents have

returned to their original source, and modifications only affect the source node

routing table. The above representation supports single point crossover,

resulting in variable length individuals. Mutation randomly selects a gene and

adds/ subtracts an integer such that the new gene is still in the interval [0, L].

Agent ID Agent Fitness Trip Time (ms) and node ID
95 0.32 (3, J), (9, C), (21, W)
234 0.39 (1, B), (7, A), …, (432, Y)
… … …
31 0.71 (5, C), (9, K), …, (871, X)

Table 4: GA-agent Routing Table

At initialization, a router sends out half of the population of GA-agents to

explore the network. Whenever the number of returned GA-agents reaches

four, the fitness of the four agents is evaluated.

The fitness function is defined as the normalized node popularity:

∑
∑

inodeloredeachfor

i

inodeloredeachfor

ik

timetrip

timetripiNP

__exp__

__exp__

_

_*)(

where the node popularity NPk(i) is defined as:

NPk(i) = Dest(i) / TDk

where TDk is the total number of data packets passing through node ‘k’; and

Dest(i) is the number of data packets with destination ‘i’.

28

The chromosome fitness measures the popularity of nodes visited as well as

the time taken to reach nodes encountered by GA-agents, both of these

properties are measured with respect to the original source node.

Node popularity NPk(i) is a dynamic property, measured at the original source

node k by recording the frequency of different data packet destinations as seen

by the source node k over a fixed time window (the time window is set 50

seconds in this work). It reflects the most recent trend of the desired

destinations. Trip time to each of the explored node is a dynamic property too;

the returned agents bring back the most recent knowledge of the network

condition.

Chromosomes, which find shortest paths to frequently used destinations, are

therefore favored. The best two agents are then chosen – as in a steady state

tournament, as parents for routing table update and population evolution (See

Figure 9).

The routing table (Table 4) in the GA approach consists of a list of returned

agents, every entry corresponds to an evaluated returned agent. On routing a

data packet (see Figure 10), the router checks the routing table for the agent

that had experienced shortest trip time to the desired destination (third column

of Table 4); if such an entry is not found, the entry with the highest fitness

(second column of Table 4) will be selected as the default route for this data

packet. The neighboring node, which corresponds to the first gene of the

selected route/agent, is the next hop for this data packet.

The above constitutes our basic GA-agent approach. In addition, three further

concepts are introduced. The first is that of demes (Nowostawski, 1999). This

provides a mechanism for passing useful chromosomes between neighboring

nodes, thus the nodes share their knowledge of the network. To do so, every

node will propagate best-case chromosomes to neighboring nodes every 500

29

or 700ms (tuneable parameter, see “propagate freq” in section 5.3.2).

Secondly, in order to avoid stagnation in the routing tables an aging

mechanism is introduced. This takes the form of an incremental penalty

applied to each entry of the routing table, Figure 9. The motivation for such an

aging mechanism is to ensure that routing tables remain sensitive to the

dynamic nature of the environment (e.g., changes to network topology,

network node/link failure, network congestion). Such a mechanism is

introduced during updates to routing tables: making each routing table subject

to decaying fitness and an increasing trip time, figure 6.

for each agent in routing table

do fitness = original_fitness × c2;

 for each node in the entry

 do trip_time = original_trip_time / c2;

 end for

end for

where c2 is a constant ∈ (0.0, 1.0)

Figure 6: GA agent aging mechanism

Finally, when initializing the populations of chromosomes at each node, a

node with a higher connectivity degree naturally represents a larger search

problem. Thus, the number of chromosomes of a node is initialized in

proportion to the square of the number of neighbors (more discussion in

section 6.3).

The algorithm is outlined as follows from Figure 7 to Figure 10: (c1, c2, and c3

are constants.)

30

Init

initialize first generation of agents;

#agents = #links2 × c1;

 string of offsets of an agent is a string of non-negative integers, e.g., {3, 1, 5, 2, …}

clear routing table;

clear flow pattern statistics;

send out half population of individuals/chromosomes;

Figure 7: GA Initialization

Processing agents

if it’s a backward agent

then if it arrives the source

then if it timeouts

 then discard it;

else put it into “back” list;

 end if

else if the next hop is down

then discard it;

else forward it to the link;

end if

end if

 else agent records the trip time info;

take out an offset from the appropriate position;

if the corresponding link is available and no loop (section 1.2) caused

 then send the agent to the link;

else randomly (each available link has equal probability) select an

available link and causing no loop;

31

end if (Con’t)

 if no such link found

 then convert the agent into a backward agent;

 else set the offset to the new value;

 send agent to the corresponding outgoing buffer;

 end if

 end if

Figure 8: Processing GA-agents

Updating routing table & population (once 4 agents are back)

 update the performance table by aging mechanism:

 for each agent in routing table

 do fitness = original_fitness × c2;

 for each node in the entry

 do trip_time = original_trip_time / c2;

 end for

 end for

use the fitness function to evaluate the fitnesses of back agents;

select the best two agents as parents;

put/update the fitness’s of the parent agents in the routing table;

 delete the entries of the worst two agents in the routing table;

use standard crossover and mutation on the parents to generate two children;

put the children into the population;

delete the worst two agents from the population;

if current time > last clear time + c3

then clear flow statistics;

end if

32

 randomly launch 4 agents from the population to explore the network; (Con’t)

Figure 9: Updating routing table and population

Routing data packets

if routing table is empty

then randomly choose a link to forward;

else search routing table for the shortest trip time to desired destination;

 if no entry found ever explored the desired destination

 then choose agent with best performance;

 end if

end if

if no route is found

then discard the packet;

else forward packet to the neighbor that corresponds to the first gene of

selected agent;

 end if

Figure 10: Routing data packets

4.3 Data Structures

Every agent consists of a string of next hop offsets, and time stamp records.

Every router (Figure 11) consists of an incoming buffer, an outgoing buffer

for each neighboring router, a processing buffer (stores a packet at a time),

and memory space for routing table. For the GA approach, every router has a

population of chromosomes, a routing table, a flow pattern statistics table, and

a fitness table. The number of chromosomes per population is in direct

proportion to the square of number of neighbors. The routing table, which is

updated whenever four chromosomes return, consists of current fittest

33

individuals. The flow pattern estimates the popularity of data packets passing

through the node. The fitness table stores the fitness of every chromosome,

currently a member of the routing table.

CPU
outputinput

A router

Figure 11: Schematic representation of a network node (router)

5 Experiments

5.1 Settings

The discrete event driven simulation models the network as routers (nodes)

and links. The simulation in this work can be considered on the “network”

layer of OSI model, where only the routing issues are addressed. The memory

space is assumed always large enough for the buffers and routing table of the

router (Figure 11). A priority queue is used to store the events. Both AntNet

(local model and global model) and GA-agent algorithms are simulated under

the same environmental conditions. That is, an event generator is used to

generate the events, such as a new packet time of generation, or router’s

availability. The following are the parameters used in the simulations:

- Network topology takes the form of the Japanese backbone, figure 4;

- Forward ants are launched every 300ms;

- The AntNet and GA algorithms are given 5 seconds at the beginning of

the simulation to converge the initial routing tables, during this period,

routing packets (ants and GA-Agents) are the only packets traversing the

network;

- Data packets are generated by Poisson distribution (mean of 35ms);

- The seven parameters for the GA based scheme are given in Table 5;

- Any packets, including data packets, are killed should a loop be detected.

Given the probabilistic nature of the routing tables this represents a rather

harsh constraint, but it is utilized to emphasize the properties of different

routing strategies.

5.2 Baseline – Static Shortest Path algorithm

To establish a baseline for AntNet and GA-agent algorithms, we implemented

the Static Shortest Path (SPS) algorithm for this routing problem. The SPS

34

35

pre-calculates the all-pairs shortest paths, can be regarded as the converged

routing tables on each router using RIP. Indeed, SPS is different from RIP

critically in that the latter takes the number of hops to judge the routes, the

former takes the transmission time, which is more preferable, because some

links are much slower than others, which should not be equally considered as

fast links. In order to simplify the problem, we use the Floyd-Warshall

algorithm (Cormen et. al., 1989) to construct all the shortest path pairs, Figure

12.

Floyd-Warshall (network W)

 n = rows(W);

 distance array D = W; (n × n, filled with element ∞)

 next hop array Next; (n × n, filled with element ∞)

 for i = 1 to n

 for j = 1 to n

 if i and j are adjacent

 then dij = cost(i, j);

 nextij = j;

 end if

 end for

 end for

 for k = 1 to n

 for i = 1 to n

 for j = 1 to n

 if (dij > dik + dkj)

 then dij = dik + dkj;

 nextij = nextik;

 end if

 return D & Next;

Figure 12: Floyd-Warshall algorithm

36

Each simulation is run for 1250s. As a result, 1985536 data packets are

generated within 1250s. The queue length is the total number of waiting

packets, which includes the data packets and the routing packets. In this paper,

the routing packets refer to the ants in the AntNet algorithm, and to the GA-

agents in the GA approach.

In this work, we will compare three algorithms (see Figure 13): Static Shortest

Path algorithm (SPS), AntNet (with global information – GlobalAnt, with

local information – LocalAnt), and GA (with 100% crossover & 100%

mutation – certainGA, with classical probabilistic 90% crossover & 10%

mutation – probGA).

Static
Shortest Path

Static
Shortest Path

with crossover
& mutation

with crossover
& mutation

with global info
with global info

GA approachAntNet

with local info
with local info

with probabilistic
crossover & mutation

with probabilistic
crossover & mutation

Figure 13: Algorithms for comparison

5.3 Experimental Results

5.3.1 AntNet Parameters

The following is the list of parameters of AntNet algorithms being used:

α = 0.3;

37

c1 = 0.7;

c2 = 0.3;

η = 0.005;

γ = 0.654;

where these values follow the recommendation of (Di Caro, Dorigo,

1998).

5.3.2 GA Approach Parameters

In the case of routing using GA-agents, there are five basic parameters,

- Rates of crossover and mutation;

- # Agents / link2 – a constant c1, which determines the population of

chromosomes on every node;

- Aging – a constant c2 ∈ (0.0, 1.0), rate by which fitness of individuals

currently populating the routing tables decay;

- Propagate ratio – the number of chromosomes exchanged between

populations, expressed as a % node population size;

- Propagate freq – constant rate/frequency of exchange of chromosomes

between populations;

- Flow clear freq – a constant c3, time interval over which data packet

destination statistics are collected.

Eight different combinations of the above parameters are considered, these

are initially selected to enable qualification of the sensitivity to population

size, rate of aging etc. and remain the same across all experiments. Table 5

summarizes these parameters:

 Combinations
Parameters

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8

Probabilitycrossover 1.0 0.9
Probabilitymutation 1.0 0.1
agents / link2 32 32 40 48 32 32 40 48
Aging rate 0.8 0.9 0.9 0.9 0.8 0.9 0.9 0.9
Propagate ratio (%) 5 3 3 2 5 3 3 2

38

Propagate freq (ms) 500 500 700 700 500 500 700 700
Flow clear freq (sec.) 50

Table 5: combinations of GA parameters

Simulations of the eight combinations are conducted (see Table 5) on five

network conditions (Table 6 - 10). Combinations involving minimal agent

count, propagation frequency and ratio with highest aging rate

(combination No.2 and No.6, table 5) appeared to provide the most

reliable performance independent of scenario (Appendix B). These two

cases are therefore detailed in the following results.

5.3.3 Performance Measurements

A total of 5 simulation scenarios are considered for the SPS, AntNet and

GA approaches, all of which utilize the Japanese backbone network

topology, figure 4. In the first case, all routers remain available, Table 6.

The remaining experiments investigate plasticity of the network by

removing different router combinations, Tables 7 - 10. First, router R34 is

removed at a time step of 500s, Table 7. From figure 4, it is apparent that

router R34 represents a significant node in the topology, although

alternative paths certainly exist. In Table 8, two routers (R49, R13) are

removed, whereas in Table 9 the same two routers (R49, R13) are first put

down asynchronously, but put up later. Finally, in Table 10, three routers

(R42, R19, R6) experience failure at time 500s.

On measuring the performance of routing algorithms, we focus on the

following metrics:

- Network throughput, which is defined as number of data packet bytes

successfully received at their destination in a two second window;

- Network Queue size, which is defined as the number of data packets

and routing packets in the incoming buffers and outgoing buffers on

39

all the routers. So in the case of SPS, there is no routing packets; in the

case of AntNet algorithms, routing packets refer to the ants; and in the

case of GA approaches, routing packets refer to the GA agents;

- Total time to deliver all the data packets (finish time);

- Number of arrived data packets (short as AP);

- Average trip time of arrived data packets;

- Number of routing packets generated during simulation;

- Average chromosome length on each node (Appendix A);

- Chromosome fitness on each node (Appendix A);

- Number of arrived data packets on each node (Appendix A).

In this work, packet loss happens in these conditions: immediately loss

due to network failures, e.g., packets which are existing in a failed node,

or existing in the outgoing buffer to a failed node, or being transmitted via

links to a failed node; discarded by a node if the packet enters a loop.

5.3.4 Results

5.3.4.1 No Network Failure

No network failure
Algorithm SPS GlobalAnt LocalAnt CertainGA ProbGA
Finish time (ms) 1318526 1252740 1267002 1252815 1252000
routing packets 198346 218539 1027884 960601
Arrived packets (AP) 1985536 1979268 902884 1585185 1692813
Lost packets 0 6268 1082652 400351 292723
Average trip time of
AP (ms)

1387 566 398 905 1171

Table 6: All network devices remain available

40

Figure 14: queue size - all network devices remain available

Figure 15: throughput performance - all network devices remain available

From Figure 14, Queue Length, the following observations are made.

SPS observes a linear increase in queue length, indicating that the

algorithm is unable to control this parameter, and suggesting a reliance

41

on routing buffers of sufficient size to absorb this property. From

Table 6, it is evident that no packets are lost (no loops) – unlike the

other algorithms. Throughput, figure 15, is high relative to that

achieved using the other algorithms.

The LocalAnt algorithm is not able to improve on the queue length

performance of SPS, figure 14. In addition looses more packets than it

successfully routes, table 6 (packets with loops now exist on account

of poor routing and probabilistic nature of the routing tables) and

returns the lowest throughput rates.

After an initial configuration period (typically 100 seconds for the GA

schemes) the remaining algorithms control queue length effectively,

figure 14. The global Ant algorithm “looses” the least packets (0.3%

as opposed to 20% and 15% respectively for certainGA and probGA

respectively), table 6, and maintains the highest levels of throughput.

Figure 15. However, the classical selection of crossover and mutation

rates significantly benefits probGA.

In short, the sequence of comprehensive performance is: GlobalAnt –

SPS – probGA – certainGA – LocalAnt.

5.3.4.2 R34 Down at 500s

R34 down at 500s
Algorithm SPS GlobalAnt LocalAnt CertainGA ProbGA
Finish time (ms) 1250245 1668469 1369366 1306682 1506900
routing packets 199075 218823 1086689 1170219
Arrived packets (AP) 1464815 1833184 813913 1298426 1400861
Lost packets 520721 152352 1171623 687110 584675
Average trip time of
AP (ms)

1956 998 2899 2613 356

Table 7: Router R34 fails to work at time 500s

42

Figure 16: queue size - Router R34 fails to work at time 500s

Figure 17: throughput performance - Router R34 fails to work at time 500s

In this scenario node 34 is removed at time step 500, where node 34

represents a critical node for connectivity, but bypass routes do exist,

figure 4. The SPS algorithm is naturally not able to adapt to the change

43

in configuration. As such SPS throughput changes from joint best to

third, figure 17; SPS queue length gets very small (much smaller than

20000) as soon as node R34 is removed, reflects that in the static SPS

routing tables of the nodes direct most data packets through R34, once

again shows the importance of R34 in the NTTNet.

The LocalAnt algorithm continues to lose more packets than it delivers

(implying that more packets enter a loop than find a direct path) and in

addition returns the longest trip time for those packets that are

delivered, table 7. Possibly on account of the reduction in the number

of packets delivered, the queue length profile is now better than

GlobalAnt, figure 16, whereas throughput is still the worst, figure 17.

The linear increase in global Ant queue length appears to indicate that

only small changes to the routing strategy have been made to

accommodate the new network condition. That is to say, the algorithm

– under the current parameterization – is making use of unconstrained

queue lengths to soak up the reduced connectivity.

In the case of GA-agents, a clear preference for probGA as opposed to

certainGA exists, hence comments are made for probGA alone.

ProbGA returns the fastest average trip time for delivered packets and

almost betters SPS in terms of ‘lost’ packets, table 7. Queue length,

figure 16, observes a continued linear increase once the fault is

introduced, indicating that a suitable alternative routing strategy has

not been identified. Both local Ant and certainGA have minimal queue

length profiles on account of the high packet losses, table 7.

In summary, the distinction between GlobalAnt and probGA is less

clear. All the remaining algorithms however perform significantly

worse.

44

5.3.4.3 R13 and R49 Down at 500s

R49 & R13 down at 500s
Algorithm SPS GlobalAnt LocalAnt CertainGA ProbGA
Finish time (ms) 1250239 1465837 1300468 1444549 1252000
routing packets 198030 218713 972622 1025141
Arrived packets (AP) 1370605 1871469 827125 1369264 1417205
Lost packets 614931 114067 1158411 616272 568331
Average trip time of
AP (ms)

2161 1325 1617 1301 861

Table 8: Routers R49 and R13 fail at time 500s

Figure 18: queue size - Routers R49 and R13 fail at time 500s

45

Figure 19: performance - Routers R49 and R13 fail at time 500s

In this experiment Routers R13 and R49 were put down at 500s.

Routers R13 and R49 are not as important as R34 (R13 has

connectivity degree 4, R49 has connectivity degree 3, whereas R34 has

connectivity degree 5.). However, we wanted to know how the

algorithms would behave under multiple network failure conditions.

SPS is again naturally unable to reconfigure following the introduction

of faults. Moreover, the number and position of faults results in the

highest number of lost packets, table 8 (in the case of SPS due to the

retention of routes which lead to nodes which no longer function).

Furthermore, average trip time of the delivered packets is now the

worst of the five algorithms. LocalAnt is still losing far more packets

than it is delivering, table 8, which naturally results in low throughput

and queue length profiles, figures 18 and 19. The GlobalAnt algorithm

still looses the least number of packets, table 8. The probGA algorithm

provides the best queue profile, figure 18, whilst returning the second

best lost packet count and best case average trip time, table 8. In effect

46

queue length minimization appears to be prioritized more in the GA

scheme.

Thus the sequence of comprehensive performance is: GlobalAnt –

probGA – certainGA – SPS – LocalAnt.

5.3.4.4 R13 Down at 300s, R49 Down at 500s, Both Up at 800s

R13 down at 300s, R49 down at 500s, both up at 800s
Algorithm SPS GlobalAnt LocalAnt CertainGA ProbGA
Finish time (ms) 1284363 1252262 1288776 1261363 1252000
routing packets 198742 217659 1043279 1082799
Arrived packets (AP) 1740080 1915162 865033 1334514 1554835
Lost packets 245456 70374 1120503 651022 430701
Average trip time of
AP (ms)

1503 677 3259 1202 1012

Table 9: Router R13 fails at 300s, R49 fails at 500s, both up at 800s.

Figure 20: queue size - Router R13 fails at 300s, R49 fails at 500s, both up at 800s.

47

Figure 21: throughput performance - Router R13 fails at 300s, R49 fails at 500s, both up

at 800s.

This scenario is to test the ability of the algorithms to adapt themselves

to the more drastically dynamic network situations. In this case,

routers experience failures, and are recovered.

SPS again establishes the baseline performance level. In contrasting

Ant verses GA-agent algorithms significant differences are evident.

Both the Ant type algorithms make use of queues, figure 20, possibly

implying the utilization of a small number of preferred routes. GA-

agent based strategies appear to minimize queue lengths at the expense

of higher lost (looping) packet counts, table 9. Throughput profiles

follow the same general pattern as previously encountered –

GlobalAnt consistently has the highest throughput, with SPS dropping

to the same level as probGA under fault conditions and the remaining

algorithms returning significantly lower throughputs – figure 21.

48

From Table 9, we can see that GlobalAnt is the best among the five

algorithms, LocalAnt is the worst, and the two GA approaches are

better than LocalAnt.

5.3.4.5 R42, R19 and R6 Down at 500s

R42, R19 & R6 down at 500s
Algorithm SPS GlobalAnt LocalAnt CertainGA ProbGA
Finish time (ms) 1297102 1250849 1283775 1253750 1252504
routing packets 198360 219116 1122024 954765
Arrived packets (AP) 1645627 1845743 816190 1410263 1413077
Lost packets 339909 139793 1169346 575273 572459
Average trip time of
AP (ms)

1931 381 375 1065 2085

Table 10: Routers R42, R19 & R6 fail at 500s

Figure 22: queue size - Routers R42, R19 & R6 fail at 500s.

49

Figure 23: throughput performance - Routers R42, R19 & R6 fail at 500s.

In this scenario, the failures of three routers (R42, R19, & R6) happen

at the same time (500s) in three different areas of NTTNet. Moreover,

the failures occur at nodes associated with the boarder of the topology.

As in previous fault conditions, the GlobalAnt algorithm returns the

lowest ‘lost’ packet count, but queue length, figure 22, no longer

observes the linearly increasing characteristic associated with each of

the previous fault scenarios. Moreover, the queue length and

throughput profiles are very similar to those in the no failure scenario.

In effect the GlobalAnt algorithm is able to maximize its global

information benefits to solve the routing problem with little

modification to the pre-fault strategy.

On the other hand, probGA queue lengths increase following the

disturbance; until a new strategy is identified around the 675th second

and the original queue profiles are achieved around the 840th second,

figure 22. It is interesting to note that the GA-agent scheme with 100%

50

mutation provides a better solution than probGA in this specific

scenario, table 10.

By way of an overall ranking, it is clear that the utilization of global

information in the ant algorithm plays a central role in its performance.

Without this – LocalAnt – more packets are lost (loops are identified)

than delivered, irrespective of whether there are missing links or not.

GA-agents clearly perform far better than LocalAnt, typically

delivering twice as many packets, irrespective of the scenario. It is also

apparent, however, that the different cost functions controlling AntNet

and GA-agents may also be playing a role in determining the

characteristics of the approaches. The AntNet algorithm explicitly

incorporates temporal and queue lengths, with a pre-selected

parameter, α, determining the relative weighting given to each. Di

Caro and Dorigo recommend a value in the interval 0.2 to 0.5, where a

value of 0.3 was used in this work. The fitness function of the

distributed GA is much more straightforward, with no direct

representation of queue lengths. Future work will investigate the utility

of more complex cost functions.

6 Conclusions and Future Work

6.1 Criteria

On comparing the routing algorithms, we should not focus on a separate

measurement index, but consider them comprehensively. An ideal algorithm

would be able to deliver more data packets (number of arrived packets)

irrespective of the network scenario, send the packets to their destinations

using shorter trip times (average trip time, finish time, and throughput), while

the queue size is minimized. In order to achieve these goals, the routing

algorithm must be capable of finding the appropriate routes, recognizing

dynamic changes to network traffic and topology, adapt the routers to the new

conditions, route the data packets efficiently while distributing the work load

among the network. Therefore, we believe that network resources must work

as a cooperative team. In addition, it is important to include system/network

overheads, such as buffer occupations, CPU usage, or network resources

needed to support the algorithm.

6.2 Conclusions

The performance (arrived packets, network queue size, network throughput,

etc.) reflects the routing ability and adaptability of the algorithms. AntNet was

proven to outperforms OSPF (Di Caro et al., 1998). We first looked at the

comparison of the following pairs.

6.2.1 Static vs. Adaptive

As we discussed in section 2, RIP is a form of static routing algorithm,

thus the routing tables of the routers will not change after the convergence,

as long as the network topology is not changed. The difference between

RIP and SPS is that RIP makes use of hop counts in measuring

distance/cost between two routers, while SPS makes use of the trip time,

which is pre-calculated based on the assumption of global information.

51

52

The first experimental scenario (Section 5.3.4.1, Table 6, Figure 14 and

Figure 15) represents a static network topology without network failure.

Even in this static situation, SPS does not give perfect queue size

performance, the queue size keeps growing linearly, which is effectively

indicating that the algorithm is not able to control traffic load. This

indicates the necessity of adaptive routing algorithms, which can make use

of additional paths as network load varies.

However, the other four adaptive routing algorithms, except Local AntNet,

did demonstrate (section 5.3.4) abilities to adaptively route data packets

with load balancing. Their principal weakness is the loss of some data

packets. For the AntNet algorithm, its probabilistic character causes the

loops (section 1.2). For the GA approaches, the possibility of loop exists

in the situation that no GA-agent ever explored the route to the desired

destination, then, by following the default gateway may lead the data

packet into a loop or, wrong direction. We could expect the elimination of

such possibility for GA in the future by improving the routers’ sense of

direction.

6.2.2 Global AntNet vs. Local AntNet

The most significant difference between these two algorithms is in their

routing tables (Table 2, Table 3), i.e., global information assumption in the

Global AntNet is removed in the Local AntNet.

The experimental program (section 5) demonstrated the importance of the

global information assumption:

- The LocalAnt loses many more data packets than the GlobalAnt;

- The GlobalAnt has the highest throughput, and the LocalAnt has the

lowest throughput under the five network scenarios;

- The queue size graphs (section 5.3.4) imply that the LocalAnt can not

route the data packets correctly, because in the normal situation and

53

light or medium network failure situations, its queue size keeps

increasing linearly in trend and arrived data packets are less then loss

packets, and in the serious network failure conditions, low queue size

and small amount of arrived data packets imply that a lot of packets

are identified as looping very soon after they enter the network.

- The global AntNet shows more capable to recognize the network

failure – least amount of lost data packets in all experiments. But only

in the light failure situation (section 5.3.4.5), global AntNet shows

ability in adapting nodes to new efficient routing tables. The large

queue size in the other three failure (medium to severe level)

experiments (section 5.3.4.2 – 5.3.4.4) implies that it’s not highly

adaptive.

In real world situations, however, it is impossible for the routers to acquire

the global information because each router knows only the existence of its

neighbor routers, by means of the physical and data link layers in the OSI

model. However, the removal of global information was shown to degrade

the performance of AntNet algorithm.

6.2.3 Local AntNet vs. GAs

The Local AntNet algorithm follows the Global AntNet algorithm in every

way other than the global information assumption. The distributed Genetic

Algorithm (D-GA) approach proposed in this work makes use of only the

local information. Their performance is significantly different, both D-

GAs are much better than Local AntNet in that:

- They successfully deliver much more data packets in shorter average

trip time (section 5.3.4);

- Their network throughput is much higher than Local AntNet (section

5.3.4);

54

- Their network queue sizes performance is also better than Local

AntNet in the experiments of the five network situation scenarios

(section 5.3.4).

The price for higher performance in D-GA is that the greater autonomy

represents an overhead to network and router resources. There are about

four times more routing packets in D-GAs than in Local AntNet. The

statistics in the previous section indicate this does not detract from the

quality of service guaranteed, because the queue size (defined as the

number of data packets and routing packets) performance of D-GAs is

more desirable than that of Local AntNet even when comparing D-GA to

the Global AntNet algorithm.

6.2.4 Summary of Contribution

This work presents a D-GA approach to solve the challenging network

routing problem subject to the local information constraint. Access to

Global information is never the case in the real world; however, this is the

first work we are aware of to reach these objectives using a multi-agent

framework.

The original (Global) AntNet algorithm (Di Caro, Dorigo, 1998) was

proved to outperform some currently used (in practice) routing protocols

(such as OSPF). However, if its global information assumption is

removed, leading to the so-called Local AntNet algorithm studied as part

of this work, we show that performance degrades by about half (section

5.3.4). On the other hand, the proposed D-GA approach yields superior

performance in many aspects, such as number of arrived data packets,

network throughput, average trip time of arrived data packets, and, it

appears to minimize network queue size at the expense of higher packet

loss (section 5.3.4). Moreover, the second assumption of AntNet algorithm

55

(network connectivity assumption, section 3.3.1) is not used in the D-GA

algorithm.

The advantages of the D-GA approach over the existing routing protocols

are that GA-agents are completely distributed, thus routing is not

dependent on the designated central routers; and are purely automatic, i.e.,

no human configuration is necessary, which avoids the mis-configuration

or non-efficient configuration problems caused by insufficient human

knowledge of the network.

Indeed, security is a problem in mobile agent methods as a whole (Minar

et. al., 1999). In short, the task is to protect hosts from agents, protect

agents from hosts, and protect agents from each other. Since the agents in

the D-GA approaches are not executable binary codes, the major problem

is almost avoided. Moreover, an agent carries a string of genes, together

with the time stamps of every visited router; it is not likely to be harmed

by other agents. The principle problem of the method, however, lies in

routers permitting agents to update routing table information. This

problem is true for both AntNet and the D-GA solution detailed here.

6.3 Future Work

The GA approach has given us some encouraging results, yet there are still

many unanswered questions. For example, fitness function plays a very

important role in GA, the current factors taken into account by the fitness

function are trip times and destination statistics. A more comprehensive

fitness function has the potential to incorporate a wider range of quality of

service objectives.

Another example would be the population of agents on each router. At the

very beginning of the D-GA approach, every router has same number of

agents, that is, no matter how important a router is in the network, it still has

56

the same number of agents as other routers. The routing ability turned out

pretty low, just at the comparable level of Local AntNet. We found that the

important routers did not sufficiently evolve. A direct proportional relation

was then used (section 5.3.2), performance improved, but critical routers still

did not evolve in line with their importance to the network. The quadratic

relation, which is currently being used in D-GA, finally lets the routers make

corresponding contribution. The question is how to adjust the population of

agents to a router? What other factors should be included?

The size of the routing table is always an important factor, because it has

direct influence on the efficiency of a router. Nowadays a core router (e.g., a

ASBR) in the Internet may have one hundred twenty thousand or even more

routes in its routing table (Huston, 2001). And according to

http://bgp.potaroo.net/, the most recent size is over one hundred thirty

thousand. This is a huge routing table. We now look at the size of the routing

table and the next hop look up time of the algorithms, for a router having l

neighbors in a network having n routers.

- A SPS router will have (n – 1) records, each record has two fields:

destination and the next-hop router, so the size of the routing table is Θ(n);

Sequential search of the routing table will take Θ(n) time.

- A GlobalAnt router has l records, each has (n – 1) fields, each for a node

in the network, thus, the size of the routing table is l × (n – 1), i.e., Θ(l ×

n), usually l << n, so, the size of the routing table is Θ(n); Since the

routing table is a two-dimensional array, the next hop look up time is only

Θ(1).

- A LocalAnt router has l records (number of neighboring links), each has

only two fields, one for the neighbor itself, one for the rest of network.

Thus, the size of the routing table is l × 2, i.e., Θ(l); the next hop look up

time is also only Θ(1).

- A D-GA router has a population of c1 × l2 chromosomes, thus the routing

table has O(l2) records, and each represents an explored route. According

http://bgp.potaroo.net/

57

to the statistics of the experiments, the routes have 2 to 12 genes,

approximately, this fits relation Θ(l). Thus the size of routing table is

O(l3). Sequential search of the routing table will take O(l3) time.

But in our experiments with NTTNet, the routing table of D-GA is quite a lot

larger than that of GlobalAnt, because n and c1 are very close (n = 55, c1 =

32), which means D-GAs takes more memory space and requires more next

hop look up time. Thus, the question rises: how to decrease the size of the

routing table and the next hop look up time in D-GA?

One emphasis should be placed on the co-evolution mechanism of the GA

approach, which means the algorithm would make the whole network work

like a team by keeping sharing their knowledge (topology, congestion, etc.)

about the network. The outcome would be that the routers need not know the

exact routes to any destination across the whole network, but only to the next

local node that is more likely to know the correct route. The current GA

approach provided have such a mechanism, or be it indirectly – demes

(section 4). We believe the whole performance of the routing ability would be

greatly improved if stronger forms of co-evolution were introduced.

Finally, we note that the discrete event simulation utilized here deletes any

packet that enters a loop, where such a property was introduced to emphasize

differences in routing strategy. A more practical approach would be to apply

such a constraint to Ant or GA-agent as opposed to data packets. This would

have the effect of increasing the network load for the adaptive schemes and

therefore increase the average time taken for packet delivery. Moreover, the

only lost packets would then be those, which are routed down links subject to

failure, or whose TTL expires.

References

Ahuja R.K., Magnanti T.L., Orlin J.B., “Network Flows: Theory, Algorithms and
Applications”, Prentice-Hall, 1993.

Cormen T.H., Leiserson C.E., Rivest R.L., “Introduction to Algorithms”,
McGraw-Hill, 1989, ISBN 0-07-013143-0.

Corne D.W., Oates M.J., Smith G.D., “Telecommunications Optimization:
Heuristic and Adaptive Techniques”, John Wiley & Sons, 2000, ISBN 0-471-
98855-3.

Di Caro G., Dorigo M., “AntNet: Distributed Stigmergetic Control for
Communications Networks” Journal of Artificial Intelligence Research, 9, pp.
317-365, 1998.

Dorigo M., Maniezzo V., Colorni A., “Ant System: Optimization by a Colony of
Cooperating Agents”, IEEE Transactions on Systems, Man and Cybernetics – B,
26(1) pp. 29-41, Feb 1996.

Gelenbe E., Xu Z., Seref E., “Cognitive Packet Networks”, Proceeding of 11th
IEEE International Conference on Tools with Artificial Intelligence, pp 47-54,
1999.

Goldberg D.E., “Genetic Algorithm in Search, Optimization and Machine
Learning”, Addison-Wesley, 1989.

Heusse M., Snyers D., Guerin S., Kuntz P., “Adaptive Agent-driven Routing and
Load Balancing in Communication Networks”, Advances in Complex Systems, 1,
pp 237-254, 1998.

Huston G., “Analyzing the Internet's BGP routing table”, Internet Protocol
Journal, 4(1), 2001.

58

59

Liang S., Zincir-Heywood A.N., Heywood M.I., “The Effect of Routing under
Local Information using a Social Insect Metaphor”, IEEE International Congress
on Evolutionary Computation, May 2002, (in press).

Liang S., Zincir-Heywood A.N., Heywood M.I., “Intelligent Packets for Dynamic
Network Routing Using Evolutionary Strategies”, The Genetic and Evolutionary
Computation Conference, July 2002, (in press).

Maniezzo V., Colorni A., “The Ant System Applied to the Quadratic Assignment
Problem”, IEEE Transactions on Knowledge and Data Engineering, 11(5), pp.
769-778, Sept/ Oct 1999.

Minar N., Kramer K. H., Maes P., “Cooperating Mobile Agents for Dynamic
Network Routing”, Chapter 12, Software Agents for Future Communications
Systems, Springer-Verlag, 1999, ISBN 3-540-65578-6.

Mitchell T., “Machine Learning”, Chapter 9, McGraw Hill, 1997, ISBN
0070428077.

Norris M., Pretty S., “Designing the Total Area Network: Intranets, VPN'S and
Enterprise Networks Explained”, Chapter 6, John Wiley & Sons, 2000, ISBN: 0-
471-85195-7.

Nowostawski M., Poli R., “Dynamic Demes Parallel Genetic Algorithm”, 1999.
Proceedings of the Third International Conference on Knowledge Based
Intelligent Information Engineering Systems (KES'99), IEEE, pp. 93 - 98.

Perlman. R., "Interconnections: Bridges and Routers", Addison-Wesley, 1992, pp.
210-211.

(RFC 1305) Mills D.L., “Network Time Protocol (Version 3) Specification,
Implementation”, 1992

(RFC 1771) Rekhter Y., Li T., “A Border Gateway Protocol 4 (BGP-4)”, 1995.

(RFC 2328, STD 0054) Moy J., “OSPF Version 2”, 1998.

60

(RFC 2453, STD 0056) Malkin G., “RIP Version 2”, 1998.

Tennenhouse D., Smith J., Sincoskie W., Wetherall D., Minden G., “A Survey of
Active Network Research”, IEEE Communications Magazine, 35(1), pp. 80-86,
Jan 1997.

Appendices

A. Auxiliary Measure Metrics

In addition to the measure metrics discussed in section 5, some other auxiliary

features of the D-GA were recorded for analysis, they are:

- Agent fitness on each node;

- Average agent length on each node;

- Number of arrived data packets on each node;

For example, the following graphs are collected under the no network failure

scenario of probGA Figure 24 to Figure 26.

Figure 24: agent fitness - all network devices remain available

61

62

Figure 25: average agent length - all network devices remain available

The distribution of the average agent length on each node is between 2 and 10,

Figure 25, and their average is 6.33. It’s interesting that although the allowed

maximum length of each chromosome is 30 genes, the average length is far

shorter. And the other interesting fact is the average agent length of the five

edge nodes (whose connectivity degree is 1) is 4.8. These reflect the

adaptivity of the D-GA from the agent length aspect.

63

Figure 26: number of arrived packets - all network devices remain available

The upper curve tells the numbers of packets heading to each node, and the

lower one shows the number of actual arrived packets. Those edge nodes

(connectivity degree 1) have fewer arrived packets, for example, the nodes

R52, R53, and R54 have degree 1 in Figure 4, they have least arrived packets,

as shown in Figure 26.

64

B. Performance Graphs of the 8 Combination of GAs

Figure 27 to Figure 36 are the queue size and throughput performance graphs

of the eight combination (Table 5) of the GA algorithm.

Figure 27: queue size of the eight combinations of GA - all network devices remain

available

Figure 28: throughput of the eight combinations of GA - all network devices remain

available

65

Figure 29: queue size of the eight combinations of GA – R34 down at time 500s

Figure 30: throughput of the eight combinations of GA – R34 down at time 500s

66

Figure 31: queue size of the eight combinations of GA – R49 & R13 down at time 500s

Figure 32: throughput of the eight combinations of GA – R49 & R13 down at time 500s

67

Figure 33: queue size of the eight combinations of GA – R13 down at time 300s, R49
down at 500s, both up at 800s

Figure 34: throughput of the eight combinations of GA – R13 down at time 300s, R49
down at 500s, both up at 800s

68

Figure 35: queue size of the eight combinations of GA – R42, R19 & R6 down at time
500s

Figure 36: throughput of the eight combinations of GA – R42, R19 & R6 down at time
500s

	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations and Symbols Used
	List of Interchangeable Terms
	Abstract
	Acknowledgements
	Introduction
	The problem ¨C Routing
	Definitions and Characteristics of the Network Routing Problem
	Distributed Genetic Algorithms
	
	
	
	
	
	
	Figure 1: Mutation
	Figure 2: Single-point Crossover
	Figure 3: Multi-point Crossover

	The sections
	Publications

	Literature Survey
	Classical Routing Algorithms
	
	
	
	
	
	
	Figure 4: NTTNet topology
	Figure 5: A simple example of the count to infinity problem

	Table 1: Routing tables after convergence

	Recent Research Approaches

	Social Insect Metaphor Approach
	Introduction
	
	
	
	
	
	Table 2: Original AntNet Routing Table Tk at network node k (1 (k (55) on the NTTNet

	AntNet Algorithm
	AntNet Algorithm With Local Information
	Assumptions
	Removing the Global Information Assumption
	
	
	
	
	Table 3: Proposed Routing Table at any network node k on the NTTNet

	GA Approach With Local Information to the Routing Problem
	Discussion of the Problem and Previous Research Work
	Objective and the GA Approach
	
	
	
	
	
	Table 4: GA-agent Routing Table
	Figure 6: GA agent aging mechanism
	Figure 7: GA Initialization
	Figure 8: Processing GA-agents
	Figure 9: Updating routing table and population
	Figure 10: Routing data packets

	Data Structures
	
	
	
	
	
	
	Figure 11: Schematic representation of a network node (router)

	Experiments
	Settings
	Baseline ¨C Static Shortest Path algorithm
	
	
	
	
	
	
	Figure 12: Floyd-Warshall algorithm
	Figure 13: Algorithms for comparison

	Experimental Results
	AntNet Parameters
	GA Approach Parameters
	
	
	
	
	Table 5: combinations of GA parameters

	Performance Measurements
	Results
	No Network Failure
	
	
	
	Table 6: All network devices remain available
	Figure 14: queue size - all network devices remain available
	Figure 15: throughput performance - all network devices remain available

	R34 Down at 500s
	
	
	
	Table 7: Router R34 fails to work at time 500s
	Figure 16: queue size - Router R34 fails to work at time 500s
	Figure 17: throughput performance - Router R34 fails to work at time 500s

	R13 and R49 Down at 500s
	
	
	
	Table 8: Routers R49 and R13 fail at time 500s
	Figure 18: queue size - Routers R49 and R13 fail at time 500s
	Figure 19: performance - Routers R49 and R13 fail at time 500s

	R13 Down at 300s, R49 Down at 500s, Both Up at 800s
	
	
	
	Table 9: Router R13 fails at 300s, R49 fails at 500s, both up at 800s.
	Figure 20: queue size - Router R13 fails at 300s, R49 fails at 500s, both up at 800s.
	Figure 21: throughput performance - Router R13 fails at 300s, R49 fails at 500s, both up at 800s.

	R42, R19 and R6 Down at 500s
	
	
	
	Table 10: Routers R42, R19 & R6 fail at 500s
	Figure 22: queue size - Routers R42, R19 & R6 fail at 500s.
	Figure 23: throughput performance - Routers R42, R19 & R6 fail at 500s.

	Conclusions and Future Work
	Criteria
	Conclusions
	Static vs. Adaptive
	Global AntNet vs. Local AntNet
	Local AntNet vs. GAs
	Summary of Contribution

	Future Work

	References
	Appendices
	Auxiliary Measure Metrics
	
	
	
	
	
	
	Figure 24: agent fitness - all network devices remain available
	Figure 25: average agent length - all network devices remain available
	Figure 26: number of arrived packets - all network devices remain available

	Performance Graphs of the 8 Combination of GAs
	
	
	
	
	
	
	Figure 27: queue size of the eight combinations of GA - all network devices remain available
	Figure 28: throughput of the eight combinations of GA - all network devices remain available
	Figure 29: queue size of the eight combinations o
	Figure 30: throughput of the eight combinations o
	Figure 31: queue size of the eight combinations o
	Figure 32: throughput of the eight combinations o
	Figure 33: queue size of the eight combinations o
	Figure 34: throughput of the eight combinations o
	Figure 35: queue size of the eight combinations o
	Figure 36: throughput of the eight combinations o

