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Abstract

This thesis investigates the use of symbiosis as an evolutionary metaphor for prob-
lem decomposition using Genetic Programming. It begins by drawing a connection
between lateral problem decomposition, in which peers with similar capabilities coor-
dinate their actions, and vertical problem decomposition, whereby solution subcompo-
nents are organized into increasingly complex units of organization. Furthermore, the
two types of problem decomposition are associated respectively with context learning
and layered learning. The thesis then proposes the Symbiotic Bid-Based framework
modeled after a three-staged process of symbiosis abstracted from biological evolu-
tion. As such, it is argued, the approach has the capacity for both types of problem
decomposition.

Three principles capture the essence of the proposed framework. First, a bid-
based approach to context learning is used to separate the issues of ‘what to do” and
‘when to do it’. Whereas the former issue refers to the problem-specific actions, e.g.,
class label predictions, the latter refers to a bidding behaviour that identifies a set
of problem conditions. In this work, Genetic Programming is used to evolve the bids
casting the method in a non-traditional role as programs no longer represent com-
plete solutions. Second, the proposed framework relies on symbiosis as the primary
mechanism of inheritance driving evolution, where this is in contrast to the crossover
operator often encountered in Evolutionary Computation. Under this evolutionary
metaphor, a set of symbionts, each representing a solution subcomponent in terms of
a bid-action pair, is compartmentalized inside a host. Communication between sym-
bionts is realized through their collective bidding behaviour, thus, their cooperation
is directly supported by the bid-based approach to context learning. Third, assuming
that challenging tasks where problem decomposition is likely to play a key role will
often involve large state spaces, the proposed framework includes a dynamic evalua-
tion function that explicitly models the interaction between candidate solutions and
training cases. As such, the computational overhead incurred during training under
the proposed framework does not depend on the size of the problem state space.

An approach to model building, the Symbiotic Bid-Based framework is first evalu-
ated on a set of real-world classification problems which include problems with multi-
class labels, unbalanced distributions, and large attribute counts. The evaluation
includes a comparison against Support Vector Machines and AdaBoost. Under tem-
poral sequence learning, the proposed framework is evaluated on the truck reversal
and Rubik’s Cube tasks, and in the former case, it is compared with the Neuroevolu-
tion of Augmenting Topologies algorithm. Under both problems, it is demonstrated
that the increased capacity for problem decomposition under the proposed approach
results in improved performance, with solutions employing vertical problem decom-
position under temporal sequence learning proving to be especially effective.
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Chapter 1

Introduction

The use of Evolutionary Computation (EC) as a problem solving tool is motivated by
a number of factors [39]. The most basic motivation, and likely the initial inspiration
for many in the field of EC, is perhaps that it draws heavily on metaphors from
biological evolution. As such, if it can even partially match some of the extraordinary
achievements of its biological archetype, it must be the case that EC has the potential

to produce some extraordinary results.

A more practical and concrete motivation for the use of EC is the growing number
and increasing complexity of problems that are appearing within a cross-section of
domains such as security, medicine, engineering, business, and entertainment. It
is therefore becoming increasingly difficult and expensive for experts to manually
develop algorithms tailored to each individual task. In contrast, EC can be used to
construct robust algorithms capable of automatically producing solutions to a wide

range of problems.

The focus of this work is Genetic Programming (GP), a branch of EC where
solutions take the form of computer programs. GP is part of the larger field of machine
learning (ML) which concerns the design and analysis of computer algorithms that
improve with experience [129]. ML has been found to be useful in applications where
there is a lot of data (e.g., data mining), where expert knowledge is not available,
and where there is a need for algorithms to adapt to changing situations. In all three
cases, ML unburdens the practitioner from having to deal with what would otherwise

be challenging tasks.

Given the growing number of increasingly complex applications, a key element
of any proposed approach is viewed to be the ability to automatically decompose
the problem. In particular, problem decomposition may be required if the problem
is sufficiently difficult so as to make it unlikely that it can be solved ‘in one go’.

Furthermore, problem decomposition may lead to increased efficiency, e.g., through
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module reuse, as well as solutions that can be interpreted more easily than those
which are structured monolithically.

The goal of this work is therefore to investigate an evolutionary metaphor for prob-
lem decomposition, and to this end, symbiosis is considered; based on this metaphor,
the Symbiotic Bid-Based (SBB) framework is presented. Perhaps because it was not
originally included as a component of neo-Darwinism, symbiosis has received limited
attention from the EC research community. In this thesis, it is argued that symbio-
sis can be interpreted as a biologically inspired metaphor both for context learning
and for layered learning, where these represent two complementary approaches to
problem decomposition. As an inheritance mechanism, symbiosis also provides an
alternative to the sexual recombination operator commonly used in EC but requires
fewer assumptions to be met, i.e., regarding the exchange of functionally equivalent
units.

The primary aim of this chapter is therefore to establish the scope and context
assumed in this thesis with respect to (1) problem decomposition, (2) a generic evolu-
tionary framework for problem solving, and (3) a formal process of symbiosis including
how it relates to common practices in EC. In the two sections following immediately,
problem decomposition is discussed and a review of ML is provided, in both cases
without reference to any single problem solving approach. Section 1.3 then provides
an overview of EC, including GP, and highlights certain open issues. Having pre-
sented concepts from symbiosis in biology, Section 1.4, these are then considered in
the context of an evolutionary framework in Section 1.5. In particular, a case is
made for symbiosis as a metaphor for achieving problem decomposition through a
combination of context learning and layered learning. The concluding sections of this
chapter state the research objectives underlying this thesis and provide an outline of

the remainder of this dissertation.

1.1 Problem Decomposition

In this work, problem decomposition is defined as the structural organization of a
solution into explicit subcomponents that collectively exhibit non-overlapping be-
haviours. The degree of overlap can be viewed as relative with less overlap associated

with increased problem decomposition. Two ways of structuring the decomposition
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are considered. Under wvertical problem decomposition, the subcomponents are struc-
tured into multiple levels with higher-up elements representing increasingly complex
units of organization, i.e., the subcomponents are organized into a hierarchy where
overlap is considered with respect to the units at a given level. In contrast, un-
der lateral problem decomposition, the subcomponents represent peers with similar
capabilities whose behaviours must be coordinated, e.g., using an a priori voting
mechanism applied post training.

Intuitively, the key issue in vertical problem decomposition is learning to com-
bine simple behaviours in order to produce increasingly complex behaviours, e.g., as
in layered learning [180]. In contrast, the main motivation behind lateral problem
decomposition is to effectively partition the problem space among a set of solution
subcomponents of similar complexity, e.g., as in context learning. Lateral problem
decomposition is viewed as more fundamental since it can be used as a basis for
constructing the levels in a vertical organization. At the same time, the addition
of higher-level behaviours which aggregate lower-level behaviours may provide a way
to automatically coordinate the peers in a lateral organization. As such, it may be
useful to combine both forms of problem decomposition, and this is the case in the
proposed approach.

A requirement of problem decomposition stipulated in the above definition is that
the behaviours be non-overlapping. This is illustrated in terms of the problem in-
stances solved by a set of peers, Figure 1.1. On the left-hand side, the behaviours
are correlated, with the three peers solving similar instances. On the right-hand side,
the behaviours are much more distinct. Thus, relatively speaking, the former situa-
tion would not be considered as representative of a meaningful instance of problem
decomposition®.

The solutions to a given problem can be organized into three broad categories
which exhibit increasing amounts of problem decomposition. The least amount of
problem decomposition occurs when the solution is monolithic, i.e., it is not organized
into distinct subcomponents. Next is the case of a solution which is organized into

modules but those modules still behave similarly, e.g., as in the left-hand side in

'If the behaviours on the right-hand side of Figure 1.1 are interpreted in terms of the problem
instances mot solved by each peer, then optimal decisions would always be made by the group by
taking a majority vote.
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Figure 1.1: Degrees of problem decomposition. Fach ellipse represents the set of
instances that one of three peers is able to solve. On the left, the peers tend to solve
similar instances, while on the right, a greater degree of problem decomposition is
achieved as peers solve non-overlapping regions of the problem.

Figure 1.1. Finally, the greatest amount of problem decomposition occurs when a
solution is organized into modules which behave independently.
This categorization suggests a number of benefits associated with problem decom-

position:

1. Solution transparency. If the solution is expressed in terms of explicit sub-
components with different roles, it becomes easier to figure out how the problem
is solved, e.g., the logic behind the resulting actions. In contrast, identifying
potential modules may be the first step that one is required to take in under-
standing a monolithic solution — a step that is unnecessary under an approach
that decomposes the problem. The issue of solution transparency is becoming
increasingly more relevant as there is a growing interest in finding relationships

in data as opposed to focusing on performance alone [41, 122, 131, 186]. At this
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point, the association between solution transparency and solution complexity is

also noted, in particular, a large solution is likely to be less transparent.

2. Learnability. Compared to building monolithic solutions, problem decom-
position is viewed as a more effective method for learning difficult tasks as it
reflects a divide-and-conquer mentality. Specifically, because modules are dis-
covered in the process of problem decomposition, once the effort is applied in
finding appropriate subcomponents these can be reused in ‘factoring’ the search
[13]. Alternatively, modules can be viewed as building blocks, that, once discov-
ered, are more likely to be retained compared to subcomponents that are not
explicitly identified. Furthermore, through problem decomposition the search
becomes more structured, e.g., under vertical problem decomposition simple
behaviours may be discovered at lower levels to then be combined at higher
levels. This is viewed as more manageable than trying to solve the problem in

one go, and reflects the way in which learning occurs in nature.

3. Efficiency. In terms of training efficiency, the overhead of building solutions in
a modular fashion may not be justifiable when the task is easy, i.e., if an equally
effective monolithic solution can be constructed with less effort. Assuming that
problem decomposition results in improved learnability, as the task becomes
harder, the monolithic approach is likely to become less efficient to the point
where it is not able to produce a successful solution given any amount of effort.
Furthermore, if only a subset of the subcomponents need to be activated when
the solution is applied to a problem instance, the runtime efficiency associated
with a modular solution is likely to be higher. Here, it is also noted that the
efficiency with which a solution is applied may be a function of its complexity,

i.e., larger solutions may require more effort.

In this thesis, the solutions that are encountered are analyzed in terms of their trans-
parency, learnability, and efficiency. The learnability associated with an algorithm
is viewed in terms of its success on a given problem. Often, but not always, so-
lution transparency and efficiency is interpreted in terms of the associated solution
complexity.

Finally, it is noted that symbiosis represents a mechanism by which a problem
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can be decomposed both vertically and laterally. This claim is further discussed
below, Section 1.5.3, following the definition of symbiosis. Relevant ML approaches
to achieving lateral and vertical problem decomposition are reviewed in Sections 2.2

and 2.3.

1.2 Machine Learning

1.2.1 Machine Learning Problem Domains

A number of ML problem categories are recognized. Supervised learning assumes
that each input is associated with a known target output, whereas under unsuper-
vised learning the task is to learn relationships between unlabeled instances. Semi-
supervised learning [17] relies on both labeled and unlabeled data, typically small
amounts of the former combined with large amounts of the latter, and is motivated
by the possibly high cost of obtaining the target outputs. Finally, under what is
referred to in this work as temporal sequence learning, the task is complicated by the
introduction of a delayed reward as a problem instance is typically solved in a series
of steps. This thesis concerns primarily classification, a form of supervised learning,
and temporal sequence learning, though with reasonable modifications the proposed
approach may be applicable to other types of problems as well. The two most relevant

categories of problems are further discussed below.

Supervised Learning: Classification

(Classification, in contrast to other forms of supervised learning such as, e.g., regres-
sion, is of particular interest in this thesis because the proposed approach assumes
discrete actions. It involves paired data of the form (Z; = (z;,, sy, . .., x;, ), y;) Where
7; is an input exemplar and y; is its associated class label?. During training, the label
y; associated with each input Z; is known, and the goal is then to learn a mapping
from the characteristics quantified by the exemplar to the associated label. Once the
mapping is learned, the resulting model can be applied to predict labels for previously
unseen exemplars. Classification is useful in a wide array of applications ranging from

medical diagnosis [18] to intrusion detection [168].

2In contrast to categorization, under classification each exemplar is associated with exactly one

label.
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Under binary classification, the set of possible labels consists of two elements,
whereas multi-class problems involve three or more possible labels. Naturally, multi-
class problems tend to present a greater challenge. Other challenges related to clas-
sification that are addressed in this work are the high computational overhead asso-
ciated with training on large sets of data and the difficulty of training on unbalanced
datasets, i.e., when the classes in the training data are observed in different fre-
quencies. In the latter case, part of the challenges lies in identifying an appropriate
measure of model quality [83, 167]. Furthermore, classification algorithms may suffer
from over-fitting whereby certain characteristics specific to the training data, but not
the problem as a whole, are memorized.

To address the issue of high dimensionality in classification problems, three types
of feature® selection methods have been proposed [59]. The simplest of these are
filter methods that perform feature selection once before the main ML algorithm
is invoked. Wrapper methods, on the other hand, use the main ML algorithm to
iteratively evaluate and refine subsets of candidate features. As such, they represent
an approach that is more sophisticated but also more computationally expensive than
filter approaches. In both of these cases, the feature selection step is separated from
the main learning task. In contrast, embedded methods integrate learning with feature
selection, and as such, allow the feature set that is used to be adapted in a single

invocation of the main ML algorithm.

Temporal Sequence Learning

The goal of temporal sequence learning is to find solutions to a sequential decision
task through a trial-and-error interaction with an environment [6, 134]. Thus, in
contrast to other types of problems, an episode of a sequential decision task involves
multiple time steps. As such, allocating credit among individual actions in a sequence
leading to a particular outcome is not straightforward — this is the issue of temporal
credit assignment [6]. For example, decisions made early on may have ultimately led
to the success of a solution, but if the reward is delayed, e.g., until the last step, this

may not be easily recognizable.

3The terms ‘feature’ and ‘attribute’ are used interchangeably in this work. Strictly speaking,
attributes are the input components as specified in the original problem, whereas features may
represent intermediate abstractions of the original attributes.
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Approaches to the temporal credit assignment problem have traditionally assumed
one of two forms [6]. Under phylogenetic learning, the focus is on evaluating the
solution as a whole and not on the individual actions that it takes, i.e., a solution is
evaluated at the end of an episode. In this way, the issue of temporal credit assignment
is effectively side-stepped. Under ontogenetic learning, on the other hand, a solution
is gradually refined with respect to the individual decisions that it makes at each
time step. The latter is synonymous with reinforcement learning, so in this work
the term ‘temporal sequence learning’ is used to accommodate both approaches to
the temporal credit assignment problem, i.e., it has been suggested that because
phylogenetic approaches cannot take advantage of information until the end of the

episode they are not methods of reinforcement learning [181].

Another way to characterize temporal sequence learning algorithms is with regards
to the search space upon which they operate [134]. A temporal problem can be viewed
in terms of a value function which returns the reward associated with each state-action
pair, i.e., the outcome of taking the action while in the associated state. If this value
function is known, it can be used as a basis for a policy, e.g., in any given state, choose
the action associated with the highest reward. Two broad categories of algorithms
can then be considered, those that attempt to learn this underlying value function,
and those that search through the space of policies without explicitly evaluating state-
action combinations. The former is more compatible with ontogenetic learning since
it recognizes individual decisions, whereas the latter policy-based approach is more

consistent with phylogenetic learning.

EC methods for temporal sequence learning are typically phylogenetic and policy-
based, and this is true of the proposed approach. However, it is recognized that
approaches that search both through the value function space and the policy space
have their advantages and disadvantages, therefore, the aim of this work is not to

suggest that one is strictly better than the other.

Finally, it is noted that in general temporal sequence learning is viewed as more
difficult than classification. In particular, classification can be interpreted as tem-
poral sequence learning restricted to a single time step [181]. Temporal problems
may present additional challenges as they may be non-Markovian, stochastic, non-

stationary, continual (versus episodic), and also because they may be associated with
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very large (possibly infinite) state spaces [6]. In this work, only Markovian tasks are
considered, i.e., the transition (reward and next state) depends only on the current

state and action [129)].

1.2.2 Modes of Problem Decomposition

Problem decomposition can occur in a number of different ways, and the exact nature
of the decomposition that results may be problem-dependent. Under classification,
problems may be decomposed with respect to the instance space and with respect
to the attribute space. In both cases, different solution subcomponents are associ-
ated with different, non-overlapping, sets. In the former case, the sets contain the
exemplars, while in the latter case, the sets contain attributes. Naturally, problem
decomposition is likely to be more useful if the number of exemplars and the number
of attributes is large. Similarly, under temporal sequence learning, decomposition
may take place on the state space and on the attribute space. However, given that
temporal problems often involve very large state spaces and relatively small numbers

of attributes, the former is likely to play a more significant role.

1.2.3 A Systems Analysis Perspective

From a systems analysis perspective, a problem can be formulated in terms of an input
connected to an output through an intermediate model [39]. Depending on which of
these components is unknown, one of three problem types can be identified, Figure
1.2. Under simulation, Figure 1.2a, the input and the model are known, and the goal
is to use these to generate an output so that it can be observed. Often, the model
represents an abstraction of an object that is expensive or impossible to physically
construct, and simulation is therefore used to predict that object’s behaviour. Under
optimization, Figure 1.2b, the model and the desired output (or a characterization of
the desired output) is known, and the task is then to find an input that will produce
the desired output. For example, in function maximization, the goal is to find a set
of arguments that result in the largest function value. Finally, under model building,
Figure 1.2¢, the task is to find a model that adequately reflects the input and the
output information; this is the case in classification, where the labels associated with

each input exemplar are known, as well as temporal sequence learning, where the
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Figure 1.2: Three types of problems identified through a systems analysis perspective,
adapted from [39]. The unknown component is denoted with a ‘7’

output is characterized in terms of reward maximization. In this thesis, the focus is
thus on model building.

Of the three problem types described above, only optimization and model building
require that a search take place. Consequently, simulation is typically not considered
under ML. In the case of optimization, the search space is the set of points (e.g.,
bit strings) representing valid inputs, whereas under model building, the search is
executed on the space of possible models. Assuming that models are more structured
than points, model building may be less likely to suffer from learning-and-forgetting,
i.e., the model may act in part as a memory mechanism. Coevolution, Section 2.4,
where cycling is identified as potential pathology, may therefore be more successfully

applied under a model building context.

1.2.4 Representation, Cost Function, and Credit Assignment

Numerous decisions influence the performance of a ML algorithm, both in terms of the
efficiency of the search process, as well as the quality and complexity of the resulting
solutions. To complicate matters further, the choices may be interdependent and
involve tradeoffs. From an abstract perspective, these design decisions can typically

be categorized in one of three ways:

1. Representation. The choice of representation concerns the form of the candi-

date solutions. Nominally, the representation should define the basic elements
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that can be used in their construction, as well as the rules governing the way in
which these elements may be organized or how they may interact. As such, the
representation specifies the set of all possible solutions to a problem, placing
the onus on the search process to find the best of these [5]. Example represen-
tations include production systems, neural networks, and decision trees. Unless
an appropriate representation is used, the algorithm may lack the capacity to
adequately characterize the problem. For example, a system that uses boolean

arithmetic will not be effective if applied to a real-valued regression task.

2. Cost function. The cost function refers to the process for assessing solution
quality in terms of the original problem objectives. As such, it should provide
a measure of how close a candidate solution is to the optimum. Unfortunately,
the definition of an appropriate cost function may be complicated by a number
of factors. First, an appropriate cost function may not be obvious, requiring
the designer to explore heuristics that may not accurately reflect the underlying
problem goals. Second, even if an appropriate cost function can be identified, it
may be computationally infeasible, requiring instead the use of an approxima-
tion. Finally, even if an ideal and efficient cost function is available, it may not
meet the restrictions imposed by the learning algorithm such as, e.g., smooth-
ness constraints. Cost function design is often tied in with the definition of
stopping criteria, i.e., the algorithm may be halted when a solution of sufficient
quality has been found, or when a computational limit specified with respect to

the cost function has been reached.

3. Credit assignment. The issue of credit assignment* refers to the manner in
which information gleaned from the cost function is used the direct the search
towards progressively better solutions, i.e., it refers to the way in which the
ML algorithm uses information about the quality of solutions found so far to
explore new solutions. In this regard, it often involves a tradeoff between the
exploitation of current knowledge versus the exploration of novel but potentially
useful solution configurations. Thus, the process of credit assignment provides

a link between the cost function and the set of possible solutions under the

4Temporal credit assignment, a specific instance of credit assignment, has already been discussed
in Section 1.2.1.
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chosen representation, and can be viewed in terms of the policies and operators

that form the basis for the search.

The above provides an overview of the key design issues in ML; they are further
discussed in more concrete terms in the context of a class of algorithms that is par-

ticularly relevant to this work, Section 1.3.2.

1.2.5 Fitness Landscapes

Viewing ML as a search process, the interaction between the representation, cost
function, and credit assignment components can be characterized in terms of a fitness
landscape [106]. In particular, the credit assignment policy typically specifies search
operators which leverage knowledge regarding candidate solutions found so far to
produce new candidate solutions, i.e., these operators are applied in the representation
space. Under this scheme, a single application of a search operator is referred to as
a search step. The search operators thus define a topography over members of the
representation space where the distance between two points depends on the number of
search steps (and their magnitude) required to reach one point from the other, e.g., a
point’s neighbourhood can be defined as all other points reachable via a small number
of search steps. A fitness landscape can then be constructed by considering, across
the entire topography, the value of the cost function for points within an arbitrarily
small neighbourhood.

For example, in a maximization problem involving two parameters, the fitness
landscape can be visualized by representing the two parameters on the z- and y-axes,
and for each of their combination, plotting the resulting value of the cost function on
the z-axis. The resulting surface may be characterized in terms of a number of features
such as local and global peaks, ridges, valleys, flat areas, and basins of attraction.
The exact configuration of these features affects the difficulty of the search, e.g.,
the presence of many local peaks in a maximization problem may make it difficult
to identify when a global peak is reached. These features can thus form a useful
vocabulary for discussing the search process.

Unfortunately, the metaphor of a fitness landscape is limited as a visualization
tool in applications where the surface is to be constructed over more than two di-

mensions or where the neighbourhood relationships are non-trivial, i.e., visualization
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is difficult if not impossible in problems other than numerical optimization involv-
ing two parameters [106]. In particular, fitness landscapes where the representation
involves complex structures, as in the case of GP, typically cannot be visualized. An-
other limitation of fitness landscapes is that they cannot be easily applied under cost
functions with more than one objective. However, the metaphors suggested by the
associated vocabulary can nonetheless be helpful, e.g., it is generally well understood
what it means for the search process to be stuck in a ‘local peak’. Furthermore, the
dependence of the shape of the fitness landscape on the representation, cost func-
tion, and search operators (a form of credit assignment) emphasizes that these design

choices are critical in the success of the search algorithm.

1.3 Evolutionary Computation

In this work, an evolutionary system is used to refer to a framework reflecting the
theories of Alfred Russel Wallace [187] and Charles Darwin [32] regarding the way in
which populations of biological life forms change and diversify over time (these are
further discussed in Section 1.5.2). Here, it is noted that a key component in these
theories is natural selection, an evolutionary mechanism by which the frequency of
certain heritable traits, as observed in a population of individuals, may increase or
decrease. In order for evolution through natural selection to take place, the following

must apply to the system [5]:
1. Individuals in the population reproduce, i.e., give rise to new individuals.

2. Reproduction results in offspring that resemble, but vary slightly from, their

parents.

3. The resulting variation in the population affects the chances of an individual’s

survival and subsequent reproduction, i.e., its fitness.

4. The reality of finite resources necessitates competition between individuals so

that not everyone is able to survive.

Under these conditions, the principle of natural selection asserts that individuals that
are better adapted to the environment, i.e., have higher fitness, will have a better

chance of survival and procreation.
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Figure 1.3: EC as a metaphor for problem solving, adapted from [39].

Assuming this view of what constitutes an evolutionary system, EC is then defined
as the design, simulation, and study of such systems through computational means,
e.g., by implementing them on computers. In turn, the term Evolutionary Algorithm
(EA) is used to refer to a particular instance of a framework considered under the
domain of EC.

EC is therefore viewed as a computational tool for problem solving which uses
metaphors from natural evolution to perform a trial-and-error search [39], Figure 1.3.
On the surface, such a search strategy may not seem to be particularly effective.
However, the variety, robustness, and complexity of the life forms observed in nature
would suggest otherwise — this is a direct result of natural selection. Instead of
trial-and-error, the term generate-and-test may be more suitable in this context since
natural selection effectively tests individuals in their environment to determine if they

represent a suitable solution.

Given the pivotal role that evaluation through natural selection plays in evolution,

a distinction is made in this thesis between an ecosystem and an environment:

e An environment refers to the fixed set of conditions under which an organism

is evaluated at any given time.

e An ecosystem specifies the environmental conditions and how they change

over time.

As such, the concept of an ecosystem is more general than the concept of an en-
vironment, i.e., the environment can be determined by considering the conditions
specified by the ecosystem at one point in time. Though not universal, these defini-
tions highlight the fact that evaluation can be static or dynamic, where this may have
an impact on the rate of convergence observed in the populations that are evolved.
In this thesis, evaluation is often discussed in reference to an environment whether

or not the environment is changing is assumed to be clear from the context.
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A number of forms of EC are recognized including Evolutionary Programming
(EP) [49], Genetic Algorithms (GA) [70], Evolution Strategies (ES) [152], and GP
[95].  Despite their differences, these various forms of EC share a set of common
characteristics which can be used to define what it means for an algorithm to be an

EA [39]. These characteristics are reviewed in the following section.

1.3.1 Elements of an Evolutionary Framework

A typical EA, Algorithm 1.1, begins by initializing and then evaluating a population
of arbitrary individuals representing solutions to the problem at hand, lines 2 and
3 respectively. The main loop of the algorithm, line 4, is then executed until some
termination condition is met, e.g., a solution of sufficient quality is found or an upper
limit on the number of iterations is reached. The core steps of the algorithm are to
select the parents, line 5, to apply search operators to generate offspring from the
selected parents, line 6, to evaluate the offspring, line 7, and to select a subset of
individuals that are allowed to survive into the next iteration of the algorithm, line
8. The last step reduces the size of the population to its initial value, applying a
sort of selection pressure, and in combination with the other core steps, simulates
natural selection. In this way, the goal behind the main loop is to produce solutions

of increasing quality as quantified by the evaluation function used in lines 3 and 7.

Algorithm 1.1 A generic EA.

1: procedure EVOLVE

2 INITTALIZE population of random individuals

3 EVALUATE initial individuals

4 while TERMINATION CRITERION not met do
5: SELECT parents
6
7
8

GENERATE offspring from parents
EVALUATE offspring
SELECT surviving individuals

9: end while

10: end procedure

Variations on the scheme described in Algorithm 1.1 are common [5, 87], but in

most cases, an EA requires that the following be specified [39]:

e Representation. An individual is often viewed in terms of its genotype and its
phenotype. The phenotype reflects an individual’s observable characteristics and

behaviour in the context of the original problem; its genotype, or representation,
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is the low-level encoding of the phenotype upon which the EA directly performs
the search. This dual view is adopted because in biology heritable characteristics
are encoded primarily in an organism’s genotype, whereas natural selection

applies to the traits that are expressed in the associated phenotype.

Fitness function. The fitness function measures the quality of an individual in
terms of the original problem specification, i.e., with respect to the individual’s
phenotype. Once determined, the fitness values are used during parent selection
and subsequent individual replacement, reflecting the individual’s chances of

survival and procreation.

Population. The population is a collection of genotypes representing the can-
didate solutions. It is the population that evolves since, once they created,
the individuals within the population remain fixed. A key factor in maintain-
ing the plasticity of a population, and thus the effectiveness of the EA, is the

preservation of genotypic diversity.

Parent selection policy. The parent selection policy defines which individuals
in the population are chosen to reproduce. Though typically stochastic, this
selection is normally biased in favour of higher-fitness individuals. As such,
genetic material found to be useful is exploited with the goal of improving

overall solution quality.

Variation (search) operators. Variation operators are components of repro-
duction, the latter referring to the more general process by which genomes are
transferred from parents to offspring, and as such are applied in the genotype
space. If only one parent is involved, i.e., the case of asexual reproduction, the
variation operator is typically limited to mutation in the form of random and
unbiased perturbations to the target genome. Sexual reproduction, involving
two parents from the same species, additionally supports the combination of
material from the two parent genomes through crossover (or recombination)
modeled after the biological process of meiosis. Thus, whereas crossover ex-
ploits genetic material already present in the population, mutation tends be a
background process which explores new material altogether; crossover therefore
has the potential to rapidly combine multiple beneficial traits discovered across
the population into a single individual. It is also noted that the use of both mu-
tation and crossover under sexual reproduction reflects a neo-Darwinian view

of evolution, Section 1.5.2.
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e Survivor selection policy. Following the creation of offspring through the
variation operators, more individuals are present than at the start of the main
loop — if the EA continued in this way, the population would grow indefinitely
with any substantial progress unlikely. The role of the survival selection policy
is to maintain the size of the population by discarding individuals that are less

fit, thus modeling competition for limited resources.

Furthermore, an important underlying feature of EAs is that the decisions they involve
tend to be stochastic/probabilistic. For example, choices based on fitness, e.g., the
parent selection policy, may favour fitter individuals but will not altogether exclude
the least fit. This allows the algorithm to escape local optima, but may also result in
genetic drift whereby changes in the gene pool occur due to chance and do not reflect
the observed fitness values. An exception where decisions are not stochastic are elitist
survivor selection strategies whereby the fittest individuals are always retained, and
subsequently, the less fit are always discarded. In general, the strength of the bias
towards fitter individuals is commonly referred to as selection pressure.

A more complete EA can be formulated by extending the set of common elements
described above by including speciation and a changing environment. Speciation is
viewed as particularly appropriate whenever sexual reproduction is present because
it can be used to explicitly identify potential parent pairings so that the resulting
offspring are more likely to be viable, Section 1.3.3. Furthermore, despite multipli-
cation of species appearing as one of the central tenets of neo-Darwinism, Section
1.5.2, convergence to a single genotype is a pathology often observed in EC [57, 127].
This suggests that the canonical EA framework described above, without explicit
speciation mechanisms, fails to model certain key aspects of biological evolution.

Use of a dynamic environment recognizes that natural selection can be either
stabilizing or directional, though widespread awareness restricted to the former has
often led to the perception that ‘selection only eliminates but is not creative’ [103].
Stabilizing natural selection takes effect when a population of individuals is already
adapted to a fixed set of environmental conditions. In this case, any phenotypes that
deviate from the norm will tend to be eliminated. Directional natural selection, on the
other hand, may favour extreme phenotypes under dynamic environments when the
norm no longer represents the optimal behaviour. Stabilizing natural selection can
therefore be viewed as destructive since it suppresses innovations, whereas directional
natural selection encourages novelty and can therefore be viewed as a creative force.

The primary benefit of formulating the problem in terms of a dynamic environment
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is that it can lead to incremental learning. Specifically, it allows problem instances
of increasing difficulty to be presented to the evolving population of candidate solu-
tions in a way that matches their ability. This is consistent with the more general
goal of problem decomposition because, assuming that easier problem instances ne-
cessitate simpler solutions, this allows basic behaviours to be learned first and then
be subsequently incorporated into more complex behaviours. The challenge of in-
cremental learning is to automate the process of identifying an appropriate set of
instructive problem instances, and in this work this issue is addressed through the
use of coevolution, Section 2.4.

An added benefit of using a dynamic environment is that it may lead to decreased
convergence in the diversity of the population. In particular, if changes in the en-
vironment result in successful adaptations in the population of individuals, i.e., via
directional natural selection, convergence to a single phenotype will not occur unless
that phenotype is viable under all the conditions. It is also noted that niching is
viewed as the equivalent of speciation, but whereas speciation applies to groups of or-
ganisms, niching applies to environmental conditions. In particular, a niche is viewed
as a subset of related environmental conditions that may lead to the formation of a
new species. Thus, if a dynamic environment can lead to the emergence of multiple
niches, this can further support phenotypic diversity, which, from the point of view
of this work, is a best-case scenario. It is acknowledged, however, that in other cases

convergence to a single species may be the desired outcome.

1.3.2 Evolutionary Computation as Machine Learning

Having presented the components of a typical evolutionary framework, it is now
possible to link these back to the key design issues in ML, Section 1.2.4. As suggested
by the nomenclature, the representation and fitness function components in an EA
reflect, respectively, the more general ML considerations related to the representation
and cost function. Typical representations encountered when studying EAs include
bit strings, real-valued vectors, and parse trees. Often, the terms ‘cost function’ and
‘fitness function’ can be used interchangeably, however, in the context of EAs the
latter is typically interpreted in terms of the viability of an individual in the evolving
population. In addition, the concept of an ecosystem provides a biological metaphor
for a dynamic cost function in an evolutionary framework.

The other EA components namely the population, the parent selection policy,

the variation operators, and the survivor selection policy — detail the policies and
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operators driving the search and as such reflect the design choices associated with
credit assignment. In particular, the search is performed using a population of can-
didate solutions. With feedback from the cost function, this then allows decisions
to be made regarding the suitability of individual population members, where these
take the form of the parent selection and survivor selection policies. In the former
case, more promising individuals can be further exploited through the application of
the variation operators. In the latter case, less promising individuals are discarded
and no longer considered in the search, recognizing an upper limit on the resources
available in conducting the search, i.e., in terms of the population size. In both cases,
the exploration-exploitation tradeoff can be characterized in terms of the amount of
selection pressure, with greater pressure suggesting an increased focus on exploitation
of genetic material found so far. In contrast, more aggressive variation operators, i.e.,
those that result in more variability in the offspring, reflect a more explorative search
strategy. Finally, since crossover involves the exchange of genetic material already
present in the population, it is often viewed as a means of exploitation. On the other
hand, mutation, due to its unbiased randomness, is often viewed as a mechanism for
exploration. The above discussion thus suggests that choices between exploration
and exploitation appear throughout an EA, and that successful application of the

algorithm relies on balance in the associated tradeoffs.

1.3.3 The Merits of Sexual Recombination

For natural selection to be effective, the transfer of genetic material from parent to
offspring must be both stable and variable [5]. Lack of stable inheritance implies that
offspring will not resemble their parents in which case selection of a fit parent will
unlikely lead to a fit offspring — worse yet, the offspring may represent a degener-
ate phenotype. At the same time, diversity in phenotypes is necessary so selection
can be based on a variety of options, therefore, inheritance should result in slight
perturbations in the genome.

The variation operators used in EAs simulate the transfer of genetic information
as observed in nature. In particular, crossover is meant to model biological sex-
ual recombination® whereby offspring receive a mix of the parents’ genetic material.
However, crossover operators in EAs generally do not model the homology of sexual

recombination in nature which is the primary reason why the latter is both stable

5Strictly speaking, crossover is modeled after the process of meiosis observed in diploid organisms,
i.e., the creation of sperm and egg cells that happens before mating [39].
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and variable [5]. As a result, with the exception of ES [16], crossover as commonly
implemented in EAs tends to be unstable and even destructive in the sense that even
if the parents are fit the offspring are likely to be degenerate, e.g., such destructive
effects have been demonstrated under various forms of GP [140, 142, 183|. For this
reason certain variants under the EC paradigm, notably EP algorithms, do not use
crossover [39].

In contrast, homologous recombination refers to the exchange of genetic material in
terms of functionally equivalent units, i.e., the exchange is made in such a way that the
overall functionality expressed by the genome is preserved while introducing relatively
slight variations. This implies that for homologous recombination to be feasible, the
parents’ genomes should be similar, otherwise, functionally equivalent units may not
always exist. The process is therefore greatly facilitated if the parents belong to the
same species because, arguably, it then becomes easier to identify matching functional
units. Put another way, crossover at an arbitrary location, as is common practice in
EC, is more likely to result in a viable offspring if the parents belong to the same
species since speciation is one way to model homology. The probability of crossover
resulting in viable offspring is therefore viewed as a spectrum, with the likelihood
increasing as the operator more accurately models the homology observed in nature.

The process of homologous recombination is further complicated if the genetic
material involves a high degree of epistasis, the latter referring to the amount of ge-
netic interaction that exists among different components in the genome. For example,
exchanging two units that appear to be functionally equivalent may result in degener-
ate functionality if certain links are broken, i.e., the units are placed in inappropriate
contexts. A related concept is that of genetic linkage which refers to the tendency of
certain combinations of genes to be inherited together. In particular, if a subset of
genes exhibiting a high level of epistasis also exhibit strong genetic linkage, then it is
likely that in the process of inheritance their aggregate functionality will be preserved.
Thus, genetic linkage may be viewed as a solution to the complications introduced
by the presence of epistasis.

The merits of using crossover as a variation operator are still open to debate as
evidence suggests that in its current forms it may be no more than a macro-mutation
(5, 39, 48]. Alternative interpretations regarding the role of recombination have also
been proposed, e.g., as in the genetic repair hypothesis where it is asserted that re-
combination may dampen the effects of harmful mutations [16]. The view adopted
here is that existing implementations of crossover are an oversimplification, and in

particular, that they are not able to take advantage of contextual information (which
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may not even be present) in the way that biological recombination does. Further-
more, symbiosis, Section 1.4, is viewed as an alternative to sexual recombination with
an increased potential to identify, compartmentalize, and thus protect useful combi-
nations of building blocks. Like sexual recombination, symbiosis therefore fulfills a

similar role in that it involves the exchange of genetic material between individuals.

1.3.4 Genetic Programming

GP is a form of EC where the individuals are represented as computer programs, i.e.,
they accept input, apply operations to process the input, then produce an output.
Most commonly, the genotype takes the form of parse trees [95] where a terminal set
specifies the possible leaves and a function set defines the possible internal nodes. To-
gether, the terminal and function sets define the primitives, or basic building blocks,
used to build expressions, i.e., subtrees. The closure property in tree-based GP states
that a function should be able to accept any argument it may be presented with,
whether it is a terminal or a return value of another function [95]. Satisfying the
closure property is trivial when terminals and return values are all of the same type,
otherwise, strongly typed GP may be required [130]. Subject to the closure property,
mutation and crossover in tree-based GP is then allowed to build arbitrary structures.
Representing a superset of structures evolved using tree-based GP, graph-based rep-
resentations have also been proposed [184].

There also exist variants of GP with linear genomes. Of principal relevance to
this work is linear GP [20] where the genotype takes the form of assembly-level code
operating on external inputs and a set of internal registers, i.e., code that runs on a
register machine [29]. For example, a bit string may be interpreted as a sequence of
words each consisting of a mode, opcode, and operands; this representation is used
here, and is described in more detail in Section 3.6. Analogous to tree-based GP, the
concepts of a terminal and function set as well as the closure property apply under
linear GP.

All forms of GP fall under the model building paradigm, Figure 1.2¢, since the
programs that are induced represent models. It is stressed that the proposed approach
does not rely on any specific form of GP%, and linear GP was chosen partly for its
efficiency [141] and partly for historical reasons. In general, advantages typically

associated with GP are as follows:

SIn fact, the proposed approach can use any evolutionary approach for model building to produce
the bidding behaviour.
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1. GP can be applied to specific problems without incorporating a lot of a priori
knowledge. For example, a problem-specific function set is typically not neces-

sary, placing the onus on evolution to find novel ways of combining operations.

2. If required, GP is flexible in terms of the function set that is used, e.g., the

models can be based on a logical or arithmetic function set.

3. The models evolved using GP can represent arbitrarily complex and non-linear

functions.

4. The lack of algorithm-specific constraints on the fitness function, e.g., smooth-
ness, means that its design can focus on the problem domain requirements,

potentially leading to improved search in terms of quality and efficiency.

5. As an embedded approach to feature selection [59], GP determines which fea-
tures to use as part of the learning process. The feature values themselves

require little preprocessing as they are scaled automatically.

6. Using GP, it is possible to evolve solutions that can be interpreted by people,
especially if complexity is low, where this capability is becoming increasingly
more desirable [41, 122, 131, 186].

7. GP can be deployed across entire categories of task domains with little modifica-
tion. In contrast, ML approaches are often geared towards a single domain only,
e.g., an algorithm designed for classification may not be applicable to temporal

sequence learning.

The main drawback of GP, and many EAs in general, is that it is computation-
ally expensive [5], with parallelization [15] and stochastic sampling of fitness cases
[55] used as the main approaches to reduce overhead. In addition, canonical GP im-
plementations are best suited for problems requiring binary decisions. For example,
when the program output is a real-valued scalar, GP can be applied to binary classi-
fication problems by using a wrapper function [95]; in this case, output less than zero
would be associated with one class, and all other output with the other. Otherwise,
alternate approaches, e.g., binary decomposition [92], must be used.

A side-effect of evolution typically observed under GP is that program code may
contain introns, that is, structures that do not affect an individual’s chances of survival
[5]. Alternatively, an intron can be viewed as any code segment that has no effect on

the output for all possible inputs [18]. The latter definition is adopted here, in which
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case, two forms of introns are recognized. Structural introns apply operations to
variables which do not affect the final program output. For example, in linear GP, if
the program output is extracted from register zero, then all instructions following the
last instruction where register zero is the destination are structural introns. Semantic
introns, on the other hand, can consist of one or more instructions whose net effect
on a variable is nil, e.g., addition of zero, even if the variables accessed are relevant
to the final program output. As such, semantic introns are much more difficult to
detect.

Evidence suggests that introns emerge during the evolutionary process because
they may help to protect useful code segments, i.e., those making a positive contri-
bution towards an individual’s fitness, from the destructive effects of crossover [5].
Introns also provide a mechanism by which genetic material can be retained in the
population without being acted upon by selection pressure [18]. As such, diversity
can be maintained, and novel structures can be explored without having to imme-
diately reflect on an individual’s performance. Unfortunately, introns are a drain
on computational resources since their execution has no immediate consequence. If
they can be identified, they should therefore be bypassed prior to program execution.
Under tree-based GP, where all nodes are involved in the expression defined at the
root, there are effectively no structural introns, so the focus has to be on the difficult
task of locating semantic introns. On the other hand, the use of linear GP facilitates
the run-time identification of structural introns during evolution, potentially leading
to a considerable speedup [18]. The algorithm for removing structural introns that is

used in this work is described in Section 3.6.

1.4 Symbiosis

It was suggested in Section 1.3.3 that the transfer of genetic material from parent
to offspring should be both stable and variable. Sexual reproduction supports these
requirements through a three-staged process involving species identification, gene
alignment, and then variation through crossover. Conversely, asexual models of re-
production adopt a somewhat different approach in addressing the issues of stability
and variability. In the following, the focus is on the role of symbiosis in the develop-
ment of asexual organisms, where this model of evolution provides the motivation for

the research undertaken in this thesis.
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Characterization Outcome
Partner A \ Partner B
Mutualism Beneficial | Beneficial
Parasitism Beneficial | Harmful
Commensalism Neutral | Beneficial
Competition Harmful Harmful
Amensalism Harmful Neutral

Table 1.1: Examples of cost-benefit characterizations associated with different sym-
biotic relations. Each is valid under de Bary’s definition of symbiosis. In contrast,
modern interpretations of symbiosis tend to be limited to mutualism [102, 120] in
which case both parties benefit from the relationship. Only pairwise relationships are
considered, though these could conceivably be used to obtain a characterization in
situations involving more individuals.

1.4.1 What is Symbiosis?

In 1879, the mycologist Anton de Bary coined the term symbiosis in reference to
the living together of different organisms [8]. His original definition suggested a
tendency towards permanence and physical proximity, but did not specify the cost-
benefit characterization of the relationship [31, 102]. That is to say, so long as the
relationship involved sufficient intimacy, symbiosis could be viewed in terms of any
one of a number of possible combinations of outcomes, Table 1.1. For example, under
de Bary’s definition, both partners could benefit, as in mutualism, or one of the
partners could benefit at the expense of the other, as in parasitism. However, de
Bary’s requirement for intimacy excluded ecological interactions such predator-prey

relationships between different species.

Subsequent to de Bary’s definition of symbiosis, a spectrum of interpretations
relating to what it is and what it is not have been proposed. In general, these can be

categorized along two main lines of thought [102, 120]:

1. Symbiosis occurs whenever two different organisms live together in close as-
sociation, regardless of the overall outcome on the parties involved. This in-
terpretation follows de Bary’s original definition, and suggests that symbiosis
plays a significant part in evolution. It is considered to be the classical view of

symbiosis.

2. Symbiosis is a mutually beneficial relationship between two dissimilar organ-

isms, i.e., symbiosis is mutualism. This interpretation is more restricted than
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de Bary’s original definition and is more in line with the notion that the role
of symbiosis in evolution is relatively small. This is considered to be a modern

view of symbiosis often encountered in contemporary texts.

The modern interpretation of symbiosis can therefore be viewed as de Bary’s original
definition restricted to a single cost-benefit characterization. Given that a widely
accepted definition of symbiosis is not recognized even among biologists [120], finding
a definition that is consistent with the current state of the field of biology is beyond
the scope of this work. Instead, as discussed below, an interpretation of symbiosis
is adopted that is viewed as particularly useful for model building under an EC
framework. It is noted, however, that the definition of symbiosis assumed here is

more in line with the classical interpretation.

1.4.2 Terminology Used in this Work

In this work, the term symbiont is used to refer to an entity that exists in a symbi-
otic relationship with one or more other entities. Under certain forms of symbiosis,
one of the symbionts may be a host, i.e., if it contains one or more of the associated
symbionts. When this is the case, the terms host and symbiont are used to refer, re-
spectively, to the containing entity and the entity being contained, though technically
both are symbionts in the relationship. This distinction is further developed below in
the context of the specific definition of symbiosis that is adopted; it is also noted that
although the discussion often centers around species, the generic nature of that defi-
nition makes it compatible with other units of organization. Here, species is assumed
to mean a set of organisms capable of ‘natural reproduction resulting in viable and

fertile offspring’ [150], where this assumes inheritance through sexual recombination.

1.4.3 Some Biological Context

In nature, symbiosis can be viewed in terms of its spatial and temporal properties
[120]. Whereas spatial properties refer to the physical proximity of the symbionts
involved or the way in which the physical association is made, temporal properties
characterize when in the symbionts’ lifetimes the symbiotic association is made, e.g.,
the association could be temporary, permanent, or cyclic. If a symbiotic relationship
exists it does so somewhere and at some point in time, and it can therefore always
be described in terms of these two properties. The cost-benefit characterization of
the relationship, Table 1.1, can be viewed as a third property applicable to every

symbiotic association.
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Figure 1.4: Spectrum of possible interactions between organisms of different species
in terms of physical proximity. Under this interpretation, ecological interactions do
not represent a form symbiosis.

As an example, spatial interactions can be viewed in terms of a continuum of
relationships [31] ranging from the very distant to the very close, Figure 1.4. In this
particular case, ecological interactions such as those between predator and prey or
herbivore and plant are not considered to be forms of symbiosis, though this distinc-
tion is not made by all biologists. When ecological interactions are excluded, what
remain are two main types of symbioses, ectosymbiosis and endosymbiosis. Ectosym-
biotic interactions, e.g., behavioural or attachment relationships, do not involve one
of the symbionts living inside the other. In contrast, under endosymbiosis, one of the
symbionts lives inside the body of the other, the latter assuming the role of the host.
Endosymbiotic symbioses can be extracellular, whereby the symbiont lives inside a
cavity of the host or between the cells in the host’s tissue, or intracellular, whereby
the symbiont resides within the host’s cell. Intracellular interactions can be further
broken down into ectonuclear and endonuclear relationships depending on whether

or not the symbiont lives outside or inside of the host’s nucleus.

A wide range of interactions or processes supporting symbiosis in nature have also

been observed which may appear in some symbioses but not others. These include
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behavioural, allelochemical, anatomical, developmental, metabolic, and genetic rela-
tionships [120]. For example, metabolic relationships involve one organism consuming
the metabolic byproduct of another organism, whereas genetic relationships may in-
volve the exchange of genetic material between symbionts. These interactions are not
exclusive in the sense that they are often observed in combination.

Horizontal gene transfer, an example of a genetic process supporting certain forms
of symbiosis [31, 120], refers to the transmission of mobile genetic elements across
species boundaries [165]. It has featured within endosymbiotic theory [126, 159, 188],
the latter suggesting that certain organelles (mitochondria and plastids) in eukary-
otic” cells originated from bacteria that were assimilated by the host cell. Another
observed example where horizontal gene transfer has played a role is in the devel-
opment of bacterial resistance to antibiotics through the transfer of ‘prefabricated’
resistance-conferring genes [165] — in contrast to mutation coupled with natural selec-
tion, this can result in much quicker adaptation. In general, horizontal gene transfer
has typically been observed in simple life forms, e.g., prokaryotes, where asexual
reproduction is the dominant mechanism of inheritance [36, 165].

Research into horizontal gene transfer has led to the reconsideration of two tra-
ditional insights related to the way that life evolved on Earth. First, it has been
used in arguments against the notion that the evolution of species can be represented
in terms of a ‘tree of life’ [32]. Specifically, it has been suggested that a single ge-
nealogical tree is an oversimplification, and that a more accurate model would be one
where the branches merge together wherever genes are exchanged between ‘lineages’
[36], i.e., the tree of life should really be a network of life. Second, though neo-
Darwinism asserts that with respect to biological evolution, sexual reproduction is
the key mechanism for the transmission of traits, horizontal gene transfer has allowed
asexual microorganism to develop most of the fundamental processes that are used
by contemporary, higher-level, life forms [165]. As such, it appears to represent an
alternate mechanism for achieving genetic innovation that has had a profound effect
on the course of evolution. Though acknowledged to be a valid mechanism, as is the
case with symbiosis itself, the significance of horizontal gene transfer remains a topic
of debate [100].

The above discussion is included in order to highlight two points. First, many
forms of symbiosis are observed in nature, making it difficult to specify a single

definition that is applicable in all cases. Second, there appear to be many opinions

“In contrast to prokaryotes, eukaryotes have a member-enclosed nucleus. Furthermore, whereas
eukaryotes are capable of genetic recombination, prokaryotes tend to rely on unilateral gene transfer.
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and theories held by biologists regarding the way in which life evolved, sets of which

range from inconsistent to contradictory.

1.5 From Biological Evolution to Evolutionary Computation

1.5.1 Symbiosis as an Operator

There is disagreement regarding the definition of symbiosis [31, 102, 120], and as such,
it is not surprising to see a lack of consensus regarding its role in evolution and its
impact in present-day life. Part of the reason for this may be that as a relationship,
symbiosis can be regarded either as state or as an operator [31]. Defining symbiosis as
a state means viewing it in terms of the characteristics that distinguish it from other
types of relationships. For example, as discussed earlier, modern interpretations tend
to view mutual benefit as a key property of symbiosis, thus excluding other charac-
terizations such as, e.g., parasitism. One the other hand, as an operator, symbiosis is
viewed in terms of a series of steps, i.e., symbiosis is viewed as an algorithm?®.

In this work, symbiosis is regarded as an operator. This interpretation is consistent
with the classical definition of symbiosis, Section 1.4.1, as it does not associate a
single cost-benefit characterization with the interaction. Whether or not the same
underlying process is the basis for all instances of symbiosis is open to debate. It
is therefore difficult, if not impossible, to capture all aspects of symbiosis in nature
within a single computational model [31]. In this work, the focus is on the ability
of symbiosis to support problem decomposition through complexification, i.e., the
combination of relatively simple components into a single functional unit which may
then serve as a component for successive, higher-level, units. This abstraction is seen
as particularly useful for model building under an EC framework because it may allow
increasingly complex behaviours to be evolved without an a prior: specification of the
subcomponents.

Specifically, in this thesis, symbiosis is viewed as a process consisting of three
distinct stages [121], Figure 1.5:

1. The coexistence of two or more species®.

2. The compartmentalization of individual members from the different species

within a host entity.

8Though the end result of an algorithm may also be viewed in terms of properties, where this
may be a source of further confusion.

9As in [121], the process is described in terms of species, though it is equally valid when applied
at other levels of organization.
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Figure 1.5: Symbiosis as a three-staged operator [121]. The illustration involves
three species (circles, triangles, and squares), though it applies to any number of
groups at different levels of organization. The first stage involves the coexistence
of the three species, and may lead to the compartmentalization of individuals from
different species in the second stage. In the third stage, a mechanism emerges for the
replication of the coupled individuals which are then interpreted as an increasingly
complex unit of evolution. The entire process may repeat using the latter as the
building blocks in the next iteration.

3. The emergence of a mechanism for the joint replication of the compartments

that are established.

The third stage in this definition effectively validates that the interaction between
individuals from different species is beneficial under the pressures of natural selection.

The second stage, referring to the compartmentalization of species members, is
taken to mean a closer association between specific individuals than is observed in
the first stage. It represents an intermediate step when the compartment is tested
under natural selection but before it is able to replicate. This tighter association is
taken to be the sole condition defining compartmentalization, and the nature of the
compartment itself remains otherwise unspecified. In some cases, it may mean that
the interactions occur only between individuals in the same compartment, though this
need not always be the case. Furthermore, the compartment need not be a physical
entity. In terms of the terminology introduced earlier, the compartment could also
be one of the symbionts, i.e., the host, so the terms ‘compartment’ and ‘host’ will be

used interchangeably.
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A consequence of natural selection acting on the compartment, as opposed to
being applied to each symbiont individually, is that it now effectively represents a
group selection (fitness) operator. As such, it may now be the case that the fitness
of the group is greater than the sum of the symbionts’ fitness values had they been
evaluated individually. Should this happen, it would then support progression to the
third stage of symbiosis.

Though abstract, the process of symbiosis described above is consistent with cer-
tain results in evolutionary biology, and in particular, it may reflect the transition
from prokaryotes to eukaryotes [121]. Suggestions of a more speculative nature have
also been made regarding the role of this process in a number of other evolutionary
transitions in which the units of evolution have become increasingly complex [121].
A related fundamental question that was posed was why selection on the lower-level
units did not disrupt the higher-level units. In this work, this issue was bypassed by
limiting selection to the higher-level units.

Naturally, symbiosis as summarized in Figure 1.5 is not universal and does not
reflect all cases in biology. For example, the model is likely to be invalid under
ectosymbiotic relationships such as attachment and behavioural interactions, e.g.,
sea anemones clinging to the shells of hermit crabs. In these cases, the symbioses
are not likely to include the third step involving the synchronized replication of the
symbionts as a compartmentalized unit. However, the adopted definition of symbiosis
is viewed as concise and generic, and thus suitably applicable in a ML context.

Finally, it is emphasized that any of the cost-benefit characterizations summarized
in Table 1.1 are valid under this definition of symbiosis. For example, the trial-and-
error nature of EC means that the symbiotic association made may be harmful to all
involved, i.e., the interaction may be strictly competitive, so that the joint replication
stage may not be realized since there is no associated benefit. Naturally, it is expected
that mutually beneficial interactions, i.e., mutualism, will result in improved fitness

in the higher-level units that are produced.

1.5.2 Symbiosis versus neo-Darwinism

The notion that life today has developed from a common set of ancestors through a
series of transformations, i.e., the principle of evolution, is widely accepted as a fact
[101]. What is not yet fully understood, and what remains a topic of debate, are
the mechanisms driving evolutionary change. For example, even among advocates of

symbiosis and its role in evolutionary history [102, 120], there are those that argue that
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its significance has been overemphasized [102]. Horizontal gene transfer, discussed
in Section 1.4.3, is another mechanism which is now providing new insights into
how species are related [36]. In this section, symbiosis, Figure 1.5, is compared and
contrasted in relation to neo-Darwinism, the latter representing the norm in EC.
Before doing so, some historical context is provided to clarify exactly what is meant
by neo-Darwinism.

Symbiosis can be viewed as a form of Lamarckism [135], the latter referring to
the theory which asserts that traits acquired during an organism’s lifetime can be
passed on to its offspring [105]. Through symbiosis, such ‘inheritance of acquired
characteristics’ [101] is in fact possible, e.g., the acquisition and subsequent trans-
mission of organelles as suggested by endosymbiotic theory. This is also consistent
with the definition of symbiosis adopted here, Figure 1.5, where the third stage can
be interpreted as Lamarckian inheritance.

Notably, Lamarckism was part of Darwin’s original theories as presented in his
1859 book [32]. Today it is recognized that Alfred Russel Wallace, Darwin’s contem-
porary, made similar propositions regarding the role of natural selection in evolution
which he published three decades later [187]. However, Wallace’s account did not
include the possibility of passing on traits acquired during one’s lifetime. Neverthe-
less, Darwinism, as set of theories, is used to refer to work originally presented by
Darwin and Wallace and includes Lamarck’s principle [101]. In 1892 August Weis-
mann augmented Darwinism through two significant contributions [192]. First, he
provided empirical evidence against Lamarckian inheritance and rejected the princi-
ple altogether. Second, he argued for sexual reproduction, i.e., recombination, as a
key source of variation in populations, with this latter assertion having a significant
impact on EC. The result of augmenting Darwinism with Weismann’s conclusions is
referred to as neo-Darwinism [101].

Neo-Darwinism is thus founded on Charles Darwin’s body of work, which in turn

can be interpreted in terms of five theories [103]:

1. Evolution, not spontaneous acts of creation, is responsible for the state of life

on Earth — this implies that life is constantly changing.
2. All organisms share a common ancestry.

3. Evolution is gradual, i.e, new species emerge as a result of a long-term accumu-

lation of minute variations.



32

4. Species multiply, e.g., one species gives rise to two, and thus lead to diversity

in life.

5. Evolutionary change is the result of genetic variation within populations coupled

with a bias towards certain favourable traits.

Furthermore, taking into account Weismann’s contributions [192], it is suggested that
the genetic variation in populations is primarily a direct result of sexual reproduction
(recombination) — the above theories thus characterize the definition of neo-Darwinism
in the context of which symbiosis is analyzed. The last theory above, discussed in more
detail in Section 1.3, refers to natural selection as a driving force behind evolution.

Symbiosis, as a mechanism driving evolutionary change, is compatible with the
first two theories noted above. That is, if one believes that symbiosis is a valid and
significant mechanism of inheritance, this belief does not contradict the notion that
life is constantly changing and that all organisms share common ancestral roots.

On the other hand, symbiosis is inconsistent with the three latter theories, Table
1.2. In contrast to the gradual nature of evolution as suggested by neo-Darwinism,
symbiosis can result in abrupt changes, e.g., as previously independent functional
units are incorporated into a host this can have troublesome effects such as the
rapid proliferation of drug-resistant bacteria. Consistent with the notion of abrupt
changes is the view that certain variation operators under symbiosis function on a
larger scale. Though neo-Darwinian evolution can also result in significant changes,
the process is likely to take much longer.

Symbiosis also provides an alternative to species multiplication as a way of gen-
erating diversity in life forms. The fourth theory above suggests that species in
biological evolution can be represented in terms of a tree of life. As previously dis-
cussed, through symbiosis, the branches in this tree may in fact have merged, with
each such event resulting in a new single species that is a combination of multiple ex-
isting species. Thus, in contrast to neo-Darwinism, under symbiosis distinct lineages
may converge, e.g., as in the transition from prokaryotes to eukaryotes. The vast
diversity achievable through symbiosis can be viewed in terms of the number possi-
ble combinations of symbionts. Under the restriction that the symbionts represent
different species, each such combination may lead to the emergence of a new species.

The final theory refers to natural selection and to the mechanism for producing
the genetic variation upon which it operates. Symbiosis is consistent with natural

selection, i.e., it provide a mechanism for producing the units upon which natural
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’ H neo-Darwinism ‘ Symbiosis ‘

Rate of change gradual abrupt
Possible lineages || single multiple
Reproduction sexual asexual

Table 1.2: Comparison of symbiosis with neo-Darwinism. The differences reflect the
last three theories used to summarize neo-Darwinism [103].

selection may then act [121]. However, it does provide an alternate to sexual re-
combination as a mechanism driving genetic diversity. For example, horizontal gene
transfer, which falls under the definition of symbiosis adopted here, is believed to have
allowed asexual organisms to develop many of the fundamental processes that con-
tinue to support life today [165]; in this case, however, mutation was also required as
an underlying source of variation. As mechanisms of genetic variation, a fundamen-
tal difference between sexual reproduction and symbiosis is that the former assumes
a certain degree of homology whereas the latter does not. Specifically, in contrast
to sexual recombination, symbiosis does not assume that the partners belong to the

same species.

1.5.3 Discussion
Symbiosis as Context Learning

A number of properties and interactions related to symbioses in nature were discussed
in Section 1.4.3. Of these, five are viewed as potentially useful as metaphors applicable
in an EC setting, Table 1.3, and thus may serve as a kind of biologically-inspired
vocabulary for discussing symbiosis in EAs. Naturally, these are abstractions, and
so it is acknowledged that alternate interpretations may be proposed. Furthermore,
these abstractions are collectively referred to as relationships, though, e.g., ‘temporal’
may more accurately reflect a property of symbiosis whereas ‘metabolic’ may be more
consistent with an underlying process. In the following, the relationships in Table 1.3
are discussed in the context of the definition of symbiosis that was adopted in this

work, Figure 1.5.

The payoff relationships define the cost-benefit characterization of the interaction,
i.e., whether each symbiont is better off or worse off by participating in the associ-

ation, Table 1.1. They are relevant in the early stages of symbiosis-as-an-operator
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’ Relationship ‘ Description ‘

Payoft Defines the gain or loss incurred by each symbiont as a result
of it participating in the symbiosis

Spatial Defines the topographical organization of the symbionts, in-
cluding the amount of separation

Temporal Defines when in the symbionts’ lifetimes they are intimately
associated

Metabolic Supports communication between symbionts, coordinates
symbiont behaviours

Genetic Supports the vertical or horizontal transfer of traits

Table 1.3: Symbiotic relationships adapted to EC.

as suggested in Figure 1.5 because by the third stage fitness is assigned on the com-
partment as a whole and not to its individual parts. In the earlier stages, before the
compartment is finalized and when natural selection still applies to individuals, the
payoff relationships may filter out potential symbionts. If the relationship is mutual-
istic, in which case all symbionts benefit from the association, then natural selection
is likely to rule in favour of compartmentalization and joint replication!®.

Spatial and temporal relationships can be interpreted as quantifying the physical
properties of the association, i.e., they answer the questions of where and when the
association takes place. They are also most relevant in the early stages of the process
of symbiosis where they help to identify who may be considered for host membership.
In contrast, once the compartment is formed, the association is permanent and in
many cases the physical location may be fixed.

Finally, metabolic and genetic relationships are viewed as more intimate in the
sense that they represent the processes required to support symbiosis once the com-
partment is formed. As such, they are assumed to be more relevant in the latter
stages of the process. Together, they establish the context for exchanging infor-
mation between symbionts. Genetic relationships support the transfer of heritable
information during replication, whereas metabolic relationships define the behaviour
of the compartment as a whole as it interacts in the environment.

The relationships in Table 1.3 can therefore be interpreted according to their
role. First are the spatial and temporal relationships under which potential symbiotic
associations are identified. Second, the metabolic and genetic relationships define the
mechanisms of communication. Finally, the payoff structure that emerges affects the

viability of individual symbionts and may reflect the fitness of the host as a whole —

10The result of other cost-benefit characterizations, Table 1.1, is not as clear.
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in the latter case one can be confident that mutualism will result in higher aggregate
fitness.

This discussion suggests that symbiosis may represent an approach for problem
solving through context learning, i.e., learning in what situation to apply which so-
lution subcomponents. Under symbiosis, the spatial and temporal relationships may
identify potentially useful combinations of subcomponents. The metabolic relation-
ships may then serve to establish the means for collaboration among subcomponents,
whereas genetic relationships may support further exploration of the space of possible
subcomponents with respect to what has already been discovered. Finally, the payoff
relationships characterize when a collaboration is deemed to be effective. Under this
interpretation, one can view evolution through symbiosis as an instance of context
learning.

With respect to the two views of problem decomposition discussed earlier, Section
1.1, this suggests that symbiosis has the capacity for decomposing the problem later-
ally. Indeed, context learning was suggested as a means of achieving lateral problem
decomposition, Section 1.1. Furthermore, as the process of symbiosis-as-an-operator
in Figure 1.5 is repeated iteratively, it can lead to vertical problem decomposition
as the units of evolution transition from simple to complex [121]. Given that such
incremental complexification results in layers of increasingly complex units, this can
be interpreted as a form of layered learning. This thesis thus asserts that symbiosis

has the potential to encompass both types of learning within the same framework.

An Alternative to Sexual Recombination

At the end of Section 1.5.2 it was suggested that a fundamental difference between
sexual reproduction and symbiosis, as mechanisms supporting evolution, is that the
former assumes a certain degree of homology whereas the latter does not. This is
significant from an EC perspective where there is a lack of consensus regarding the
validity of crossover as a variation operator, Section 1.3.3. Specifically, though the
goal of crossover in EC is to simulate biological sexual recombination, typically the
implementation is an oversimplification that fails to appropriately model homologous
sexual recombination. As a result, with the exception of ES [16], the crossover oper-
ators used in EC tend to introduce variability but are generally unstable in that fit
parents are likely to product unfit offspring.

The issue of an unstable crossover operator has been acknowledged to be a prob-

lem in EC. Some have excluded its use, notably, proponents of EP [39]. Others have
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tried to address this issue, for example, by employing a more structured crossover
that is less likely to produce degenerates [177|, or by identifying species so that
crossover could be applied locally as in certain classifier systems formulations [196].
Notwithstanding, when it is employed, the norm in EC appears to be to use sexual re-
combination indiscriminately. This may be justifiable once the population converges
to what effectively can be viewed as a single species, because, as suggested earlier,
this implies a tendency towards homologous genomes which in turn increase the like-
lihood of producing viable offspring. If, however, multiple species are present, such
indiscriminate application of crossover is viewed as problematic, or in the very least,
questionable.

Furthermore, assuming a single species may be reasonable when the fitness func-
tion is based on a fixed, relatively small, set of training exemplars. In this case, the
entire training set may represent a single niche, and as such, it may have the capac-
ity to support just a single species. In contrast, larger problems, e.g., classification
involving massive datasets or real-world applications of temporal sequence learning,
may involve sufficiently many environmental states so as to support multiple niches.
In addition, if the state space is very large, a subset sampling strategy may be re-
quired, where this may also support the formation of new species as criteria under
which individuals are evaluated change. Such dynamic conditions may prevent con-
vergence to a single species, and as such, more care must be taken when applying the
crossover operator.

Symbiosis provides an alternative to sexual recombination capable of both the
variable and stable exchange of genetic material without the assumption of homol-
ogy. Variability in genetic material is supported through the coexistence of distinct
species which may eventually lead to the joint replication of different, possibly non-
homologous, genomes. Stability is maintained because a given inter-species interac-
tion does not progress to the joint replication stage unless the partnership is deemed
to be mutualistic as measured through natural selection. That is, recombination
is stable if parent fitness is correlated with the resulting offspring fitness, Section
1.3.3. Analogously, symbiosis is implicitly stable because the third stage is not likely
to be reached unless the partnership between the symbionts increases the group fit-
ness compared to the fitness of the individuals. In effect, once in the third stage of
symbiosis-as-an-operator, genetic material from different, possibly non-homologous,
sources has been successfully combined into a new organism that is fit and is itself
capable of reproduction.

In terms of efficiency, the difference between symbiosis and sexual recombination
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is not clear. Sexual recombination may be wasteful if it is likely to lead to unfit
offspring since these normally do not advance the search towards solutions of high
quality. However, symbiosis still requires that natural selection test the probationary
partnerships in determining if joint replication is warranted, i.e., the partnerships
may not be effective and thus also not advance the search. Thus, like the crossover
operator, symbiosis may also be considered to be a macro-mutation. Nevertheless,
symbiosis is viewed as a potentially useful alternative to sexual recombination in part
because it has received limited attention from the EC research community. As such, if
it receives a proportional amount of consideration, it may turn out to be an effective
approach. Moreover, in contrast to recombination, the process of symbiosis assumed
in this work clearly suggests a propensity towards problem decomposition through
complexification. This, in turn, may lead to increased efficiency in conducting the

search if the optimal behaviour of the symbionts is to some degree independent!!.

1.6 Research Objectives

The principal aim of this thesis is to propose symbiosis as a mechanism for context
learning and layered learning, i.e., problem decomposition, under an EC framework

for problem solving. To this end, the following explicit objectives are identified:

1. To present a novel EC algorithm that incorporates symbiosis as a primary mech-

anism driving evolution and which supports problem decomposition.

2. To demonstrate that the proposed approach is effective versus comparable ap-

proaches with a reduced capacity for problem decomposition.

3. To analyze the nature of the problem decomposition resulting from the appli-

cation of the proposed approach.

4. To compare the proposed approach against current state-of-the-art algorithms

on a set of challenging real-world problems.

5. To explore the design of a dynamic evaluation function and investigate the

conditions under which specific design choices are appropriate.

In the following section, an overview of the thesis is provided including references to

specific sections where the above objectives are pursued.

1 This is related to the notion of modular interdependency which is discussed in Section 2.1.3.
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1.7 Thesis Overview

In Section 1.1, lateral problem decomposition was described in general terms as the
coordination of subcomponents which have similar capabilities, i.e., peers. This de-
scription implied that the subcomponents could be applied to tasks of similar scope,
and that they were explicitly modular collectively exhibiting non-overlapping be-
haviours. Vertical problem decomposition, on the other hand, was viewed in terms
of the hierarchical organization of increasingly complex units. Here, these definitions

are extended, with a particular emphasis on the meaning assumed in this thesis:

e Lateral problem decomposition refers to the partitioning of the problem space
among structurally distinct solution subcomponents. The partitions represent
subproblems at the same level of granularity, while the solution subcompo-
nents represent partial solutions to the overall task which must collectively learn
the appropriate one-to-one association between subproblem and subcomponent.
The overall goal is thus viewed as an instance of context learning — learning un-
der what problem conditions (when) to apply which solution subcomponent
(what).

o Vertical problem decomposition refers to the layering of previously learned be-
haviours with the goal of scaling the process of context learning to a much
wider set of scenarios than would be possible under lateral problem decompo-
sition alone. Such layering implies a hierarchical structure with more complex
units of organization at higher levels. However, the learning process at each
level is still viewed as an application of context learning but assumes a higher

degree of granularity.

Under both types of problem decomposition, context learning is viewed as playing
a pivotal role; under vertical problem decomposition, it provides a mechanism for
choosing which lower-level behaviours to apply when. It is also recognized that learn-
ing the concepts of ‘when’ and ‘what” may be facilitated if they are decoupled, i.e.,
learning a set of related situations is separated from the task of specifying what action
is appropriate for each such set.

At the highest level, this thesis can then be described as a presentation of an
evolutionary framework based on the biological process of symbiosis that is capable
of both lateral and vertical problem decomposition. The content of specific thesis

chapters is organized as follows:
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e The primary goal of Chapter 2 is to familiarize the reader with the most rele-
vant ML approaches to lateral and vertical problem decomposition. The chapter
begins by making a case for problem decomposition as a problem solving tool
essential in many complex systems, and also includes an introduction to some
early notions of modularity. This is followed by an overview of approaches to
lateral problem decomposition which include ensemble methods, teaming using
GP, and bid-based approaches, and which, with the exception of the bid-based
approaches, are often observed to result in subcomponents whose behaviours
tend to overlap. The chapter then discusses a number of approaches to verti-
cal problem decomposition including a symbiotic approach to neuroevolution
whose core architecture is incorporated into the proposed approach. The focus
then shifts as the chapter concludes with an overview of coevolution; whereas
symbiosis can be viewed as a form of cooperative coevolution, the proposed
approach relies on what is traditionally referred to as competitive coevolution

in order to support efficient training.

e The proposed framework is described in detail in Chapter 3. The key algorithm
components presented include a bid-based approach to context learning, an
evolutionary cycle based on symbiosis as the primary mechanism of inheritance,
and the dynamic evaluation of candidate solutions through coevolution with a
population of test cases. The manner in which the proposed algorithm reflects
the formulation of symbiosis-as-an-operator assumed in this thesis, Figure 1.5,
is also discussed, as is the hierarchical model construction process. At the end of
the chapter, the specific form of GP used to identify context is detailed, though it

is stressed that the proposed approach is compatible with other representations.

e The first chapter where experimental results are presented is Chapter 4. Here,
the goal is to compare the proposed algorithm, which is explicitly modular, with
a comparable implementation of monolithic GP with the goal of isolating the
benefits that an increased capacity for lateral problem decomposition may bring.
The two approaches are applied to four binary classification problems and eval-
uated in terms of classification performance, solution complexity, and training
overhead, with the expectation that modularity will help in all three areas. Fol-
lowing the comparison, the solutions evolved under the proposed approach are
further characterized in order to gain additional insight into the nature of any
problem decomposition that may emerge. The chapter concludes with an anal-

ysis of population-wide classification performance under the proposed approach



40
motivating the construction of additional hierarchy levels.

e Continuing under the classification domain, Chapter 5 evaluates the proposed
algorithm against two well-established algorithms outside of the EC domain
that are tailored towards classification. Specifically, the two approaches used
in the comparison are a Support Vector Machine (SVM) implementation and
boosting; whereas the former is viewed as the current state-of-the-art, the latter
is nonetheless still considered to be robust and capable. In addition to the four
binary problems used in the previous chapter, two additional multi-class prob-
lems are included in the evaluation with the goal of demonstrating the ability
of the proposed approach to support multi-class learning. An argument made
throughout the chapter is that the tradeoff between complexity and performance

should be considered when identifying the most appropriate solution.

e In Chapter 6, the problem domain shifts from classification to temporal se-
quence learning, and specifically, to the task of learning to reverse a cab and
semi from an arbitrary location onto a loading dock. The main goal of the
chapter is to investigate the design of the policy for managing test case selec-
tion, which, under problems with many training instances, is an approach to
reducing computational overhead. To this end, a number of policies ranging
from the random selection of test cases to explicit coevolution are considered
under both real-valued and binary reward schemes. The results of this chapter
guide experiment design in subsequent chapters, and in particular, the choice
of a real-valued reward scheme in Chapter 7 and the requirement for a coevolu-
tionary function that explicitly models the interaction between test cases and

candidate solutions in Chapter 8.

e The primary goal of Chapter 7 is twofold. First, the chapter aims to compare
the proposed approach against a neuroevolutionary algorithm which currently
represents the state-of-the-art under temporal sequence learning. Second, for
the first time in the thesis, the chapter attempts to evaluate the benefits of
the hierarchical construction process, i.e., vertical problem decomposition. In
the latter case, a two-level formulation of the proposed approach is compared
with a single-level formulation under the same fitness evaluation limit. As in
the previous chapter, the problem domain considered is the truck reversal task

facilitating the visualization of the behaviour that is learned.

e In Chapter 8, the proposed approach is used in an attempt to evolve policies
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for solving the Rubik’s Cube. In contrast to the truck reversal task, where
the inputs and output are continuous, the Rubik’s Cube represents a discrete
problem domain. Though hand-crafted algorithms for solving arbitrary cube
configurations have been developed, the task represents a considerable challenge
for ML algorithms which to this point have been unable to produce generic
strategies. The proposed approach therefore represents one of very few (if any)
documented attempts at automatically learning policies for solving arbitrary

cube configurations.

The thesis concludes with Chapter 9. Here, the key ideas underlying the pro-
posed approach are summarized and a retrospective on the research objectives
as stated in Section 1.6 is presented. The chapter includes comments on what
are viewed to be the main contributions made in this work, as well as suggestions

for future work.



Chapter 2

Related Work

This chapter reviews previous work that is relevant to this thesis, either because the
proposed approach builds on that work, or because that work is viewed as useful in
providing the necessary context in which the contribution of the proposed approach
can be assessed. In some cases, the discussion involves only a high-level summary,
where the decision to do this was made in order to be able to cover a wider range
of topics without losing focus or comprehensibility. The overall intent is to provide
sufficient backdrop for the proposed approach to make this thesis self-contained, while
providing adequate references so as to allow the reader to investigate further details

as required.

The chapter begins with a review of problem decomposition in complex systems,
Section 2.1. Here, the modular nature of complex systems is noted, including the
frequency with which hierarchies are observed, along with a hypothesis for why this
may be so. Early notions of modularity are presented, followed by a discussion of more
recent attempts to formalize what it means for a system to be modular along with the
associated implications for the evolvability of such systems. Specifically, it is suggested
that symbiosis is an appropriate mechanism for evolving modular systems even if they
involve non-trivial module interdependencies. Sections 2.2 and 2.3 respectively review
relevant approaches to lateral and vertical problem decomposition. With regards to
the former, special attention is paid to the ‘ensemble methodology’ that is common in
many lateral approaches but which is not represented under the proposed approach.
Section 2.2 concludes with a discussion of bid-based approaches and, in particular,
the manner in which they may decompose the space of problem instances. A number
of approaches to vertical problem decomposition are then presented in Section 2.3
including a symbiotic neuroevolutionary approach that formalized the architecture
subsequently adapted in this work. Both Sections 2.2 and 2.3 are peppered with
comments that compare and contrast the proposed approach with those that are

therein reviewed.

The proposed approach involves a significant coevolutionary component, and to

42
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this end, Section 2.4 reviews concepts related to both competitive coevolution and co-
operative coevolution. The difference between these two general forms of coevolution
is discussed, and suggestions are made where each may be suitable. In particular, it
is noted that many of the approaches reviewed in this chapter can be considered as
a form of cooperative coevolution, though often labeling an approach as strictly one
or the other may not be appropriate. Competitive coevolution, on the other hand, is
viewed as an approach for constructing a dynamic ecosystem.

Much like the proposed approach, some of the specific frameworks that are dis-
cussed in this chapter do not fall under a single section heading, e.g., depending on
the exact formulation, some approaches may be used to decompose the problem lat-
erally or vertically. In such cases, alternative variations are often noted, though it is
acknowledged that it is unreasonable to account for all possible interpretations.

Finally, it is acknowledged that numerous evolutionary approaches involving sym-
biosis have been proposed. What are viewed to be the most relevant of these are
discussed in this chapter, however, the reader is referred to a recent review [67] in
which a comprehensive discussion is presented in the context of the definition of

symbiosis as adopted in this thesis, Figure 1.5.

2.1 Problem Decomposition in Complex Systems

This section begins by introducing complex systems, then proceeds to discuss com-
mon patterns in their structure, i.e., modularity and hierarchy. The effect of system
structure on evolvability is then considered from an EC perspective and related to

the evolutionary mechanism of symbiosis.

2.1.1 Complex Systems

Despite having roots as far back as the mid-twentieth century, the interdisciplinary
study of complexity has not yet resulted in a universally accepted definition for what
it means for a system to be a complex system [128]. One early definition views a
complex system in broad terms as ‘one made up of a large number of parts that
interact in a nonsimple way’ so that ‘the whole is more than the sum of the parts’
[163]. This definition implies that a reductionist approach to understanding complex
systems is not suitable, i.e., given an intimate knowledge of the constituent parts
and their interactions it is difficult to elaborate on the behaviour of the system as a

whole. For the purpose of this thesis, this definition of complex systems is viewed as
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appropriate as it conveys the core meaning of the term without introducing details
that to some may be objectionable.

Examples of complex systems include economies, insect colonies, the immune sys-
tem, and the World Wide Web; though vastly different, these systems share a number
of common properties including complex collective behaviour resulting from relatively
simple local behaviour, information processing and communication between system
components, and the capacity to adapt in changing environments [128]. Viewed as a
metaphor for problem solving, another property of complex systems is that they rep-
resent approaches based on problem decomposition. In particular, it tends to be the
case that specific components or modules, or subsets thereof, within these complex
systems assume specialized local roles that result in the emergence of elaborate global
behaviours. In the following sections, notions regarding the structure of complex sys-
tems that support the process of problem decomposition are outlined. In doing so,
the suggestion is made that whereas the potential benefits of problem decomposition
have been recognized for a long time, frameworks which have fulfilled this potential

in the context of real-world problems have been lacking.

2.1.2 Modularity, Hierarchy, and Near-Decomposability

One of the earliest to contemplate the modularity present in complex systems was
Herbert Simon who specifically recognized that in many cases the modules are orga-
nized hierarchically [163], e.g., he cites a wide range of complex hierarchic systems
including social, biological, physical, and symbolic systems. Furthermore, the sug-
gestion is made that complex systems tend to be hierarchical because this allows
them to be evolved more quickly. That is, the claim is made that the evolutionary
process will be more efficient if there are certain stable intermediate forms that can
act as a scaffolding, which in turn will lead to the formation of hierarchies as simple
subsystems are combined to form more complex ones.

Simon’s often-cited parable of the two watchmakers illustrates the potential bene-
fits associated with a hierarchical approach to problem solving. The parable describes
two watchmakers who both assemble watches consisting of about 1000 base elements.
The approach of the first watchmaker is to assemble the watch all in one go. The
second watchmaker, on the other hand, first assembles the 1000 elements into 100
subcomponents of 10 elements each, which he then uses to form 10 larger subcompo-
nents, which he then finally assembles together into the final product. In both cases,

if the process of constructing a single assembly is interrupted, the whole assembly
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falls apart and has to be put together from the beginning.

The advantage of the approach taken by the second watchmaker then becomes
apparent. In particular, if the first watchmaker is interrupted, he will tend lose a
lot more work, e.g., in the worst case he may lose a partially-completed assembly
consisting of 999 parts compared to at most 9 parts for the second watchmaker.
This, in turn, means that on average it will take the first watchmaker a lot longer to
assemble each watch. Perhaps speculatively, Simon suggests that processes similar to
those in the watchmaker parable may be at play in biological evolution as well as in
the emergence of other complex systems.

Another contribution of Simon’s work is his distinction between systems that are
decomposable and those that are nearly decomposable. The former is used to refer to
systems where the components can be viewed as independent, i.e., no inter-component
interactions are assumed. The latter, on the other hand, is used to refer to systems
where the inter-component interactions are weak but still have an effect on the overall
behaviour of the system. Specifically, a nearly decomposable system is viewed as one
where the ‘short-run’ behaviour of the components is independent, whereas their
‘long-run’ behaviour is related but only in an aggregate way — this definition of near-
decomposability therefore refers to a dynamic, as opposed to a structural, property
of the system in question!. Since Simon’s specification of a nearly decomposable
system is less restrictive than his specification of a decomposable system, i.e., the
former recognizes that a system can be viewed as modular even if inter-component
interactions are present, it is likely to be more representative of complex systems in
general. However, though insightful, Simon’s definition of nearly decomposable was
not precise, e.g., it was not clear how it would apply to the structural properties of a
system.

Herbert Simon’s treatise [163] is thus viewed as making two primary contributions,
the recognition of the hierarchical, modular, structure present in many complex sys-
tems and the specification of a nearly decomposable system. Through the watchmaker
parable, a secondary contribution is viewed to be the suggestion regarding why a hi-

erarchical organization may be so common in complex systems. However, many of

!The example of a nearly decomposable system given [163] is that of a building subdivided into
rooms which in turn are subdivided into cubicles, and where the air temperature in each cubicle is
different. In this case, the key components are the rooms, and the dynamic behaviour refers to the
heat exchange in the system. In particular, the short-run behaviour refers to the relatively rapid
convergence of the temperatures in each room to a value that is independent of the temperature in
the other rooms (since the walls are well insulated). The long-run behaviour, on the other hand,
refers to the eventual convergence of the temperature to the same value across all rooms, the latter
depending only on the average (aggregate) temperature reached in each room.
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the points made in the discussion appear to be of a philosophical nature; a number
of the arguments are vague and the conclusions reached are often speculative, a fact
acknowledged by the author himself. As such, the ultimate goal behind the work may
not have been accuracy and thoroughness in presentation but rather the provocation

of thought and discussion on the topic of complex systems and their structure.

2.1.3 Modular Interdependency

Subsequent to Herbert Simon’s discussion on the architecture of complexity, attempts
have been made to formalize the notion of modularity and its effects on evolvability,
i.e., the proportion of the search space that has to be explored before an acceptable
solution is found [191]. Of particular relevance to this work, it was recognized that
under the common definitions of modularity inter-module interactions are typically
assumed to be negligible, an assumption that may be an oversimplification in com-
plex dynamic systems. A possible reason for this, it was argued, was the tendency
to interpret the functional behaviour of a system based on its structural intercon-
nectedness. That is, the fact that one module does not share a strong structural
connection to another should not imply that a change in the state of one of them is
not sensitive to changes in the state of the other. This insight is also apparent in
the definition of near-decomposability, though the latter does not explicitly make a
distinction between structural and behavioural relationships?.

Recognizing that a complex system may be structurally modular but that there
may be non-trivial behavioural interdependencies between the modules, the notion
of modular interdependency was proposed® [189]. Specifically, a module is identified
in terms of the structural properties of the system, e.g., using connectivity to locate
a clique in a graph. For a given module, the number of possible configurations of
that module, denoted M, is then considered. It may then be the case that among
these M possible configurations, a subset whose elements satisfy a particular property,
e.g., optimality, can be identified irrespective of the state of the rest of the system.

Denoting the cardinality of this subset by M’, three scenarios are possible:

1. M" = M. Under some configuration of the rest of the system, each possible

2In fact, Simon recognizes that certain relationships are viewed in spatial terms, whereas others
are viewed in terms of, e.g., social, interactions; he then redefines both in terms of the ‘intensity’ of
the interaction.

3In the discussion, modularity is viewed in terms of structural and behavioural properties, though
other characteristics of the system could also be considered.
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configuration of the module will satisfy the chosen property. In this case, noth-
ing can be concluded about the degree to which a configuration of the module
satisfies the chosen property without simultaneously considering the state of
the rest of the system. If this is true for all modules, the system is said to be

non-decomposable.

2. M' = 1. Without regard to the state of the rest of the system, it is possible
to narrow down the number of configurations that satisfy the chosen property
to a singleton®. That is, a search can be performed on the module in isolation,
and if a suitable configuration of the module is found, it will be equally suitable
once the module is integrated with the rest of the system. If this scenario is

true for all modules, the systems is said to be separable.

3. 1 < M’ < M. One or more configurations of the module can be eliminated from
consideration because it is known that, regardless of the state of the rest of the
system, those configurations will not satisfy the chosen property. At the same
time, the suitability of the remaining M’ configurations depends on the state
of the other system components. Furthermore, the degree of interdependence
can be interpreted by considering the magnitude of M relative to M’. If this
scenario is true for at least one module, the system is said to exhibit modular

interdependency.

Thus, a distinction is made between systems that are separable and systems that
exhibit modular interdependency; if neither these conditions hold, as indicated above
the system is said to be non-decomposable.

The above definition suggests that a system which exhibits modular interdepen-
dency may be more evolvable than a system that is non-decomposable since the former
may result in a smaller search space, i.e., if only a subset of all the possible configu-
rations of one or more modules needs to considered. Naturally, this implies that the
search process must be capable of taking advantage of the inherent structural mod-
ularity. However, given that traditionally no distinction was made between modular
interdependency and non-decomposability, this was not always recognized [191].

Intuitively, if a system is separable, i.e., it is both structurally and functionally

modular, then the lack of interdependencies may make it trivial to evolve. On the

4Though the contribution of this single configuration towards the rest of the system may still
depend on the context provided by the other modules, i.e., given the same configuration its contri-
bution may vary, but it is not the case that under certain contexts another configuration is more
suitable.
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other hand, it has been shown that even if a system is structurally modular, if it
involves functional dependencies between the modules then its evolvability can be sig-
nificantly reduced since changes to one module may negatively affect other modules
[189, 191]. However, the degree to which the system is evolvable depends on the adap-

®. Specifically, two different types of mechanisms

tive mechanism driving evolution
have been suggested, accretive and compositional [189]. Accretive mechanisms are
consistent with the idea that the accumulation of small random variations under the
pressures of natural selection will result in gradual evolution. Compositional mecha-
nisms, on the other hand, refer to the combination of sets of genetic material that have
been independently adapted, e.g., in different lineages, suggesting that evolutionary
change may occur in bursts. Notably, symbiosis and homologous recombination are
viewed as compositional mechanisms, whereas mutation and non-homologous recom-
bination (where interdependencies in genetic material is not identified) are viewed as

accretive mechanisms.

The difference in performance between accretive and compositional mechanisms
was considered by applying both to the evolution of systems with modular interde-
pendencies [189]. Results suggested that the time required for accretive mechanisms
to evolve such systems is exponential in the size of the system, whereas the time
required for compositional mechanisms can under certain circumstances be reduced
to a polynomial growth rate. This was attributed in part to the fact that accretive
mechanisms, in contrast to compositional mechanisms, do not explicitly recognize and
therefore cannot manipulate structural modules, i.e., appropriate subsets of genetic
material. As such, accretive mechanism cannot take advantage of the (interdepen-
dent) modularity in the system. Notably, these results were consistent with the sug-
gestions regarding modularity and hierarchy and its effect on evolvability that were

made decades earlier [163].

It has also been suggested that if a system is separable, then hierarchically struc-
turing the modules is redundant [191]. Specifically, one way to view a hierarchy is as
a system composed of related subsystems, each of which is itself composed of related
subsystems, until some elementary atomic level is reached [163]. If the system is
separable however, this implies that none of the elementary subsystems are related,

hence, there is no measure upon which the hierarchical organization can be based.

SWhere this mirrors discussions in biological evolution, Section 1.5.2.
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2.1.4 Summary

Complex systems tend to exhibit modularity to the extent that this property has
been used in their definition. Modularity in complex systems may be so common in
part because, compared to monolithic structures, it may increase their evolvability.
Furthermore, modularity enables the construction of hierarchies, i.e., groups and
subgroups of related system subcomponents.

Traditionally, even if systems were structurally modular, if the modules shared
behavioural interdependencies, then the systems were viewed as as non-decomposable
and therefore difficult to evolve. However, under specific conditions, it has been
shown that even if the modules are functionally related, then evolvability may still
be high under compositional evolution, e.g., symbiosis, provided that the system
exhibits modular interdependency. Furthermore, it has been suggested that it is
these functional relationships that support hierarchical organization.

Previous work has considered modular interdependency on hand-crafted problems
designed to demonstrate the potential of compositional mechanisms. In real-world
applications that involve large numbers of intricate, non-symmetric, interactions it
may be difficult to quantify the degree of modular interdependency. In these cases,
it may be sufficient to know that modular interdependency is present so that an
appropriate evolutionary mechanism may be applied.

Finally, the definition of problem decomposition adopted in this work, Section 1.7,
refers to explicit subcomponents with non-overlapping behaviours. Thus, like the def-
inition of modular interdependency, the adopted definition for problem decomposition
assumes solutions with modular structure. With regards to the non-overlapping be-
haviours, it is noted that this requirement does not preclude functional interdependen-
cies between the modules, i.e., two modules may have internally unique behaviours®

yet they may still depend on each other’s state.

2.2 Approaches to Lateral Problem Decomposition

In this section, relevant approaches to lateral problem decomposition are discussed.
Some of these, such as ensemble methods, are generic and apply to a number of ML
algorithms, while other are geared more towards GP. In many cases, the approaches

reflect an ensemble methodology in that they result in a high-degree of overlap in the

SModular decomposition was originally proposed in the context of optimization where modules
were not associated with behaviours, only states/configurations [189].
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behaviour of the solution subcomponents; an exception where this is not the case are

the bid-based approaches that are discussed in Section 2.2.4.

2.2.1 Ensemble Methods

Ensemble methods are a broad class of learning algorithms that aim to improve perfor-
mance by combining multiple base models under a supervised learning context. The
underlying ensemble members are assumed to be weak learners implying individual
error rates that are strictly less than, though which can be arbitrarily close to, one
half. By combining a diverse set of such weak learners, the goal of ensemble learning
is to produce a strong learner in which incorrect decisions by a few of the members
can be filtered out, e.g., through a majority vote. Thus, in ensemble methods, the
focus is on reaching a correct consensus despite the possibility of erroneous individual
decisions, and so they can be viewed as schemes for achieving fault-tolerance. This
makes them especially useful on noisy datasets where individual decisions may be un-
reliable. A certain degree of diversity in the ensemble members is key; for example,
it makes little sense in combining multiple identical models as one is just as well off
by relying on one of them.

The required variation in the ensemble members is introduced during training,
where two common approaches for achieving this are bagging [21] and boosting [52]. In
bagging, each ensemble member is trained on a set that is independently generated by
stochastically sampling with replacement from the original training set, i.e., diversity
is introduced by arbitrarily varying the frequency with which individual training
instances are observed. As such, the ensemble members can be trained in parallel.
Under boosting, on the other hand, the base models are trained in series, specifically,
cach training instance is associated with a weight” that is adjusted to reflect the error
rate on that instance in previous iterations. Thus, the learning process in boosting is
more directed as focus shifts to cases that are deemed to be more difficult, but can
potentially result in over-fitting.

An alternative to modifying the set of training instances is to include diversity as
one of the objectives that is used to evaluate the ensemble members. For example, in
negative correlation learning [118], an explicit term in the evaluation function is used

to encourage individuals to make negatively correlated decisions. By parameterizing

"Boosting can also be implemented by sampling instances in proportion to their associated
weights, as opposed to sampling with uniform probability as is done in bagging, and can there-
fore be used with base learning algorithms that are incompatible with weighted instances [162].
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the weight of the correlation term, the aim of the approach is to promote specializa-
tion in the ensemble members while at the same time producing correct aggregate
decisions, e.g., through averaging. The approach is novel because it allows the ensem-
ble members to be trained simultaneously while evaluating individuals in the context
of other potential ensemble members. In contrast, other approaches such as bagging
or boosting tend to train the base classifiers independently or in series, so, at best,
only a single ensemble member is adapted with respect to the other members. As
such, negative correlation learning is similar to the proposed approach in that both
may be viewed as forms of context learning.

Provided that the algorithm used to construct the weak learners is unstable [22],
i.e., sensitive to perturbations in the training data, ensemble learning places few
other restrictions on the process used to generate the ensemble members. As such,
ensembles have been constructed with models evolved using GP in the role of the
weak learners [50, 53, 78, 144]. However, the high computational cost of GP training
combined with the requirement to construct multiple base models is likely to make
building GP-based ensembles very demanding. This has been identified as a major
drawback of the approach, and to this end, a number of solutions have been proposed,
e.g., the use of specialized hardware [50] or the leveraging of the GP population to
obtain multiple models from a single run [53].

Given their capacity to reduce error [9], it is acknowledged that for certain ML
tasks ensemble methods may be appropriate. However, ensemble learning is not likely
to satisfy a number of the goals pursued in the proposed approach. First, following a
weak learner methodology is likely to result in overlapping behaviours in the ensemble
members, and as such, the resulting ensembles are unlikely to decompose the problem
as per the definition adopted here, Section 1.7. That is, ensemble learning is likely to
result in behaviour as observed in the left-hand side of Figure 1.1. Second, it has been
acknowledged that ensemble learning is likely to lead to incomprehensible solutions
[9], in part because ensembles may need to be constructed from hundreds and even
thousands of members [53], but also because the overlap in behaviour makes it difficult
to identify specific roles. Third, ensemble learning algorithms tend to be restricted
to supervised learning tasks such as regression and classification. Finally, ensembles
often aggregate the decisions of their individual members using simple mechanisms
such as averaging or majority voting, often specified a priori, where this is viewed
as an area open of research that is addressed in this work. Thus, it is stressed here
that even though it is related, the proposed approach is not viewed as an ensemble

learning algorithm.
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2.2.2 Binary Decomposition

Binary decomposition [92] is an approach that has been used to scale GP to clas-
sification problems with more than two classes. As such, like ensemble methods, it
has been traditionally limited to supervised learning. However, in contrast to ensem-
ble methods where the onus is on reaching a correct consensus, binary decomposition
aims to explicitly associate different solution subcomponents with different class labels
present in the problem. Furthermore, if the subcomponents are applied in parallel, it
is similar to the bid-based approaches to problem decomposition, Section 2.2.4, e.g.,
a strength value may be used to choose a subcomponent [92].

Traditionally, GP has been tailored to classification problems with two classes,
e.g., through the use of a global wrapper function [95]. With this in mind, binary
decomposition reformulates a classification problem with k classes as k binary classi-
fication problems. For each class, the approach constructs a classifier to distinguish
between positive and negative examples of that class, i.e., to distinguish between in-
stances as either in-class or out-of-class. In the original formulation [92], the classifiers
were applied to unseen instances in parallel resulting in one of three outcomes. If ex-
actly one of the classifiers identified the instance as in-class, the label associated with
the classifier was assigned to that instance. If none of the classifiers identified that
instance as in-class, the instance was associated with a ‘reject’ class suggesting that
perhaps it is an outlier®. Finally, if more than one classifier identified the instance as
in-class, a conflict resolution heuristic had to be applied, e.g., the decision was based
on the classifier with the highest strength of association [92].

Given that a separate population is evolved for each class label in the problem,
a significant drawback of binary decomposition is the required computational cost.
To this end, approaches for extracting classifiers from the same population have been
proposed, e.g., through niching [124]. The latter work also demonstrates how models
evolved under the binary decomposition formulation can be combined hierarchically,
e.g., by applying the classifiers in a predefined order and associating the exemplar
with the first classifier prompting an in-class decision. Thus, variants of binary de-

composition can also be viewed as a form of vertical problem decomposition.

2.2.3 Teaming using Genetic Programming

Teams of GP-based individuals have been applied to two types of problems [169, 170].

On the one hand, teaming has been used in the context of multi-agent learning where

8Viewed as a better outcome than forcing a decision.
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a single agent is presumed incapable of efficiently solving the problem, e.g., predator-
prey scenarios where more than one predator is assumed [65, 119] or problems involv-
ing coordinated exploration [158]. In this case, the evolved programs are typically
used to control autonomous agents that interact in an environment. On the other,
teaming has also been applied to problems such as classification that have tradition-
ally been solved using single-individual solutions. As in ensemble learning, the goal
of combining multiple individuals in this second case has been to improve perfor-
mance. In this work, the focus is on the second problem type, i.e., problems that

have traditionally been solved using single-individual solutions.

Island and Team Approaches

Three design decisions required for team building have been identified, namely, choos-
ing team members, coordinating team member outputs, and allocating credit among
team members® [170]. The first of these design decisions, regarding team member-
ship, has been used to categorize GP teaming approaches as it relates to the units
of evolution upon which natural selection operates. In particular, two categories of
teaming approaches have been identified, those where natural selection acts on in-
dividual team members [44, 79, 145] and those where natural selection acts on the
team as a unit [19, 146, 169, 171]. In the latter case, the team memberships are
evolved, though typically the team size still needs to be specified a priori, and credit
assignment becomes trivial since selection takes the form a group operator.

Teaming approaches where natural selection acts on individual team members
have been referred to as island approaches because individuals comprising the team
are often evolved in separate populations [173]. This term excludes membership
strategies where individuals are drawn from the same population, which, having been
found to result in poor performance in conventional single-population scenarios!®
[170], appear to have received less attention. In contrast, approaches where the team
is evolved as a unit, and where natural selection does not recognize individual team
members, have been referred to as team approaches'!.

Early studies have shown that while the teams in team approaches can perform sig-
nificantly better than single-individual solutions, the performance of the team mem-

bers in isolation was found to be poor [19, 169, 171]. These results also confirmed

9These are similar to the issues identified under cooperative coevolution, Section 2.4.2.

10Without explicit consideration for different species.

1 This terminology may seem counter-intuitive since both island and team approaches are used
to construct teams of GP-based individuals.
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that cooperation between team members was taking place, i.e., individual errors were
found to be uncorrelated. Island approaches, on the other hand, were found to pro-
duce individuals that were relatively fit but whose errors were likely to be correlated
[79]. As such, the benefit gained by combining arbitrary individuals from different
populations was found to be limited, and it typically took many random trials before
effective collaborations were discovered.

Similar conclusions were drawn in later studies [173], where explanations for these
trends were also proposed. Specifically, it was suggested that team approaches re-
sulted in uncorrelated errors because, if selection pressure acted on the team as a
whole, cooperation between team members was encouraged. In contrast, under is-
land approaches, it was suggested that if there is a ‘path of least resistance’ evolution
would follow that path even in independent runs. That is, problem decomposition is
not explicitly encouraged under the island approach. This insight led to the devel-
opment of a new class of algorithms, Orthogonal Evolution of Teams (OET) [173],
which view the evolving population in terms of individuals or teams depending on
the stage of the algorithm. As such, these algorithms aim to apply pressure at the
team level to encourage cooperation but also at the individual level to encourage
strong individual performance. For example, in one instance of the OET algorithm,
parent selection was done at the individual level whereas the survivor selection policy
was applied at the team level. Empirical results showed that indeed this approach
resulted in both strong individuals and uncorrelated errors, improving overall team
performance compared to having just one or the other.

Under the OET approach, it is suggested that applying selection pressure both at
the team level and at the individual level will result in improved team performance.
On the one hand, this assumption was validated empirically with respect to the OET
algorithms [173]. On the other hand, when team and team member performance were
implemented as two separate goals in a multi-objective fitness formulation, improved
individual fitness was achieved only at the expense of a significant reduction in team
fitness [19]. Naturally, if one is interested in the use of teams in the first place, the
performance of the team takes precedence, and individual performance is significant
only if it can improve team performance.

In summary, early work established that team approaches resulted in strong teams
but poor individual performance. At the same time, the team approaches effectively
resolved the credit allocation problem, and provided the means to evolve team mem-
berships automatically. Island approaches, on the other hand, were found to produce

strong individuals, but required an a priori specification of how to compose a team
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and distribute credit among team members. To generate both strong teams and
strong individuals, the OET class of algorithms was proposed. With few exceptions,
e.g., [146], these approaches required an a priori specification of a team size, which

remained constant across all teams, as well as the team composition [158].

Alternate Approaches to Cooperation in GP Teams

More recently, alternate mechanisms for encouraging cooperation in teams that do
not apply pressure at the team level have been proposed; these approaches are also
capable of building teams from a single population of individuals. The approach
behind the Pareto-Coevolutionary GP Classifier [109] borrows heavily from Pareto-
coevolution, Section 2.4.1, in that each problem instance is viewed as an objective to
be optimized. As such, the algorithm searches for a set of non-dominated individuals
with respect to the objectives that are identified, recognizing that different individuals
may specialize on different problem instances. However, given the brittle nature of
the Pareto-dominance relation, in the sense that a solution may be non-dominated
by outperforming others on just a single objective, this approach was found to result
in individuals whose behaviours overlapped considerably [125].

To produce solutions consisting of individuals with non-overlapping behaviours,
i.e., to encourage problem decomposition, the Competitive Multi-Objective Gram-
matical Evolution framework combines a Pareto-coevolutionary archiving strategy
with a multi-objective fitness function [123]|. Specifically, while a set of archives is
used to store promising individuals, the fitness function encourages individuals that
exhibit a tendency towards strong classification performance, low parsimony, and low
overlap in behaviour with respect to other individuals. In contrast to the discrim-
inator approach traditionally adopted in GP, i.e., a switching function, key to the
framework is a reformulation of the classification problem in terms of novelty detec-
tion. This, in turn, allows different individuals to be associated with different parts
of the instance space, and provides a degree of confidence in the final decision output
by the model.

Discussion

In all but a few cases, e.g., [123], GP teaming approaches, both island and team, tend
to follow what can be considered to be an ensemble learning methodology. Specif-

ically, to improve performance, they form collaborations consisting of homogeneous
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individuals in the sense that each individual has similar capabilities'?.

In particu-
lar, in a homogeneous set, each individual typically has the capacity to represent a
complete solution. As such, it is then possible to compare the performance of the
team versus the performance of the individual, and to ask such questions as whether
a strong team can be composed of not-so-strong team members. This approach can
be viewed as an ensemble learning methodology, and the individuals in the role of
weak learners, because the focus is not on evolving non-correlated behaviours but on
evolving non-correlated errors, i.e., overlap is desired in situations when the individ-
uals make correct decisions. As a result, as in ensemble methods, the team members’
behaviour will naturally tend to overlap.

In contrast, in the proposed approach, an individual is not capable of represent-
ing a complete solution, or at least a non-degenerate solution. For example, in a
classification problem, a single individual would always predict the same class label

clearly a degenerate solution. In this way, the individuals comprising a solution in
the proposed approach are heterogeneous in the sense that they often play orthogonal
roles. As such, analysis analogous to the individual versus team comparison discussed
above does not apply. However, this is not viewed as a drawback, but rather a way
of encouraging problem decomposition since cooperation is required for a solution to
be effective.

It is therefore suggested that a key factor in determining whether the behaviour
in a set of individuals, whether in a team or symbiosis, will overlap is the mechanism
for aggregating their contributions. Specifically, ensemble methods tend to rely on
voting or averaging, e.g., a majority vote or some weighted combination of votes, and
the final decision is therefore based on the option that garners the greatest support.
This places the onus on ‘the majority to be right’, and if the majority is to be right in
many situations, then the individual behaviours will need overlap in many situations.
In contrast, under the decision resolution mechanism used in the proposed approach,
the individual needs to be correct only in situations where it is chosen to act, where
this is viewed as a simplification of the learning task.

Given that the two terms are often used in similar contexts, a question that arises
from the above discussion is whether or not there is a difference between what it
means for a solution to be a team or an ensemble. In this respect, two differences

come to light. First, GP teaming has its roots in multi-agent learning [65, 119, 169,

12The terms ‘homogeneous’ and ‘heterogeneous’ have been used in GP teaming literature [119, 170]
with a slightly different meaning. Specifically, individuals were referred to as heterogeneous even if
they had similar capabilities but provided that they were not identical, i.e., not cloned.
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and as such represents an approach that is applicable to both supervised and temporal
sequence learning. Ensemble methods, on the other hand, tend to be restricted to
supervised learning. Second, whereas ensembles can consist of thousands of individual
members, team member counts tend to be at least an order of magnitude smaller [19,
119, 170]. This, in turn, suggests a lesser degree in overlap between the behaviours of
team members compared to the behaviours of ensemble members, where the evolution
of non-overlapping behaviour is of particular relevance to this thesis.

A potential drawback of building teams versus single-individual solutions is the
amount of computational overhead that may be required to execute multiple pro-
grams, where this is exacerbated by the high computational cost already associated
with GP, Section 1.3.4. Fortunately, under the team approach, average effective in-
struction counts per team member were found to be small compared to the effective
instruction counts in single-individual solutions [19]. Naturally, the same is not ex-
pected in island approaches which effectively evolve independent single-individual
solutions.

As a final remark, the link between teaming and the field of cooperative coevo-
lution, Section 2.4.2, is emphasized. In particular, the evolution of teams may be
viewed as a form of cooperative coevolution. With few exceptions, e.g., [123], the GP

teaming literature makes few explicit references to this association.

2.2.4 Bid-Based Approaches

Two bid-based approaches are most relevant to this work, Learning Classifier Systems
(LCS) [72] and the economy-based Hayek model [10, 11, 12, 13, 14]. As is done in
the proposed approach, they both define individuals in terms of separate ‘bid’ and
‘action’ components — it is because of this decomposition that in this work they are
referred to as ‘bid-based’. The bid is used to determine when an individual in chosen
to act, whereas the action defines what the individual does. Such a formulation
allows cooperation among heterogeneous individuals, Section 2.2.3, since, as long as
all necessary actions are present in the final solution, individuals can focus on fulfilling
specific roles, i.e., they can be associated with specific actions. Furthermore, as noted
earlier, Section 1.7, the separation of the when from the what is consistent with the
definition of context learning that is adopted in this thesis. Context learning, in turn,
is viewed as central in the definitions of lateral and vertical problem decomposition.

Bid-based approaches of this form appear to be uncommon in GP-based team-

ing where voting and averaging strategies are more prevalent. One exception found
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was the winner-takes-all combination method investigated in the context of team
approaches [19]. Under this policy, the individual providing the clearest class dis-
tinction defined the output for the entire team. Compared to the other combination
methods that were studied, the winner-takes-all approach was found to result in high
specialization as well as small effective program sizes.

In the following, both classifier systems and Hayek are reviewed. The latter,
aiming to correct a number of deficiencies observed in the former, is reviewed second.
Afterwards, the concept of default hierarchies [71] is briefly introduced. Though
traditionally associated with classifier systems, it is asserted that default hierarchies

are relevant under bid-based frameworks in general.

Learning Classifier Systems

(Classifier systems were originally proposed in the context of reinforcement learning
as systems that learned to accumulate reward through their interaction with the
environment [72]. In the original LCS formulation, a population of condition-action-
strength rules (classifiers) was evolved; assuming that a rule’s condition was satisfied,
the strength value predicted the reward that could be expected as a result of applying
the rule’s associated action. Two key components of this framework were a credit
assignment mechanism that used a bucket-brigade algorithm to update strength val-
ues of classifiers involved at different time steps, as well as a GA-based rule-discovery
component that used strength as a fitness value. A classifier system of this form, in
which a population of interacting rules representing partial solutions is evolved, came
to be known as the Michigan approach.

Given an input state, one way to select an action under the Michigan approach

13 First, a match set is calculated as the set of classifiers in the

may be as follows
population whose conditions are consistent with the input state. From this match set,
in which different actions may be present, an action set is then chosen consisting of all
classifiers that are associated with the same action. The choice of the action set can
range from the purely exploratory, in which an action is selected from those present
in the match set with uniform probability, to the purely exploitative, in which the
action associated with the highest-strength rules is chosen. The chosen action is then
applied in the environment, prompting a possible reward or penalty, at which point

the learning parameters associated with the classifiers in the current or previous'

131t is acknowledged that many variants of Michigan-style classifiers systems exist [107] so the aim
of this section is to provide a review of the relevant concepts underlying the approach.
14Depending on whether or not the last time step was reached.
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action set are updated. Naturally, post training, action selection is typically biased
towards higher-strength rules with the goal of maximizing reward.

The strength parameter in classifiers systems therefore plays the role of a ‘bid’ in
that, depending on the implementation, it determines the likelihood that the associ-
ated rules are activated. However, in traditional classifier systems, strength is also
used as the fitness measure. This is problematic because a rule that matches states
leading to low rewards will have a low strength value, yet it may still be the most
appropriate for those situations. As such, if strength also defines fitness then the
rule will not likely be preserved in the population. Furthermore, over-general rules,
having high strength because they are triggered in many states but which yield high
reward in only a few, may be encouraged under this policy.

With this in mind, the XCS classifier system formulation replaces the strength
parameter with separate prediction, prediction error, and fitness parameters [196).
The prediction is used in determining what action to take thus filling the role of the
strength parameter in the original formulation. However, the fitness of an individual,
used in the GA, is now a function of the prediction error, i.e., it reflects prediction
accuracy, where both of these parameters are adapted along with the prediction in the
credit assignment component. Furthermore, instead of applying the GA on the entire
population, as was done previously, the GA in the XCS formulation operates on the
match sets. This, in turn, eliminates competition between classifiers in different match
sets, recognizing that the latter may need to cooperate in forming an effective chain
of actions. Due to these two modifications, accuracy-based fitness and a local GA,
it was suggested that the approach produces rules that cover the entire state-action
space and whose associated prediction values are accurate [196, 197]. Furthermore,
it was shown that the system has a tendency towards producing maximally general
rules, i.e., matching as many states as possible while maintaining accuracy.

Thus, from the point of view of this work, Michigan-style classifiers systems are
significant because they represent a similar form of problem decomposition, namely,
using bids to decide what solution component to apply when. However, one difference
between the proposed approach and classifier systems is that (given the same input)
in the former the bid values remain constant while in the latter they are adjusted
during an individual’s lifetime. Furthermore, through the XCS formulation, and in
particular, the local GA that it uses, it is recognized that the indiscriminate applica-
tion of crossover may hinder evolution. That is, if classifiers forming different match
sets are to cooperate, e.g., in forming a long chain of actions leading to a high reward,

then some form of speciation must be used to allow specializations to emerge. In the
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proposed approach, different species are directly supported through the process of
symbiosis.

In contrast to Michigan-style classifier systems where the entire population inter-
acts and is involved in a solution, the Pittsburgh approach [88, 166] evolves a popu-
lation of variable-length individuals where each individual is a rule set representing
a complete solution, e.g., a production system. That is, at the end of training under
the Pittsburgh LLCS approach, a single individual can be culled from the population
and applied post training. As in team approaches to GP teaming, Section 2.2.3, this
greatly simplifies credit assignment, though it requires a mechanism for resolving the
contributions of the various rules present in a rule set. Furthermore, whereas Pitts-
burgh approaches can easily be used with Pareto-coevolution, Section 2.4.1, the same
is not true of Michigan approaches where population members represent only partial
solutions.

Here, it is noted that whereas the bid-based interaction used in the proposed
approach is similar to that of Michigan classifier systems, the level at which fitness
is evaluated is more in line with the Pittsburgh-style approach. However, in contrast
to the proposed approach, Pittsburgh-style classifier systems tend to follow what are

viewed to be purely neo-Darwinian principles, Section 1.5.2.

Hayek: Evolution of an Artificial Economy

The market-based Hayek model [10, 11, 12, 13, 14] evolves an artificial economy of
agents, each with an associated wealth, that interact as follows. Given an input, e.g.,
world state, each agent computes a bid reflecting the price that it is ‘willing’ to pay
for the property rights to the world — the world is therefore viewed as a resource. The
agent making the highest bid then buys the world, and must pay an amount equal to
its bid value to the previous owner. If an agent currently in possession of the world
‘chooses’ not to sell, it can bid arbitrarily high since it will make the ensuing payment
to itself thus maintaining its level of wealth. Once in possession, the agent acts in
the world and receives any external reward that its actions may yield. In this way,
the goal of the framework is to motivate the agent who owns to world to increase the
world’s value, and in particular, the amount that future owners would be willing to
pay in order to increase their own wealth. Put another way, the agent whose future
actions will increase the world’s value the most can afford to outbid the other agents
[11].

At least four versions of the Hayek economic framework have been proposed
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though they all share the incentive structure described above. The versions differ
with respect to the representation used, e.g., assembly-level code [14] or production
systems [13], as well as the fundamental mechanisms defining the economic framework
itself including the process for initializing new agents, bid definition, and taxation.
Likely due to the variation in and the complexity of the Hayek systems, reproducing
the levels of success observed in initial studies, e.g., [13], was found to be difficult
[104]. As a result, recently, attempts have been made to simplify the original Hayek

formulation [110].

The Hayek framework, like classifier systems, recognizes separate bid and action
components and uses a form of bucket-brigade for credit assignment across multiple
time steps. However, when viewing classifiers systems as economic models, i.e., inter-
preting strength as wealth, the Hayek literature asserts that there are certain flaws
with the approach. First, since classifiers enter the economy with strength values
that are set in some a prior: fashion, money is not conserved but rather artificially
injected into the economy. Second, property rights are not enforced in the sense that
multiple rules act at any given time step potentially leading to a ‘tragedy of the com-
mons’. Specifically, rules are encouraged to be active even when it is not appropriate
for them to do so since they may then receive a portion of the shared reward (which
may be better than receiving no reward at all). In both cases, it is suggested that
the end result is an improper allocation of credit leading to a system that fails to
meet the designer’s goals [11, 13]. As a result of these observed deficiencies, property
rights and conservation of money is strictly enforced in the Hayek systems. It is also
noted that the above criticisms appear to be directed towards classifier systems where

fitness is based on strength.

The Hayek population is similar to the population of classifiers in the Michigan
approach in that each rule is normally associated with a single action and thus rep-
resents a partial solution'®. As in the case of Michigan-style classifier systems, it is
therefore not obvious how to integrate Hayek with Pareto-coevolution, Section 2.4.1,
where this is viewed as a way of scaling the learning process to large state spaces.
Thus, the principal influence of Hayek on the proposed approach is the auction-based
mechanism for action selection which may lead to a decomposition of the input space

among a set, of cooperating individuals.

15Multiple actions could also be associated with an individual, though this would naturally increase
the complexity of the system.
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Condition Action Condition Action
00 — 0 00 — 0
01 — 1 ok — 1
10 — 1
11 — 1
(a) Non-hierarchical set. (b) Hierarchical set.

Figure 2.1: Example of a default hierarchy, adapted from [37], in the context of
classifier systems. The rules implement the logical OR function which is applied to
the two fields in the condition, specifying the result in the action. An asterisk (x)
matches all inputs.

Default Hierarchies

The concept of default hierarchies!'®, originally proposed in the context of Michigan-
style classifier systems, refers to the manner in which rules are applied to the state
space [71]. In particular, a default hierarchy is a set of rules'” where there is one
general ‘default’ rule whose condition matches many situations, and in most of these
situations, the default rule is appropriate. For cases where it is not, the population
also includes ‘exception’ rules. The exception rules match a subset of the states
matched by the default, and usurp the default whenever it is appropriate for them to
do so, i.e., without these exception rules the default would be triggered leading to an
incorrect action on the part of the system. As an alternative to default hierarchies, the
behaviour of the rules in the system could be such that they match non-overlapping
sets of situations.

To illustrate, two ways to partition the state space among a set of rules in a
classifier system implementing the logical OR function are shown, Figure 2.1. The
non-hierarchical set, Figure 2.1a, will produce the correct result no matter what
the strength/prediction of each individual rule is since the conditions match non-
overlapping states. The hierarchical set, Figure 2.1b, will produce the correct result
only if the more specific (top) rule will take precedence over the more general rule
whenever both of the rules’ conditions match — the key to the effectiveness of default
hierarchies is therefore to trigger the exceptions whenever the more general rules are
inappropriate.

As shown in the above example, default hierarchies can result in more compact

rule sets, and indeed, it has been suggested that this is true in general [71, 154]. That

16Despite the name, default hierarchies are viewed as a form of lateral problem decomposition.
1"Without loss of generality, LCS terminology is used.
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is, it may be easier to specify a prevalent but sub-optimal default behaviour along
with a number of exceptions than to specify a set of ideal behaviours. The capability
to succinctly model the problem is thus viewed as one of the main advantages of
default hierarchies. Furthermore, through default hierarchies, the system can be
gradually refined as additional exceptions are added to cover situations in which the
more general rules fail [37].

The concept of default hierarchies can be generalized to frameworks other than
classifier systems by focusing not on the mechanism for triggering rules, e.g., using
condition and strength to obtain an action set, but rather on the resulting behaviour
of the system. That is, the characteristic behaviour of a default hierarchy is that there
are general rules which apply in most situations augmented with a set of exception
rules that cover the extraordinary cases. Any framework where components bid for
control can result in this characteristic behaviour, e.g., associating a constant bid
with a general rule and requiring exception rules to bid above and below the constant
bid as appropriate. Naturally, this type of behaviour may be more befitting when
there are certain imbalances in the state space, e.g., in classification problems with

large class imbalances.

2.3 Approaches to Vertical Problem Decomposition

The aim of this section is to provide a review of relevant approaches to vertical
problem decomposition. Some of these, such as cascade architectures, have originally
been proposed in the context of training neural networks but have subsequently been
adapted for use with GP. Others, such as layered learning, are independent of any
specific ML, algorithm. In this regard, it is noted that the traditional approach to
problem decomposition in GP has been code reuse, Section 2.3.2. Though related to
coevolution, the neuroevolutionary approach in Section 2.3.5 is presented here since it
explicitly separates the task of identifying appropriate solutions subcomponents from

the task of effectively combining them.

2.3.1 Layered Learning

Layered learning refers to the decomposition of a complex task into a hierarchy of
subtasks which can then be learned in a bottom-up fashion. An early formalization

emphasizes four principles underlying the approach [180]:

1. As originally specified, the root problem is too difficult to be solved directly.
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2. A bottom-up decomposition of the main task is available whereby more complex

(higher-level) tasks are viewed in terms of simpler (lower-level) subtasks.
3. ML is used to address each subtask independently.

4. The output of lower-level models serves as input to higher levels, i.e., only the

lowest, levels receive the original problem inputs.

These principles suggest, or rather do not preclude, that layered learning can be used
with different ML algorithms, and indeed, this is possible even within the same appli-
cation [180]. Furthermore, a decomposition into different subtasks implies different
goals and objectives, not only between layers, but possibly within a single layer. Fi-
nally, the first principle reveals that the primary motivation behind the paradigm is
to allow ML to scale to complex problems. Here, the link between layered learning
and transfer learning is noted, the latter referring to the use of knowledge learned in
one task in solving a different, potentially related, task [179].

The above formalization was initially proposed in the context of multi-agent sys-
tems where its effectiveness was demonstrated in a robotic soccer domain. Example
subtasks included learning to intercept a ball, and evaluating the likelihood of com-
pleting a pass to a teammate. Since then, a number of variations of the approach have
been proposed, e.g., learning subtasks at different levels concurrently [194], though
the key insights behind the approach remain. In particular, in this work, the term
‘layered learning’ is used to refer to any hierarchical approach in which the lower
layers are associated with simpler subtasks whose solution forms the basis for the
higher layers.

Early applications of layered learning using GP have also been in the robotic soc-
cer domain [58]. In this work, two layers were evolved with the overall goal of learning
effective keep-away strategies — the number of turnovers therefore served as a basis
for the objective at the second layer. The goal of the first layer, on the other hand,
was to learn to pass accurately with no opponent present, where this was viewed as
a natural intermediate subtask. Furthermore, in contrast to previous layered learn-
ing formulations [180], the GP-based framework did not use output from lower-level
models as a basis for higher levels, but rather the lower-level models themselves!®.
Specifically, the individuals from the final population at the lower layer were used to
seed the initial population at the higher layer. Results suggested the approach was

able to generate better solutions with less computation effort compared to standard

18This mode of operation may be more consistent with transfer learning.
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GP. In addition, it was found that the computational effort applied at each layer, i.e.,
the number of generations, was a significant factor on performance, where this result
was subsequently corroborated [75].

An acknowledged drawback associated with the layered learning approach is that
the task decomposition has to be specified by a domain expert a priori [180]. In
practice, identifying the relevant subtasks may be difficult if not impossible, and even
if a decomposition can be specified by a domain expert, it may be suboptimal. To this
end, two approaches for automatically inducing an appropriate task decomposition
have been proposed, namely, defining simpler subtasks in terms of lower-order forms of
the same problem or associating them with subsets of the original instance space [82].
In both cases, even though an a priori specification is still necessary, the approach is
viewed as easier than having to identify task-specific behaviours and how they may
interact. For example, in the former case, genetic material evolved on the 2x2 Rubik’s
Cube could be used in evolving solutions to the 3x3 Rubik’s Cube. In the latter,
higher levels of the hierarchy could be trained using cases that include Rubik’s Cube
configurations progressively farther away from the solved state. Empirical evaluation
of both approaches suggested that whereas the former outperformed standard GP
and GP with code reuse, the latter approach did not yield similar improvements [82].

To improve the performance of the subset-based approach to automating task de-
composition, a selection architecture was proposed in which non-overlapping subsets
of training cases are used to evolve independent program branches [81]. Once the
branches are trained, a selection function, e.g., a switch statement, can then be used
to pass control on to the appropriate branch based on the input case, much like in
gating approaches that are common in temporal sequence learning [89]. It was found
that highly fit branches could be evolved, thus, given an appropriate selection func-
tion, the performance of the overall system could also be strong — this is not surprising
given that each branch was responsible for only a part of the problem specified a pri-
ori. Naturally, a fundamental issue in the selection architecture is how one arrives at
an appropriate selection function.

The approach proposed in this thesis is viewed as an instance of layered learning
that reflects in many ways the principles behind the original formalization [180]. In
particular, a goal behind the proposed framework is to facilitate solutions to complex
problems. To do so, the algorithm is designed to produce a bottom-up decomposition
of the problem, though the aim is for this decomposition to be an emergent property
of the solution. In terms of the way it is applied to individual problem instances,

the proposed approach is similar to the selection architecture [81] in that internal
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nodes in the hierarchy play a role analogous to that of the selection function. This
suggests that the nodes in the lower levels of the hierarchy should be diverse. Asin the
selection architecture, this is achieved by associating different problem instances with
different nodes, however, in the proposed approach this process is automated through
the use of coevolution, Section 2.4. Furthermore, through the evolution of bidding
strategies, the proposed approach automatically determines the selection policy.

A key difference between layered learning in general and the proposed approach is
that in the former the hierarchy is activated in a bottom up-fashion, and in variants
that follow the original formulation [180], all units in the structure are activated. In
the proposed approach, the higher-level units are engaged first, which then triggers

the activation of only a subset of the lower-level units.

2.3.2 Code Reuse

A number of different mechanisms for representing, identifying, and reusing code
modules within GP individuals have been proposed [5]. Specifically, parts of code
designated for reuse can be viewed as subroutines that may be called by higher-level
code segments; such an organization is consistent with vertical problem decomposi-
tion. In the following sections, a number of such approaches for code reuse in GP are
summarized. Loops and recursion represent, alternative forms of code reuse though
their review is beyond the scope of this work.

A key difference between the approaches for code reuse reviewed in this section
and the proposed approach is that the former search for modules within a program,
whereas the latter evolves modules that are structurally separated from the outset,
i.e., are evolved in different GP individuals. Here, the second approach is viewed
to simplify the learning task since candidate modules are explicitly identified so that
heuristics for identifying module boundaries are not required. Alternatively, the added
complexity of having to identify boundaries (necessary to preserve context) is avoided

in the proposed approach.

Automatically Defined Functions

Automatically Defined Functions (ADFs) [97] are an approach for evolving subrou-
tines together with the higher-level calling code within the same tree-based GP indi-
vidual. Specifically, each individual consists of at least one function-defining branch
and at least one result-producing branch. Each function-defining branch specifies the

name, arguments, and body of a subroutine. A result-producing branch, on the other
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hand, contains an expression for the final program output, and may call the subrou-
tines in its associated function-defining branches. Thus, the main program code and
the subroutines available to it are evolved in the same individual, though in separate,
well-defined, substructures. Furthermore, the subroutines themselves may be able to
call other subroutines, though care must be taken to prevent loops.

Experiments showed that the ADF approach could produce less complex solutions
using fewer fitness evaluations provided that the problem was sufficiently hard [97],
i.e., on simple problems, one was better off by using traditional GP. It was suggested
that one reason why ADFs, and encapsulation in general, may improve GP perfor-
mance is that it may protect the discovered code modules from the destructive effects
of variation operators such as crossover [5]. Unfortunately, it does not appear that
the threshold for determining when a problem is sufficiently hard to warrant the use
of ADFs can be determined in a straightforward fashion.

Under the original ADF approach, the overall form of the individuals had to
be specified including the number of function-defining branches, the number of argu-
ments in each function-defining branch, as well as the restrictions on what subroutines
could be called by what other subroutines. Furthermore, the specified structure was
the same for all individuals in the population. Thus, a drawback associated with the
original approach was that these were not evolved properties but rather that they
had to be specified a priori. In response, a number of operations, e.g., branch and
argument duplication, were proposed as a means of automatically exploring different
program structures in the course of evolution [96].

From the point of view of this thesis, where the focus is problem decomposition,
ADFs represent a step forward compared to traditional GP. However, the ADF ap-
proach is limited in that any useful code segments that are identified can only be
accessed within the containing individual. In contrast, more widespread code reuse
could be achieved by sharing subroutines among individuals, e.g., in a subroutine

library, though this could potentially result in reduced diversity.

Module Acquisition

The technique of Module Acquisition [2] is viewed as improving on the ADF approach
in two ways. First, it does not define subroutines in predefined branches separate
from the main calling code resulting in a more generic representation, i.e., with fewer
syntactic restrictions and parameters that have to be evolved or specified a priori.

Second, in contrast to ADFs, Module Acquisition allows subroutines to be shared
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between individuals by maintaining a ‘genetic library’ that is accessible to the general
population.

Specifically, the approach evolves trees that, apart from the conventional restric-
tions, e.g., that they be syntactically correct, are not required to conform to any
specific format. A compression operator is applied to individuals selected in propor-
tion to their fitness. Given a depth and an arbitrarily selected node in the chosen
tree, the operator creates a subroutine rooted at the specified node and extending
down to the selected depth. The newly created subroutine is then added to the ge-
netic library, and the corresponding subtree in the individual where the compression
operator was applied is replaced by a call to the subroutine. The subroutine can
be accessed by other individuals in the population, and if it proves to be useful as
measured by natural selection, then it is likely to appear in many programs. Once
defined, a subroutine is no longer modified, so to help maintain genotypic diversity
an expansion operator is also included that replaces a reference to a subroutine in a
single individual with the corresponding code.

The Module Acquisition approach was compared with canonical GP and GP with
ADFs on the even-parity problem [91]. Though limited in scope, the study confirmed
that ADFs could result in improved performance compared to canonical GP, but no
such benefit was observed in using Module Acquisition.

As indicated in the original description of the approach [2], the compression op-
erator is asexual. This suggests that Model Acquisition may be a form of symbiosis,
and indeed, it appears to fit well with the definition adopted in this thesis, Figure 1.5.
In particular, the compression operator is consistent with the compartmentalization
stage. Furthermore, the way in which module fitness is measured in the approach is
similar to the way in which symbiont fitness is measured in the proposed approach,
that is, fitness is not assigned explicitly but rather the survival of a module (symbiont)

is contingent on it appearing in at least one program (host).

Adaptive Representations

Adaptive Representations [155, 156] is an approach similar to Module Acquisition in
that it aims to automatically identify useful subroutines that can be accessed by all
individuals in the population. However, it does not publish the discovered modules
in a genetic library but rather makes them available by dynamically extending the
function set. Thus, the process can be more easily integrated with the evolutionary

learning cycle as it only affects the primitives that are used to represent solutions.
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Furthermore, the Adaptive Representations approach emphasizes the use of heuristics
for subroutine identification, e.g., in favour of modules that are fit and frequently
used, where previous approaches have relied more on arbitrary selection of candidate
building blocks. Naturally, to make a more informed decision when selecting potential
modules typically requires increased computational overhead, and this added cost is
viewed as a drawback of the approach.

Compared to canonical GP as well as GP with ADFs on the even-parity problem,
the Adaptive Representations approach was shown to find simpler solutions and with
less computational effort [155], and in the game of Pac-Man, the approach found
better solutions in less time [156]. Despite initial findings to the contrary, however,
subsequent studies have questioned the ability of the approach to hierarchically de-
compose the problem [35]. Furthermore, the random heuristic used to select candidate
subroutines in Module Acquisition was shown to be the most versatile across multiple
domains suggesting that previous studies on the approach indicating the contrary [91]
may indeed have been too limited.

Compared to the other approaches to code reuse in GP, the Adaptive Represen-
tations approach is significant because it explicitly recognizes the benefit of building
solutions hierarchically in a bottom-up fashion [155]. That is, the function set is
initialized to contain only the most primitive operators but may subsequently include
subroutines of increasing complexity. Furthermore, levels in the hierarchy are asso-
ciated with epochs, periods when the function set is not adapted, emphasizing an
iterative construction process. These features of the Adaptive Representations ap-
proach are therefore analogous to the proposed approach where levels are constructed
based on previously-evolved, progressively more complex, behaviours. Lastly, as with
Module Acquisition, the process of code encapsulation can be viewed as a form of

symbiosis.

2.3.3 Cascade Architectures

An early application of learning under a cascade architecture was the cascade cor-
relation algorithm used to incrementally train neural networks [42]. This approach
begins by training a network with no hidden nodes but in which every input is directly
connected to every output node. Whenever a plateau in performance is reached, e.g.,
after training the initial minimalist network, a single hidden unit may be added to
the network in two steps. In the first step, the original inputs, as well as the outputs

of any existing hidden units, are connected as inputs to the new unit. The new unit is
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Figure 2.2: Example of a cascade architecture with three inputs, two hidden nodes,
and two output nodes. The connections into the hidden nodes (marked in black)
would be fixed if another hidden node was to be added.

then trained to maximize the correlation between its output and the magnitude of the
error observed at each output node. In the second step, the new unit’s input weights
are frozen, its output is connected as an additional input to the output nodes, and
the weights associated with the original output nodes are retrained. Since the newly
added hidden unit is trained to corrclate its output with the error at cach output
node, its contribution may be used by the system to cancel out this error. A sample
structure with two hidden nodes generated under the cascade architecture is shown
in Figure 2.2.

Variations of the cascade architecture have been proposed, e.g., using error min-
imization to approximate the target function at each cascaded unit [117] or using
different learning algorithms at each layer in the cascade [54]. Despite its various

forms, the following common characteristics of cascade architectures are identified:

1. Training begins with a minimalist structure, e.g., a fully connected network

with no hidden nodes.

2. Once training of the current structure reaches a plateau, the structure may be

augmented through the addition of a single unit.



71

3. Whenever a new unit is added, the parameters associated with the previously

added units are frozen.

4. The output of any units that are added may form virtual inputs [117], i.e., the

output of each additional unit may act as an input to all higher-level units.

Cascade architectures therefore represent an approach to incremental complexification
and as such hold several advantages [42]. The approach allows new units to focus on
learning specific behaviours that may compensate for the deficiencies in existing units.
Because learning occurs only with respect to a single unit, it has been suggested that
cascading has the potential to address the moving target problem whereby training
a component is made difficult by concurrent changes to other components in the
system. This has been demonstrated in the realm of neural networks where, despite
adapting a single unit, the speed of learning was actually found to increase. Finally,
under the cascading approach, it is not necessary to specify the complexity of the
solution a priori as training, and the addition of new nodes, can be terminated when
an acceptable level of performance is reached. A disadvantage of the approach is
that fixing the parameters of the lower-level represents a greedy strategy that may
result in sub-optimal structures, where this is also true in the version of the proposed
approach presented in this thesis.

Using GP to evolve the cascaded units, the approach has been used for classifi-
cation where it was found that higher levels of the cascade resulted in reduced error
rates [114, 115]. In this example, an important part of the system was a fitness
sharing component that penalized units that duplicated the behaviour of lower-level
units. Cascading has also been suggested for applications with large feature counts
and unbalanced datasets [98] where the cascade units played the dual role of feature
detectors as well as filters of instances of the majority class.

Cascade architectures are related to vertical problem decomposition because lower-
level units represent fixed behaviours that can be used in training additional higher-
level units. For example, a new unit can choose to replicate the behaviour of lower-
level units in some situations but not others. Due to restrictions imposed on the
construction process, cascading architectures result in hierarchies that are very tall.
Furthermore, the philosophy behind cascading appears to be that higher-level units
should represent refinements over lower-level units. Finally, it is noted that cascade
architectures can be viewed as an automated approach to layered learning, Section
2.3.1, and as such differ from the proposed approach in that layers are activated

bottom-up and all units are activated at each layer.
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2.3.4 Hierarchical Teaming using Genetic Programming

Hierarchical cooperative mechanisms have also been suggested as a way of achieving
vertical problem decomposition in GP-based teams [172]. Specifically, in each team,
one of the members is a priori designated to be a leader whose role it is to route
input cases to one of the other team members. Once selected by the leader, the
other team member then generates the final team output, e.g., predicted label under
classification. Thus, each input case is processed by exactly two individuals, with the
leader assuming responsibility for partitioning the input space among its associated
team members. Naturally, such an architecture suggests that whereas the other team
members must appropriately identify specific, low-level, behaviours, the leader must
learn how to apply these behaviours in different situations.

The approach was evaluated on several classification problems [172]. Though
results were mixed, it was found to perform relatively well on problems with high
levels of epistasis and noise — to confirm these finding, further analysis was suggested.

The leader-based cooperation mechanism appears to be best suited for team (as
opposed to island) approaches to GP teaming because without a persistent association
between the individuals comprising a team the necessary context is lost. For example,
replacing a team leader with another may lead to unpredictable results, even if the
rest of the team remains the same. The approach was demonstrated using team sizes
of three, i.e., one leader and two subordinates. Extending it to teams containing four
or more members requires that the leader have to capacity to choose among three
or more alternatives much like in the case of multi-class classification. Alternatively,
requiring only binary decisions to be made by each individual, more than two levels

of individuals can be defined within the same team.

2.3.5 Symbiotic Adaptive Neuroevolution

Symbiotic Adaptive Neuroevolution (SANE) [132] refers to a hierarchical approach
for evolving neural networks that is of particular relevance to this work. In the next
two sections, the key features of the algorithm are reviewed and its significance to the

proposed approach is discussed.

Overview of the Two-Population Approach

The SANE framework [132] is a cooperative coevolutionary algorithm that aims to

evolve a diverse set of complementary solution subcomponents in a single population,
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Blueprint Neuron
population population

Figure 2.3: Populations under the SANE approach. Each fixed-size blueprint specifies
the neurons (connections and associated weights) that are to be combined into a
neural network.

though the architecture itself involves two populations. Specifically, a population of
neurons and a population of blueprints is evolved!?, Figure 2.3. Each member of
the neuron population specifies a set of connections and their associated weights. To
form a solution, i.e., a neural network, several neurons are combined to collectively
define the overall network structure. The neuron combinations are not arbitrary,
however, but are specified by the members of the blueprint population. That is,
each individual in the blueprint population contains a set of references to members of
the neuron population which are to be used in constructing a single network. Thus,
whereas the neuron population searches through the space of solution subcomponents,
the role of the blueprint population is to identify and store the most effective neuron
combinations so that they can be exploited by the search process. Fitness is evaluated
both at the blueprint level, by considering the performance of the network specified by
each blueprint, as well as the neuron level, by considering the fitness of the networks
that the neuron appears in.

Two advantages associated with the SANE approach are suggested [132]. First,

19Two main versions of the SANE algorithm appear in literature, one that makes use of a blueprint
population [132] and one that does not [133]. In this review, the focus is on the former.
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compared to approaches where individuals represent complete solutions, e.g., tradi-
tional neuroevolution, operating at the level of neurons takes advantage of knowledge
regarding the solution representation and allows individual building blocks to be
identified and evaluated more effectively. That is, recognizing that neurons represent
building blocks upon which selection and variation operators are explicitly applied is
viewed as a simplification of the learning task. Second, since a single neuron is un-
likely to perform well in isolation, the emergence of different roles or specializations
is expected. This is viewed as particularly relevant since it may lead to sustained
diversity in the population, or at least it may help to prevent premature convergence,
the latter being an issue that has and continues to be of interest to the greater EC
community [57, 74, 76, 127]. Furthermore, the way in which diversity is encouraged
under the SANE approach is viewed as a form of implicit fitness sharing [73|, that
is, diversity is encouraged by restricting the ability of individual subcomponents thus
requiring them to assume specific roles through cooperation. In contrast to explicit di-
versity maintenance schemes, e.g., fitness sharing [57], this is viewed as more efficient
since pairwise comparisons between population members are not required. Implicit
fitness sharing has been demonstrated in the context of a LCS [73], and here, the
assertion is made that it applies to any bid-based system where individuals represent

partial solutions.

The SANE algorithm was evaluated with regards to the quality of solutions found,
the rate of population convergence, as well as the ability of the population to adjust
to changes in the problem definition [132]. Compared to an adaptive neuron search in
which combinations of neurons were selected arbitrarily [133], it was found that SANE
discovered solutions of similar quality in early stages of evolution but in the latter
stages it did significantly better — this emphasized the contribution of the blueprint
population in leveraging knowledge regarding effective combinations of neurons. De-
spite relying on an aggressive, elitist, breeding strategy, it was found that the rate
of convergence in the SANE neuron population was much slower than the rate of
convergence in populations where complete networks were evolved, even if selection
pressure in the latter was lower. In fact, as predicted, analysis indicated the emer-
gence of diverse specializations in the SANE neuron population. Finally, compared
to these other approaches, results showed that the increased diversity in the SANE
neuron population allowed the evolving solutions to more quickly adapt to a dynamic

environment,.
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Discussion

SANE is viewed as a contribution that is of particular relevance to this work because
of the hierarchical architecture that it explicitly recognizes. That is, two populations
are coevolved, Figure 2.3, a population of solution subcomponents and a population
representing combinations of these partial solutions, i.e., complete solutions. Thus,
in terms of a hierarchy, the blueprint population represents more complex behaviour
than the neuron population, which is why SANE is viewed as a form of vertical
problem decomposition. What the SANE literature fails to recognize is that this de-
composition can be applied iteratively to generate increasingly more complex units
of organization, e.g., using the networks evolved in an initial invocation of the algo-
rithm as building blocks whose combinations are explored at subsequent levels of the
hierarchy. A beneficial side-effect of evolving partial solutions in a single population

is that it may enable implicit fitness sharing to take place.

The proposed approach uses an architecture that is similar to that of the SANE
framework. There are two features of the SANE algorithm, however, that are viewed
as deficiencies and as such are addressed in this work. First, the SANE blueprints
always include the same number of references, and no clear reason is given as to
why variable-length blueprints are not used. Implementing variable-length structures
would require a corresponding upper limit to be set and the search operators to be
modified so as to vary blueprint sizes. However, it would enable evolution to deter-
mine the necessary model complexity potentially leading to simpler or more effective
solutions. Second, SANE assigns fitness to the neurons, and removes the neurons with
the lowest fitness in each generation. However, the algorithm description does not
specify what happens to the references in blueprints that index the neurons that are
removed, e.g., are they reassigned or dropped altogether? In the proposed approach,
fitness is only assigned at the level of complete solutions, i.e., at a level analogous to
the blueprint population in the SANE approach, while solution subcomponents are
culled only when their reference counts drops to zero. This reduces the number of de-
sign decisions that have to be made, and eliminates the potential ‘dangling reference’

problem.

The SANE literature defines symbiotic evolution as ‘coevolution where individuals
explicitly cooperate with each other and rely on the presence of other individuals for
survival’ [132]. Whereas this definition is more consistent with the view that symbiosis
is strictly a mutually beneficial relationship, i.e., the interpretation of symbiosis as a

state, Section 1.5, the process of compartmentalization that occurs in the blueprint
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population suggests that the symbiosis in SANE may be more accurately described
as an operator. That is, a particular blueprint may specify a network in which certain
neurons are in fact parasites, so that cooperation cannot be an assumed property of
the collaboration but rather emerges as measured by natural selection. In terms of
the vocabulary introduced earlier, the blueprint and neuron populations can thus be
viewed as host and symbiont populations. However, one feature that makes SANE
inconsistent with symbiosis as viewed in this work is that the algorithm relies on
recombination which is a mechanism associated with the traditional neo-Darwinistic
approach to EC, Section 1.5.2.

Finally, it is noted that the idea of a two-level architecture, solution subcompo-
nents at one level that are combined into complete solution at another, is not new
or limited to the SANE framework. For example, the review in this chapter includes
the Adaptive Representations approach [155, 156] which evolves programs (complete
solutions) at one level which in turn reference subroutines (solution subcomponents)
at another. A similar architecture also appears in one of the Hayek systems [13] where
rules and rule sets respectively can be viewed as symbionts and hosts. However, the
SANE framework does appear to be the first to explicitly recognize, separate, and

evolve the two roles through cooperative coevolution.

2.4 Coevolution

Traditionally, two types of coevolutionary algorithms have been recognized, cooper-
ative coevolution [132, 149, 195] and competitive coevolution® [4, 68]. Intuitively,
cooperative coevolution refers to situations where partial solutions collaborate to
decompose the problem, whereas competitive coevolution involves antagonistic in-
teraction between complete solutions [23, 195]. Recently, efforts have been made to
relate the two types of coevolution based on the underlying domain on which the
respective algorithms operate [147]. Specifically, competitive is typically associated
with domains where there are two interacting players and where the payoff matrix
resembles a zero-sum game. In contrast, cooperative is typically associated with do-
mains with two or more players, where the outcomes can be arbitrary, and often each
player receives the same outcome. Though more rigorous, this classification is not
complete, with many domains falling beyond its scope [147], e.g., non-competitive

[195] forms of coevolution and the non-zero sum Iterated Prisoner’s Dilemma [4].

20Not to be confused with the competitive cost-benefit characterization considered under symbiotic
relationships, Table 1.1.
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In EC, individuals are typically evaluated using a fixed fitness function. In con-
trast, the idea behind competitive coevolution is to base evaluation on a set of co-
evolving individuals. These coevolving individuals can be in the same population,
as in certain games [4, 139], or in different populations, as is typical in optimization
problems [46, 68]. From the perspective of this thesis, competitive coevolution can
therefore be viewed as an approach to constructing a dynamic set of environmental
conditions, i.e., an ecosystem. Under cooperative coevolution, individuals are also
evaluated through interaction with other coevolving individuals, however, the other
individuals do not provide a baseline against which performance is measured and a
fitness function must therefore be specified a priori. Thus, whereas the traditional
goal behind competitive coevolution has been to provide an evolving fitness function,
cooperative coevolution has represented a means of problem decomposition.

In the context of coevolutionary search, a solution concept [45, 47| identifies the
subset of the search space that contains acceptable solutions versus the space of
non-solutions. Examples of solution concepts include the set of strategies in a Nash
Equilibrium [47], the set of individuals that maximize the expected score against an
arbitrary opponent [85], and the Pareto-optimal set [46, 139]. It is argued that a
key reason for failure in coevolutionary algorithms is often the lack of an appropriate
definition for the relevant solution concept [45]. In loose terms, it is difficult to find
something if one does not know what exactly it is they are looking for. Formally
specifying a solution concept also allows progress in the search to be measured, and
in some cases, monotonic improvement can be assured [85, 86, 47|. Unfortunately,
solution concepts have been primarily considered in the context of competitive co-
evolution.

The adaptive nature of coevolutionary algorithms potentially makes them very
useful, e.g., in focusing limited resources on a small, relevant, region of the search
space. Unfortunately, it appears as if initial assumptions about the behaviour of
such algorithms were incorrect, and despite a number of successes coevolutionary
algorithms often fail to fulfill their anticipated potential [34, 45, 195]. This motivated a
number of investigations using uncomplicated algorithms applied to simple domains so
that coevolutionary dynamics could be more easily observed and understood [149, 190,
195]. In contrast, in this work coevolution is applied in more complex contexts making
similar insights more elusive, with the associated tradeoff being that coevolution could
now be demonstrated in more practical situations.

In the proposed approach, elements of both competitive and cooperative are

present, therefore, both forms of evolution are reviewed in the following sections.
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2.4.1 Competitive Coevolution

As suggested earlier, Section 2.4, the goal behind competitive coevolution is to pro-
vide an evolved fitness function so that one does not have to be specified a priori.
As such, an individual’s fitness can be viewed in two ways [23, 86]. First, an individ-
ual’s absolute fitness is a global measure of solution quality analogous to the static
fitness function traditionally used in EC, e.g., it can be determined by calculating
the solution’s proximity to the solution concept [86]. In particular, an individual’s
absolute fitness remains fixed regardless of the makeup of the coevolving population.
In contrast, the relative fitness of an individual corresponds to its performance as
measured through its interactions with other coevolved individuals. Naturally, since
coevolution implies change, the relative fitness is dynamic. The terms objective and
subjective fitness have also been used in place of absolute and relative respectively
(86, 190, 195].

The dynamic nature of the relative fitness function under competitive coevolution
has a direct effect on the learning gradient, the aspects of the problem that are
emphasized, and the degree to which relative fitness reflects absolute fitness [190].
In each case, the overall effect may be positive or negative. For example, because
fitness is evaluated in relation to other coevolved individuals and not some fixed
baseline, open-ended learning may be possible. At the same time, if relative fitness
does not reflect absolute fitness, nothing useful may be learned, or worse, individual
quality may degrade. Without careful design, competitive coevolution can thus lead
to pathologies such as disengagement (loss of gradient), focusing (over-specializing),
cycling, and mediocre stable states [23, 190, 195].

Formulated appropriately, competitive coevolution has a number of advantages,
with the principal benefit being that it can be used in situations where no suitable
fitness function is known [147, 190]. Since it allows evaluation on a small subset of
training cases, competitive coevolution can also be used to improve training efficiency
(34, 46]. The latter is especially relevant to this work where large datasets and
problems with large state spaces are considered. Finally, under difficult problems,
coevolution has the potential to be more efficient by focusing the search on, e.g., test

cases that match the ability of the solutions that are evolved [46, 190].

In the following sections, Pareto-coevolution and the host-parasite model are re-
viewed. The former represents a solution concept that is relevant to the proposed
approach to the extent that it has been considered in previous versions [111, 112].

The host-parasite model, on the other hand, refers to a dynamic that may develop
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between the populations evolved under competitive coevolution.

Pareto-Coevolution

The defining characteristic of Pareto-coevolution is that, with respect to any given
individual, it views each other competing individual as an objective to be optimized
[46, 139]. Given this interpretation, techniques from Evolutionary Multi-Objective
Optimization (EMOO) can be applied to the search problem, and in particular, the
Pareto-dominance relation is often used. Specifically, given a set of objectives O

individual z; dominates individual z; if and only if
Yo € O : G(x;,0) > G(zj,0) ANJo € O : G(x;,0) > G(z,0) (2.1)

where G(x;,0) is the interaction function that defines the outcome of individual z;
with respect to objective 0. Without loss of generality, higher outcomes are considered
to be better. According to the above relation, individual x; dominates x; if and only
if it performs at least as well on every objective, and does strictly better than z; on
at least one objective. Typically, z; and z; are assumed to be in the same population
with the individuals representing objectives evolved in a separate population. Under
Pareto-coevolution, the solution concept is then the set of solutions that are mutually
non-dominated, i.e., choosing one individual over another from this non-dominated
set involves a tradeoff in objective values.

Pareto-coevolution often involves the interaction between two populations, a pop-
ulation of teachers and a population of learners [86, 34, 46, 111, 112, 147]. The
learners represent the potential solutions, while the teachers are tests which collec-
tively define the relative fitness function. The learners are evaluated by applying the
Pareto-dominance relation to the set of objectives defined by the teacher population,
i.e., for each learner there is one objective per teacher. Given n learners, the teachers
are evaluated by considering the n? —n pairwise comparisons between the learners (or
n? comparisons if a learner is also compared with itself). Specifically, for a teacher

k., the value of objective i - n + j is calculated as

{ Uit Gl te) > G, tr) (2.2)

0 otherwise

where [; and [; are the ¢th and jth learners assuming a sorted list. Thus, if ¢

distinguishes between [; and [; the objective value is set to 1, i.e., a distinction is
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made, otherwise it is set to 0. As such, the learners are evaluated based on how
well they perform on the test cases represented by the teachers, and the teachers are
evaluated based on how informative/useful they are in distinguishing between the

learners.

A feature of distinction-based Pareto-coevolution is that, despite falling under the
label of competitive coevolution, it exhibits both competitive and cooperative char-
acteristics in calculating teachers’ fitness. For example, a teacher receives a minimum
relative fitness if it defeats all learners to the same extent, or when it is defeated by
all learners to the same extent — in both situations, no distinctions are made. In
contrast, a fit teacher is one that defeats some learners but is defeated by others, and
a fitness measure that captures this property is also used in the proposed approach,
Section 3.2.6. Though many coevolutionary algorithms may be like this in that they
may not be strictly competitive or cooperative, this has traditionally been ignored as

practitioners tend to assign one label or the other [45, 195].

Given unlimited resources, monotonic progress can be guaranteed under distinction-
based Pareto-coevolution [86]. In practice, the limits imposed on the size of the
archives that are maintained makes this impossible. Another fundamental problem
with Pareto-coevolution is that as the number of objectives grows, the non-dominated
set tends to include most if not all of the individuals under consideration [46, 139]
— and the individuals’ behaviours tend to overlap significantly [125]. Given the high
number of mutually non-dominated individuals, differentiating between them becomes
a problem. Indeed, this is a well known issue in EMOO where algorithms perform
well on two objectives but where performance tends to degrade sharply as additional

objectives are considered [51, 80].

There are therefore two recognized problems with Pareto-coevolution resulting
from the large number of objectives, the growth of the non-dominated set and the
difficulty in performing optimization involving many objectives. To cope with the
former, heuristics for ranking mutually non-dominated solutions such as eliminating
‘nearly dominated’ strategies [139], counting instances where learners out-score one
another [46], and competitive fitness sharing [157] have been proposed. Unfortunately,
these heuristics break the assumptions that form the basis for certain theoretical

results, e.g., on monotonic progress [86].

Two less recognized issues with distinction-based Pareto-coevolution are the ef-
ficiency of performing the n? — n pairwise comparisons on the learners and the re-

sulting meaningfulness of the distinction that are or are not made. The number of
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comparisons is proportional to the square of the number of learners, therefore, typ-
ical parameter settings may result in tens of thousands of comparisons (objectives
to be optimized). At that point, it becomes unclear if all of the distinctions that
are made are significant. For example, a distinction may be more significant if it
is made between two strong individuals compared to one that is made between two
weak individuals [46], or if it is made by only a single teacher [157]. Other studies
have shown that even if test cases are deemed fit and diverse in the phenotype space,
they may be trivially different in the genotype space and thus unrepresentative of the
entire problem domain [113].

Attempts are made in the proposed algorithm to address these two less recognized
issues. Specifically, a test fitness function is proposed that does not rely on making
pairwise distinctions yet still rewards tests if they distinguish between the learners,
Section 3.2.6. Depending on the reward scheme, the resulting algorithm is found to

match or outperform distinction-based coevolution, Section 6.4.2.

Host-Parasite Model

The host-parasite (or predator-prey) model refers to a dynamic that may occur under
competitive coevolution in general, i.e., it is not specific to any solution concept.
Under the host-parasite model, coevolution is viewed as an analogy to a ‘biological
arms race’ [68]. Two populations are typically assumed, a population of hosts and a
population of parasites, though the analogy could likely be generalized to any number
of populations. Through coevolution, a series of adaptations and counter-adaptations
[33] may result. As such, though the relative fitness of the two populations may stay
the same, a phenomenon often referred to as the Red Queen Effect [195], the absolute
fitness may improve — the development of this dynamic is therefore viewed as an
important factor in the success of the coevolutionary algorithm. Key to the emergence
of the host-parasite dynamic is the avoidance of disengagement and cycling. Methods
to address the former include reducing parasite virulence [23] and using monotonic
solution concepts [86, 47], whereas the latter is typically addressed through the use
of test case archives [86, 47, 125, 157].

2.4.2 Cooperative Coevolution

Cooperative coevolution refers to the evolution of solutions consisting of ‘interacting
coadapted subcomponents’ and is motivated by the notion that increasingly complex

problems will require increasing levels of modularity [149]. In contrast, traditional
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EAs do not model interactions between individuals in the population and as such
return what are viewed as monolithic solutions, e.g., a single program, bit string, or
real-valued vector. At best, heuristics such as fitness sharing [57] may be applied to
subsets of individuals in the same population, though such interactions are not explicit
and as such fall beyond the scope of what is considered cooperative coevolution [195].

Successful cooperative coevolution typically requires four common issues to be
addressed [149]:

1. The number of subcomponents and their roles must be defined. In many real-
world applications, the number of subcomponents may not be known before-
hand, let alone their roles. Is therefore important for the algorithm to have the

ability to determine this decomposition automatically.

2. The decomposition of complex problems often requires complex interactions
between the resulting subcomponents. These interactions must be modeled
during evolution otherwise subcomponents, in their respective roles, will not

emerge.

3. An appropriate mechanism for credit assignment must be defined. This is trivial
if credit is assigned at the level of complete solutions, but not if it is to be
shared among solution subcomponents in proportion to the contribution that

each makes.

4. The solution subcomponents must be sufficiently diverse for there to be a benefit
in combining them. For example, there is little use in applying a voting heuristic

to a set of subcomponents where each makes the same decision.

In the proposed approach, the first issue is addressed through a symbiotic relationship
that results in the exploration of different combinations of subcomponents in different
roles, i.e., following the metaphor established in the SANE algorithm. Interactions
between solution subcomponents are modeled using a bid-based metaphor — this is
a generic approach applicable across a number of problem domains. The problem of
credit assignment is bypassed by not explicitly assigning credit to solution subcom-
ponents. Instead, the same subcomponent participates in multiple solutions, and its
survival is contingent on the fitness of those complete solutions. Finally, the proposed
approach uses mechanisms resembling fitness sharing [62, 157] at multiple levels to
ensure diversity, in addition to the pressure for evolving diverse subcomponents that

results from the symbiotic relationship that is central to the algorithm [132].
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A widely accepted framework for cooperative coevolution assigns a separate species
to each solution subcomponent and selects one individual from each species to form
a complete solution [149]. Typically, each species is evolved in a separate population.
The number of species can be specified a priori, or it can be varied at run-time, e.g.,
by adding species when stagnation is observed and removing species that make insuf-
ficient contributions. The approach?®' has been used in a number of problem domains
such as ensemble learning for classification [90], multi-agent learning [138], schedul-
ing [77], and function optimization [148]. It was found to exhibit a tendency towards
complete solutions that are resilient to change in their constituent subcomponents
but which otherwise may be suboptimal [195]. Thus, it appears to be more suitable
for domains where robustness is important, e.g., multi-agent learning, as opposed to
situation where the global optimum is required.

Some of the behaviours observed under competitive coevolution are also possible
under cooperative coevolution, though perhaps in different forms [195]. For example,
the learning gradient may be lost if one species is so poor that all collaborations that
its members take part in receive minimum fitness. If, on the other hand, gradient
is maintained, an adaptive evolutionary balance, a cooperative analogy to the arms
race discussed in Section 2.4.1, may result in continued improvement in the absolute
fitness.

Though not traditionally associated with cooperative coevolution, the study of
collectives may provide insight into evolving cooperative behaviours. An example is
the collective intelligence (COIN) framework [185] where the goal is to define a local
utility function that is aligned with a global utility function. That is, each solution
subcomponent aims to maximize its own utility, and in the process, the utility of
the system as a whole is maximized — in this sense, cooperation between the agents
is achieved. COIN defines a family of difference utility functions that attempt to
calculate the contribution of a single agent towards the performance of the collective,
and may thus address the issue of credit distribution among solution subcomponents.

Finally, it is noted that although the multi-population approach [149] appears to
be a representative framework for what in EC is widely accepted as ‘cooperative co-
evolution’, a number of other related algorithms have also been proposed and many
have been reviewed earlier in this chapter. The foremost of these are likely classifier
systems [72, 196] where the action sets can be viewed as the collaborating components.

In similar spirit, the Hayek model [10] employs an economic metaphor to evolve a

1 Though formally presented as a generic approach to cooperative coevolution in [149], this frame-
work appears in literature before then.
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population of bidders that learn to coordinate their actions. The SANE framework
[132] is yet another model where the solution subcomponents are evolved in a single
population. Finally, many of the teaming approaches reviewed in Section 2.2.3 can
be viewed as forms of cooperative coevolution. The requirement of cooperative co-
evolution for solutions in the form of ‘interacting coadapted subcomponents’ [149] is
rather general and as such may apply to any evolutionary approach which explicitly

encourages modularity.



Chapter 3

Symbiotic Bid-Based Model

This chapter provides a detailed description of the SBB model which is the focus of
this thesis. It begins with an overview of the key principles underlying the framework
in Section 3.1. The core training algorithm is presented in Section 3.2, where it is also
interpreted in relation to the process of symbiosis as an operator, Figure 1.5. A num-
ber of additional details, viewed as useful in improving performance but not central
to the framework, are then discussed in Section 3.3, while Section 3.4 suggests a way
to extend the core SBB algorithm by incrementally constructing solutions hierarchi-
cally. The chapter concludes with Sections 3.5 and 3.6 which discuss, respectively,
the nature of the cost function and the details of the GP implementation.

The model overview and the description of the core training algorithm, Sections
3.1 and 3.2 respectively, present the SBB framework as an approach to lateral prob-
lem decomposition through context learning; key to this assertion is the bid-based
approach detailed in Section 3.1. The ability of the SBB approach to achieve vertical
problem decomposition is suggested in Section 3.4, where the core training algorithm

is applied iteratively as a process for layered learning.

3.1 Model Overview

The proposed approach can be characterized in terms of three underlying principles:

1. A bid-based approach to context learning. The issues of ‘what to do” and
‘when to do it’, viewed as central to the type of context learning considered in
this thesis, are separated through the use of a bid-based metaphor [110, 111].
Specifically, each bid-based individual (or bidder) consists of a bid component
and an action component, Figure 3.1. The action component is a scalar chosen
from a finite set that defines what to do, while the bid component represents
the bidding behaviour that is used to determine when to apply the associated
action. Given an input, an auction or bidding round is triggered whereby each
individual submits a real-valued bid based on its bidding strategy, and the
action to be applied is then deterministically chosen as the one associated with
the highest bidder, Figure 3.2.
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| Action | Bid |
T T
Scalar Program
T T
Problem GP

Figure 3.1: Components in a bid-based individual as implemented in this work.
A single action (the ‘what’) is chosen from a finite set of scalars, while the
bid component (the ‘when’) takes the form of a program; whereas the action
is problem-dependent, the program is evolved using GP. Once created, these
components remain fixed in a given individual.
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Figure 3.2: The bid-based action selection procedure, or auction, involves three
main steps. In the first step, the input is forwarded to the bid component in
each individual. In the second step, each individual submits a real-valued bid
based on the input which, in this case, is mapped to the range [0, 1]. In the final
step, the maximum bid is identified, and the action of the individual associated
with that bid is selected as the final output. In the above example, the action
associated with the second individual (consisting of bids and actions) is output.
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In this work, the bidding behaviour is evolved using GP while the possible
action values depend on the problem domain. In classification problems, the
actions correspond to the possible class labels. In control-style problems, the
set of possible actions could be discrete, e.g., rotations of a Rubik’s Cube, or
continuous, e.g., force applied in balancing a pole. In the latter case, discretiza-
tion can be performed to produce a finite set of actions. Given their restricted
form, the bidders are typically not capable of representing non-trivial solutions
if they are considered in isolation, e.g., under classification an individual would
always predict the same class label. Thus, they are encouraged to cooperate

through what can be viewed as implicit fitness sharing, Section 2.3.5.

The bid-based approach casts GP in a non-traditional role. Whereas typically
GP is used to map input directly to output, e.g., exemplar to class label, in
the bid-based approach GP is used to map input to a bid value which is then
used to select an output via the auction mechanism, i.e., selection of the highest
bidder. Intuitively, GP has traditionally been used to identify both the ‘what
to do” and ‘when to do it’, possibly confounding the decision as a whole. In
contrast, here, the role of GP is restricted with the goal of facilitating learning;
the bidding behaviour identified by a program corresponds to a fixed set of
problem conditions, for example, those inputs where the program results in a
high bid. This then supports the exploration of combinations of these fixed
behaviours through which complexity may emerge in terms of the cooperative

interactions that may be identified.

. Evolution of solutions by means of symbiosis. The introduction of a
symbiotic component into the bid-based framework was originally motivated
by issues stemming from the fact that in the early implementations [110, 111]
the bid auction was held across all bidders in the population, i.e., the entire
population was considered to be a solution. As such, changes to the popula-
tion through the addition, removal, or modification of bidding individuals could
potentially have very disruptive effects, e.g., the introduction of an individual
that outbid all others could result in degenerate behaviour. In addition, unless
the target problem domain was supervised learning, it was not obvious how to
incorporate competitive coevolution into the approach because outcomes were
determined with respect to the population as a whole and not the individual

bidders, i.e., since an individual represented a partial solution, its performance



Point Host Symbiont
population population population

Figure 3.3: Three populations evolved in the SBB [ramework. Under the
symbiont-host interaction, the same symbiont can appear in multiple hosts,
and multiple symbionts associated with the same action can appear in a single
host. In the proposed implementation, the host-point relationship involves both
cooperative and competitive interactions as discussed in Section 3.5.
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could not be evaluated in isolation. A related issue was that of credit assign-
ment, specifically, the assessment of the contribution of each individual bidder

towards the aggregate performance of the population.

To this end, the population of bid-based individuals was augmented with a sec-
ond population whose role it was to enumerate useful combinations of bidders,
center-right of Figure 3.3. The relationship between the two populations could
thus be viewed as a symbiosis with the original bidders as symbionts and mem-
bers of the second population as hosts, much like as in the SANE algorithm
[132]. As such, the process of symbiosis as an operator, Figure 1.5, could now
be effected. Whereas the first stage of this process, species coexistence, could
already be realized under the single-population model, the second and third
stages, i.e., compartmentalization and joint replication, were now supported as

a direct result of including the host population.

By including the second population, the concept of a ‘complete solution” was
redefined. Previously, the entire population of bidders formed the complete
solution, whereas now, a single host identified a complete solution in terms of a
subset of individuals from the symbiont population. Thus, multiple candidate
solutions could now be extracted from a single population of symbionts, and the
bid auctions were restricted to symbionts within each candidate solution. Since
a host, once created, remained fixed, modifications to the symbiont population

could therefore no longer disrupt previously discovered symbiont combinations.
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Furthermore, competitive coevolution could now be employed using established
techniques by considering the performance of the hosts; the fitness of a symbiont
in isolation was no longer explicitly evaluated alleviating the need to measure

each symbiont’s contribution directly.

A number of other benefits resulting from the addition of the host population
can be suggested. First, the host size and composition is determined through
evolution, whereas previously, the bidder population size and hence the solution
size was not an evolved property but had to be specified a priori. Second, given
that a symbiont may appear in multiple hosts, this may lead to a more accu-
rate evaluation of its usefulness. Third, since a single symbiont is unlikely to
perform well in isolation, population diversity may be increased if different spe-
cializations emerge, i.e., through implicit fitness sharing, Section 2.3.5. Finally,
the processes behind the bid-based metaphor and the compartmentalization of
symbionts are generic in the sense that they can be used to construct hierarchi-
cal solutions in which hosts evolved at lower levels form a basis for symbionts

at subsequent levels.

3. Dynamic evaluation through coevolution. Since a host has the capacity
to represent a complete, non-trivial solution, the host population is coevolved
against a population of points representing training scenarios, center-left of
Figure 3.3. Under classification, the point population represents a subset of the
training instances, while under temporal sequence learning, a point corresponds
to an initial environmental state!. As a result of this interaction, each host is
assigned an explicit fitness value, but this information is not used directly to
evaluate the symbionts, e.g., by assigning to each symbiont the average fitness
of the hosts that it appears in. Instead, symbionts are considered to be viable
as long as they appear in at least one host. This reflects the view of natural
selection as a group fitness operator, and also unburdens the designer from

having to specify a symbiont fitness function.

The coevolutionary component between hosts and points was included to allow
the approach to scale to problems with many training scenarios, e.g., classi-
fication problems with many exemplars or the numerous real-world temporal

sequence learning problems that may be of interest. In particular, the desired

!The term ‘point’ is used to refer to an instance or initial state whether or not it actually appears
in the current point population. For example, the training set in classification is viewed as a set of
points from which the current point population is drawn.
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scalability can be achieved if a learning gradient can be maintained using a
(relatively) small sample of all possible training cases, thus incurring a reduced
training overhead all the while advancing the search towards progressively better
solutions. Furthermore, the interface between hosts and points in the proposed
approach remains generic and as such is compatible with established approaches

to competitive coevolution.

Given that the contents of the point population are subject to change, the
fitness function in the proposed approach is dynamic. As suggested earlier,
Section 1.3.1, a dynamic environment is likely to decrease the rate of conver-
gence in population diversity, since, nominally, directional natural selection will
then lead to the emergence of novel phenotypes; in contrast, stabilizing natural
selection is likely to suppress innovations in favour of the norm. If niches can
be established to support the viability of new species, this then complements
the symbiotic metaphor which can take advantage of the increased diversity by
combining individuals evolved under different lineages (as in the case of biolog-
ical evolution). Under similar conditions, the recombination operators typically
employed in EC are unlikely to succeed as they fail to consider the context

under which genetic material is exchanged.

From a more pragmatic perspective, if the space of possible points is large, a
smaller training sample may need to be selected and used for evaluation. If
this sample is static, however, it is unlikely to support speciation in the host
population unless it identifies the relevant niches from the outset. Here, it is
suggested that this likelihood is low because of the large space from which the
sample is drawn, e.g., the number of niches may be greater than the sample
size. Furthermore, different niches may be relevant at different periods during
evolution, e.g., niches corresponding to easier scenarios may be more helpful
during early stages but may hamper the development of more sophisticated
solutions. By employing a dynamic point population, these problems can be

mitigated if training can be dynamically focused on the relevant niches.

Context learning in the SBB approach, as summarized above, can be viewed as a
two-staged process. In the first stage, context learning is observed in the symbiont
population where the conditions for applying specific actions are identified, i.e., in
the form of the bid-based individuals that separate the what from the when. In
the second stage, the search through combinations of symbionts carried out in the

host population aims to establish the appropriate context under which individuals
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’ Entity ‘ Role ‘
Symbiont (bidder) | Identifies context (when) for applying an individual ac-
tion (what)

Host (compartment) | Identifies combinations of symbionts that are effective
under the bid-based metaphor

Point Training case that provides a direct measure of host
fitness, and an indirect measure of symbiont fitness

Figure 3.4: Entities coevolved under the SBB model.

forge effective collaborations; context is therefore viewed with respect to the other
symbionts participating in the same compartment.

As a final remark in this model overview, it is acknowledged that the algorithm
details presented in the following sections represent one of possibly many implementa-
tions that reflect the three principles behind the proposed approach. Where possible,
attempts are made to justify the design choices that are made, though it is by no
means implied that the implementation is optimal and that refinements would not

lead to improved performance.

3.2 Core Training Algorithm

Table 3.4 summarizes the entities relevant to the SBB model, while Algorithm 3.1
outlines the core training process which begins by first initializing the points, hosts,
and symbionts in lines 3 and 4. The algorithm is generational, where the main loop,
line 5, represents a generation. It iteratively creates new points and hosts, lines 6 and
7, evaluates the points on the hosts, line 10, and selects a subset of the points, hosts,
and symbionts discarding the rest, lines 13 and 14. These steps are described in detail

in the following sections, and the relevant algorithm parameters are summarized in
Table 3.1.

Both the point and the host populations in Algorithm 3.1 follow what is consid-
ered to be an elitist generational model, though alternate models are by no means
precluded. Specifically, a fixed number of new individuals is added to the population
at the beginning of each generation. Subsequently, the same number of individu-
als representing the worst performers is deterministically removed at the end of the
generation  whether or not the deleted individuals are parents or offspring in the
current generation is not considered. This is consistent with a (u+ \) selection strat-

egy popularized in ES approaches where p is the number of parent individuals, A is
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the number of offspring individuals, and the addition sign implies that both parents
and offspring may be removed in any one generation [39]. By adopting an elitist
policy, the algorithm always preserves what are identified to be the best individuals
regardless of the amount of selection pressure applied.

A significant feature of the proposed algorithm is that the only variation operator
applied to the symbiont population is mutation where this is reflective of the role
played by symbiosis. Specifically, since crossover — the norm in GP — is not used, this
places the onus on the process of symbiosis to combine genetic material from different
individuals. It is therefore possible to draw analogies between the three stages of the
process of symbiosis as adopted in this work, Figure 1.5, and the proposed framework

as summarized in Algorithm 3.1:

1. Species coexistence is equated with the presence of individuals from different
lineages in the symbiont population S?. It could be argued that it is not possible
to objectively ascertain whether or not different species do in fact emerge in
the symbiont population. However, if symbiotic associations are successfully
formed, this would suggest that speciation is taking place since little benefit
would be gained by combining symbionts that behave in the same manner.
As such, if a symbiont is observed to make distinct, non-trivial, contributions
towards the behaviour of the host, this is viewed as evidence in support of

species coexistence.

2. The compartmentalization stage is realized whenever multiple symbionts are
assembled into a single host, i.e., host initialization, line 4, as well as host and
symbiont generation, line 7. Little bias is introduced when choosing which sym-
bionts to compartmentalize, therefore, any of the cost-benefit characterizations
from Table 1.1 may result. If the interaction between the associated symbionts
is mutualistic, however, it is expected that the likelihood of the host surviving

(and reaching the joint replication stage) will be increased.

3. The final stage, joint replication of compartments, is triggered in two situations.
First, it occurs whenever a new host survives into the next generation, i.e., it is
not removed at line 14, at which point the host becomes part of the parent set
used to create offspring in that subsequent generation. Joint replication also
occurs when Algorithm 3.1 is applied iteratively to produce multiple levels of
hosts, at which point, hosts at lower levels become fixed and reproduce as a

unit. This second case is discussed in more detail in Section 3.4.
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Algorithm 3.1 The core SBB training algorithm. P!, H', and S* refer to the point,
host, and symbiont populations at time ¢.

1: procedure TRAIN

2: t=20 > Initialization

3: initialize point population P?

4: initialize host population H* (and symbiont population S*)

5: while t < t,,,, do > Main loop
6: create new points and add to P?

7: create new hosts and add to H* (add new symbionts to S*)
8: for all h; € Ht do

9: for all p, € P! do

10: evaluate h; on py

11: end for

12: end for

13: remove points from Pt

14: remove hosts from H' (remove symbionts from S?*)

15: t=t+1

16: end while
17: end procedure

3.2.1 Point Population Initialization

The point population is initialized, line 3 of Algorithm 3.1, to contain Pj;,e — Fyqp
points. Here, P, corresponds to the number of points created and removed every
generation, lines 6 and 13 respectively. Thus, the ratio of P, to Fs.e quantifies
the selection pressure on the point population, allowing the amount of resources
allocated to the exploitation of existing points versus the exploration of new points
to be adjusted. That is, an increase in Py, relative to Ps;.. implies an increased bias
towards exploration of new points and an increase in selection pressure.

Under classification, a balanced sampling heuristic is used to initialize the points.
First, a class is selected with uniform probability. If all points belonging to that class
have already been selected into the initial population, the class selection is repeated.
Once a class is chosen, a point belonging to that class is sampled assuming a uniform
probability. Throughout the process, duplicate training instances are not allowed.
The goal of this two-step initialization process is to make the initial point population
insensitive to the class distributions in the training dataset since many of the large,
real-world, datasets are often highly skewed [193]. Naturally, adopting such a heuristic

will bias the search in favour of solutions that recognize all classes but risk achieving
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’ Parameter ‘ Description

timax Number of training generations

Piise Point population size

Pyop Number of points generated /removed each generation
H,;.. Host population size

Hgqp Number of hosts generated/removed each generation

w Maximum number of symbionts in a host

Dgenp Probability of generating an offspring point from a parent
Psd Probability of symbiont deletion

Dsa Probability of symbiont addition

DPsm Probability of symbiont mutation

Pam Probability of action mutation

K Number of nearest neighbours used in point fitness calculation
10) Number of points used in calculating bid profiles

Tinit Number of symbionts considered during mixing

Table 3.1: SBB model parameters.

a lower overall error rate.

Under temporal sequence learning, the point population is initialized to contain
a set of random points. This notion of randomness is problem specific, and, in this
work, an attempt is made to produce a physically diverse set of initial conditions. The
specific procedures for generating points under each environment will be described

when the environments themselves are presented, Chapters 6 and 8.

3.2.2 Host and Symbiont Population Initialization

The host initialization process, line 4 of Algorithm 3.1, generates Hg;,. — Hyqp hosts
where H;.. and Hgy,p, are defined analogously to Pi.. and Py,p,. Each host is initial-
ized in two steps, Figure 3.5. In the first step, two symbionts are added to an initially
empty host by uniformly selecting two different actions and associating those actions
with two new bidding behaviours; by requiring different actions, the likelihood of
trivial behaviours is reduced with the goal of improving search efficiency. The pro-
grams defining the bidding behaviours are randomly generated in an implementation
specific way, Section 3.6. Since each symbiont appears in exactly one host, at the end
of this step there are exactly twice as many symbionts as there are hosts.

The goal of the second step is to produce hosts of varying sizes and to include the
same symbiont in multiple hosts. A symbiont that is included in multiple hosts is

evaluated in multiple contexts, where this allows the contribution of the symbiont to
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Host and symbiont populations after first step:

=

Host and symbiont populations after second step:

Figure 3.5: Example of the two steps in host initialization. The host populations, left,
indexes symbionts in the symbionts population, right. All the symbionts are created
in the first step, and mixing of symbionts occurs in the second step.
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be more accurately evaluated, e.g., a symbiont whose inclusion always results in poor
host behaviour will likely be eliminated. Each host from the first step is considered
in turn and its final size selected with uniform probability from {2,...,w}. Existing
symbionts are then selected and added to the host until its size reaches the chosen
limit (the heuristic used to select learners is described in Section 3.3.3). After the
second step, there are still twice as many symbionts as there are hosts, i.e., no new

symbionts are added, but each symbiont may appear in more than one host.

3.2.3 Point Generation

At the beginning of the main algorithm loop, line 5 of Algorithm 3.1, the point pop-
ulation contains exactly Ps;.e — Pyqp points. This is because either the loop is entered
for the first time following point initialization, line 3, or because P, points were
removed near the end of the last iteration of the loop, line 13. The point genera-
tion step, line 6 of Algorithm 3.1, is therefore included to fill the point population
to capacity through the addition of P, new points. Following this step, the point
population will contain exactly Pk;.. points.

Here, a fundamental difference typically observed between points under classifica-

tion problems and points under temporal sequence learning problems is noted:

e Under classification, there is no obvious structure in the set of training exem-
plars that can be used by the variation operators to generate an offspring point
from a parent point, i.e., the variation operator would need to relate points that
have been fixed a priori. For example, it is not clear how to define a meaningful
mutation operator on an index to generate another index in the training dataset.
Alternatively, one could apply mutation to the feature values of an exemplar,
though this is likely to produce a vector whose values do not match any other
training case in the dataset. Finally, structural information could be extracted
through an exploratory preprocessing step, i.e., unsupervised learning, though

this is considered to be beyond the scope of this work.

e Unlike classification, under temporal sequence learning, the space of training
points is typically not enumerated in part because explicitly accounting for the
possible training states may not be practical. Instead, structural information is
often provided in terms of a set of constraints specifying feasible states, and this
information can be used by variation operators to generate offspring points. For

example, an action can be applied to a state to generate a new configuration
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of the world (assuming that a single action has a relatively small effect on
the world). Alternatively, if the features are quantities, e.g., angles, distances,
temperatures, then nearby states can be reached by mutating each of the state

vector components?.

Acknowledging this difference between points under classification and temporal
sequence learning, the point generation step is implemented as follows. Under classi-
fication, where no structural information is available for use in designing the variation
operators, F,,, new points are generated using the same class-balanced uniform sam-
pling heuristic that is used during point initialization, Section 3.2.1.

The point generation procedure under temporal sequence learning is summarized
in Algorithm 3.2. The algorithm assumes a set P of parent points defined as the
contents of the point population P! at the beginning of the current generation t.
With probability pgenp, a parent is selected with replacement from this set using
fitness-proportionate roulette wheel selection® using the fitness of the point, Eq. 3.6,
as the wheel slice. A copy of the selected parent is then mutated to produce the new
offspring point in a problem-specific way, i.e., by taking advantage of the available
structural information, and added to P*. With probability 1 — pgenp, the new point
is not generated from a parent but rather through the same procedure as is used in
point initialization, Section 3.2.1. This occasional insertion of a random point is a
heuristic meant to prevent convergence in the point population. Generation ¢t = 0 is
also a special case when all new points are generated as in point initialization since

none of the points have an associated fitness value.

3.2.4 Host and Symbiont Generation

Analogous to the case of the point population, Section 3.2.3, at the beginning of the
main loop, line 5 of Algorithm 3.1, there are exactly Hgi.e — Hgqp hosts in the host
population. Host and symbiont generation, line 7 of Algorithm 3.1, therefore creates
Hgop new hosts and adds them to the host population H ¢ increasing its size to Ha;.e.
New symbionts that are created are added to the symbiont population S!. Since each
host may contain between two and w symbiont references, the size of the symbiont

population may vary between 2 X Hg;.. and w X Hg.e.

2In this work, the former approach is used in the Rubik’s Cube problem, while the latter is used
in the truck reversal problem.

3In which the probability that an individual is selected is defined to be the fitness of that individual
divided by the fitness values summed across all individuals under consideration.
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Algorithm 3.2 Point generation algorithm under temporal sequence learning. The
set P represents the contents of P! at the start of the current generation ¢, while
rand(0, 1) returns a uniformly selected scalar in the unit interval. With probability
Dgenp, @ New point is created as an offspring of an existing point, otherwise, a random
point is added. A random point is also added if it is the first generation.
1: procedure GENERATEPOINT(¢, P*, P)
2: if t # 0 and rand(0,1) < pgenp then
select pr € P using roulette wheel selection
copy px into py
mutate pj,
insert pj, into P?
else
insert random point into P!
9: end if
10: end procedure

Host generation first defines the set of parent hosts as the host population H? at
the start of the current generation ¢. The set referred to as the available symbionts
is analogously defined as the symbiont population S* at the start of the current
generation. Thus the parent hosts and the available symbionts represent the contents
of the host and symbiont populations before the host and symbiont generation step,
i.e., they represent the available genetic material. Each of the Hy,, offspring hosts is

then generated in four steps, Figure 3.6:

1. A parent is selected from the set of parent hosts with uniform probability, and
an initial offspring host is created as a copy of the parent, i.e., referencing the

same subset of available symbionts.

2. Uniformly selected references are removed from the offspring host, Algorithm
3.3. The number of references that are removed depends on the probability of

symbiont deletion pyg4.

3. References uniformly selected from the set of available symbionts are added to
the offspring host, Algorithm 3.4. The number of references added depends on
the probability of symbiont addition ps,.

4. Host mutation, Algorithm 3.5, changes at least one symbiont in the host, though

changes are applied only to copies so that the existing symbionts are preserved
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Step 1: Copy parent host

Step 2: Remove symbiont

Step 3: Add symbiont

Step 4: Mutate symbiont

Figure 3.6: Example of the four steps in host generation. The offspring host is shown
along with the symbiont population. After the first step, the offspring is a copy of the
parent. In the second step, a symbiont is removed from the host, and in the third,
an existing symbiont is added. The final step mutates a symbiont resulting in a new
individual in the symbiont population, and leaving the symbiont originally selected
for mutation unchanged.

Algorithm 3.3 The symbiont removal algorithm removes at least one indi-
vidual if the host h; contains 3 or more symbionts, thereafter the likelihood of
removal decreases by a factor of psg € (0,1). The function rand(0, 1) returns a
uniformly selected scalar in the unit interval.

1: procedure REMOVESYMBIONT(h;)

2: b=1

3 while b > rand(0, 1) and h; contains at least 3 symbionts do
4: remove uniformly selected symbiont from h;

5: b=>bx Psd

6 end while

7: end procedure
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Algorithm 3.4 The symbiont addition algorithm adds at least one individual
if the size of host h; is less than w, thereafter the likelihood of addition decreases
by a factor of p,, € (0,1). The set S represents the contents of S* at the start of
the current generation ¢, while function rand(0, 1) returns a uniformly selected
scalar in the unit interval. If the selected symbiont already exists in the host,
it is not added and no attempt is made at selecting an alternate.

1: procedure ADDSYMBIONT(h;, S)

2 b=1

3 while b > rand(0, 1) and h; contains fewer than w symbionts do
4: insert uniformly selected symbiont from S into h;

5 b=">b X psq

6 end while

7: end procedure

(since they may also appear in other hosts). A symbiont is mutated with proba-
bility psm € (0, 1). If selected for mutation, the bid component in the symbiont
copy is mutated in an implementation-specific manner, Section 3.6, applying
the operators repeatedly until a change in genotype is observed to occur. With

probability pa, € (0, 1), the action of the symbiont copy is changed to a uni-

formly selected value, ensuring that all actions may appear in the host.

Algorithm 3.5 The host mutation algorithm. Each symbiont s; in the host h;
is considered in turn and mutated with probability ps, € (0,1). The mutation
process first copies the symbiont and updates the reference in the host to point
to the copy. The bid and action components in the symbiont copy are then mu-
tated in an implementation-specific manner. As before, the function rand(0, 1)
returns a uniformly selected scalar in the unit interval.

1: procedure MUTATEHOST(h;, S)

2: repeat

for all s; € h; do

if rand(0,1) < pg, then

copy ; into s
remove from h; reference to s;
add to h; reference to s,
mutate bid and possibly action of s/
insert s into S*

10: end if

11: end for

12: until at least one symbiont is mutated

13: end procedure
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This process ensures that at least one symbiont in each offspring host is mutated
resulting in the addition of at least Hy,, new symbionts to the population S* every
generation. In addition, each new symbiont appears in just one host, though it is
expected that if it is useful then it will spread to other hosts.

Since offspring hosts are initially copies of parent hosts, and symbiont mutation
is applied to symbiont copies, host generation does not affect any of the parent hosts
or available symbionts. Thus, any solutions carried over from the previous generation
are not disrupted. Together, these steps represent the mechanism by which differ-
ent symbiotic associations, i.e., compartmentalizations, are explored in the offspring
hosts.

3.2.5 Evaluation

Evaluation, line 10 of Algorithm 3.1, determines the outcome G(h;, px) of applying
each host h; € H! to each point p, € P!. The outcomes are limited to the unit
interval, and it is assumed without loss of generality that higher outcomes are better.
Two cases are recognized, depending on whether the problem domain is classification

or temporal sequence learning:

e Under classification, the outcome is simply defined as

1 if host h; classifies point p; correctly,

G(hs, pr) = { (3.1)

0 otherwise.

The process by which a host classifies a point involves invoking the bid-based

metaphor, Section 3.1, to predict the action associated with the highest bidder.

e Under temporal sequence learning, the outcome G(h;, pr) represents the reward
accumulated in applying host h; to the initial world configuration defined by
point pg. In this case, the bid-based auction is invoked at each time step,
allowing different symbionts to assume control at different stages in a given
episode. The outcome (or reward) structure is problem-specific, and is therefore

defined in the task descriptions in Chapters 6 and 8.

Here, it is also noted that whereas the outcome on a given point under classification
will typically be binary, i.e., either a hit or a miss, under temporal sequence learning
real-value outcomes are also likely, e.g., the distance to the goal location. Natu-
rally, more information about the quality of solutions is expected under real-valued

outcomes.
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3.2.6 Removal of Points

The removal of points frees up resources so that offspring can be added to the point
population in the subsequent generation, and as such, forms a basis for dynamic eval-
uation which is viewed as an integral part of the proposed system, Section 3.1. It
can also be viewed as the step in which the influence of natural selection is most
prominently effected in the point evolution. The goal of the point removal proce-
dure is to favour points that support both unique and useful host behaviours while
maintaining a diverse set of environmental conditions. With no explicit mechanism
to encourage the latter, the point population can collapse to a small region of the
state space, resulting in host behaviours that are nominally distinct but deviate only
slightly from the same underlying behaviour [113, 125], i.e., analogous to the ensemble
methodology discussed in Section 2.2.3. If this happens, the exploration of unseen
regions of the state space may be severely limited as the search becomes trapped in
a local optimum.

The point fitness used to determine which points to remove, line 13 of Algorithm

3.1, is calculated in two steps:

1. A raw fitness is calculated that measures the degree to which the point identifies

useful and unique host behaviours.

2. The raw fitness is transformed into a normalized fitness by rewarding individual

points that are genotypically unique.

The goal of the second step is thus to produce a diverse set of environmental condi-
tions. The two factors are combined into a single scalar fitness which is then used to
deterministically remove the least fit P,q, points.

Given that point fitness is based on two factors, the degree to which a point
identifies useful and unique host behaviour as well as genotypic diversity, application
of techniques from EMOO may be appropriate. However, this work recognizes that
approaches based on the Pareto-dominance relation, Eq. 2.1, are not suitable, because
it is unreasonable to maintain points in the population that provide no learning
gradient simply because they are genotypically unique. Under the Pareto-dominance
relation, these points would linger in the non-dominated set, wasting evaluation cycles
without providing any useful information about host fitness.

Having outlined the process, the details of the calculation of the raw fitness and

the normalized fitness are discussed in the following two sections.
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Raw Fitness Calculation

The raw fitness calculation considers the case of binary and real-valued outcomes,
Section 3.2.5, separately. The core steps of the calculation are directly applicable
under the binary case, and without loss of generality, binary outcomes are assumed in
the set {0, 1}. If the outcomes are real-valued, they are first discretized by considering
the mean performance of all hosts on the point in question. The two cases are

described below:

e When the outcomes are binary the raw fitness of a point p; is based on the

number ¢, of hosts which achieve a positive outcome on the point, i.e.,

Cr = G(hiapk) (3-2)

hi

where the sum iterates over all hosts h;. The raw fitness F}, of point py is then

defined as
14 =% if ¢ > 0,
Fk — { + Hgjze 1 Ck (33)

0 otherwise.

The term Ilj[_?k, restricted to values of zero or less, becomes smaller as ¢, in-
size

creases, to a minimum value of % This yields a minimum raw fitness of
size

_1
Hsize

Figure 3.7.

for the case of ¢ > 0. The shape of this fitness function is illustrated in

e Under problem domains where the outcomes are real-valued, the count c; is

obtained by first calculating the arithmetic mean outcome p; on point p; as

2, G(hispr)
py = =0 TR

4
Hsize (3 )

where the summation iterates over all hosts h;. If . is effectively zero*, then
all hosts are viewed as having failed on pg, and ¢ is set to zero. Otherwise,
¢x is determined as the number of hosts h; such that G(h;, pr) > g, i.e., the
number of hosts with outcome on p, greater than or equal to the mean. Having

established ¢, the raw fitness of the point is calculated as in Eq. 3.3.

This fitness function embodies several properties that are viewed as desirable:

4This was implemented using a threshold below which an outcome was considered to be zero.
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Figure 3.7: Shape of the raw point fitness function. Since ¢, may assume values
over {0,1,..., Hy..}, the function is defined over this set only, but is drawn
here over the entire range [0, Hy;..]. The function is maximized when ¢, is one,
and minimized when ¢, is zero.
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1. A point will receive a higher raw fitness if it identifies regions of the problem
space where only a few hosts achieve high outcomes, i.e., ¢; is low but not zero.
If the point population is evolved to contain points with a high raw fitness, this
corresponds to a host population where individual behaviours do not overlap,

i.e., decompose the problem space, right side of Figure 1.1.

2. A point will receive a low fitness if many hosts do well on it and a few hosts
do poorly on it. If the point is removed, the fitness of the hosts that do well
on it will be adversely affected. However, since there are a lot of these hosts, it
is less likely that all of them will be removed (compared to having just a few
of these hosts), so the knowledge related to doing well on the point is likely to

remain in the host population.

3. A point will receive a high fitness if most hosts do poorly on it and few hosts
do well on it. The point is therefore more likely to persist in the population,
supporting the few hosts that do well on it, and helping to sustain the associated

behaviour that is learned.

4. Compared to distinction-based Pareto-coevolution, Section 2.4.1, which calcu-
lates distinction vectors whose dimension is squared in the number of individuals
(hosts in this case), this raw fitness function is simpler and more efficient. In
addition, the raw fitness function avoids difficulties associated with large non-

dominated sets that require tie-breaking heuristics.

In summary, the raw fitness function used in point selection is meant to pro-
vide a simple way of supporting non-overlapping behaviours in the host population,
right side of Figure 1.1. It is related to the idea of reducing parasite virulence in host-
parasite® systems [23], however, the motivation behind the two approaches is different.
Whereas virulence is meant to prevent disengagement by not driving the hosts to ex-
tinction, the proposed fitness function is meant to reward points that identify unique
and useful host behaviours. However, as was previously observed under temporal
sequence learning [113], encouraging non-overlapping behaviours without requiring
genotypic diversity in the supporting points may not be sufficient, motivating the
normalization step that follows. In particular, it is asserted that the normalization

step is required under both the proposed as well as distinction-based point fitness.

5The ‘host’ in host-parasite has a different meaning from the term used throughout this thesis.
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Normalization of Raw Fitness

Once the raw fitness is calculated, a measure of genotypic distance is used to reward
points that represent unique locations in the problem space. The reward for each
point is calculated based on the distance from the point to a subset of its nearest
neighbours and is based on ideas from outlier detection [62]. First, the genotypic
distance d(py, p;) between every pair of points py and p; is calculated. This distance
is then scaled to the unit interval by dividing the original value by the maximum
distance over all pairs of points in the current population, yielding a normalized
distance d'(py, p;) for each pair py and p;. The normalized fitness for point py is then

calculated as follows:

1. The set of K points nearest to py is calculated.

2. A reward factor ry is calculated as

o= (Enldpny

3.5
2 (35
where the summation is taken over the set of K points p; nearest to p,. Each
term in the summation in Eq. 3.5 is limited to the unit interval, and since there
are K such terms, 7 is limited to the unit interval. The greater the distance

between p; and the points in K, the greater the reward factor.

3. The reward for point p; is then used to normalize its raw fitness value as

where [}, is the final normalized fitness. Since 7, is limited to the unit interval,

so is the normalized fitness Fj.

Squaring distances results in a non-linear reward scheme as larger distances are
weighted more, though alternate parameters could also be used to fine-tune the im-
pact of the genotypic distances.

Once the normalized fitness Fj, for each point py is determined, the P, points
with the lowest normalized fitness values are deterministically removed reflecting the
elitist policy that is adopted.

One item omitted from the above description is the calculation of the distance
d(pk, p1) between two points py and p;. In this work, the distance under classification

problems was always assumed to be one. Since all points then receive the same
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reward, this effectively causes the fitness normalization step to be bypassed. This was
done because under classification a diversity-promoting balanced sampling heuristic
is already in place and also because a meaningful distance measure is not immediately
obvious. Under temporal sequence learning, the distance d(py, p;) is problem-specific
and is defined in Chapters 6 and 8 for the truck reversal and Rubik’s Cube tasks

respectively.

3.2.7 Removal of Hosts and Symbionts

Analogous to the removal of points, Section 3.2.6, the goal of host removal step is
to reduce the size of the host population by Hgy,p,. This vacates room for H,,, new
individuals to be added in the next generation, and represents what can be viewed as
the culminating phase of natural selection. As in the removal of points, the host fitness
calculation considers two factors, namely, host performance and the degree to which
similar performance is observed in other hosts. The latter is included to encourage
diversity in the host behaviours by discounting similar outcomes, but whereas in the
case of the point population it was calculated with respect to the genotype, here it
is calculated on the phenotype; the reason for this is that it is not obvious how to
measure genotypic distance in GP-based individuals. However, given that pressure
to establish niches based on genotypes is included in the point population, the goal
of including the phenotypic diversity component in the host fitness is to encourage
the emergence of a complementary set of species.

Host and symbiont removal, line 14 of Algorithm 3.1, takes into account host
performance on the Py;.. points before point selection since using more points is
viewed as more informative. The shared fitness S; of host h;, based on competitive

fitness sharing [157], is calculated as

G(hipe) )’
%= %;(Zhj G(hjapk)> (37)
where h; iterates over all hosts in the current population H*, and where py iterates
over all points in P! on which at least one host in the current population received a
non-zero reward. For each such point pg, the shared score S; considers the reward
that h; receives on pi, weighting it by the aggregate reward on p, across all hosts. If
more hosts receive a high reward on pj, then the weight of the associated term tends
to be lower. In this way, hosts are rewarded more for doing well on points where few

other hosts perform well.
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Once the shared score S; for each host h; is calculated, the Hy,, hosts with the
lowest S; values are deterministically removed reflecting the elitist policy that is
adopted.

Following host removal, individuals may exist in the symbiont population that are
not referenced by any hosts; symbiont removal involves removing these individuals.
This is consistent with the top-down nature of the variation operators in the proposed
approach, i.e., care is taken not to disrupt existing hosts, which, once introduced into
the population, persist unchanged until they are removed or the algorithm terminates.
This process is also consistent with the idea that natural selection is a group operator
applied to hosts and not to the symbionts inside a host. In contrast to the SANE
framework [132], which requires an explicit symbiont fitness, this also results in an
algorithm with fewer design decisions.

Viewing each point as an objective, the Pareto-dominance relation, Section 2.4.1,
could have been used to select hosts instead of the competitive fitness sharing score.
This was not done for two reasons. First, the number of points in the point population
results in too many objectives for the Pareto-dominance relation to be useful. In
particular, with objectives typically numbering in the hundreds, the non-dominated
set would likely contain most if not all of the hosts [51, 80]. Second, the Pareto-
dominance relation has been found to result in a high degree of overlap in the solution
behaviour [125], left side of Figure 1.1, whereas the goal of this work is to evolve

diverse inter-host behaviour.

3.3 Additional Algorithm Details

For clarity, a number of algorithm details were omitted from the description of the
core SBB algorithm in Section 3.2. These are not related to the key principles un-
derlying the proposed approach, but are viewed as nonetheless useful for improving
performance, i.e., they can be viewed as ‘tweaks’. For completeness, these details are

reviewed in the following sections.

3.3.1 Pruning Symbionts from Hosts

At the end of each generation, a pruning procedure is triggered which may remove
from hosts references to symbionts deemed as inactive. An inactive reference is defined
as a reference to a symbiont which has never won a bidding auction in a given host.
When a host is created, all references to symbionts in the host are marked as inactive.

If, during the bid-based action selection process, a winning symbiont is found in a host
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and the reference to that winning symbiont is still marked as inactive, that reference
is marked as active. The change from inactive to active is local to the host, so it is
possible that a reference in one host is marked as active but a reference to the same
symbiont in another host is marked as inactive. Once marked as active, a reference
remains active for the lifetime of the host.

If the generation is the last generation, the pruning procedure is applied to all
hosts in the host population. If the generation is not the last generation, then the
decision on whether or not to prune each host depends on its size, i.e., the number
of symbionts that the host contains. In this case, a host is only pruned if its size
equals the maximum host size w. This represents a compromise between pruning all
hosts each generation (regardless of size), and pruning hosts only at the end of the last
generation, allowing genetic material in the form of inactive symbionts to develop over
multiple generations while occasionally reducing the overhead of program execution.
It effectively allows symbionts to mature, allocating resources to enable individuals
to develop to the point where they can provide a meaningful contribution to the host.
Given that there is a limit to the number of symbionts that may appear in a host,
this also frees up space to allow external symbionts to enter the compartment. As an
alternative approach, an additional age parameter could be introduced and used to
determine when to truncate non-effective members.

The pruning procedure itself first calculates the set of inactive symbionts in the
host. The symbionts in this set are then selected with uniform probability and re-

moved from the host as long as the host size remains above the threshold of two.

3.3.2 Generating Unique Bidding Behaviours

When a new symbiont is created during host initialization and host generation, lines 4
and 7 of Algorithm 3.1, its bid program is mutated as long as it duplicates the bidding
behaviour of a program in an existing symbiont in S¢. Two programs are considered
duplicates if their bid profiles are the same, where a bid profile is a vector of bid
values across a fixed set of ¢ points. This set of points is initialized at the beginning
of each training run using the same process as in the point initialization step, line 3 of
Algorithm 3.1, e.g., under classification this involves class-balanced uniform selection.
As long as all the bids of the new symbiont are within 10~ of the corresponding bids
of an existing symbiont, the bid program of the new symbiont is mutated as in the
host generation step, line 7 of Algorithm 3.1, by applying implementation-specific

variation operators.
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3.3.3 Mixing Symbionts during Initialization

The host initialization procedure, Section 3.2.2, consists of two steps. After the first
step, all hosts contain two symbionts and each symbiont appears in exactly one host.
The goal of the second step is to mix the hosts up, exploring hosts of varying size and
symbionts in multiple contexts. To achieve this, symbionts are added to each host
until its size reaches a limit uniformly chosen from {2,...,w}, where each symbiont
to be added is chosen as follows. First, 7;,; possibly duplicate symbionts that do not
already appear in the host are selected with uniform probability. From these, the
symbiont with the fewest references, i.e., appearing in the fewest hosts, is selected
and added to the host. In this way, the heuristic is meant to place each symbiont
in roughly the same number of hosts, where this is significant given the policy for

removing symbionts based on their reference count.

3.4 Hierarchical Construction through Symbiosis

The bid-based action selection metaphor can be applied iteratively to produce hier-
archies of hosts. Naturally, hierarchies are useful if lower-level components represent
different behaviours, therefore, the proposed construction process is complemented
by the inclusion of a diversity component in the host fitness function, Section 3.2.7.
Under this approach, hosts at the first level consist of symbionts whose actions are
defined by the problem, e.g., class labels in classification. Hosts at successive levels
consist of symbionts whose actions reference hosts at the level directly below, Figure
3.8. Action selection is then performed as follows. If the host is at the first level
h = 0, the action of the highest bidder is returned as before. If the host is at some
higher level h > 0, then the highest bidder in the host is determined, and the action
selection procedure is applied to the host at level A — 1 referenced by this highest
bidder. The action of the highest bidder at level h > 0 cannot be returned directly
since it has no meaning in the context of the problem.

The host levels are trained as follows. First, level 0 is trained. Once training
of level 0 is complete, the final host population at that level is fixed and is used to
form the action set for training level 1; thus, the level 0 symbiont population is also
recorded. Level 1 is then trained, and the final level 1 host population is used to form
the action set for level 2. This continues until the desired number of levels are trained.
Algorithm 3.1 is applied at all levels without modification the only property that

changes is the definition of the action set. At the first level, the action set is defined a
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Level 2 < host

Level 1 <

Level 0 <

Actions { @

Figure 3.8: Example of a three-level host-of-hosts. The level 0 hosts access actions
Ag through Aj defined by the problem. The level 1 hosts reference level 0 hosts, and
level 2 hosts reference level 1 hosts. Just as multiple hosts at level 0 can reference the
same problem-specific action, different hosts at level h can reference the same host at
level h — 1 multiple times. For example, hosts hosty; and host, s are reference twice
by level 1 hosts.
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priori by the problem domain. Thereafter, actions become increasingly more abstract
as defined by the behaviours identified during the evolution of each level. It is also
emphasized that through this process the bidding behaviours, i.e., the programs, are
evolved at each level independently.

The evolution of abstract actions as described above has several implications.
First, the description of the proposed approach thus far has always suggested that
the action associated with the bid, Figure 3.1, is always problem-specific. Under the
hierarchical construction process, strictly speaking, this is no longer the case except at
the bottom level. Second, whereas the symbionts at the lowest level were previously
described as heterogeneous, Section 2.2.3, symbionts at the higher levels may now be
homogeneous as they have the capacity to represent complete solutions. Finally, this
also means that at higher levels the degree to which implicit fitness sharing occurs,
Section 2.3.5, may be limited.

As the host-of-hosts is applied to a problem instance, the action selection process
traverses all levels of the hierarchy at each time step. Under problems requiring one
time step, such as classification, a host at level h > 0 can be viewed as handing
control over to the host at level h — 1, since once the lower-level host is selected the
host at level A is not considered again in the episode. If there are two levels in total,
then the level 1 host can be viewed as choosing which level 0 host to apply when.
This can be useful in combining multiple level 0 hosts into a single solution, e.g., the
three models in the right side of Figure 1.1.

Under temporal sequence learning, where each point population instance repre-
sents an episode likely involving multiple time steps, the behaviour of the host-of-hosts
is more complex. At different time steps, different paths through the hierarchy may
be taken, and different level 0 hosts may be used. This may result in situations where
a single level 0 host is applied for one part of the episode, then control switches to
another level 0 one host, and so on.

The hierarchical host construction in this work was meant as a proof-of-concept,

and different design options could be implemented as described below:

1. The action set at level h consists of all hosts at level A — 1. Pruning could be
applied in order to eliminate some of the lower-level hosts from consideration

at higher levels, though deciding which hosts to prune may not always be clear.

2. The same fitness function is used at all levels, whereas altering the fitness func-
tion between levels may be more effective. For example, lower levels could

focus more on diversity, with the goal of establishing a set of building blocks,
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and higher levels could focus more on overall performance with the goal of

combining the building blocks into a single solution.

3. It may be possible to train all levels of the hierarchy simultaneously, however,
fixing all but the topmost level is viewed as a simpler first step. For example,
the optimal number of levels to be constructed may not be known a priori; by
adding levels incrementally a suitable stopping condition may be more easily

identified, e.g., when the topmost level does not improve on the previous level.

3.5 Nature of the Host-Point Relationship

Under classification®, three observations can be made regarding the host-point rela-
tionship that results from the respective fitness functions used, Sections 3.2.6 and

3.2.7:

1. If one host receives a reward of one on all points and all other hosts receive a
reward of zero on all points, then the shared score value for the host will be the
maximum possible. At the same time, the raw fitness for all points will also be

the maximum possible.

2. If, for each point, only a single host receives a reward of one and all other hosts
receive a reward of zero on that point, then the raw fitness for each point will
still be the maximum possible. The fitness of a host will be equal to the count
of the number of points that it classifies correctly. This refers to the situation
where every point is classified correctly by exactly one host, though that host

does not have to be the same across all points.

3. Assuming that the point is classified correctly by at least one host, the raw
fitness of a point decreases as more hosts classify that point correctly. Compared
to the situation in observation 2 where each point is classified correctly by
exactly one host, if more hosts classify the same point correctly, the host fitness

values will also tend to decrease.

The first observation illustrates that maximum outcomes may occur in the host and
point populations simultaneously, i.e., a higher outcome in one population does not
imply a lower outcome in another. The second observation illustrates the case where

the point fitness remains fixed, but the fitness of a given host may vary depending

6This discussion is restricted to classification where the outcomes are binary for simplicity.
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on the manner in which the hosts partition the points into sets solvable by each host.
The final observation suggests that the key factor in the fitness of members of both
populations is the overlap in host behaviour.

Characterizing the point-host interaction as cooperative, competitive, or symbi-
otic is therefore not a straightforward task. The reason for this is that point and
host fitness is not determined by having a single point interact with a single host in
isolation. Instead, the fitness of points depends on the aggregate performance of the
host population, while fitness of a host depends on its performance and how that per-
formance overlaps with other hosts. In both cases, more overlap in host performance

is associated with lower fitness values.

3.6 GP Implementation

The bid-based approach described in this chapter does not rely on a specific form of
GP. This work used linear GP [20], in which instructions are encoded using fixed-
length bit strings, to evolve the bidding behaviour. Specifically, each instruction

consisted of four fields:

1. The destination field specified a register index x where the first operand was

located and where the result of the operation was to be stored.

2. The source field specified an index y where the second operand was located. This
index could refer to either a register or an input depending on the instruction

format.

3. The mode field specified the instruction format, register-register or register-
input. In the former y is interpreted as a register index, and in the latter y is

interpreted as an input index.

4. The operation field specified the function to be applied to the values indexed
by z and y.

A program was then represented as a linear sequence of instructions operating on a set
of inputs (as defined by the problem) and numRegisters registers. The parameters

associated with the GP implementation are listed in Table 3.2.

New programs were created by first selecting with uniform probability a program
size, in terms of the number of instructions, in {1,2,..., max ProgSize}. Each bit

in the new program was set to a random value selected with uniform probability. To
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’ Parameter ‘ Description
numRegisters | Number of registers
maxProgSize | Maximum program size
Ddelete Probability of instruction deletion
Padd Probability of instruction addition
DPmutate Probability of flipping a single bit
Pswap Probability of swapping two instructions

Table 3.2: Parameters specific to the GP implementation.

generate a new program from an existing one (symbiont mutation step during host
generation, line 7 of Algorithm 3.1), the following operations could then be applied

stochastically in sequence:

1. Instruction deletion. If the program contains more than one instruction,

with probability pgeere @ uniformly selected instruction is removed.

2. Instruction addition. If the program contains fewer than maxProgSize in-
structions, with probability p.qq a new instruction is inserted into the program.
The insertion location and the bit values of the new instruction are selected

with uniform probability.

3. Instruction mutation. With probability putate, the value of a uniformly

selected bit in a uniformly selected instruction is flipped.

4. Instruction swap. With probability pgye,. two different instructions in the
program exchange locations. The two instruction are selected with uniform

probability.

The deletion and addition operations allow the new programs to increase or decrease
in size compared to the original programs. The mutation operator affects a single bit
and may therefore introduce small changes to the overall program, e.g., change one of
the registers, whereas the instruction swap operation is included to address situations
where the right instructions are present in the program but in the wrong order. It is
also noted that during symbiont mutation all four operations are iteratively reapplied
until a change in the genotype is triggered.

Prior to program execution, all register contents were initialized to zero. The GP
function set, Table 3.3, consisted of eight operations. If the operation was unary,
it was applied to the source operand indexed by y, and the result was stored in

the register at index x. The same function set was used in all experiments, though
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’ Function ‘ Definition
Addition R[z] < R[z] + R[y]
Subtraction R[z| < R|z| — R]y]
Multiplication | R[z| < R[z]| x R|y]
Division R[z| < R|x| + R]y|
Cosine R|x] < cos(Ry))
Logarithm R[x] < In|R][y]|
Exponential R[x] « efl]
Conditional if R[z] < R|y| then R[x] — —R|x]

Table 3.3: GP function set used expressed in register-register mode, i.e., R|x] refers
to the contents of the register at index x. Register-input mode is analogous but y
indexes an input. The conditional function, a special case, reverses the sign of the
value in register R[z].

common practice in GP is to use problem-specific functions [95]. If the result of the
operation was undefined, e.g., division by zero, then zero was stored in the destination

register.

Program output was defined as the value retained in register zero following ex-
ecution. As such, there could potentially be a very wide range of bid values that a
program could produce. In order to encourage individuals to compete over a com-
mon range of bids the Sigmoid function is employed, Figure 3.9. This resulted in the

mapping of the raw program outputs to bid values over the unit interval.

In GP, introns can be bypassed during program execution to reduce the computa-
tional overhead of the fitness evaluation. They should not, however, be removed from
the programs since the interaction between representation, search operators, and cost
function may be complex thus an ineffective instruction may nonetheless turn out to
be useful in the long run. A modified version of Algorithm 3.6 was used in this work
to find structural introns. Algorithm 3.6 maintains a set of introns found so far, I,
and a set of target register indices T representing variables relevant to the output of
the program. It initializes the set of target registers 1" to contain the output register
0, line 3, and then considers instructions from last to first, line 4. If an instruction
is found that affects one of the target registers, line 6, that instruction is effective. If
an effective instruction is in register-register mode, line 7, the algorithm makes sure
that the source register is also added to 7". Instructions that do not affect registers
in the target set 1" are marked as introns, line 12, and are skipped during program

execution.
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Figure 3.9: Sigmoid function Sigmoid(z) = (1+ e*)~! over the range [-10, 10], z on
the horizontal axis. The function can be viewed as consisting of three regions: low
(z < =5), transition (—5 < z <5), and high (z > 5).

Algorithm 3.6 represents a generic intron identification procedure [18]. In this
work, it was modified as follows to account for the instruction format and the unary
operations, Table 3.3. If a unary operation was applied in an instruction where the
destination was in 7', then the instruction would be marked as effective, however,
the destination register would be removed from T. The source, if it was a register,
was then added to T as before, i.e., the removal from T occurred after line 6 and
before line 7 of the specification in Algorithm 3.6. This modification results in the
identification of a larger number of introns. A trivial example of where this is useful
is when the last instruction in the program applies a unary operation to an input
and stores the result in register 0, in which case, all previous instructions are rightly
identified as introns. The last instruction is the only one affecting the program output,
however, Algorithm 3.6 as stated would proceed backwards through the program

possibly marking additional instructions as effective.
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Algorithm 3.6 Algorithm for identifying structural introns, assuming the output is
extracted from register 0. The variable ip is an instruction pointer, *ip denotes an
instruction, and the program size is N. The procedures in lines 5 and 8 are used
to extract the destination and source registers respectively, while line 7 tests if the
instruction format is register-register. The introns are recorded in set I.

1: procedure FINDINTRONS

2 I=0 > Set of introns.
3 T ={0} > Set of target registers.
4 for ip=N —1to0do

5: x = DESTINATION(*ip)

6 if x € T then > Instruction xip is effective.
7 if ISREGISTERREGISTER(*ip) then

8 Yy = SOURCE(*ip)

9: T =TU{y}
10: end if
11: else > Instruction *ip is an intron.
12: I =T1U{ip}
13: end if

14: end for
15: end procedure




Chapter 4

Comparison with Monolithic Genetic Programming on

Binary Classification Problems

This chapter investigates three claims regarding the SBB framework in the context

of a comparable monolithic approach:

e The first claim is that the solutions produced using the symbiotic! approach

will yield improved classification performance.

e The second claim is that the monolithic solutions will be more complex in terms

of instruction counts as well as the number of features accessed.

e The final claim is that evolving the SBB solutions require less computational

overhead, where this may be a function of solution complexity.

Following a description of the experimental setup, Section 4.1, the three claims are
tested empirically in Section 4.2.1.

Specifically, the symbiotic approach is compared with a monolithic approach on
a set of four binary classification problems. The implementation of the monolithic
approach is based on the SBB implementation, however, any elements associated with
symbiosis are removed, e.g., the bid-based metaphor is no longer applied. Further-
more, the same parameters, including the limit on maximum solution complexity, is
used throughout. Thus, with a high degree of confidence, significant differences in
classification performance, solution complexity, or training overhead can be attributed
to the use of the symbiotic metaphor.

In addition to the comparison of the symbiotic and monolithic approaches, this
chapter presents a characterization of the SBB solutions with respect to host com-
position and behaviour, Section 4.2.2. The datasets forming the evaluation testbed
include large training partitions and high feature counts, and as such, the ability to
decompose the instance/feature space is expected to prove beneficial. An analysis

of the inter-host problem decomposition, Section 4.2.3, motivates the hierarchical

!The terms 'SBB’ and ‘symbiotic’ will be used interchangeably.
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construction of solutions through symbiosis as described Section 3.4. The chapter
concludes with a summary of the key results in Section 4.3.

The goal of this chapter is therefore to provide a comprehensive overview of the
solutions evolved using the SBB approach. Given that the problem domain considered
is binary classification, a fair comparison with the monolithic approach is facilitated.
Furthermore, performing an analysis with respect to two actions is meant to make
the results easier to digest and any ensuing conclusions more evident (multi-class

problems are considered in the following chapter).

4.1 Experimental Setup

The implementation of the monolithic approach uses the SBB codebase and is de-
scribed in more detail in Section 4.1.1. The datasets, parameters, and evaluation

criteria are then summarized respectively in Sections 4.1.2, 4.1.3, and 4.1.4.

4.1.1 Implementation of the Monolithic Approach

To implement the monolithic approach, the code for the SBB approach as described
in Chapter 3 was modified as follows. First, the minimum and maximum host sizes
were both set to one so that a host always contained just a single symbiont?. A side-
effect of this was that symbiont mixing did not occur during host initialization, line
4 of Algorithm 3.1, and that the symbiont removal and addition steps during host
generation, line 7 of Algorithm 3.1, were never executed since the restrictions on host
sizes were never met.

Since a solution now consisted of a single symbiont, the action selection procedure
had to be modified. This was done by disregarding the action associated with the
symbiont, and basing the decision on the symbiont’s bid value alone. Specifically, if
the bid value was less than 0.5, then the output was the first action, otherwise the
output was the second action. As a result, the monolithic approach was restricted to
problems with two actions, e.g., binary classification problems, where this is in line
with canonical approaches to binary classification using GP [95].

Apart from the modifications described above, no other changes were made. In
particular, the same GP implementation, Section 3.6, including the function set, was
used to evolve the programs. Furthermore, coevolution between hosts and points still

formed the basis for the dynamic evaluation of fitness.

2The terms ‘host’ and ‘symbiont’, which would normally have no association with the monolithic
approach, are used since the description is with respect to the SBB implementation.
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Training cases Test cases
Total \ Majority | Total \ Majority
Census (cen) 40 199 523 | 187 141 |99 762 | 93 576
Gisette (gis) 5 000 6 000 3 000 1 000 500
Bupa (bpa) 6 310 180 35 20
Pima (pma) 8 691 450 7 50

Dataset Features

Table 4.1: Datasets used to compare the SBB and monolithic approaches. For Bupa
and Pima, 10-fold cross-validation was used so the instance counts represent the mode
values across all folds. The contents in parentheses following the dataset name denote
the abbreviation used to refer to the dataset.

The decision to base the implementation of the monolithic approach on the code
for the symbiotic approach was made so that, apart from the change in the action
selection procedure, any other necessary changes would be as minimal as possible.
The change in the action selection process is a result of the shift from a symbiotic to

monolithic representation the goal of this chapter is to investigate the effect of this
shift.

4.1.2 Datasets

Four datasets, Table 4.1, were used to compare the SBB algorithm with the mono-
lithic approach. Only binary problems were considered since the action selection
procedure in the monolithic approach makes it directly applicable to two-class prob-
lems and because multi-class domains would complicate analysis of the results. All the
datasets were obtained from the UCI Machine Learning Repository [3]. Furthermore,
all were represented using a direct encoding, i.e., for each exemplar all the features
were explicitly specified and subsequently read into memory when that exemplar was
accessed, where this may be of significance if a dataset contains many attributes and

is sparse.

Census refers to the KDD Census Income dataset with nominal attributes mapped
to integer values; in this work, the training and testing partitions used were as they
appear in the original distribution [3]. The Gisette dataset was designed for the
2003 Neural Information Processing Systems (NIPS) feature selection competition
[60] in which only filter methods were applied to the dataset, i.e., no embedded
approaches, such as GP, were submitted. It is sparse, with only thirteen percent

of feature instances representing non-zero values, and half of its 5000 features are
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’ Dataset H Action 0 ‘ Action 1 ‘
Census (cen) 70 1
Gisette (gis) -1 1
Bupa (bpa) 1 T2
Pima (pma) 70 1

Table 4.2: Action to class label mapping used in the experiments. The majority class
label is marked with a f.

redundant in the sense that they are linear transformations of the other features.
The training partition used in this work is the original training partition, while the
test partition corresponds to what was originally the validation set?.

The Census dataset was selected for this evaluation because it is large and un-
balanced (the proportion of instance belonging to the majority class is 0.938) while
Gisette was included because it contains a high number (5000) of features, Table 4.1.
In both cases, useful problem decomposition is expected under the SBB approach,
e.g., under Gisette different symbionts in the same host may associate themselves
with different subsets of features. Here, it is noted that datasets as large as Census
are not frequently encountered in GP benchmarking studies unless use is made of spe-
cialized hardware, exceptions being subset selection approaches [30, 111, 123, 168],
while feature counts as high as those observed under Gisette have only recently been
encountered [38].

Two other datasets that were used were the Bupa Liver Disorders dataset and the
Pima Indian Diabetes dataset. Both datasets are smaller and so stratified 10-fold cross
validation was used in the evaluation; the instance counts, Table 4.1, represent the
most common values across all folds. Though not as large as Census and Gisette?,
both of these datasets are known to be difficult across a broad class of learning
algorithms, with error rates between 0.28 and 0.43 observed on Bupa and error rates
between 0.22 and 0.31 observed on Pima [116]. In addition, the inclusion of these
datasets allows evaluation of the relative effectiveness of the point sampling heuristic

on problems with fewer training instances.

Regardless of the problem, possible actions were restricted to a contiguous range
of integers starting with 0. To address the inconsistency of class labels as used across

different datasets, an action to class label mapping was constructed as follows. First,

3 Access to the original test partition is restricted.
4Though still of moderate size as far as GP benchmarking is concerned.
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the labels were sorted into ascending order. The action associated with each label
was then defined as the index of the label in the sorted list assuming a starting index
of 0, e.g., labels 1, 5, and 4 would be mapped to actions 0, 2, and 1 respectively. The

action to class mapping used in the experiments is shown in Table 4.2.

4.1.3 Parameters

The SBB and GP parameter settings for the symbiotic approach are listed in Tables
4.3 and 4.4 respectively. Familiarity established through previous applications of the
SBB algorithm [38, 111, 112] provided the basis for the settings adopted here, though
no claims regarding optimality are made. The parameter settings under the symbiotic
and monolithic approaches were identical with the exception of the maximum program
size, maxProgSize. Since the hosts could consist of up to 10 symbionts/programs
each with 48 instructions, while the monolithic solutions contained just a single pro-
gram, the maximum program size in the monolithic approach was set to 480. As such,
the upper limit on solution complexity in terms of the number of instructions was
the same under both approaches; consequently, so was the upper limit with respect
to the feature access counts.

While the parameter values in Table 4.3 were established through experience, some
general insights were also developed. It was found that performance typically did not
degrade with higher values for ¢4z, Psize, and Hg;.., possibly due to the elitist selec-
tion policies adopted, so the primary factor considered when setting these parameters
was the amount of computational overhead that could be tolerated. The parameters
Pyop and H g4y, relative respectively to Pg;.e and Hy;,e, reflect one of the main tradeoffs
in exploration versus exploitation in the point and host populations. In particular,
higher gap parameters suggest a more significant bias towards exploration of new in-
dividuals and less emphasis on exploitation of existing genetic material. It was found
that, compared to the host population gap parameter, a lower point population gap
parameter typically resulted in improved performance. Therefore, whereas H;.. was
set equal to Py, Hyqp Was set at three times the value of P,,. A possible reason
for this observed behaviour may be that a higher Py, value, supporting an increased
rate of change in the point population, may not allow sufficient time for the host
population to adapt to each influx of new points. At the same time, it was found that
a relatively high H,, parameter was often more effective, perhaps because it allows
more host configurations to be explored. Given that the action set under classification

contains two elements, the setting of w allows some degree of redundancy in the sense
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’ Parameter ‘ Value ‘

Umaa 1000
Psize 120
Pyap 20
Hsize 120
Hyap 60
w 10
p genp -
Psd 0.7
Psa 0.7
Dsm 0.2
Dam 0.1
K _

& 50
Tinit 10

Table 4.3: SBB model parameters used in the comparison with the monolithic ap-
proach. The number of nearest-neighbours used in the point fitness calculation, K, is
not applicable in classification problems since the distance between points is always
one. The probability of generating an offspring point from a parent point, pgenp, is
also not applicable under classification since a balanced sampling heuristic is always
used. Parameter description summaries are provided in Table 3.1.

that multiple symbionts in the same host can be associated with the same action.
Naturally, problems with more actions may require this value to be increased, e.g.,
the Rubik’s Cube environment presented in Chapter 8. It was also found that the
probabilities of applying the variation operators could be set relatively high, where
the policy not to disrupt existing solution under an elitist selection strategy may help
with the preservation of strong solutions in the population. The exception was the
probability of action mutation, p,,,, which was set at a relatively low value since the
operator is viewed more as a safeguard to make sure that all actions would have a

chance of appearing in the symbiont population®.

4.1.4 FEvaluation Methodology

Three claims regarding the monolithic and symbiotic approaches were made at the

beginning of this chapter. Two of the claims relate to the classification performance

5Comparing probabilities of applying different variation operators will always be difficult given
that the manner in which the operators are implemented varies greatly.
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’ Parameter ‘ Value ‘
numRegisters | 8
mazxProgSize | 48
Pdelete 0.5
Padd 0.5
Pmutate 10
Pswap 1.0

Table 4.4: GP parameters used in the comparison with the monolithic approach.
Parameter description summaries are provided in Table 3.2.

and the complexity of the solutions evolved under the two approaches. This multi-
objective comparison is motivated by the view that if one cannot gain insight from the
solutions post training, as is more likely if complexity is high, then their usefulness
is limited. In addition, the training overhead incurred under the two approaches is
also considered, where this may depend in part on the complexity of the individuals
being evolved. By assessing solutions in terms of different factors, including two met-
rics quantifying classification performance, this methodology reflects recent calls for
broader forms of evaluation in ML [83, 167]. The three criteria used in the evaluation,

classification performance, complexity, and training overhead, are described below:

e Classification performance. The classification performance of a solution was
measured in two ways. The first was accuracy defined for model ¢ as
1

accuracy; = |E|

> hit(i, e) (4.1)
ecE

where F is the set of problem exemplars over which performance is measured and
hit(i, e) returns 1 if model 7 labels e correctly and 0 otherwise. The classification
accuracy, representing the fraction of instances labeled correctly, is commonly
used to evaluate models in classification. However, it is not informative on
problems where the label counts are unbalanced [83]. For example, if 98% of
instances belong to class 0 and 2% belong to class 1, then a model could achieve
an accuracy of 98% by labeling all instances as belonging to class 0 this despite
capturing none of the characteristics underlying the differences between the two

classes.

To provide an informative measure of classification performance on unbalanced

datasets, a multi-class detection rate (medr) with respect to model i was defined
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as
1
i > detection(i, 1) (4.2)

leL

medr; =

where L is the set of class labels, and detection(i,[) is the detection rate of
model 7 on class [, i.e., the fraction of all instances whose true label is [ that were
also assigned a label of [ by the model. Thus, the quantity defined in Eq. 4.2
effectively considers the detection rate across all classes. Under binary problems,
it is equivalent to combining sensitivity and specificity as in the balanced error
metric used in the 2003 NIPS competition [60], though unlike the latter the medr
also scales to problems with more than two classes. It associates degenerate
behaviour with a value of Ifl\’
flags the type of degenerate behaviour described in the above example.

e.g., on binary datasets, an mcdr value of 0.5

e Solution complexity. A meaningful complexity comparison between the sym-
biotic and monolithic approaches is possible because their underlying represen-
tation, linear GP, is the same. Specifically, complexity is considered in terms of
the number of features accessed and the number of effective instructions, where
both counts are obtained post intron removal. Unless otherwise noted, duplicate
accesses to the same feature are not counted. Under the symbiotic approach,
the complexities can be expressed with respect to both the symbionts and the
hosts. In the latter case, instruction counts are taken over the bid programs of
all symbionts in the host, and the feature access counts correspond to the set
of unique features accessed by the symbionts in the host. The parameters used,
Section 4.1.3, results in the same limit on the maximum solution complexity

under both approaches.

e Training overhead. To evaluate the training overhead required under the
monolithic and symbiotic approaches, process running times were measured
using the C' getrusage function and account for instructions executed in user
mode. As such, these running times can be used to provide an intuitive mea-
sure of training efficiency — this can be significant given that training efficiency
is often viewed as a major drawback of using GP [5]. It is noted that introns
are bypassed during program execution, care of the intron identification algo-
rithm described in Section 3.6, and their effect on the running times is therefore

limited.

For each training partition, 60 initializations using different random seeds were

performed. Thus, under Census and Gisette, the total number of initializations was
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60, while under Bupa and Pima, the number of initializations was 600 as a result
of using 10-fold cross validation. For each initialization, unless otherwise noted, the
results presented correspond to the solution in the population at the end of training
that yielded the highest mcdr on the entire training dataset. Therefore, when a
reference to a host is made, it is implied that the host represents a single initialization.
Unless otherwise noted, all of the presented classification performance results are with

respect to the test data.

4.2 Results

The section following immediately compares the symbiotic and monolithic approaches
with respect to classification performance, solution complexity, and training overhead.
A further characterization of the symbiotic solutions, in terms of structure and be-
haviour, is then presented in Section 4.2.2. Finally, the population-wide performance

under the symbiotic approach is analyzed in Section 4.2.3.

4.2.1 Comparison of Symbiotic and Monolithic Approaches
Classification Performance

Figure 4.1 summarizes the classification performance of the symbiotic and monolithic
approaches using a combination of boxplots and violin plots®. The boxplots show the
distribution of values across all initializations for each pairing of dataset and approach,
e.g., the Census distributions represent 60 points while the Bupa distributions contain
600 points. The box endpoints denote the first and third quartiles, and the horizontal
line inside the box indicates the median. Whiskers extend from the box endpoints to
cover any points within one-and-half times the interquartile range, and a ‘o’ denotes
outliers beyond the whiskers. For each distribution, a violin plot [69] is also drawn
representing the associated kernel density estimate with wider regions reflecting higher
densities”. In all figures, ‘mono’ is used to refer to the monolithic approach.

The accuracy and mecdr results on the test data, Figure 4.1, support the claim
that the symbiotic solutions yield improved classification performance. With respect
to accuracy, Figure 4.1a, on Census, Gisette, and Bupa the median and third quartile

values under the monolithic approach are always lower. On Pima, the corresponding

6Similar plots are used throughout the rest of this thesis.
"The ‘vioplot’ library in the statistical package R was used to generate the violin plots.
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(b) Classification performance with respect to the medr.

Figure 4.1: Comparison of the SBB and monolithic approaches with respect to accu-
racy and mecdr on the test partition.
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Figure 4.2: Comparison of the SBB and monolithic approaches with respect to unique
feature and effective instruction counts. The SBB results are an aggregate across all
symbionts in a host, e.g., number of unique features accessed by the host as a whole.
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’ H Census ‘ Gisette ‘ Bupa ‘ Pima ‘
accuracy 0.01167% | 1.103e-11x | =~0x 0.525
medr || 0.0002131% | 1.103e-11x | =0 | 0.02842

Table 4.5: Two-tailed Mann-Whitney test results comparing the SBB and monolithic
approaches, test accuracy and mcdr. Shown are the p-values obtained when the test
was applied to each pair of corresponding accuracy and medr distributions in Figure
4.1. Cases where the SBB median value is higher are noted with a ‘x’.

monolithic values appear to be higher, however, the absolute difference is small com-
pared to the other three problems. Similar trends are observed with respect to the
mcdr, Figure 4.1b.

A set of two-tailed Mann-Whitney tests was applied to pairs of corresponding
distributions in Figure 4.1, e.g., the two accuracy distributions under Census, to de-
termine if the observed values are significantly different. Assuming a significance
level of 0.01, the p-values returned by the tests, Table 4.5, suggest that the accura-
cies under Census and Pima and the mcdr values under Pima are not significantly
different. However, when a significant difference is observed in these test results,
the median value under the SBB approach is always higher. This is in line with the
qualitative observations noted earlier, and in particular, it suggests that on Pima, the
problem where the monolithic approach appears slightly better, the difference is not
significant.

Overall, the results in Figure 4.1 and Table 4.5 suggest that, on all four problems,
the classification performance under the symbiotic approach is as good as or better
than the classification performance under the monolithic approach. These results are

therefore consistent with the first claim made at the start of this chapter.

Solution Complexity

Observing the median complexity results, Figure 4.2, the results are mixed in that
sometimes the SBB solutions are simpler and sometimes the monolithic solutions are
simpler. A visible trend, however, is that the SBB complexity values are much more
consistent. With the exception of the feature counts under Bupa and Pima, Figure
4.2a, the highest SBB solution complexities never approach the highest monolithic
solution complexities; the unpredictable level of complexity in the monolithic solutions
is thus viewed as a drawback of the approach. The number of features under Bupa

and Pima is low to start with so it is expected that both approaches would tend to
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H Census ‘ Gisette ‘ Bupa ‘ Pima ‘
Feature counts 0.7385 | 0.3685% | 0.0009292 | 1.288¢-14
Instruction counts || 0.6142x | 0.06565% ~0x | 1.091e-08

Table 4.6: Two-tailed Mann-Whitney test results comparing the SBB and monolithic
approaches, unique feature and effective instruction counts. Shown are the p-values
obtained when the test was applied to each pair of corresponding accuracy and medr
distributions in Figure 4.2. Cases where the SBB median value is lower are noted
with a *.

use most of the available features — as is the case — and even if a solution does use all
of the features, this is still typically less than the counts observed under Census and
Gisette.

A set of two-tailed Mann-Whitney tests, Table 4.6, indicates no significant dif-
ference in the unique feature and effective instruction counts at a 0.01 significance
level on Census and Gisette. As a nonparametric procedure, the Mann-Whitney test
does not consider the fact that some of the monolithic solutions may be very large,
or alternatively, the greater consistency of the complexities under the SBB approach.
Under Bupa and Pima, the p-values suggest that there is a significant difference in
three of the four cases, where the difference appears to be in favour of the monolithic
approach. Given these results, the second claim regarding the reduced complexity

under the symbiotic approach cannot be substantiated.

Classification Performance versus Complexity

Given the choice, solutions that achieve both a high accuracy and a high mecdr are
preferred over solutions that score high in just one of these objectives. However,
in practice, strong performance with respect to one objective may require a com-
promise with respect to the other, especially under problems with unbalanced class
distributions. Furthermore, the analysis so far has suggested that the classification
performance of the SBB solutions is as good as or better than that of the monolithic
solutions, but given the solution complexities observed in Figure 4.2, it is not clear
if the improved performance comes at a cost of higher solution complexity. The aim
of Figures 4.3 through 4.6 is therefore to shed some light on these issues by relating
accuracy with medr results and solution complexities.

Figure 4.3a shows observed mcdr values as a function of observed accuracy values

for the two approaches on the Census dataset. It is generated by first sorting the
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solutions for each approach using accuracy as the sort key and using medr to break
ties. Each sorted list is then divided into four equal contiguous sublists, Q1 through
Q4, representing solutions that are progressively more accurate, i.e., quarters Q1 and
Q4 respectively contain the least and most accurate solutions. For each quarter,
the distribution of the solutions with respect to medr is then plotted in Figure 4.3a.
The same sorted lists (one for each approach) are also used in Figures 4.3b through
4.3d, e.g., in each plot Q1 corresponds to the same subset of solutions, but each
figure aims to characterize a different property. For completeness, Figure 4.3b shows
the range of accuracy values that fall in each quarter; given the solutions are first
sorted by accuracy the distributions under each approach do not overlap. Figures
4.3¢ and 4.3d respectively show the complexity in terms of the number of unique
features and the effective instruction counts. Thus, from Figure 4.3 as a whole, it
may possible to infer relationships between the medr values, unique feature counts,
and effective instruction counts associated with solutions yielding different levels of
accuracy. Figures 4.4 through 4.6 are analogous but shown results for the other three
problems.

Based on the results presented in Figures 4.3 through 4.6, a number of observations

are noted:

e Considering the relationship between accuracy and medr, subplot (a) in the
figures, under both approaches higher accuracies tend to be associated with
higher medr values across all the problems. Thus, solutions that achieve both a
high accuracy and a high mecdr value are found by both methods. On Census,
however, this trend appears to be the weakest, with the most overlap observed
between distributions for consecutive quarters — this is likely due to the high
class imbalance on this dataset. Under Gisette, a perfectly balanced dataset,
the trend is the strongest with no overlap between consecutive quarters under
each approach. Spearman’s rank correlation results, Table 4.7, are consistent

with these observations.

e Under the SBB approach, it appears as if increases in accuracy are not realized
at the expense of higher complexity as measured both in terms the unique fea-
ture counts and the effective instruction counts. Given that, with the exception
of Census, accuracy appears to have a strong positive correlation with medr,
Table 4.7, the same relationship between mcdr and solution complexity can be

inferred.
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Figure 4.3: Breakdown of Census results with respect to accuracy. The z-axis denotes
quarters of solutions with progressively higher accuracy values, and for each quarter,
the indicated quantity is plotted on the y-axis. For each approach, corresponding
quarters across all subplots represent the same set of solutions.



mcedr

number of unique features accessed

70

60 —

50 —

40 —

30

20

. = 8p

N @@
I

SBBQ1 monoQ1 SBBQ2 monoQ2 SBBQ3 monoQ3 SBBQ4 mono Q4

(a) Test medr.

Blloldhied

SBBQ1 monoQ1 SBBQ2 monoQ2 SBBQ3 monoQ3 SBBQ4 mono Q4

(¢) Unique feature count.

accuracy

number of effective instructions

09 —

07 —
06 —
05 —
r T T T T T T 1
SBBQ1 monoQi SBBQ2 monoQ2 SBBQ3 monoQ3 SBBQ4 mono Q4
(b) Test accuracy.
150 —
100 —
i | @ &
] o &
[ T T T T T 1

SBBQ1 monoQ1 SBBQ2 monoQ2 SBBQ3 monoQ3 SBBQ4 monoQ4

(d) Effective instruction count.

135

Figure 4.4: Breakdown of Gisette results with respect to accuracy, analogous to Figure

4.3.
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Figure 4.5: Breakdown of Bupa results with respect to accuracy, analogous to Figure

4.3.
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Figure 4.6: Breakdown of Pima results with respect to accuracy, analogous to Figure

4.3.
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’ H Census ‘ Gisette ‘ Bupa ‘ Pima ‘

SBB 0.35 1.00 | 097 | 0.88
Monolithic 0.08 1.00 | 0.98 | 0.88

Table 4.7: Spearman’s rank correlation values with respect to accuracy and medr
on the test partition under the SBB and monolithic approaches. The correlation
values reflect the relationships between accuracy and medr visible in subplot (a)
in Figures 4.3 through 4.6. In particular, with the exception of Census, a strong
positive correlation between accuracy and mcdr is observed under both approaches.
The correlation values themselves were calculated using the ‘Stats’ library in the R
package.

e Whereas the solution complexity under the SBB approach tends to remain
constant across all levels of accuracy /medr (quarters Q1 through Q4), the rela-
tionship between accuracy/medr and solution complexity under the monolithic
approach is less consistent. Under Census, the monolithic Q4 feature and in-
struction counts tend to be the highest, while under Gisette and Pima, the
opposite appears to be true. The latter two cases appear particularly counter-
intuitive since one would expect improved classification performance to require
increased complexity. Under Bupa, the monolithic solution complexities appear

to be relatively constant across all levels of classification performance.

e Comparing the solutions yielding the highest classification performance, i.e.,
those in quarter Q4, the SBB solutions appear to be equally or less complex
than the monolithic solutions on Census, Gisette, and Bupa. Under these three
problems, the SBB solutions also tend to yield higher accuracy and medr values.
Under Pima, the trend is reversed, nevertheless, the SBB approach appears to
produce better solutions with respect to both the classification performance and

complexity objectives on three of the four problems.

In summary, based on these results, it appears that under the two approaches both
high accuracy and high medr values are attainable, i.e., one does not have to choose
either between high accuracy or high mecdr. Furthermore, these results suggest that
any improvement in classification performance observed under the SBB approach,
in contrast to the monolithic approach, is independent of the level of solution com-
plexity. The one exception where the best monolithic solutions appear to be both
more effective and less complex is the Pima dataset, a result that is consistent with

observations made in the previous sections.
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Figure 4.7: Comparison of the SBB and monolithic approaches with respect to the
training times (in seconds) as measured by the C getrusage function. Only non-intron
instructions executed in user mode are considered.

Training Overhead

The running time results, Figure 4.7, show that on Census, Bupa, and Pima, the SBB
distributions are more consistent and suggest a lower training overhead. Furthermore,
the distributions are similar across all three of these problems even though Census is
much larger in terms of the number of instances — this can be attributed to performing
fitness evaluation on a fixed-size, stochastically-sampled, subset of training exemplars.
Results on Gisette appear to be an exception in two ways. First, the training times
under both approaches appear to be higher where this is likely due to the large
number of attributes that are present. Second, the SBB training times on Gisette
are higher than the monolithic training times. In all cases, a substantial difference
between corresponding SBB and monolithic distributions was identified by a two-
tailed Mann-Whitney test at a 0.01 significance level.

It is natural to assume that the training time would be a function of the number

of attributes used or the effective instruction count, Figure 4.2. However, differences
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from the expected may be attributed to the fact that the complexity results presented
in Section 4.2.1 represent the best solution at the end of training, whereas the training
times in Figure 4.7 represent all individuals across all generations. This makes it

difficult to determine the specific cause for why this assumption may not hold.

However, in an attempt to gain insight into the training times on Gisette, where
the total number of attributes is exceptionally high, additional results were collected
with respect to the number of attributes used across all individuals in the final popula-
tions, Figures 4.8 and 4.9. These results indicate that the number of unique attributes
used across all hosts in the final population is higher under the symbiotic approach
than under the monolithic approach, Figure 4.8. In this case, a two-tailed Mann-
Whitney test indicates a difference at a 0.01 significance level. However, as suggested
in Figure 4.9, under the symbiotic approach the proportion of attributes used across
the final population that are also used by the best individual in that population is
smaller, where this observation is consistent with a two-tailed Mann-Whitney test at

a 0.01 significance level.
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Based on these results, it appears as though the symbiotic approach is more effec-
tive at encouraging diversity in the attributes explored across the population; gener-
ally speaking, this is a desirable property since it suggests a greater degree of problem
decomposition and a decreased likelihood of premature convergence. However, this
may come at the expense of increased training times as additional operations need to
be performed by the system to read data from storage, i.e., the rate of cache misses is
increased. Given that the Census dataset involves a large number of attributes yet it
is sparse (with eighty-seven percent of the feature instances representing zero values),
an indirect encoding® may reduce the Gisette training times to the same levels as in

the other three problems.

Returning to the final claim made at the beginning of this chapter, these results
confirm that on three of the four problems evolving the SBB solutions incurs less
computational overhead compared to the monolithic approach. The one exception
where the SBB training times were on aggregate longer than the monolithic training
times was Gisette, where it was suggested that the higher computational overhead
may result from an increased diversity in the features that are explored combined
with the direct encoding used to represent the data. However, on all datasets the
SBB training times were found to be more consistent; as a result, the highest training
times on Gisette were nevertheless observed under the monolithic approach. Given
these considerations, the results presented in this section are viewed as consistent
with the final claim, with the caveat that on problems with large attribute spaces

care must be taken to efficiently represent the data.

4.2.2 Further Characterization of Symbiotic Solutions

In this section, the solutions generated using the SBB approach are further character-
ized. Specifically, the composition of the evolved hosts is presented, and an attempt is
made to gain insight into the way in which symbionts in a host decompose the prob-
lem. As in the comparison with the monolithic approach, Section 4.2.1, distributions
represent the hosts that yield the highest medr rates on the training partition at the
end of training, with one host selected from the final population in each initialization,
i.e., the Census and Gisette distributions account for 60 hosts while the Bupa and
Pima distributions represent 600 points. Reference is also made to specific symbiont

actions whose mapping to the problem-specific class labels is defined in Table 4.2.

8Specifying the indices and values of non-zero attributes only.
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Figure 4.10: Host sizes on Census, Gisette, Bupa, and Pima, in terms of the number
of symbionts after pruning of symbionts.

Host Composition

The number of symbionts found in a host, Figure 4.10, and the mean number of
effective instructions per symbiont, Figure 4.11, tend to fall well below the upper
limits of 10 (w) and 48 (maxProgSize) respectively. The largest hosts, with respect
to the median symbiont counts, are observed under Gisette, as is the greatest spread in
the host sizes. The mean number of effective instructions per symbiont, Figure 4.11, is
obtained by dividing the total effective instruction count in each host, Figure 4.2b, by
the size of the host. The results in Figure 4.11 highlight the simplicity of the individual
symbionts with respect to the instruction counts, particularity under Gisette where
the median symbiont instruction count is about 2.8. Together, the distributions in
Figures 4.10 and 4.11 suggest that under Gisette the hosts are larger but consist of
simpler symbionts; in this sense, a greater degree of problem decomposition occurs
here than under the other problems. In contrast, the host sizes under Bupa and Pima

are smaller but result in larger per-symbiont instruction counts.
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Results on the composition of the hosts that were evolved, with respect to the
number of symbionts of each action, are shown in Figures 4.12 and 4.13. Given
that there were two actions and at most 10 symbionts per host, it was reasonable to
enumerate all possible combinations of action counts in a host, that is, how many
symbionts of each action were present in the host. This exhaustive enumeration,
excluding combinations that were never observed, is shown in Figure 4.12, where
the number of hosts, y-axis, observed for each action combination, z-axis, is shown.
For example, under Census, Figure 4.12a, there were two hosts observed containing
four symbionts of action 0 and three symbionts of action 1 (rightmost column). As
expected given the symbiont counts in Figure 4.10, there is a bias on all problems
towards smaller hosts, though this bias is more apparent under Bupa and Pima.
No tendencies towards symbionts of a certain action are apparent, instead, different
combinations of actions are explored in different initializations.

Figure 4.13 summarizes the host makeup with respect to the action counts by
showing the proportion of symbionts in a host whose action matches the majority
class. There is a large spread in the distributions, though median values are observed
at 0.5 for Census, Bupa, and Pima, and at 0.6 for Census. In all cases, both actions
are present in the final solution despite the lack of an explicit mechanism for ensuring
that this happens. Thus, it does not appear that any degenerate solutions, i.e., ones
which always predict the same class label, are present in the final set represented in

the figure?.

Partitioning of the Instance Space

The bid-based approach to context learning adopted in this work, Section 3.1, sup-
ports the partitioning of the instance space as illustrated in the right side of Figure
1.1. Specifically, each problem instance can be associated with exactly one symbiont
in a given host, i.e., the symbiont winning the bid auction on that instance; con-
versely, each symbiont in a host will identify a unique subset of exemplars. Figure
4.14 provides insight into the nature of this partition for the four problems that were
considered. In particular, the figure shows the proportion of all test instances won
by the symbiont winning the most instances (the top winner), and also the mean
win count across all other symbionts in the same host (excluding the top winner).

The results are broken down by action so that behaviour that may be specific to one

9Care of the symbiont pruning algorithm, any symbionts that do not win at least one bidding
round during training are removed. Thus, it is not possible for an action to be represented in Figure
4.13 and never be output by the host.
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Figure 4.12: Host counts broken down by symbiont actions, after pruning of sym-
bionts. The z-axis denotes combinations of action counts found in individual hosts
with the first (second) element in each pair denoting the number of symbionts of
action 0 (1). The y-axis corresponds to the number of hosts containing (precisely)
the indicated combination of actions. The sum of counts across all combinations is
60 for Census and Gisette and 600 for Bupa and Pima.
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action but not the other can be observed.

Figure 4.14 suggests that on all datasets the partition on the instance space is
unbalanced. Specifically, within a typical host, there is one symbiont that wins a large
number of instances, while the remaining symbionts win a relatively small number of
instances. This behaviour is the strongest on Census, likely due to the unbalanced
nature of the dataset. In addition, the observed values tend to be higher for actions
corresponding to the majority class, namely, actions 0, 1, and 0 for Census, Bupa,
and Pima respectively. This behaviour is consistent with the manner in which default
hierarchies operate, Section 2.2.4, though it is difficult to determine whether or not

this is actually the case without further evidence.

Unique Features Accessed

In terms of the mean number of unique features accessed per symbiont, Figure 4.15,
the bidders evolved under the SBB approach are always simple regardless of the
number of features in the problem. The feature counts are similar under Census,
Bupa, and Pima with median values falling between 2.6 and 3.0. Under Gisette, the
problem with 5000 attributes, the median number of features accessed by a symbiont
is even less and stands at about 1.7. This is consistent with previous observations
regarding the high level of problem decomposition under Gisette: compared to the
other problems, the hosts evolved tend to consist of more members, Figure 4.10, but
the members themselves are simpler containing fewer effective instructions, Figure
4.11, and accessing fewer features, Figure 4.15.

A peculiar observation in Figure 4.15 is that under Gisette the minimum mean
number of features accessed per symbiont is below 1. Thus, there are certain sym-
bionts that access no features, and in effect, always bid the same value regardless of
the input exemplar. This suggests a thresholding approach whereby other symbionts
learn to bid around this constant bid, effectively simulating a default hierarchy, Sec-
tion 2.2.4. Due to the pruning process, Section 3.3.1, only one symbiont supplying a
constant bid can exist in a host regardless of its action, and it must be the case that
this symbiont wins at least one bid auction (otherwise it would be pruned).

The mean number of unique features accessed by each symbiont in a host, bro-
ken down by action, is shown in Figure 4.16. Under Gisette, Bupa, and Pima, the
behaviour under both actions appears to be similar, an observation consistent with a
two-tailed Mann-Whitney test at a 0.01 significance level. Under Census, symbionts

associated with action 1 tend to access more features. Census is the least balanced
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Figure 4.14: Proportion of test instances won by the symbionts in a host, grouped
by action. Distributions labeled ‘max’ show the proportion of test instances won by
the symbiont winning the most instances, while those labeled ‘mean’ represent the
mean number of wins for all other members in the same host. The counts are broken
down by the action of the symbiont, Table 4.2, e.g., ‘max 0’ corresponds to the top
winner of action 0. The dashed horizontal lines denote the proportion of test instances
corresponding to the minor and major classes.
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Figure 4.15: Mean number of unique features accessed per symbiont on Census,
Gisette, Bupa, and Pima. For each symbiont in a host, the number of unique fea-
tures that it accesses is considered, i.e., multiple accesses to the same feature by the
symbiont contribute once to its count. The mean for a host is then taken over all
symbionts in the host and represents one point the distribution.
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of the datasets, with action 0 corresponding to the majority class, Table 4.2, and
accounting for 0.9379 of the training data. Figure 4.16 also shows at least one host
under Census where there is a single symbiont of action 0 and that symbiont bids
a constant value!. This again suggests a thresholding approach but one where the
symbiont of action 0 provides a constant bid, and the members providing dynamic
bids are all associated with action 1. Since the class associated with action 0 accounts
for such a large number of instances, this strategy, effectively defaulting to class 0, is
viewed as reasonable. This is also consistent with the higher feature counts observed
for hosts of action 1 since then the onus is on them to learn when to bid above the
threshold.

Similar thresholding strategies are observed under all datasets, i.e., a host with a
mean unique feature count below one is observed on all four problems in Figure 4.16.
It is possible that this type of thresholding occurs even if the mean feature counts for
a given action are above one, since, if other symbionts matching the constant bidder’s
action exist in the host, they may bring the average count up. Thus, the behaviour
may be more prevalent that Figure 4.16 would suggest. However, the cases where the
thresholding strategy is known to apply with certainty are viewed as strong evidence
that default hierarchies are emerging, where the primary benefit of this is that it may
lead to more compact solutions [71, 154].

The amount of overlap in the features accessed by member symbionts in a given
host is shown in Figure 4.17. The overlap, calculated for each host separately, is
defined as the proportion of features that are accessed by exactly one symbiont in the

host out of all the unique features accessed by the host, or,

number of features accessed by exactly one symbiont

total number of unique features accessed across the host’ (43)
and is limited to the unit interval. If this proportion is equal to unity, this then means
that each feature is identified by a single symbiont, and as the amount of overlap in
the features accessed increases, this proportion decreases. Figure 4.17 suggests that
on the two datasets with a low overall feature count, Bupa and Pima, the amount
of overlap is relatively high. If the dataset contains more features then less overlap

is observed, with the least overlap seen under Gisette. This is reasonable because

1Due to pruning, no other symbionts bidding a constant value are known to exist in the same
host, and specifically, no other symbionts of action 0 bidding a constant value are known to exist.
At the same time, all symbionts of action 0 in the host must bid a constant value, otherwise, the
mean unique feature count for action 0 would be non-zero. This implies that there is only one host
of action 0 and that host bids a constant value.
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Figure 4.16: Mean number of unique features accessed per symbiont grouped by
action. For each host, the symbionts in that host are grouped by action, and the
mean number of unique features accessed by individuals in each group is calculated
separately. For a given group, the mean is calculated as in Figure 4.15. This is done
for each dataset, z-axis, where ‘0’ and ‘1’ denote the action groups. A uniqueness
restriction means that multiple accesses to the same feature only contribute once to
the count for a given symbiont.
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Figure 4.17: Proportion of features, with respect to the unique features accessed
across a host, that are accessed by exactly one symbiont in that host under Census,
Gisette, Bupa, and Pima. Lower values indicate more overlap in the features accessed
by the symbionts in the same host.

as the number of features decreases, evolving symbionts whose feature sets do not
overlap is likely to become more difficult (a trivial example being a problem with a
single feature, in which case the same feature is always accessed). Gisette contains
5000 features of which 2500 have been linearly transformed to generate the other
half, both factors likely leading to the very low levels of overlap that are observed.
However, as seen under Census, the symbionts are able to identify unique subspaces
even when the problem contains a moderate!! number of features.

Finally, access counts to specific features are shown in Figure 4.18. The counts are
broken down by action, where the overall tally for a given feature can be increased once
for each action represented in a host, i.e., if the feature is accessed by a symbiont of
that action. Under Gisette, of the 5000 features, only 425 were ever accessed. Of these,

the 42 features with overall counts of two or more are shown, Figure 4.18b, which is

HRelative to Gisette, Bupa, and Pima.
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why overall counts of less than two do not appear. Given that the vast majority of
Gisette features were never accessed, and of the features that were accessed most were
accessed only once, if a feature has a count of two or more it is viewed as significant.
Some of the Gisette features are accessed between six and ten times and are therefore
viewed as particularly informative in arriving at a classification decision — especially
given that only 5 features out of 5000 are identified as such, and given that each host
was evolved in an independent initialization. In addition, these frequently accessed
features tend to be associated with action 0, though it is not clear why. Under the
other problems, all the features have overall counts of two or more and are therefore
all included. Under Census, some features are also identified as more significant than
others, e.g., those with twenty or more references could be viewed as particularly

useful. Under Bupa and Pima, the counts tend to be more balanced.

Bid Margins

Although the margin in bid values between the highest bidder and the second-highest
bidder was not used as an objective in the host fitness calculation'?, the hosts that
were evolved exhibited a wide range of bid margins, Figure 4.19. The bids were
specified in terms of the C++ double data type, and though the precision of this
primitive may vary depending on the computing platform, in general bid margins
of 0.1 or more are viewed as considerable. A large bid margin is desirable because
it suggests a greater degree of confidence in a host’s decision. In the case of the
SBB model, this result appears to emerge implicitly as part the evolutionary process,
though there is also room for improvement, e.g., through the inclusion of an explicit

bid margin objective.

4.2.3 Inter-Host Problem Decomposition

Figure 4.20 shows the amount of overlap in the behaviour observed in the final host
populations. For each run, the hosts in the entire population at the end of training
are sorted into descending order with respect to the number of correct classifications
(hits) on the training data. The hosts are then considered from first (most hits)
to last (least hits) and two quantities are recorded. The first is the absolute hit
count defined as the number of correct classifications by the host currently under

consideration. The second is the cumulative hit count defined as the number of

12A bid margin objective was previously effected through the use of a second-price auction under
the bid-based metaphor [110].
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Figure 4.18: Feature access counts broken down by action. For each feature, z-axis,
the number of times it was accessed by a host is shown, y-axis, taking into account
symbiont actions. Specifically, for a given feature, a single host can contribute once
to the tally under each action depending on whether or not it contains a symbiont
of that action that accesses the feature. Under Gisette, there were 425 features with
overall counts that were non-zero. Of these, any features with an overall count of less
than two were omitted, leaving 42 features. The z-axis tick labels do not correspond
to indices of features as they appear in the dataset but are included for reference.



156

1_0 ot e e e e e e e e e e e e e e e e e et e e e e e e e e e
0.8 —
£
o 06 —
©
£
RS
o]
T
lo) 0.4 —
£
02 —
00 —

cen0 cen 1 gis 0 gis 1 bpa 0 bpa 1 pma 0 pma 1

Figure 4.19: Bid margin on the test partition broken down by class. The mean bid
margin, y-axis, is plotted for each combination of problem and class, z-axis. For
a given host, the mean bid margin with respect to a class is defined as the mean
absolute difference between the two highest bids on all instances of that class.



157

instances classified correctly by the current host or any previous host in the sorted
sequence. As successive hosts are considered, the absolute hit count cannot increase

and the cumulative hit count cannot decrease.

In Figure 4.20, the sorted hosts representing the final population are denoted on
the z-axis. For a given run, the host with the most hits is at x = 1 and the host
with the least hits is at = 60. For each position on the z-axis, two distributions
are plotted, a cumulative count distribution and an absolute count distribution. The
number of points in each of these distributions equals the number of initialization,
i.e., 60 for Census and Gisette and 600 for Bupa and Pima. Outliers are denoted
with a ‘4’ for the cumulative count and a ‘o’ for the absolute count, otherwise, no
distinction is made in the notation of the two quantities; at £ = 1, the cumulative hit
count is equal to the absolute hit count, thereafter, the cumulative hit count always
tends to be greater. The counts themselves, y-axis, are normalized by the training set
size, and the proportion of training instances belonging to the two classes is indicated
by the dashed horizontal line.

Across all problems and initializations, the final host population always manages
to correctly classify all the training instances. This is indicated by the cumulative
distributions in Figure 4.20 which always converge to unity. This behaviour motivates
the construction of a host hierarchy as described in Section 3.4. Specifically, given
the behaviour in Figure 4.20, even a single additional level of hosts should be able
to significantly improve classification performance by combining multiple first-level
hosts. Furthermore, the second-level hosts need not necessarily use all of the first-
level hosts, e.g., at x = 10 the cumulative distributions already represent a significant

improvement compared to their values at z = 113,

Under a binary problem, a cumulative count of unity can be trivially achieved by
including a host that always assigns one of the labels and a host that always assigns
the other label. However, on all problems, a cumulative count of or very close to unity
is observed before such degenerate solutions are considered. For example, on Census,
if a host labels all instances as belonging to the minority class then its absolute hit
count (and sort key) will be at 0.0621 as indicated by the horizontal line at y = 0.0621
in Figure 4.20a. However, unity is reached at x = 45, well before hosts with such low

absolute counts are included.

13The ordering of hosts along the z-axis that was used in Figure 4.20 is a heuristic that may not
be the best for yielding the highest increase in the cumulative counts. Using a different ordering, it
may be possible to yield cumulative counts close to unity with fewer hosts than shown.



158

0.8 —

0.6 —

0.4 : : o

proportion of training cases solved
|

0.2 —

0.0 —

MTTTTTTTITTI T T T T T T T T T T I T T T T T T T T T I T T T T T T T T T I T T T T T T T TITITTIT Tl
1357 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

host

(a) Census.

| P

proportion of training cases solved

0.4 — : : : o
%o
%08
o
o
0.2 — :
0.0 -~

MTTTTTTT T T T T T T I T T T T T T T T T T I T T T T T I T I T T T T T T TITTITTITTITTITITT T T
13579 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

host

(b) Gisette.

Figure 4.20: Boxplots indicating cumulative and absolute hit counts on the training
data across the final host population expressed as a fraction of the entire training
dataset. At x = 1 the cumulative and absolute hit counts are the same, thereafter,
the cumulative hit count always tends to be greater. Outliers are denoted by a ‘+’
and a ’o’ for the cumulative and absolute distributions respectively. The proportion
of training instances of each class is also indicated by the dashed horizontal line.
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Figure 4.20: Continued.
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4.3 Summary of Results

In summary, the results presented in Section 4.2.1 suggest that the symbiotic ap-
proach results in improved classification performance compared to the monolithic
approach and that it also requires less training overhead. In addition, it was found
that improved classification performance under the SBB approach was independent
of the associated solution complexity, i.e., improved accuracy and mcdr did not come
at the cost of more complex solutions. Support for the second claim made at the be-
ginning of this chapter, regarding reduced solution complexities under the symbiotic
approach, was not as strong; though the SBB complexities appeared to be smaller
on the larger Census and Gisette datasets, no statistically significant differences were
observed. However, the SBB distributions, including those corresponding to the so-
lution complexities, were typically a lot more consistent, where this is viewed as a
desirable property of any learning algorithm. Since minimal changes were applied to
the codebase for the SBB approach in implementing the monolithic approach, these
differences can be attributed, with confidence, to the inclusion or exclusion of the
symbiotic metaphor.

The following are viewed as several key characteristics of the solutions evolved

under the symbiotic metaphor as observed in Section 4.2.2:

1. In terms of the number of symbionts per host, the number of effective instruc-
tions per symbiont, and the number of unique features accessed per symbiont,

the solutions appear to be simple.

2. Each symbiont accesses a small number of features regardless of the number of

attributes in the underlying dataset.

3. Typically there is one symbiont that wins a large portion of instances, with the

other members of the same host winning a relatively small portion.

4. Some solutions employ a thresholding approach that resembles the behaviour
typically associated with default hierarchies, where this may allow for more

concise solutions.

The same type of analysis as was presented in this section cannot be performed on
the solutions evolved using the monolithic approach where explicit subcomponents
are not defined.

A greater degree of problem decomposition, i.e., more symbionts per host, fewer

effective instructions per symbiont, and fewer features accessed per symbiont, was
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observed under Gisette, a dataset of moderate size and with a relatively high number
of features. The SBB approach also did particularly well on this dataset compared to
the monolithic approach. Thus, symbiosis may be especially appropriate for problems
having these characteristics, where this is consistent with previous results involving
the SBB algorithm [38]. However, the approach remains effective under datasets with
tens of attributes such as Census as well as the smaller problems such as Bupa and
Pima; in all three cases, solution quality was maintained while significant reductions

in training overhead were observed.



Chapter 5

Additional Classification Results: Comparison with

Boosting and Support Vector Machines

The primary goal of this chapter is to compare the SBB approach against well-
established classification algorithms outside of the KEC domain, providing what is
perhaps a more conventional baseline from which the utility of the proposed approach
can be assessed. This chapter builds on the results from Chapter 4 by considering
two additional multi-class problems. Thus, the capacity of the symbiotic approach to

support multi-class learning from a single population is also demonstrated.

The two classification algorithms used in the comparison with the proposed ap-
proach are a SVM [43] and the boosting algorithm AdaBoost [52]. The SVM algorithm
was chosen because it is by some considered to be the state-of-the-art in classification
[64], whereas AdaBoost, though perhaps not as cutting-edge, is nonetheless viewed as
robust and capable of generating very strong classification results. Furthermore, the
AdaBoost algorithm can be used to construct solutions consisting of multiple base

classifiers which can be regarded as analogues to the symbionts in the SBB approach.

A premise underlying the comparison in this chapter is that both classification per-
formance and solution complexity should be considered when evaluating the usefulness
of an algorithm. As suggested in Section 1.1, solution complexity may affect solution
transparency, i.e., it is likely that a smaller solution can be more easily interpreted.
This then reflects the growing need for models that capture interesting relationships
in potentially massive and complex datasets as opposed to focusing on classification
performance alone [41, 122, 131, 186]. The proposed approach addresses this need
by using GP to evolve the bid programs which assume a more human-readable form
than, e.g., SVM or neural network classifiers. The programs evolved using GP could
still be prohibitively complex so as to make them difficult to interpret; to this end, the
proposed approach aims to break down the complexity by associating a single action
with each bidding behaviour, i.e., through context learning. As suggested by the ad-
ditional characterization of the SBB solutions in Chapter 4, this then results in very

simple solution subcomponents which may lead to the desired levels of transparency.

The experiments leading to the results presented in this chapter are first described

162
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in Section 5.1, including the boosting and SVM implementations, their parameters,
and the datasets that were used. The three algorithms are then compared with
respect to classification performance, Section 5.2.1, as well as solution complexity,
Section 5.2.2; a summary of the results, including the observed tradeoff between

classification performance and solution complexity, is presented in Section 5.3.

5.1 Experimental Setup

This section describes the experiments that were performed. It begins by presenting
an overview of the two baseline algorithms and their key implementation details
in Section 5.1.1. The datasets and parameters used are then described in Sections
5.1.2 and 5.1.3 respectively, while the criteria forming the basis of the evaluation are

presented in Section 5.1.4.

5.1.1 Support Vector Machine and Boosting Implementations
Support Vector Machine

The typical, and in some ways idealized, application of the SVM training algorithm
to a complex binary classification problem can be conceptually broken down into the

following two steps [64]:

1. The non-linear mapping of the original input space to a new feature space with
a higher, possibly infinite, dimensionality. As suggested by Cover’s Theorem
28], the problem is more likely to be linearly separable in the new feature space
than in the original input space!.

2. A quadratic optimization to construct an optimal hyperplane in the higher-
dimensional feature space that not only separates the points in one class from
points in the other but also maximizes the margin of separation, i.e., the distance

between the hyperplane and the closest data point.

Furthermore, the optimal hyperplane constructed through the above process can be
characterized in term of a subset of the training data, i.e., the points that are closest
to the hyperplane, while all other points can be discarded. These characterizing data

points are referred to as the support vectors.

In some cases, it may be sufficient to apply the non-linear transformation without necessarily
increasing the dimensionality of the feature space [64].
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The non-linear mapping from the original input space to the new feature space is
commonly effected through the invocation of the kernel trick [64]. Specifically, the
problem of finding the optimal hyperplane can be reformulated so that points in the
new feature space appear only as factors in the inner product with other points in the
same space. These inner product computations can then be implemented indirectly
using an inner-product kernel function that specifies the outcome of the calculation
for each pair of points in the original input space?, e.g., the kernel may take the
form of a square matrix containing an outcome for each such pair. Thus, even if the
new feature space is infinite, the result of the inner product calculations can still be

determined.

Despite the application of the non-linear transformation in the first step, it may
still be the case that the problem is not linearly separable in the new feature space.
The hard constraints related to separability in the quadratic program in the second
step can therefore be relaxed through the introduction of slack variables which quan-
tify the degree to which instances are misclassified [27]. This results in an additional
penalty term in the objective function which now captures the tradeoff between a
large margin of separation and a small classification error with respect to the training
data. A cost parameter, C', can then be used to emphasize either quantity with higher
values of C' placing more emphasis on error minimization. Consequently, higher val-
ues of (' typically result in more complex models as measured in terms of support

vector counts, and may also lead to over-fitting.

The SVM implementation used in the comparison was LIBSVM Version 2.9 [24]
employing Sequential Minimal Optimization for solving the underlying quadratic op-
timization problem [43]. LIBSVM was selected in this work because it is well docu-
mented, widely-utilized, and because it includes a suite of tools helpful in constructing
classifiers. It supports various SVM types, and naturally, in this work the C-SVC for-
mulation designed for binary classification was used. To implement the non-linear
transformation, the radial basis function (RBF) kernel of the form e "VI* was cho-
sen; this choice was based on previous experience with C-SVC on a number of the
datasets used here [112]. In addition, the LIBSVM distribution includes a parameter
selection tool which was used to find suitable values for the cost parameter C' and
the v parameter that controls the width of the RBF kernel. To extend the C-SVC

2More formally, given an input space I and a transformation on the points in I, the kernel
specifies the result of applying the transformation to two points in I and taking the inner product
between the resulting images. However, the kernel typically abstracts this operation in that it does
not explicitly apply the transformation nor perform the inner product calculation.
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approach to multi-class problems, a one-against-one approach was employed where

for an |L|-class problem W

binary classifiers were constructed to distinguish be-
tween every pair of classes. To assign a class label to an input instance, each classifier
was applied in turn voting for one of its associated classes, and the label with the

most votes was output as the final result.

Boosting

The variant of boosting used in the comparison was AdaBoost.M1 [52] as implemented
in version 3.6 of the WEKA data mining package [61]. Tt is common practice to use
a decision stump, i.e., a single-level decision tree, as the base classifier in boosting.
However, applied to multi-class problems, a decision stump is likely to yield accuracy
rates below 0.5 and is therefore inappropriate for use with AdaBoost [160]. Instead
of a decisions stump, this work therefore employed the C4.5 algorithm for generating
decision trees [151] as implemented in the WEKA J48 class. In addition, resampling
was used instead of reweighing to generate different training distributions in each
boost iteration, i.e., the distributions were created by sampling the original data with
replacement using probabilities proportional to the weights as assigned by the boost-
ing algorithm®. Though typically reserved for base classifiers that are not compatible
with instance weights, resampling was used instead of reweighing because under the
WEKA implementation of AdaBoost it allows different initial conditions to be spec-
ified. This, in turn, allows multiple AdaBoost classifiers to be generated on a single
dataset, facilitating comparison with the multiple SBB models. Furthermore, resam-
pling is known not to adversely affect the boosting classification performance, and in
fact, may actually outperform reweighing [162].

Details of the AdaBoost algorithm itself can be found elsewhere [52], while here,
two properties that are relevant to the comparison in this chapter are noted. First,
the algorithm stops adding base classifiers either when it reaches a limit that is fixed
a priori, or when it produces a base classifier that yields a weighted error greater than
0.5 (at which point the base classifier is discarded). In the latter case, an early stop
signals that the boosting process is failing, which is in contrast to other approaches
where a premature stop often indicates that a solution of adequate quality has been
found. With respect to the results presented in this chapter, the early stopping
criterion may thus have an effect on the solution complexity because it affects how

many base models are included in the final solution. The second property relates to

3In contrast to bagging where instances are uniformly sampled with replacement.
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Training cases Test cases

Dataset Features | Classes Total \gMajority Total ‘ Majority
Census (cen) 40 2 199 523 | 187 141 | 99 762 | 93 576
Gisette (gis) 5 000 2 6 000 3 000 1 000 500
Bupa (bpa) 6 2 310 180 35 20
Pima (pma) 8 2 691 450 7 50
Thyroid (thy) 21 3 3772 3488 3428 3178
Shuttle (shu) 9 7 43500 34108 14500 11478

Table 5.1: Datasets used to compare the SBB approach with AdaBoost and a SVM.
For Bupa and Pima, 10-fold cross-validation was used so the instance counts represent
the mode values across all folds. The contents between the parentheses denote the
abbreviation used to refer to the dataset.

the way in which the base classifiers are combined into the final model, and in the
case of AdaBoost, this is done through a weighted vote in which base classifiers that
were found to be more accurate are assigned higher weights. This is representative
of the ensemble learning methodology discussed in Section 2.2.3, in contrast to the
bid-based action selection process used in the SBB approach, and may therefore result

in base models with overlapping behaviours.

5.1.2 Datasets

Six datasets, Table 5.1, were used to compare the SBB approach with AdaBoost and
the SVM algorithm. All the datasets were obtained from the UCI Machine Learning
Repository [3]. Census, Gisette, Bupa, and Pima were used in the comparison with
the monolithic approach in Chapter 4; an overview of these datasets, including any
preprocessing, is given in Section 4.1.2. The information from Table 4.1 is repeated

here to provide a complete summary across all six problems.

Thyroid refers to the ‘ann’ dataset in the Thyroid Disease database. It contains
fifteen binary attributes, six continuous attributes, and three classes. Shuttle, taken
from the Statlog Shuttle database, contains nine attributes all of which are numerical.
Both of these datasets are unbalanced, with the majority class accounting for close
to 93% and 79% of all instances for Thyroid and Shuttle respectively, Figure 5.1. In
both cases the original training and testing partitions were used in the evaluation,
and with the exception the SVM, no additional preprocessing was performed.

For use with the SVM algorithm, attribute values in all siz datasets were linearly

scaled. First, the attributes in the training partition were transformed to fall within
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Figure 5.1: Distribution of instances in the training and test partitions under Thyroid
and Shuttle expressed as a proportion of the entire partition. From left to right, the
number of Thyroid training (test) instances is 93 (73), 191 (177), and 3488 (3178),
while the number of Shuttle training (test) instances is 34108 (11478), 37 (13), 132
(39), 6748 (2155), 2458 (809), 6 (4), and 11 (2).
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+1. The ranges used to scale the training data were then applied to the test data.

5.1.3 Parameters

Experiments involving the SBB approach on the binary datasets were performed
earlier, Chapter 4, and those results are used in the comparison with the SVM and
boosting algorithms presented in this chapter. For consistency, the same parameters
as detailed in Section 4.1.3 were used when training the SBB solutions on Thyroid
and Shuttle. In particular, 60 initializations of the SBB algorithm were performed on
each training partition.

With one exception, the AdaBoost parameters were left at their default values as
specified in WEKA 3.6. The one exception already mentioned was that resampling
was used instead of reweighing. The default number of boost iterations, set at 10,
matches the maximum number of symbionts in a host in the SBB experiments, Ta-
ble 4.3. The parameters for the base classifier, C4.5, were also left at their default
values, and in particular, the confidence threshold for pruning was set at 0.25. As in
the case of the SBB parameters, 60 initializations of the AdaBoost algorithm were
performed on each training partition, where this was made possible through the use
of resampling.

The SVM parameter tuning follows the recommendations made in the LIBSVM
documentation. Assuming the RBF kernel of the form e v=vI” the LIBSVM pa-
rameter selection tool was used to find suitable values for the kernel parameter vy and
the cost parameter C. Specifically, the selection tool was set to conduct a grid search
across each combination of v € {271,271 23} and C € {27°,273,...,21%} a
total of 110 parameter pairs. Each combination of parameter values was evaluated

using b-fold cross-validation on instances of the training data selected as follows:

e Census, Shuttle. Given the size of the original training partitions in these two

datasets, 10 000 instances were selected using stratified random subset selection.

e Gisette. Though not as large as some of the other datasets, Gisette contains
a much larger number of features. To make the grid search computationally
feasible, a subset of 1 000 instances, again selected using stratified random

subset selection, was used to evaluate each combination of values.

e Bupa, Pima. As detailed in Section 4.1.2, 10-fold cross-validation was used

to evaluate the test performance under Bupa and Pima. The grid search was
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performed on each of the 10 training partitions in their entirety yielding a pair

of parameter values for each partition.

e Thyroid. The parameter selection was conducted across the entire Thyroid

training partition.

The result of each 5-fold cross-validation was used as an estimate of the classification
performance associated with that particular setting of v and C'. The pair of values
yielding the highest accuracy was then selected for use in the comparison, Table 5.2.
As such, under Bupa and Pima, the SVM parameter values could vary across each of
the ten folds.

In contrast to the SBB and AdaBoost (with resampling) algorithms which allow
different initial conditions to be specified, a single SVM initialization was performed
on each training partition resulting in 10 points under Bupa and Pima and one point

under the other four problems.

5.1.4 Evaluation Methodology

The comparison between the SBB, AdaBoost, and SVM algorithms is made with
respect to classification performance and solution complexity. Classification perfor-
mance is analyzed in terms of accuracy, Eq. 4.1, and the mecdr, Eq. 4.2. As suggested
in Section 4.1.4, mcdr is more informative on problems where the class distributions
are unbalanced, and in particular, on the two multi-class datasets introduced in this
chapter. However, accuracy is included in the evaluation since it was used in selecting
the SVM parameter settings. Based on previous observations, Table 4.7, on the more
balanced datasets such as Gisette, Bupa, and Pima, it is expected that these two
measures will be correlated.

The way in which solution complexity is expressed depends on the learning al-
gorithm. SBB solutions are characterized in terms of the number of effective in-
structions, the number of symbionts, and the number of unique features accessed, all
calculated across the entire host. The ensembles produced by AdaBoost are charac-
terized in terms of the number of decision trees (alternatively, boosting iterations?®),
nodes (internal and leaf), and unique features accessed, where all quantities are cal-

culated across the entire ensemble. The SBB and AdaBoost unique feature counts

4If the ensemble contains fewer than the maximum number of trees, then the number of boosting
iterations that was performed is actually one more than the final number of trees. In this case, the
tree generated in the last boosting iteration is discarded.
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’ H Fold\ v ‘ C \Accuracy‘

| Census || — [2® [2711] 0.9465 |
| Gisette || — | 2" [27"1] 0.9450 |

0 [22 [273 ] 0.7484

1 [28 275 07419

2 [ 25 ]2V ] 0.7290

3 [ 20 273 0.7355

Bupa |2 29 1275 0.7387

5 [ 28277 | 0.7556

6 [ 27 [ 273 ] 0.7428

7 29 273 0.7460

8 [29 27 ] 0.7492

9 |2 [ 277 ] 07331

0 [2°[277 ] 0.7800

1 [ 27 [ 277 [ 0.7800

2 [ 2T [27°] 07713

3 [ 29 ]2 0.7844

Pima 4 [28 12791 0.7829

5 29 [ 277 0771

6 [277]273 ] 0.7685

7 [ 2527 ] 0.7873

§ | 22 [27°] 0.7760

9 [22[23] 07818
| Thyroid || (28727 ] 09799 ]
| Shuttle | (2B 1 273 | 0.9984 |

Table 5.2: SVM parameters used in the experiments under the RBF kernel as de-
termined using a grid search on v and C. For each specified parameter setting, the
accuracy refers to the mean accuracy obtained in the 5-fold cross-validation on the
training data, and represents the highest value obtained across all 110 combinations
of the parameters. Under Bupa and Pima, a pair of parameters is associated with
each training partition.
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can be meaningfully compared, while the number of decision trees in an ensemble is
analogous to the number of symbionts in a host. Counting the number of features
accessed by the SVM solutions is unnecessary since all the SVM models always access
all of the features. The other measure of SVM solution complexity considered is the
number of support vectors.

As in previous experiments, Section 4.1.4, the SBB results correspond to the host
in the population at the end of training that yields the highest mcdr on the entire
training set. In contrast, the SVM and AdaBoost algorithms yield a single solution
per initialization, making post-training model selection not applicable. In all cases,

the reported accuracy and mcdr values are with respect to the test partition.

5.2 Results

5.2.1 Classification Performance

Figures 5.2 through 5.4 compare the three algorithms with respect to accuracy and
mcdr. The datasets are considered pairwise based on the following characteristics:
binary and large instance/attribute space (Census and Gisette), binary and small but
historically difficult [116] (Bupa and Pima), and multi-class (Thyroid and Shuttle).
Performing 60 initializations of the SBB and AdaBoost algorithms on each training
partition results in 600 points in the distributions under Bupa and Pima and 60 points
under the other problems. In contrast, a single initialization of the SVM algorithm
was performed on each training partition resulting in 10 points under Bupa and Pima
and a single point on the other problems.

Compared to the SVM and AdaBoost algorithms, the SBB results appear to be
competitive on Bupa, Pima, Thyroid, and Shuttle, Figures 5.3 and 5.4, but the relative
SBB performance degrades on Census and Gisette, Figure 5.2. With the exception of
the medr under Census, the SVM and AdaBoost distributions on Census and Gisette
indicate significantly higher values, i.e., the AdaBoost and SVM distributions do not
overlap with the SBB distributions, and they also exhibit significantly less variability.
Under Bupa and Pima, Figure 5.3, the spread in the values in the distributions
corresponding to all three approaches is greater than on the other problems. This,
combined with a lot of overlap in the distributions, makes the identification of a
dominant approach less obvious. Though the median SBB values are lower than the
median SVM and AdaBoost values, the higher spread in the SBB distributions results

in the top hosts performing at similar levels as top solutions under the other two
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Figure 5.2: Comparison of the SBB approach with AdaBoost and SVM, test partition
accuracy and medr on Census and Gisette. The boosting and SVM distributions are
labeled ‘boost’ and ‘svin’ respectively.
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Figure 5.3: Comparison of the SBB approach with AdaBoost and SVM, test partition
accuracy and mcdr on Bupa and Pima. The boosting and SVM distributions are
labeled ‘boost’ and ‘svin’ respectively.
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Figure 5.4: Comparison of the SBB approach with AdaBoost and SVM, test partition
accuracy and mecdr on Thyroid and Shuttle. The boosting and SVM distributions are
labeled ‘boost’ and ‘svin’ respectively.
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’ H Census ‘ Gisette ‘ Bupa ‘ Pima ‘ Thyroid ‘ Shuttle ‘
0 ~0 ~(0 ~0 ~0
0 ~0 ~0 | 1.273e-05 | 0.003053

accuracy ~0

medr || 0.0003842%

Q&

Table 5.3: Two-tailed Mann-Whitney test results comparing SBB solutions with Ad-
aBoost on six classification problems, test partition accuracy and mecdr. Shown are
the p-values obtained when the test was applied to each pair of corresponding accu-
racy and medr distributions, Figures 5.2 through 5.4. Cases where the SBB median
value is higher are noted with a ‘x’. The comparison does not include the SVM results
where only a single data point is available for each problem.

approaches. Finally, under Thyroid and Shuttle, Figure 5.4, both the SBB approach
and AdaBoost achieve high accuracy and mecdr values. In contrast, the SVM solutions

perform well with respect to accuracy but their associated medr values are poor.

The SVM solutions yield low mcdr values on Census, Thyroid, and Shuttle, sug-
gesting that the SVM algorithm is less effective when the class distributions are
unbalanced. A contributing factor may be that the SVM parameters were tuned with
respect to accuracy. As noted, for this reason, accuracy was included in the com-
parison, and naturally the SVM solutions are expected to have an advantage when
accuracy is considered. Furthermore, the SBB and AdaBoost solutions on Thyroid
and Shuttle achieve both high accuracy and mcdr values, so the two objectives are

not mutually exclusive.

The classification performance of the SBB solutions was compared with AdaBoost
using a set of two-tailed Mann-Whitney tests, Table 5.3. The tests do not include the
SVM results because for each training partition only a single data point is available
under that algorithm. The hypothesis tests indicate that the AdaBoost classifica-
tion performance is considerably better than the SBB performance in all but one
comparison. The sole exception, consistent with previous observations, is the medr
result on Census. Given that the AdaBoost and SVM algorithms are well established
approaches tailored towards classification, their strong classification performance is
to be expected. Perhaps through a more involved application of the algorithm, e.g.,
using domain-specific optimizations as is generally the case in GP [198], stronger SBB
performance could be obtained. However, it is nonetheless emphasized that in certain
situations the end-user may be willing to compromise classification performance in

favour of a simpler solution, where this tradeoff is further discussed in Section 5.3.
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Figure 5.5: Number of effective instructions in the SBB solutions under six classifi-
cation problems aggregated across the entire host.

5.2.2 Solution Complexity

Figures 5.5 through 5.9 summarize the complexity of the solutions generated by the
three approaches with respect to the algorithm-specific building components making
up the solution, i.e., instruction/symbiont, decision tree, or support vector counts.
The complexities of the SBB solutions, Figures 5.5 and 5.6, are higher on Thyroid
and Shuttle compared to the other four datasets. This is likely because Thyroid and
Shuttle are multi-class, and as such, minimalist solutions require a greater number of
symbionts in order to represent each class. Indeed, the highest host sizes are observed
under Shuttle which contains seven classes on this problem, the minimum observed
host size is in fact seven. However, on the two multi-class problems, the sizes of the
individual symbionts in terms of effective instruction counts appear to remain low.
Specifically, once host-wide instruction counts normalized by host sizes are considered,

less than 10 instructions per symbionts are typically observed.

The number of support vectors in the final SVM solutions, Figure 5.7, varies



177

10 —
8_

B2

C

o

5 6 -

&

>

wn

©

o

o) 4 —

e

D

C
2_
0_ ..........................................................................................................................

Figure 5.6: Host sizes under six classification problems in terms of the number of
symbionts after pruning of symbionts.
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Figure 5.7: Number of support vectors in the SVM solutions under six classification
problems. Median values are noted below each distribution.

significantly depending on the dataset. This is reflected in the use of a logarithmic
scale on the y-axis. Specifically, the counts tend to be high when the dataset is large
either in terms of the number of training instances, as in Census, or the number of
attributes, as in Gisette. Such a high spread in complexities under different problems
is not observed under the SBB approach, Figures 5.5 and 5.6, suggesting that the SBB
approach scales better to larger problems such as Census and Gisette. This analysis
may be over-simplified because on Shuttle, the second largest dataset in terms of the
number of instances with 43500 training cases, relatively low support vector counts
are observed. In this case, two contributing factors may also be that Shuttle contains
only nine attributes, as well as the exceptional SVM performance on this problem
with respect to accuracy, Figure 5.4a. Indeed, the SVM performance on this dataset
with respect to the medr is poor, Figure 5.4b, and improvements in this regard may

require substantial increases in model complexity.

Figures 5.8 and 5.9 respectively show the number of decision trees and the number

of nodes across the AdaBoost ensembles. Given that in this context symbionts and
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Figure 5.8: Number of C4.5 decision trees in the AdaBoost ensembles under six
classification problems.

decision trees can be viewed as counterparts, the maximum number of these units was
set at 10 in both cases. Figure 5.8 suggests that boosting tends to use more trees on
the binary datasets and fewer trees on the multi-class problems. This is the reverse of
the behaviour observed under the SBB approach, Figure 5.6, where more symbionts in
a host are observed under the multi-class problems. Thus, as the number of problem
classes increases, the likelihood that boosting produces a base classifier that yields
a weighted error greater than 0.5 appears to increase as well, suggesting an upper
limit beyond which additional boosting iterations are not applicable. In contrast,
these results suggest that the SBB approach has the capacity to decompose the prob-
lem among multiple symbionts so that the investment of additional computational

resources may lead to improved performance.

With respect to the number of nodes across all trees in the AdaBoost ensembles,
Figure 5.9, the trends observed are similar to the trends in the support vector counts,
Figure 5.7. In particular, the complexity of the boosting models varies significantly

across different problems, e.g., as in Figure 5.7 a logarithmic scale is used on the
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Figure 5.9: Number of nodes in the AdaBoost ensembles under six classification
problems. The counts are aggregated across all trees in an ensemble, and include
internal and leaf nodes. Median values are noted above each distribution.

y-axis, and boosting does not appear to scale as well as the SBB algorithm when the

problems are large in terms of the number of attributes or training instances.

A comparison between the algorithms is also made with respect to the number of
unique features accessed across the entire final solution, e.g., across all symbionts in
a host or decision trees in an ensemble. The counts, excluding the SVM solutions,
are shown in Figure 5.10; the SVM models always access all the attributes in each
problem and are therefore omitted from the plots. On the two problems with the most
features and where consequently maintaining low feature access counts may be most
important, Figure 5.10a, the SBB solutions require fewer features compared to the
AdaBoost and SVM solutions. This observation is supported by a two-tailed Mann-
Whitney test at a 0.01 significance level, Table 5.4. Under the other four problems,
where the total number of attributes is not as large and the unique feature counts may
therefore be less relevant, the results across the three algorithms appear to be more

similar. However, with the exception of Thyroid where no difference is indicated
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’ Census ‘ Gisette ‘ Bupa ‘ Pima ‘ Thyroid ‘ Shuttle ‘
[ ~0x| ~O0x[ ~0] ~0x[ 0.5819 [ 4.899¢-05 |

Table 5.4: Two-tailed Mann-Whitney test results comparing the SBB solutions with
AdaBoost on six classification problems with respect to the number of unique features
accessed. Shown are the p-values obtained when the test was applied to each pair
of corresponding distributions in Figure 5.10. Cases where the SBB median value is
lower are noted with a ‘x’. The comparison does not include the SVM results where
only a single data point is available for each training partition.

between the SBB and AdaBoost counts at a 0.01 significance level, Table 5.4, the
results suggest that the SBB feature access counts on these other four problems are

also significantly lower.

Finally, for the SBB and AdaBoost solutions, the amount of overlap in the features
accessed was calculated, Figure 5.11. The SVM solutions were not considered since
all support vectors in a model access the same features, i.e., all the available features.
Depending on the algorithm, the overlap was considered with respect to symbionts
in a host or decision trees in an ensemble, and the calculation itself was performed
as per Eq. 4.3. Figure 5.11 indicates that on all problems the amount of overlap in
features accessed under AdaBoost is greater than under the SBB approach. On some
of the problems, i.e., Census, Bupa, and Pima, no feature is ever accessed by just
one of the trees in an AdaBoost ensemble. These results highlight the difference in
which the two approaches construct a solution. Whereas the SBB algorithm tends
to decompose the problem among the symbionts, successive boosting iterations tend
to result in a refinement of solutions found in previous iterations. More concretely,
the SBB approach encourages diversity through the application of an explicit penalty
for overlapping behaviours, whereas the AdaBoost approach to ensemble construc-
tion encourages overlapping behaviour to provide a pool of collaborating voters, i.e.,
overlap is desired when the majority in the pool makes the correct decision. These
contrasting behaviours are then reflected in the attribute association under the two

approaches.

5.3 Summary of Results

It was suggested at the end of Section 5.2.1 that if the SBB algorithm is competitive
with the AdaBoost and SVM algorithms with respect to classification performance

while providing simpler solutions, then the SBB solutions may be favoured by the
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Figure 5.10: Number of unique features accessed by the SBB and AdaBoost solutions

under six classification problems. For each solution, all symbionts or decision trees in
the solution are considered.



183

20 —

number of unique features accessed

thy SBB thy boost shu SBB shu boost

(¢) Thyroid and Shuttle.

Figure 5.10: Continued.

end-user even if they are slightly less effective. The problem domains where the SBB
algorithm brings the greatest advantage in terms of solution complexity were found to
be Census and Gisette. However, under Gisette, the SBB algorithm clearly resulted
in weaker classification performance than either of the other two approaches, and was
competitive under Census but only with respect to the medr. Thus, on these two
problems, the complexity-performance tradeoff is especially apparent.

Viewing instructions, support vectors, and decision tree nodes as very rough equiv-
alents, the SBB instruction counts can be compared with the SVM support vector
counts and the AdaBoost node counts. Across all problems, the SBB instruction
counts were observed to be lower — however, no hypothesis testing was performed
since the respective units were viewed to be insufficiently similar. With respect to
the unique feature counts, a significant difference was found in favour of the SBB ap-
proach on all problems except Thyroid. Comparing the overlap in features accessed
by the symbionts in a host and the trees in an AdaBoost ensemble, it was found that
the amount of overlap among the trees was greater. This highlighted the differences
in the two approaches whereby one relies on problem decomposition and the other
relies on solution refinement.

In summary, compared to the solutions produced by the AdaBoost and SVM
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Figure 5.11: Proportion of features, with respect to the unique features accessed
across a solution, that are accessed by exactly one module in the solution. The
modules correspond to symbionts and trees under the SBB and AdaBoost approaches
respectively. Lower values indicate more overlap in the features accessed by the
modules in the same solution, i.e., fewer features accessed by just a single module.
The figure is an extension of Figure 4.17 that also includes AdaBoost and considers
feature counts on Thyroid and Shuttle.
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algorithms, the SBB solutions were found to be simpler, particularly on the larger
problem domains. In many cases, the tradeoff between classification performance and
solution complexity was found to be present, with the two baseline algorithms yielding
stronger classification performance. If more consistent performance could be achieved
at the upper end of the spectrum, either through parameter tuning or modifications
to the algorithm itself, the SBB algorithm could become a useful alternative to the
mainstream classification algorithms provided solution complexity remains low. Fi-
nally, it is emphasized that the relative simplicity of the SBB solutions is attributed to
the focus in the approach on evolving non-overlapping behaviours, e.g., through im-
plicit or explicit fitness sharing, whereas standard practice in ML tends to emphasize

solution subcomponents whose behaviours overlap as in the case of AdaBoost.



Chapter 6

Test Case Selection in Temporal Sequence Learning

under Binary and Real-Valued Rewards

A key component of the SBB algorithm is the coevolutionary interaction between the
host and point populations, center-left of Figure 3.3, which allows the approach to
scale to problems with many training cases. The design of this component involves
many decisions, and in this chapter, the focus is on the policies for managing the
contents of the point population. In particular, the choice of a binary versus a real-
valued cost function is investigated under temporal sequence learning, where this then

forms the basis for the environment definition assumed in Chapters 7 and 8.

Binary cost functions, indicating either success or failure, are typically easier to
specify but provide no information about the quality of partial solutions, i.e., they
often result in a search process analogous to that of a ‘needle in a haystack’. Real-
valued functions, on the other hand, tend to be a lot more informative in that they
credit partial solutions, but this also means that they may not be as direct in guiding
the search, e.g., a high fitness may be associated with an individual that partially
solves many training cases but does not actually solve the problem. As such, more
care must be taken in the specification of real-valued functions. Furthermore, whereas
a real-valued function may perform adequately under a random test case sampling
heuristic, i.e., an arbitrarily selected point will often be informative, binary cost
functions are likely to require more sophisticated mechanisms for maintaining an

informative set of training cases [113].

To investigate some of the issues involved in the design of the cost function, in this
chapter, the SBB algorithm is compared against random and static subset selection
strategies under binary and real-valued rewards. In addition, the effectiveness of the
proposed point fitness function, Section 3.2.6, is established through a comparison
with a distinction-based formulation, as well as a formulation where genotypic point
diversity is not explicitly encouraged. Based on the results that are presented, the
assertion is made that the additional cost of calculating the genotypic diversity compo-
nent in the point fitness function is worthwhile, especially under temporal sequence

learning where a lot of computational overhead is already expanded in performing
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simulations.

In the process, as this chapter introduces the truck reversal environment, the prob-
lem domain changes to temporal sequence learning. In this environment, the inputs
and output are continuous!, where this provides a contrast to the discrete Rubik’s
Cube environment that the SBB algorithm is applied to in Chapter 8. In addition to
providing an instance of a continuous problem, a key motivation behind the choice
of problem in this chapter was that the associated states can be easily visualized,
thus facilitating analysis of the host and point populations that are evolved. The
difficulty of a given problem formulation depends on many factors including the par-
ticular problem parameters and constraints; the performance of the Neuroevolution
of Augmenting Topologies (NEAT) algorithm [177] on the truck reversal problem,
presented in Chapter 7, establishes the difficulty of the formulation used here.

The core SBB algorithm and the associated parameter settings remain unchanged
compared to the previous experiments in the classification domain. This illustrates
the robustness of the algorithm, in terms of its applicability to different problems, as
well as its associated parameter settings.

The structure of this chapter is as follows. The SBB algorithm components that
differ relative to the version of the algorithm used in previous chapters are briefly
summarized in Section 6.1. Here, it is noted that the changes are only with respect
to the point population, and that these changes are also in effect in Chapters 7 and
8. The truck reversal environment, including the point search operators and point
distance functions used, is described in detail in Section 6.2. Section 6.3 describes the
parameter settings, evaluation methodology, and variants of the SBB algorithm that
are compared. Finally, the results and the conclusions that they lead to are presented

respectively in Sections 6.4 and 6.5.

6.1 Algorithm Details Specific to Temporal Sequence Learning

In contrast to classification, test cases under temporal sequence learning represent
only the starting states, and more importantly, this space of starting conditions is
typically structured so that variation operators can be meaningfully applied to gener-
ate offspring points from parent points. Thus, as a result of the switch in this chapter
from classification to temporal sequence learning, a number of changes to the SBB
algorithm restricted to point initialization, generation, and selection have been made.

These changes, made relative to the version of the algorithm as used in Chapters 4

'However, in order to apply the SBB algorithm, the angle of the front wheels was discretized.
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and 5, also apply in Chapters 7 and 8. They are as follows:

1. Instead of using a class-balanced point sampling heuristic, the point population

is initialized to contain a random set of points.

2. The class-balanced point sampling heuristic is also no longer used during point
generation. Instead, in the majority of cases, new points are generated from
existing points through a variation operator, with an occasional random point

added to help maintain diversity.

3. The distance between all points is no longer assumed to be one. Therefore, the

normalization rewarding genotypically unique points is no longer bypassed.

These changes have already been discussed in general terms in Sections 3.2.1, 3.2.3,
and 3.2.6. In the context of the truck reversal environment, the first two items, point
initialization and point generation, are described in Section 6.2.3. The distance metric
used in point removal is detailed in Section 6.2.4. It is emphasized that the core SBB

algorithm remains unchanged.

6.2 Truck Reversal Environment

This section describes the truck reversal environment used in this and the following
chapter, beginning with an overview of the problem in Section 6.2.1. The equations of
motion, used to define successive states, are then detailed in Section 6.2.2. The point
initialization /generation procedures and the genotypic distance used are described in
Sections 6.2.3 and 6.2.4 respectively, and are followed by a specification of the binary

and real-valued reward schemes in Section 6.2.5.

6.2.1 Overview
Problem Formulation

The truck reversal environment used here is a modified version of an earlier formu-
lation [1]. The problem involves a cab and semi, moving in reverse at a constant
speed, that must be steered from an arbitrary location into a loading dock. Thus, the
end result tends to be sensitive to steering decisions made early on, or alternatively,
the effect of specific decisions is not immediate, making temporal credit assignment
difficult. In addition, the problem is highly non-linear. Steering is achieved by setting

the angle of the front wheels, and the goal is to learn a successful strategy for setting
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this angle. The main modification in this work compared to the previous formulation
[1] is to include an obstacle into the environment.

The environment variables defining a configuration of the cab and semi, Figure
6.1, are the location of the back of the semi, (x,y), the angle of the semi, O, and
the angle of the cab, ©.. These four variable are input to the controller which must
learn a strategy for setting the angle of the front wheels u. Angles ©, and ©, are
measured from the positive z-axis, while the steering angle u is measured relative
to the alignment of the cab. In all cases, counter-clockwise corresponds to the pos-
itive direction. The angle u, continuous in the original problem formulation [1], is
discretized and may assume values in {0°, —30°,30°}; defining three actions in this
way keeps the problem definition simple while allowing solutions that are not strictly
‘bang-bang’-style? controllers to be evolved. The 0° action allows the cab and semi
to move in a straight line provided that ©; is equal to ©..

The cab and semi move in a plane, Figure 6.2, in which a rectangular obstacle
has been placed with upper-left and lower-right corners at (45, 50) and (55, -50)
respectively. From an initial state, the cab and semi travel a fixed distance during
each time step. A maximum of 600 time steps is allowed in a single simulation, and

the episode is stopped under the following conditions:

1. The z-coordinate marking the back of the semi assumes a negative value, i.e.,

the semi crosses the y-axis.
2. The (z,y)-coordinates of the back of the semi fall within the obstacle.

3. The difference between ©4 and ©. is more than 90°, i.e., the cab and semi

jackknife.

4. Not enough time steps remain to return from the current location to the origin

along a straight line.

Comparison with Previous Formulations

Initial ML approaches to the truck reversal problem focused on the use of neural
networks [136, 137]. Jackknifing of the cab and semi was allowed, supporting ‘bang-
bang’-style policies and making the learning task significantly easier, and training was

based on increasingly more difficult ‘lessons’ which were specified a priori. In general,

2Whereby the controller resorts to the use of two, often symmetric, actions, e.g., hard left and
hard right.
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004 5

Figure 6.1: Truck reversal cab and semi configuration. The state is defined in terms
of the coordinates of the back of the semi, (z,y), the angle of the cab, ©., and the
angle of the semi, ©,. The cab and semi angles are measured from the positive z-axis,
while the steering angle u is measured relative to the cab orientation. In all cases,
the counter-clockwise direction corresponds to positive angle values. Distances are
measured in meters.
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Figure 6.2: Truck reversal environment plane and obstacle. Training cases are re-
stricted to the rectangular area bounded by the y-axis and the dotted line.

the starting configurations were much closer to the goal state than in the formulation
used here, with the back of the semi never more than two truck lengths away from the
origin in the z direction and one truck length away in the y direction. Subsequently,
the difficulty of the original problem formulation was questioned [56], although in
doing so significant domain knowledge was assumed including the transformation of
the state space to polar coordinates and a manual override in case of jackknifing.
In contrast to the initial attempts, other approaches have relied on a manual task
decomposition, e.g., separating the subtask of aligning the semi with the z-axis from
directing the vehicle towards the y-axis [84].

More recently, the truck reversal problem has attracted attention from the fuzzy
systems research community [26, 143, 153]. However, the underlying problem defini-
tion in this case is fundamentally different as it involves a cab with no semi, altogether
eliminating the possibility of jackknifing. As in this work, a recurring theme in the
fuzzy systems research appears to be knowledge-driven learning versus data-driven
learning, where the proposed approach is viewed as an instance of the latter.

EC approaches to the truck reversal problem include the optimization of neural
network weights using a GA [161] and the evolution of GP-based controllers [94]. In

both cases, a hand-crafted set of starting configurations was used as a basis for the
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fitness function, and no evaluation on an independent test set was performed. In the
latter case, the domain-specific arctangent function used in the equations of motion
for the problem, Section 6.2.2, was included in the GP function set. As in the other
formulations discussed above, jackknifing represented a legal condition.

In summary, relative to previous formulations of the truck reversal problem, the

proposed work differs in the following key ways:

1. The cab and semi are not allowed to jackknife, a constraint that is enforced by
terminating the episode and returning minimum (zero) reward when jackknifing
does occur. This makes the learning task more difficult, particularly given that

the effects of decision made are delayed for a relatively long time.

2. An obstacle is included in the environment which must be avoided in steering

the cab and semi towards the origin — this again increases problem difficulty.

3. The goal is to evolve a policy that is effective across a diverse set of starting
conditions. The set of fitness cases, i.e., the point population, is therefore not
specified a priori but rather selected stochastically, and post-training evaluation

is performed on an independent test set.

It is also noted that the formulation of the truck reversal problem used in this
work differs from the style of problems often encountered in robotics. Specifically,
there is a relatively limited amount of global information that can be used to control
the truck, namely, the (x,y)-coordinates of the back of the semi and the two angles.
Thus, there is no way to detect the obstacle, and any successful policy must infer
its location indirectly. In contrast, problems commonly encountered in robotics often

make use of extensive local information, e.g., sensory inputs that can detect a wall.

6.2.2 Equations of Motion

The equations of motion [1] define the state at time step ¢ + 1 given the state and

action at time step ¢ and are included for completeness:

A = rcosult]

B = Acos(0.[t] — Oslt])

C = Asin(O.[t] — 65]t])
z[t+1] = z[t] — Bcos Oy
ylt+1] = yt|] — Bsin Oy
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Oft+1] = tan™ (dcsin@[ﬂ—mos@c[t sinu[t])

]
d. cos O[t] + rsin O, [t] sin ut]
ds sin O4[t] — C cos O4]t]
ds cos O4t] + C'sin O;]t]

Ot +1] = tan™' (

Here, parameters r, d., and d are respectively the distance traveled by the front tires
in a single time step, the length of the cab, and the length of the semi. The tan !

function is the arctangent of two variables® with a range of (-, ].

6.2.3 Point Initialization and Generation

The operators used to produce points, described below, result in initial configurations
where the (z,y)-coordinates marking the back of the semi are restricted to fall within
a rectangular region with upper-left and lower-right corners at (0, 100) and (100,
-100) respectively but outside of the obstacle, Figure 6.2. The cab and semi always
start in an aligned state. Given the way points are created, some initial configurations
may arise from which it is impossible to guide the cab and semi to the origin, though
identifying these configurations is not trivial.

During point initialization and point generation, Sections 3.2.1 and 3.2.3, random

points are created as follows:

1. The z- and y-coordinates marking the back of the semi are selected with uniform
probability from (0, 100) and (-100, 100) respectively.

2. If the (z,y)-coordinates selected in the first step fall within the obstacle, the
first step is repeated.

3. A value for Oy is selected uniformly from (-7, 7], and the same value is used to

initialize ©,.

To generate an offspring point from a parent point, Section 3.2.3, the parent is

cloned, and the individual components of the clone’s state are mutated as follows:

1. The z-coordinate is mutated through the addition of a normally distributed

deviate with zero mean and standard deviation o,.

2. If the z-coordinate after the previous step does not fall within (0, 100), the

mutation is reversed, and the previous step repeated.

3Implemented in C as the atan2 function.
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3. The y-coordinate is mutated through the addition of a normally distributed

deviate with zero mean and standard deviation o,.

4. If the y-coordinate after the previous step does not fall within (-100, 100), the

mutation is reversed, and the previous step repeated.

5. If the resulting (z,y)-coordinates fall within the obstacle, the mutations are

reversed, and the process reverts back to the first step.

6. Og is mutated through the addition of a normally distributed deviate with zero

mean and standard deviation of og, and 6, is set to equal ©;.

6.2.4 Genotypic Distance
Denoting two arbitrary starting states by (z,y, O, ©,) and (2/,y', 0, 0.), the raw
distance between them as used in calculating the genotypic diversity reward, Eq. 3.5

in Section 3.2.6, was calculated as

z—a'\> y—1y 2 A(Bs,07) ?
(100)+<200>+ 7

where A(Oy, %) is the difference in angles reduced to [0, 7], i.e., the minimum of

the original difference or 27 less the original difference. The denominators 100, 200,
and 7 represent the maximum possible value for each respective numerator and are
used to normalize each term to the unit interval. The angle ©. is not included in the

calculation since for each starting state it is equal to O.

6.2.5 Reward Functions

As suggested in the preliminaries to this chapter, binary reward schemes tend to pro-
vide less information than real-valued functions, but they are often easier to specity,
e.g., the end user typically knows what the desired end condition is but may not be
able to characterize the subgoals required to reach it*. The choice of reward scheme
is therefore likely to have an effect on the credit assignment policies inherent in the
learning algorithm, and consequently in this work, the selection and generation of

both the hosts/symbionts and points.

4The Rubik’s Cube environment that is considered in Chapter 8 is a good example of this, i.e.,
the specification of a solved cube is trivial and intuitive.
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In this chapter, two reward schemes defining the outcome of applying a host to
a point, Section 3.2.5, were considered in the experiments. Both were based on the
final configuration of the cab and semi. Under the binary reward scheme, the reward

was defined as
1 if |z| < 1.0, |y| < 1.0, and |©| < 45°

0 otherwise

(6.1)

assuming final values of x, y, and ©; for the coordinates and angle of the semi.
The binary reward scheme thus represents an all-or-nothing approach where partial
solutions, e.g., solutions that are very close to the goal but do not meet the criteria
in Eq. 6.1, do not receive any credit. For example, under this reward scheme, no
distinction would be made between a policy that directs the cab and semi into the
obstacle and a policy that runs out of time but otherwise successfully directs the

vehicle towards the origin.

The real-valued reward scheme, on the other hand, provides a continuum of re-
wards based on the distance of the final configuration to the goal state. Specifically,
given final values of z, y, and O, the associated reward under the real-valued scheme

is defined as .

V22 + 02 +1 62)

yielding values closer to unity as the final configuration approaches the goal state.

Under both reward schemes, jackknifing is treated as a special case in which a
reward of zero is returned. In this way, the controller cannot take advantage of jack-
knifing the cab and semi, e.g., terminating the episode when the truck is close to the
origin. In addition, the low reward value associated with a jackknifed configuration
discourages solutions that would repeatedly swing the semi hard in one direction then

the other, i.e., ‘bang-bang’-style policies.

6.3 Experimental Setup

The sections that follow describe the parameter settings, Section 6.3.1, the evaluation
methodology, Section 6.3.2, and the algorithm formulations used in the comparison,
Section 6.3.3.
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’ Parameter H Symbol ‘ Value ‘
Distance traveled in one time step r 1.0 m
Length of the cab d. 6.0 m
Length of the semi ds 14.0 m
Mutation size, x-coordinate Oz 5.0 m
Mutation size, y-coordinate oy 10.0 m
Mutation size, angles oo 18°
Maximum number of time steps - 600
Actions - —30°,0°, 30°

Table 6.1: Truck reversal environment parameters.

6.3.1 Parameters

The same parameter settings were used in these experiments as in earlier chapters,
Tables 4.3 and 4.4. Due to the switch from classification to temporal sequence learn-
ing, point generation, Section 3.2.3, and point selection, Section 3.2.6, has changed to
take advantage of the structure in the state space. Thus, two additional parameters
became applicable. The first was the probability of generating an offspring point
from a parent point (as opposed to creating a random point), Py.,,, which was set to
0.9. The second was K, the number of nearest neighbours used in the point fitness
calculation, which was set to 13°. As before, 60 initializations were performed using
each configuration.

Parameters specific to the truck reversal environment are summarized in Table
6.1. The length of the cab and semi were kept as in the original problem definition
[1], while the distance traveled in one time step was increased from 0.2 meters to 1.0
meter so that the same distance could be covered in one episode as in previous studies
25, 94] while reducing the number of time steps. The mutation standard deviations

were set at five percent of the range of each respective initial state variable.

6.3.2 Evaluation Methodology

The quality of a solution was measured in terms of the number of test cases that
it solved. A test case was considered solved if in the final configuration the state
variables were as follows: |z| < 1.0, |y| < 1.0, and |©;| < 45°. Thus, at the end of the
episode, the back of the semi had to be within one meter of the origin and aligned

within 45° of the positive z-axis. This definition of a solved state matches the criteria

5Calculated as 1 plus one-tenth of the size of the point population.
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used in the binary reward function, Eq. 6.1. It is also noted that the term ‘solved’ is
not limited to post-training evaluation but is also used in reference to members of the
point population during training, i.e., when the final configuration associated with a
point contributes to a high fitness value for a given host.

A solution could be viewed as either the best host in the population at the end
of training, or as the population of hosts as a whole. Naturally, different hosts are
expected to solve different problem instances, hence the population-wide counts will
tend to be larger than the count for any single host. Considering population-wide
counts is motivated in part by the capacity of the SBB algorithm to combine solutions
hierarchically, where this is considered in Chapter 7.

To determine which host in the final population was identified as the best, a
validation set consisting of 1000 random points was used. Each point in this set was
initialized as described in Section 6.2.3 with one exception: if the selected O, and 6,
were such that, following a straight line, the truck would run into the obstacle, the
angles were reselected. This additional constraint was included to reduce the number
of cases that were not feasible®. The best host was then defined as the individual in the
population with the highest mean reward on the validation set. An independent test
set, consisting of 1000 problem instances initialized in the same way as the validation
set, was then used to evaluate the performance of the best host and the population
as a whole. The results presented in Section 6.4 are with respect to this independent
test set. It is also noted that the validation and test sets were the same across all

initializations.

6.3.3 Algorithm Formulations

Five variants of the SBB algorithm were compared in the experiments, differing only
in the way in which the point population is managed, with the goal of establishing
the significance of the formulation of specific algorithm components. Relative to the
original algorithm specification, the relevant components include point initialization,
Section 3.2.1, point generation, Section 3.2.3, and the removal of points, Section 3.2.6.

Not all of the variants, described below, involve modification in all three areas:

1. SBB. The original SBB algorithm for temporal sequence learning as described

in Chapter 3, i.e., no modifications were made. Point generation adds points

6Given a random set of points generated in this way, it is likely that on average a certain pro-
portion of the cases remain infeasible, e.g., a case may require a turn that is physically too tight.
A one-hundred percent success rate on the test set is therefore not expected, though the exact
proportion of cases that are not feasible is unknown.
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that are predominantly obtained through the domain-specific mutation of ex-
isting points with the occasional inclusion of a random point aimed to help
maintain diversity. Removal of points deterministically discards points based
on a fitness calculation that considers two factors: the degree to which points
identify unique and useful host behaviours, and the degree to which points are
themselves genotypically unique. Furthermore, the latter is with respect to the

domain-specific distance measure.

2. SBB-RSS. The SBB algorithm with coevolution between the point and host
populations replaced with random subset selection (RSS). Point generation still
adds P,,, points to the population but each point is generated as in point
initialization. During removal of points, P,,, points, each selected with uniform

probability, are removed.

3. SBB-SSS. The SBB algorithm with coevolution between the point and host
populations replaced with static subset selection (SSS). The point population is
initialized to contain Pi;.. points and the same set of points is used to evaluate
hosts across all generations. As such, point generation and point removal are

bypassed.

4. SBB-DST. This variant uses distinctions to establish the raw fitness of each
point in place of the function used in the SBB formulation. Specifically, for
each point, a binary distinction vector is calculated, Eq. 2.2. Based on this set
of distinction vectors (one vector per point), a shared fitness is calculated for
each point in a way that is analogous to the host shared fitness calculation, Eq.
3.7. Thus, points are rewarded for making distinctions that few other points
make. The genotypic reward is then applied to the shared score for each point

as before.

5. SBB-RAW. A version of the SBB algorithm that uses the raw point fitness
function, Eq. 3.3, without applying the reward based on the points’ genotypes.

It is stressed that relative to the original SBB formulation, all other components in
the latter four formulations remain unchanged. Inclusion of SBB-RSS and SBB-SSS
is meant to establish the significance of the coevolutionary component between the
point and the host populations by comparing it to two naive point sampling and
removal strategies. SBB-DST represents an established formulation of competitive

coevolution [46, 139] against which the proposed raw point fitness function can be
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compared. Finally, comparison between SBB and SBB-RAW should isolate the effect

of the genotypic diversity reward on the populations that are evolved.

6.4 Results

Results related to the comparison between the original SBB algorithm and the for-
mulations using random and static subset selection are presented in Section 6.4.1,
whereas comparison with distinction-based fitness and fitness with no genotypic re-

ward are presented in Section 6.4.2. Section 6.4.3 involves additional analysis of the
difference in behaviour under the SBB and SBB-RAW formulations.

6.4.1 Comparison with Random and Static Subset Selection

The number of test cases solved using the SBB, SBB-RSS, and SBB-SSS formulations
is shown in Figure 6.3. Under binary rewards, Figure 6.3a, the SBB formulation does
significantly better than the other approaches both with respect to the best host
and population distributions. In addition, it exhibits a visible improvement in the
population-wide performance compared to the best host counts. With the exception
of a handful of values, the SBB-RSS counts tend to be close to zero, both with respect
to the best individual as well as the population as a whole. The SBB-SSS performance
is slightly better though well below that of SBB. Under real-valued rewards, Figure
6.3b, SBB-RSS appears to perform the best, with SBB yielding solution counts that
are slightly lower. The SBB-SSS performance appears to be the worst. Furthermore,
across all three approaches, the population-wide solution counts tend to be greater
under real-valued rewards than under binary rewards.

To determine if the observed differences between the SBB counts and the counts
for the other two approaches are significant, a set of two-tailed Mann-Whitney tests
was applied to each pair of corresponding distributions in Figure 6.3, e.g., the best
individual counts using SBB and SBB-RSS under binary rewards. The resulting p-
values are reported in Table 6.2. Under binary rewards, the tests suggest a difference
between SBB and the other two approaches at a 0.01 significance level, and here,
the difference is clearly in favour of the SBB formulation. Under the real-valued
reward scheme, the observed differences are not meaningful at a 0.01 significance
level. These results, together with the qualitative observations made earlier, suggest
that under binary feedback only the SBB formulation is appropriate. In this case, the
critical factor appears to be the coevolutionary relationship between the point and

host populations.
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(a) Binary rewards.
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(b) Real-valued rewards.

Figure 6.3: Number of truck reversal test cases solved under SBB, SBB-RSS, and
SBB-SSS under binary rewards and real-valued rewards. Distributions corresponding
to the population-wide counts are labeled ‘pop’.
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’ H Binary ‘ Real-valued ‘

Best host ~0x 0.06329
SBB vs SBB-RSS Population ~0* 0.02107
Best host || 7.002e-07% 0.3193%
SBB vs SBB-555 15 0 Tation || 1.1766-09% | 0.03374x

Table 6.2: Two-tailed Mann-Whitney test results comparing SBB solution counts
with SBB-RSS and SBB-SSS solution counts. Shown are the p-values obtained when
the test was applied to each pair of corresponding distributions in Figure 6.3. Cases
where the SBB median value is higher are noted with a x.

The contrasting performance of SBB-RSS under binary and real-valued rewards
suggests that under binary rewards there is not enough host fitness information to
form and maintain a learning gradient. In particular, given an initial set of random
points and hosts, it is likely that the number of hosts solving one or more points
is small, and that the maximum number of points solved by any given host is also
small. Thus, most hosts are likely to always receive a reward of zero, resulting in
little or no information as to whether one host is better than another. As the point
population evolves, the points that do provide information on host fitness are just
as likely to be removed as any other point, leading to a reduction in the fitness of
any hosts that solve those points. Furthermore, there is no process for exploiting
points that do provide useful information on the quality of the hosts. Effectively,
using the SBB-RSS formulation under binary rewards, it appears that the host and
point populations are not suitably engaged. Under real-valued rewards, on the other
hand, a learning gradient is always likely to be present because a non-zero value is

associated with all non-jackknifed states.

The poor performance of SBB-SSS compared to SBB under binary rewards can
also be rationalized in similar terms. However, unlike under SBB-RSS, once a point is
found to be solvable under SBB-SSS that point will not be arbitrarily discarded since
the point population is not turned over. The point population under static subset
selection thus represents a stationary target making it easier to maintain engagement,
which, once established, depends only on the ability of the host population; naturally,
this is assuming that the static point population represents a challenging set of start-
ing configurations. This is consistent with the second-best performance of SBB-SSS

observed in Figure 6.3a.

To gain insight into the degree to which different hosts in the same population

solve different test cases, the number of test cases solved by the best host is compared
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to the number of test cases solved by all the hosts in the population at the end of
training, Figure 6.4. In a given initialization, if the best host solves a large portion of
the cases solved by the population as a whole, the point in the plot will approach the
y = x line. This is interpreted as suggesting overlapping behaviour in terms of the
test cases solved, i.e., different hosts tend to solve the same test cases. However, no
points are observed below y = x since no matter how good it is the best host cannot
solve more cases than the population that it is a part of. Lines at y = 2z and y = 3z
are also included indicating thresholds at which the population solves at least twice
and three times as many cases as the best host.

In the case of the SBB algorithm under binary rewards, Figure 6.4a, different hosts
in the same population do appear to solve different test cases. However, the best host
tends to win an increasingly large proportion of test cases as its quality increases;
this is observed in the high number of relatively poor solutions above the y = 3z line.
With respect to the best overall solution across all initializations, the best individual
solves 417 cases while the population as a whole solves 709 test cases, i.e., the best
individual accounts for nearly 60% of all cases solved. This trend is consistent with
the SBB-RSS and SBB-SSS binary results, Figures 6.4c and 6.4e, though it is perhaps
not as visible given the high number of very poor solutions.

Under real-valued rewards, Figures 6.4b, 6.4d, and 6.4f, many solutions are ob-
served where the best host count is close to zero but the population wide count is
comparatively high. However, this may not necessarily suggest a high degree of prob-
lem decomposition among the hosts in the same population with respect to the test
cases solved. Instead, it indicates that the criterion for selecting the best host under
real-valued rewards may not be a good choice. Specifically, the best host is selected
as the one with the highest mean reward on the validation set. Under real-valued
rewards, a host can receive a high reward on average, but due to the crisp limits defin-
ing a solved state, it may not actually solve many test cases, Figure 6.5. In contrast,
under binary rewards, using the mean reward to select the best host is equivalent to

using the count of solved cases.

6.4.2 Comparison with Raw and Distinction-Based Point Fitness

A comparison between SBB, SBB-DST, and SBB-RAW with respect to the number
of test cases solved is shown in Figure 6.6. Compared to the other two approaches,
SBB appears to do better under binary rewards, Figure 6.6a, both in terms of the

single best host and the population as a whole. Under real-valued rewards, Figure
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Figure 6.4: Comparison of SBB, SBB-RSS, and SBB-SSS with respect to the number
of test cases solved by the best host, z-axis, and across the population, y-axis. Each
point represents the two quantities at the end of training for one initialization. The
plots include a solid, dashed, and dotted line drawn at y = z, y = 2z, and y = 3x
indicating when the population solves one time, two times, or three times as many
cases as the best host. Each subfigure caption denotes respectively the algorithm,
reward scheme, and z- and y-axis ranges.
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’ H Binary ‘ Real-valued ‘

Best host 0.1467% 0.5472
SBB vs SBB-DST |50 o ion [ 0.00241 0.5322
Best host || 0.001211% 0.7766
SBB vs SBB-RAW -5 Tation [ 0.004516+ | 3.188-05

Table 6.3: Two-tailed Mann-Whitney test results comparing SBB solution counts
with SBB-DST and SBB-RAW solution counts. Shown are the p-values obtained
when the test was applied to each pair of corresponding distributions in Figure 6.6.
Cases where the SBB median value is higher are noted with a x.

6.6b, SBB appears to outperform SBB-RAW in terms of the population-wide counts,
although the highest values in terms of both the best host and population-wide counts
are observed under SBB-DST. It is surprising to see that compared to the best host
counts, the population-wide counts observed under SBB-RAW appear to show sig-
nificant improvement under both reward schemes. It was expected that due to the
lack of an explicit mechanism for enforcing genotypic diversity in the point popula-
tion, the SBB-RAW host populations would converge resulting in more overlap in the
test cases solved. However, the SBB-RAW performance still tends to fall behind the
SBB performance in all but the best host counts under real-valued rewards, the latter

approach taking into account the genotypic diversity of the point population.
The results of a set of two-tailed Mann-Whitney tests comparing SBB to each of

the other two approaches is shown in Table 6.3. At a significance level of 0.01, no
meaningful differences are observed between SBB and SBB-DST in any of the tests
— this is out of line with the qualitative observations noted earlier whereby the SBB
counts were observed to be higher under binary rewards but lower under real-valued
rewards. With respect to the population-wide counts, this result may be due in part to
the slightly bimodal shape of the SBB-DST distributions. Compared to SBB-RAW,
the SBB formulation appears to be better with respect to both sets of counts under
binary rewards at a (0.01 significance level, and also under real-valued rewards but
only with respect to the population-wide counts. Thus, even though the SBB-RAW
population-wide counts show an unexpected improvement over the corresponding
best host counts, the overall level of performance achieved by including an explicit

genotypic diversity component in the point fitness is higher.

Given that the difference in performance between SBB and SBB-DST was not

shown to be statistically significant, the motivation for using the proposed point
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Figure 6.6: Number of truck reversal test cases solved under SBB, SBB-DST, and
SBB-RAW under binary rewards and real-valued rewards. Distributions correspond-
ing to the population-wide counts are labeled ‘pop’.
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fitness function instead of the already established distinction-based fitness may not
be readily apparent. However, a disadvantage of using distinctions is that given
n individuals to be evaluated, the total number of possible comparisons is n? — n.
This has two negative consequences. First, performing the point fitness computation
becomes increasingly expensive as the number of individuals n increases. Second, as
the number of individuals grows, they all tend to fall in the non-dominated set with
respect to the Pareto-dominance relation that is the basis of Pareto-coevolution and
several of the associated theoretical results. As such, a tie breaking heuristic must be
used, at which point it becomes difficult to decide which distinctions are meaningful
and which are not. In contrast, the proposed fitness function is more efficient, i.e.,
linear in the number of individuals n, and as specified, yields a single scalar fitness

value which can be used directly without the application of additional heuristics.

6.4.3 Genotypic Diversity in the Points: Further Analysis

To gain insight into the effect of the genotypic diversity component in the point
fitness function, contents of the point population were analyzed for select runs under
the binary reward scheme, Figures 6.7 and 6.8. Each subplot in the figures shows the
initial states corresponding to the 100 points at the end of the indicated generation.
A state is represented by two conjoined line segments, indicating the cab and the
semi, with the back of the semi denoted by a e. Since initial states are generated
such that ©5 = O,, in these figures the two segments are always aligned (though this
is not true in all figures where this representation is used).

Figure 6.7 represents the SBB-RAW run where the highest number of test cases
was solved across the population. An SBB run where roughly the same number of
test cases was solved is also shown in Figure 6.8, though this is clearly not the best
SBB run observed. Comparing the two, the effect of the genotypic diversity reward
can be clearly visualized. In the SBB-RAW run, Figure 6.7, after ten generations
most of the population has already converged to a relatively small region of the state
space. The points tend to remain in a single cluster, although the lump itself does not
remain stationary. In particular, occasionally, e.g., as seen in generations 300, 400,
600, and 800, some of the points break off from the main cluster. If these seceding
points survive, it appears as if they may then be able to draw the cluster to a different
region of the space space.

A different dynamic is observed when genotypic diversity is explicitly promoted,

Figure 6.8. Initially, the points also converge to a single region of the state space,
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Figure 6.7: Evolution of points in an SBB-RAW run, good initialization (489 of 1000
test cases solved by population).
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although the rate of convergence appears to be slower. In particular, at generation
100 in Figure 6.8, the point population is very similar to the point population at
generations 50 and 100 in Figure 6.7. Following this initial convergence, however, the
points do not remain in a single cluster but rather they tend to disperse and remain
spread out — this behaviour is attributed to the genotypic diversity factor applied in
calculating point fitness.

Both Figures 6.7 and 6.8 indicate an initial convergence of the point population to
a region near the origin, where this is due to the coevolutionary interaction between
the host and point populations. The exact dynamic at play cannot be determined
given the available data, but one possibility is as follows. Specifically, the initial host
population is likely to contain relatively weak individuals that can successfully reach
the goal state only from easy starting states, that is, those close to the origin and
where the direction of motion is towards the origin; indeed, this characterization of
easy points matches the initial clusters that are formed. Thus, initially, only these easy
points will be supported with the more difficult points receiving a minimum (zero)
fitness value. As the behaviour of the hosts grows stronger, they will gain the ability
to reach the goal state from other regions of the state space, including points that
were previously regarded as too difficult. At the same time, as points with non-zero
fitness appear in regions of the state space away from the initial cluster, the genotypic
diversity component in the SBB formulation is likely to assume a more significant role;
this is viewed as a secondary effect, however, since the critical factor is undoubtedly
the ability of the point population to differentiate between hosts of different ability, or
in coevolutionary terminology, Section 2.4.1, that engagement between the host and
point populations is maintained”. For example, under the SBB-RAW initialization in
Figure 6.7, it appears that engagement is maintained even though the points tend to
represent similar conditions suggesting that perhaps they are not as discriminating
as one would like.

The test cases solved by the population at the end of the runs shown in Figures
6.7 and 6.8 are shown in Figures 6.9 and 6.10 respectively. The plots are similar,
where this is likely due to selecting an SBB run that solves roughly the same number
of test cases as the SBB-RAW run®. Tt is surprising, however, that the convergent
point behaviour observed in Figure 6.7 results in similar levels of performance as the

diverse behaviour observed in Figure 6.8. One would expect more diversity in the

7 Alternatively, if raw point fitness, Eq. 3.3, is zero, then the genotypic reward factor is irrelevant.
8In both runs the unsolved cases tend to be close to the y-axis. This is reasonable if those test
cases require the cab and semi to initially pull away form the y-axis.
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Figure 6.9: The 489 test cases solved in the SBB-RAW run in Figure 6.7.
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point population to produce much better population-wide host performance, since
points are supported only if they are solved by one or more hosts. A reason for the
relatively strong performance of the SBB-RAW run may be that the point cluster in
Figure 6.7 is not stationary. Thus, if the knowledge learned in previous generations is
retained in the host population, the models will incrementally get better with respect
to the entire state space. It is also noted that the best host in the SBB and SBB-
RAW runs solved 318 and 192 of the test cases respectively, suggesting that in the
former case the best individual is responsible for a greater proportion of the solved
points. This is counter-intuitive given the higher diversity in the point population
under the SBB run where one would expect different individuals to associate with
different regions of the state space.

Analogous to the presentation above, the evolving point population and the test
cases solved in a bad SBB-RAW run are shown in Figures 6.11 and 6.12 respectively.
These figures are consistent with the hypothesis that the SBB-RAW algorithm can
produce relatively strong solutions provided that the cluster of points does not remain
stationary. Specifically, in Figure 6.11, the cluster of points tends to remain fixed to
the left of the obstacle. This convergent and stationary behaviour is reflected in that
only 22 of the 1000 test cases are solved across the final population, Figure 6.12.

To observe more general trends in the point populations evolved using the SBB and
SBB-RAW formulations under both binary and real-valued rewards, a rough measure
of the area covered by the points was considered, Figure 6.13. In contrast to Figures
6.7, 6.8, and 6.11, which illustrate behaviours in specific runs, Figure 6.13 allows
trends to be observed across all initializations. Given the point population at the end
of a generation, the minimum and maximum coordinates in the x and y directions
were determined across all the points in that population. A rectangle was then defined
with vertical sides parallel to the y-axis and horizontal sides parallel to the x-axis;
the width of this rectangle was defined by the minimum and maximum z-coordinates,
and the height was defined by the minimum and maximum y-coordinates. If the area
of this rectangle, calculated as the width times the height, is small, this means that
the points have converged to a small region of the plane. A large area, however, does
not necessarily mean that the points have not converged as there may be outliers. In
addition, this measure of point diversity is not complete in the sense that it does not
account for the angles, however, it nonetheless provides useful information about the
behaviour of the point population.

Despite being a very rough measure of point diversity, this area-based metric

supports the observations made so far under binary rewards, Figures 6.13a and 6.13b,
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Figure 6.11: Evolution of points in an SBB-RAW run, bad initialization (22 of 1000
test cases solved by population).
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Figure 6.13: Area of a rectangle containing all the points in the point population ex-
pressed as a proportion of the maximum possible area. At the end of each generation,
zr-axis, the minimum and maximum values are calculated across the z-coordinates of
all points in the point population. Similarly, the minimum and maximum values are
calculated across the y-coordinates. These values delimit the width and height of the
containing rectangle and are then used to calculate its area, y-axis. The maximum
possible area corresponds to the rectangle with upper-left and lower-right corners at
(0, 100) and (100, -100) respectively, Figure 6.2. FEach distribution represents 60
initializations.
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suggesting that the behaviour is common across multiple initializations. In particular,
both the SBB and SBB-RAW populations tend to converge early in the run (the
scale on the z-axis changes at 100). However, the SBB-RAW populations appear to
converge earlier and to a much greater degree. In addition, having initially converged,
the SBB points then tend to spread out a lot more with median values at 1000
generations observed that approach unity. In contrast, towards the end of the run, the
SBB-RAW points typically cover about half of the plane, e.g., this may correspond to
the area to the left of the obstacle. This is consistent with the higher SBB population-
wide solved counts, Figure 6.6a, since points are only supported if they are solved by

one or more hosts.

The areas observed under real-valued rewards, Figures 6.13c and 6.13d, indicate
different trends than under binary rewards. Specifically, though the behaviour under
the two approaches is different, neither exhibits an initial decrease in the point diver-
sity followed by a recovery. The area covered by the points in the SBB runs, Figure
6.13c, tends to account for the whole plane throughout. In comparison, using the
SBB-RAW variant, the points tend to slowly converge as the runs progress with no
eventual improvement. This difference in the behaviour is attributed to the lack of a
genotypic diversity component in point fitness under the SBB-RAW formulation. As
in the binary case, the higher diversity in points under the SBB approach is reflected
in improved test performance with respect to the population-wide counts, Figure 6.6b.
The steady decrease in point population diversity under the SBB-RAW formulation
suggests that the coevolutionary point fitness function is too exploitative, resulting
in a significant decrease in the number of test cases solved across the population (the
best host counts under SBB and SBB-RAW are similar under the real-valued reward
scheme, Table 6.3).

Figure 6.13 also illustrates a fundamental difference between binary and real-
valued reward functions. Specifically, under binary rewards, Figures 6.13a and 6.13b,
point population diversity initially decreases and is then (at least partially) restored.
This suggests that in the early generations the host and point populations are effec-
tively disengaged, but that a learning gradient is eventually established. In contrast,
under real-valued reward schemes, Figures 6.13c and 6.13d, it appears that a learn-
ing gradient is present from the start, where this results from the capacity of the
real-valued approach to credit partial solutions. As suggested earlier, the initial con-
vergence observed using both algorithms in the binary case is consistent with the

identification of a small region of the state space that can be solved by one or more
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hosts. If no other points are solved at that time, then only the points in that re-
gion receive a non-zero reward, and a rapid convergence to that region is expected.
Without an incentive for points to be physically different, however, the SBB-RAW
populations are then unable to regain earlier levels of genotypic diversity.

In summary, by providing partial reward values, the real-valued reward scheme
appears to support greater levels of genotypic diversity in the point population. In
particular, the same initial convergence as is observed using both SBB and SBB-RAW
under binary rewards does not occur under real-valued rewards. Furthermore, under
both reward schemes, the level of genotypic diversity in the point population appears
to be greater when the genotypic diversity component is included in the point fitness
function. This, in turn, results in a tendency towards an increased number of test
cases solved under the SBB approach, where the difference is greatest with respect

to the population-wide counts.

6.5 Summary of Results

Based on the results presented in this chapter, the following conclusions can be drawn

regarding test case selection under temporal sequence learning:

1. Compared to the SBB-RSS and SBB-SSS formulations, a significant difference
was observed in favour of the SBB approach under binary rewards but not
under real-valued rewards. Thus, in the latter case, the naive sampling heuristics

represent a reasonable option, but under binary rewards they are inappropriate.

2. A statistically significant difference between the performance of traditional
distinction-based coevolution, SBB-DST, and the SBB approach was not found.
Distinction-based coevolution, however, is less computationally efficient, sug-

gesting a preference for the proposed approach.

3. Including a genotypic diversity component in the point fitness promotes better
coverage of the state space. This results in better overall performance under
binary rewards and in terms of population-wide counts under real-valued re-

wards.

In general, the less sophisticated point selection policies, i.e., SBB-RSS, SBB-SSS, and
SBB-RAW, may represent suitable alternatives under real-valued cost functions which
tend to provide more information about solution quality than binary cost functions.

When less information is available, as in the case of binary rewards, then greater effort
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must be taken to maintain a set of discriminating and diverse training points. With
respect to the third point noted above, including a genotypic diversity component
in the point fitness requires a suitable distance metric to be available and incurs
additional computation overhead. However, the extra effort applied in finding a good
set. of points may be more easily justified when evaluation is costly, as is the case

under temporal sequence learning.



Chapter 7

Truck Reversal: Comparison with Neuroevolution of

Augmenting Topologies

In this chapter, the SBB framework is compared against NEAT, an evolutionary algo-
rithm for generating neural networks of arbitrary topologies [177]. When it was first
introduced, NEAT was shown to outperform leading neuroevolutionary approaches
on both Markovian and non-Markovian temporal sequence learning tasks. Today,
NEAT is still regarded as state-of-the-art!, a status reflected in the amount of active
research and publications related to the approach, e.g., [63, 108, 182].

The primary goal of this chapter is therefore to determine how the quality of the
SBB solutions compares with the state-of-the-art in the temporal sequence learning
domain. Since the comparison is made on the truck reversal environment as presented
in Chapter 6, the difficulty of this particular problem formulation is also established.
Furthermore, for the first time in this thesis, use is made of hierarchical model build-
ing, Section 3.4, so any benefits associated with this approach to layered learning are
also investigated.

The chapter first summarizes the key concepts behind the NEAT algorithm in
Section 7.1. The experimental setup, including the choice of NEAT implementation
and its parameters, is then described in Section 7.2. Results are presented in Section
7.3, including an in-depth analysis of a solution evolved under the SBB algorithm,

and summarizing remarks are made in Section 7.4.

7.1 Neuroevolution of Augmenting Topologies: Key Concepts

NEAT encodes neural networks of arbitrary topologies by using a variable-length
linear representation consisting of connections genes and node genes. The node genes
define the input, hidden, and output nodes, while the connection genes specify the
(possibly recurrent) network links, i.e., the link endpoints and weight. Through a
series of ablation experiments, three components of NEAT were shown to be critical

to its effectiveness [177]:

!Though it is noted that recently a new incarnation of the NEAT algorithm has been proposed
[178].
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1. Historical markings. Whenever a new connection gene is introduced into
the population, it is marked using a unique innovation identifier which is then
inherited by all its descendants. These markings are meant to enable a more
meaningful crossover to occur by allowing genes representing the same network

structure to be aligned, i.e., crossover aims to model homologous recombination.

2. Speciation. A form of explicit fitness sharing is used to prevent a single niche
of organisms (topological structures and associated weights) from dominating
the population, and to protect novel structures which may require time to be
optimized to the point where they become competitive. The innovation identi-
fiers associated with each connection gene form a basis for the distance function

between two organisms which in turn is used to define niche membership.

3. Incremental growth. The NEAT populations is initialized to contain small
(minimal) networks. It is then suggested that since increases in complexity
must be justified through natural selection, the search space is bounded thus

helping to increase efficiency.

These components, including their inter-dependencies, are detailed in the original
description of the NEAT algorithm [177]. Here, it is noted that the historical markings
and speciation are two mechanisms whose aim it is to support diversity in the NEAT

populations.

7.2 Experimental Setup

After a brief remark on the truck reversal environment in the section following im-
mediately, the NEAT implementation that was used is detailed in Section 7.2.2. The
parameters used under both the NEAT and SBB algorithms are then presented in

Section 7.2.3, and the evaluation methodology is summarized in Section 7.2.4.

7.2.1 Problem Domain

The truck reversal problem as described in Section 6.2 was used in the evaluation. For
reasons noted below, fitness evaluation was based on the real-valued reward scheme,
Section 6.2.5.
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7.2.2 Neuroevolution of Augmenting Topologies: Implementation

The NEAT C++ package [175], also used in the original NEAT dissertation [177],
was used in the comparison. This implementation does not include a component for
coevolving a set of fitness cases, whereas the SBB algorithm coevolves the points and
hosts allowing the approach to scale to large state spaces. To address this issue, NEAT
was compared with the SBB-RSS formulation as specified in Section 6.3.3, and used
the same strategy for managing the set of training fitness cases®. Specifically, under
both approaches, each candidate solution was evaluated over Pi;.. points, and every
generation Py, of these points were uniformly selected and replaced with random
points. In the case of NEAT, the fitness of an individual in a given generation
was taken as the sum of the rewards over all the points in the corresponding point
population.

The rationale behind the decision to use RSS as a point sampling heuristic was
to make minimal changes to the NEAT implementation. Given this choice of point
sampling heuristic, the real-valued reward scheme, Section 6.2.5, was used to define
the outcome of applying an individual to a single point. The decision to do this was
based on the results of the previous chapter where it was found that random sampling
performed adequately under a real-valued reward scheme.

Unless otherwise noted, NEAT was configured as in the chosen distribution [175],
which in turn reflects the algorithm as originally described [177]. In particular, the
discrete multi-point crossover was used, as was the steepened Sigmoid transfer func-
tion f(z) = (14 e *9%)7'. The NEAT parameter settings used here are further
detailed in Section 7.2.3.

The NEAT starter genome, Figure 7.1, consisted of five input nodes, three output
nodes, and no hidden nodes. Each input was connected to all the outputs. The first
four inputs corresponded to the state variables (z, y, O, and O.), and the fifth input
represented the bias (value fixed at 0.5). The three outputs corresponded to possible
settings of the steering angle u assuming values of 0°, —30°, and 30°, i.e., the possible
actions under the SBB algorithm and NEAT were the same. Given the three outputs,
at each time step during an episode, the action associated with the output having
the highest activation was used to set the steering angle u. This starter genome,
representing the connectivity of all networks in the initial population, is consistent

with the NEAT philosophy of starting with minimal structures and at the same time

2In the remainder of this chapter, references to the SBB algorithm assume the RSS point sampling
heuristic.
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Figure 7.1: NEAT starter genome under the truck reversal domain representing the
connectivity of all initial networks. The block arrow indicates the direction of activa-
tion.

does not make assumptions about the initial connections.

7.2.3 Parameters

With one exception, the SBB parameters were set as in Section 6.3.1; to determine
if it would lead to improved solution quality, in this chapter, two levels were evolved
instead of one. Each level was trained using the same parameters, Tables 4.3 and 4.4,
which included the same number of generations. No claims are made regarding the
optimality of these settings, and it is acknowledged that different parameter values at
each level may be more appropriate. Given that the number of SBB fitness evaluations
per level was kept as before, the total number of fitness evaluations was a multiple of
the number of levels evolved.

The NEAT parameter settings used here were based on those in the original double
pole-balancing with velocities experiments [177], i.e., unless otherwise noted, the same
values were employed. In the original experiments, similar settings were also used
across different problems, and it was suggested that for the most part the system was
robust to non-trivial variation in the parameters. However, three mutually-sensitive
sets of parameters were identified as especially important: the population size, the

compatibility threshold (used to determine if two individuals are in the same species),
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’ H Non-recurrent ‘ Recurrent ‘

High mutation H-NR H-R
Low mutation L-NR L-R

Table 7.1: NEAT parameter tuning configurations.

and the weights used to calculate distances between individuals. By using already
established values for these parameters, the core set of settings used here was assumed
to be appropriate.

Given the settings employed in the original experiments as a starting point, some
tuning was done with respect to the link weight mutation probability and the recur-
rent link probability. Tuning of the former was explicitly suggested by the authors of
NEAT [176], whereas the latter was tuned to determine if the system could benefit by
having the ability to maintain an internal state (a capability not present in the current
version of the SBB algorithm). Two values for the link weight mutation probability
were explored, 0.9 (high mutation) and 0.1 (low mutation), and two values were also
explored for the recurrent link probability, 0.1 (recurrent) and 0.0 (non-recurrent).
This resulted in four possible configurations, Table 7.1, whose performance over 20
initializations is summarized in Figure 7.2. This evaluation, including the selection
of the best-of-run individual, was performed as described in Section 7.2.4, i.e., both
best individual and population-wide counts were considered. Given these results, it
is clear that high mutation rates result in better performance. The H-NR and H-R
configurations yield very similar performance with respect to the best individual, but
better best-case population-wide counts are obtained by allowing recurrent connec-
tions. As such, the H-R configuration was selected for comparison with the SBB

algorithm.

The set of NEAT parameter settings that were ultimately used in the comparison
are detailed in Table 7.2. The excess, disjoint, and weight difference coefficients
are the weights used in calculating the distance between individuals. The distance
is compared against the compatibility threshold to determine species membership.
Together with the population size, these parameters represent the core set mentioned
above that is viewed as critical to the successful operation of NEAT. The survival
threshold determines the proportion of individuals that form the parent set in each
generation. The link weight mutation probability (one of the parameters that was
tuned) controls how often weights are mutated, while the magnitude of the mutations

is controlled using the weight mutation power. The toggle gene enable probability and
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x-axis, shown is the number of test cases solved across 20 initializations, y-axis.
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was used in the comparison with the SBB algorithm.
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the gene re-enable probability refer to, respectively, the rate at which the active status
of genes is flipped and the rate at which inactive genes are re-enabled3. The recurrent
link probability (the other parameter that was tuned) controls how often recurrent
links are added. The dropoff age defines how long before a species or the entire
population is considered to be stagnant (used to determine when to penalize species
or to perform delta coding). Finally, new link tries refers to the number of times
an attempt is made to find an open set of endpoints during an add link operation.
The number of generations was set so that the total number of fitness evaluations
performed under NEAT and across all levels of the SBB algorithm was approximately
the same®. More information on the NEAT parameters can be found in the original
dissertation [177] and in the NEAT implementation documentation [175].

Under both the NEAT and SBB algorithms, Pj;.. and P,,, was set at 120 and 20
respectively®, i.e., the fitness of each individual was assessed over 120 test cases and
20 of those test cases were replaced every generation as per the SBB-RSS formulation,
Section 6.3.3. Using each algorithm, 60 initialization based on different random seeds

were performed.

7.2.4 Evaluation Methodology

Using the same parameter settings at each level, training two levels under the SBB
algorithm requires twice as many fitness evaluations as training just a single level.
Thus, to determine if any observed improvement in solution quality at the second
level was not merely a result of doubling the training effort in terms of the number
of fitness evaluations, the two-level SBB solutions were also compared to single-level
solutions that were evolved for twice as long. The latter, denoted SBB-2k, were
obtained by training just the one SBB level but for 2000 generations, and otherwise
using the same parameters.

The three approaches that were compared, SBB, SBB-2k, and NEAT, were then
evaluated as described in Section 6.3.2. In particular, under each of the three ap-

proaches, a validation set of size 1000 was used to select a single best individual from

31t is not clear how these two parameters were set in the original NEAT experiments, hence, the
values used here may be different.

4The number of fitness evaluations performed in each NEAT and SBB run was 16 812 000 and
16 800 000 respectively.

5These parameters do not appear in the original NEAT formulation [177] but result from the
inclusion of the random point sampling heuristic.
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’ Description H Notation \ Value ‘
Population size n 150
Excess coefficient c1 1.0
Disjoint coefficient Co 1.0
Weight difference coefficient C3 0.4
Compatibility threshold ) 3.0
Survival threshold 0.2
Link weight mutation probability 0.9
Weight mutation power 2.5
Toggle gene enable probability 0.01
Gene re-enable probability 0.001
Add node probability 0.03
Add link probability 0.05
Recurrent link probability 0.1
Interspecies mating rate 0.001
Mate only probability 0.2
Mutate only probability 0.25
Dropoft age 15
New link tries 20
Number of generations 934

Table 7.2: NEAT parameters used in the truck reversal experiments. Where appli-
cable, the notation used for a parameter in the original NEAT description [177] is
shown.
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the final population, i.e., the individual yielding the highest mean reward on the val-
idation set. This best individual was then applied to an independent test set of size
1000, and populations-wide counts on this test set were also considered.

Given the parameters used, at the end of training, the SBB host populations con-
tained 60 individuals while the NEAT network populations contained 150 individuals.
Thus, with respect to the population-wide solved counts, NEAT is viewed as having
an advantage; in calculating the population-wide counts, the tally cannot be reduced

as more individuals are considered, but it can always increase.

7.3 Results

The presentation of the results begins with the performance on the test set and the
solution complexities in Section 7.3.1. These are followed by an overview of the
attributes used in the SBB solutions, Section 7.3.2, as well as an analysis of the best
SBB solution that was found, Section 7.3.3.

7.3.1 Performance and Complexity
Performance

With respect to the number of test cases solved, the second-level SBB solutions tend
to outperform the first-level SBB solutions in terms of the best individual and the
population-wide counts, Figure 7.3. The second-level SBB counts also tend to be
higher than the corresponding NEAT and SBB-2k counts. Specifically, with respect
to the best individual, the second-level SBB counts, SBB 1, tend to be higher that
the NEAT and SBB-2k counts, NEAT and SBB-2k respectively. In addition, the
second-level SBB population-wide counts, SBB 1 pop, appear to be higher than the
population-wide NEAT and SBB-2k counts, NEAT pop and SBB-2k pop respectively.
A two-tailed Mann-Whitney test applied to pairs of corresponding distributions, Table

7.3, supports these observations at a significance level of 0.01.

Thus, it appears that the SBB 0 distribution in Figure 7.3 represents the lowest
performance point in terms of best individual counts, however, the focus in the SBB
framework at the first level is diversification as is apparent in the corresponding first-
level population-wide counts, SBB 0 pop. This is especially evident when comparing
the NEAT and NEAT pop distributions with the SBB 0 and SBB 0 pop distributions.

The individual hosts at the second SBB level are then able to combine the population
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Figure 7.3: Comparison of the NEAT and SBB algorithms on the truck reversal
problem in terms of the number of test cases solved by the best individual and across
the final population. In all cases, RSS is used to sample training points. The com-
parison includes the single-level SBB configuration SBB-2k, and where applicable
SBB performance is also broken down by level. Distributions corresponding to the
population-wide counts are labeled ‘pop’, while SBB results at the first and second
level respectively include ‘0" and ‘1’ in the label. All distributions represent 60 ini-
tializations.

’ H Best individual ‘ Population ‘

SBB 1 vs SBB 0 2.683e-07x | 7.76e-09%
SBB 1 vs SBB-2k 3.774e-05% | 1.386e-04%
SBB 1 vs NEAT 4.636e-06% | 1.783e-13x

Table 7.3: Two-tailed Mann-Whitney test results comparing second-level SBB solu-
tions with NEAT, SBB-2k, and first-level SBB solutions with respect to the number
of test cases solved. Shown are the p-values when corresponding distributions in Fig-
ure 7.3 are compared, e.g., SBB 1 versus NEAT and SBB 1 pop versus NEAT pop.
Cases where the SBB median value is higher are noted with a *.
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diversity in the first level, resulting in best host performance at the second level that
appears to match the population-wide counts at the first level; this leads to SBB 1
counts that represent the best individual-wise performance observed across the three
formulations. Likewise, the second-level SBB results represent the highest levels of

performance in terms of population-wide counts.

These results underlie the role that layered learning — through a symbiotic model
of inheritance — may play when the difficulty of the problem domain is such that
suitable levels of performance cannot be reached in a single run. Furthermore, the
improvement observed at the second level is not due entirely to the application of
twice the training effort as measured in terms of the number of fitness evaluations.
Comparing the second-level SBB distributions with the corresponding SBB-2k distri-
butions, Figure 7.3, the improvement appears to be especially significant when the
best individual counts are considered, SBB 1 versus SBB-2k. The strong SBB host
performance at the second level also results in higher and more consistent population-
wide counts, e.g., the difference in median counts between the SBB 1 pop and SBB-2k
pop distributions is well over 200. This suggests that the proposed hierarchical model

building approach is more effective compared to a flat, single-level, approach.

It is also interesting to note that the second-level hosts are able to combine the
set of fixed, first-level, behaviours in novel ways, i.e., the maximum number of test
cases solved population-wide at the second level is greater than at the first level.
This implies that the second-level hosts are finding ways to effectively use different

first-level hosts at different time steps.

A good way to visualize the impact of hierarchical model building is to compare, in
Figure 7.3, the improvement from SBB 0 to SBB 1 versus the improvement from SBB
0 to SBB-2k. The former improvement results from adding a second level, whereas
the latter improvement results from training for twice as many generations. A similar
comparison can be made with respect to the population-wide counts, but because
the SBB 0 pop values are already relatively high, the difference in improvement is
reflected more in the shape of the distribution as opposed to the observed range of

values, i.e., the SBB 1 pop values are more consistent than the SBB-2k pop values.

The SBB solutions at the second level also tend to do considerably better than the
NEAT solutions both with respect to the best individual as well as the population-
wide solved counts. Despite relying on a speciation mechanism, thus encouraging
diversity, the NEAT population-wide counts appear to be relatively low even com-

pared to the first-level SBB counts. This is especially significant given that the NEAT
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counts are taken over 150 individuals whereas the SBB counts are taken over 60 indi-
viduals. However, excluding the second-level SBB results, the best individual counts
under NEAT appear to be competitive. This suggests that the NEAT speciation
mechanism is more effective at establishing context for crossover, resulting in rela-
tively strong individuals but weak population-wide behaviour. In comparison, the
SBB framework is able to produce strong population-wide behaviour by supporting
diversity at multiple levels, i.e., through a combination of implicit fitness sharing
applied to the symbionts and explicit fitness sharing applied to the hosts, and then
exploiting this diversity at the second level through context learning by way of the
bid-based metaphor. As such, the SBB framework appears to be more capable of

leveraging the potential benefits of layered learning.

Complexity

Though, given the parameter settings that were used, the SBB and SBB-2k config-
urations incur the same amount of computational overhead in terms of the number
of fitness evaluations, the complexity of the SBB solutions has the potential and is
likely to be higher. Specifically, a solution under the SBB-2k configuration can consist
of as many as 10 symbionts. A solution under the SBB configuration, on the other
hand, can consist of 10 symbionts at the second level, each referencing a host of size
10 at the first level, for an overall upper bound of 110 symbionts. However, even
though the upper bound on the complexity of the SBB solutions is more than ten
times the upper bound on the complexity of the SBB-2k solutions, the difference in
computational effort as measured in terms of the maximum number of instructions
executed during training is only one-and-a-half-fold®. More generally, because they
are structured hierarchically, not all subcomponents in a given multi-level SBB solu-
tion are engaged at each time step — this is in contrast to ensemble methods where all
ensemble members participate in a decision. This results in a runtime computational
overhead post-training that is linearly proportional to the number of levels in, and
not the complexity of, the SBB solutions.

Given the higher upper bound on the complexity of the SBB solutions, an addi-

tional set of runs was carried out to investigate the effect of increasing the maximum

8This can be seen by equating the maximum number of instruction executions required to train
the SBB-2k configuration for one generation (proportional to Hg;,. X w X maxProgSize) with one
unit of overhead. Thus, the total effort expanded in each SBB-2k run is 2000 units of overhead.
For a given SBB run, the effort is 1000 units expanded on training the first level (same as training
SBB-2k but for 1000 generations) and 2000 units expanded on training the second level (since, in
computing an action, only one host is applied at each of the two levels), for a total of 3000 units.



232

solution complexity under the SBB-2k configuration, Figure 7.4. Keeping all other
parameter settings the same, the maximum host size w was doubled from 10 to 20 re-
sulting in a ‘big host’ configuration SBB-2k-bh. Based on the results, no statistically
significant difference in performance was observed between corresponding distribu-
tions. In fact, the median solution counts decreased when the maximum host size
was increased”. This suggests that increasing the maximum solution complexity un-
der a single-level approach will not necessarily lead to improved performance. This
may be due in part to the fact that, without the means to structure the additional
complexity as in (for example) a hierarchy, the single-level approach is not well suited
to the expanded search space.

Thus, when analyzing solutions, it may be useful to consider the way in which
increases in complexity come about. On the one hand, increased complexity may be
a side-effect of the learning process with no real contribution to the bottom line. This
appears to be the situation in the case when the maximum host size is increased under
the SBB-2k configuration, Figure 7.4. On the other hand, under the hierarchical SBB
approach, complexity is methodically added in a structured and controlled way with
the goal of improving performance. As such, in the latter case, increases in complexity
may be more easily justified, especially if accompanied by significantly higher levels
of performance.

The best single-individual SBB solutions are characterized with respect to the
number of effective instructions per host, the number of symbionts per host, and the
number of effective instructions per symbiont, Figure 7.5. Here, the SBB 1 counts
do not include the SBB 0 counts, e.g., the instruction counts at the first level are
not counted again at the second level. In both SBB levels, SBB 0 and SBB 1, the
complexities are comparable to the SBB-2k complexities, but because the final SBB
solutions span two levels, it is clear that the aggregate multi-level solution complexities
are significantly greater. The SBB-2k-bh instruction counts across the entire host,
Figure 7.5a, and the host sizes, Figure 7.5b, tend to be higher than the corresponding
SBB-2k counts. However, there appears to be a net decrease in the complexity of the
SBB-2k-bh solutions compared to the SBB-2k solutions when individual symbionts
are considered, Figure 7.5c, with a two-tailed Mann-Whitney test returning a p-
value of 0.001806. Thus, increasing the limit on the number of symbionts that can
be combined in a single host appears to result in more symbionts per host, though

the symbionts themselves appear to be simpler, i.e., simpler solution subcomponents

"The two highest values under the SBB-2k-bh distribution in Figure 7.4 are 604 and 766, sug-
gesting that the latter is an outlier.
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Figure 7.4: Comparison of SBB-2k performance under two maximum host size thresh-
olds. Shown is the number of test cases solved by the single best host and across the
population, with the population-wide counts labeled ‘pop’. Distributions labeled
SBB-2k-bh represent a configuration where the maximum host size, w, was doubled
relative to the original configuration of SBB-2k (all other parameters remained the
same). Each distribution represent 60 initializations. Two-tailed Mann-Whitney
tests applied to the two single-individual distributions and the two population-wide
distributions return p-values of 0.6457 and 0.3694 respectively.
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appear to be identified, though additional data would be required to confirm this

trend.

The complexities of the NEAT solutions, in terms of the number of nodes and
links in the single best individual, are shown in Figure 7.6. For comparison, the
figure includes a distribution representing SBB complexities expressed in terms of the
number of unique symbionts, i.e., combinations of bid program and action, across
both levels of the two-level solution. This includes the level 0 symbionts, where the
associations involve one of the domain-specific actions, as well as the level 1 symbionts,
where the associations involve an action defined with respect to the first-level hosts.
Alternatively, given that there is a one-to-one correspondence between symbiont and
program, the symbiont counts are equal to the total number of unique programs in the
solution. The SBB counts in Figure 7.6 appear to be lower, though the significance
of this result is open to interpretation given the different representations used by the

two approaches.

7.3.2 Attributes Used

Additional analysis was performed with respect to the attributes used by the sym-
bionts in the best hosts across all runs, Figures 7.7 through 7.9. The mean number
of unique features accessed per symbiont, Figure 7.7, suggests that bidders typically
do not use all of the features and that fewer features are used at level 1, though no
difference in the two distributions was detected by a two-tailed Mann-Whitney test
at a 0.01 significance level. Considering the rate at which symbionts access specific
features, Figure 7.8, at level 0 the focus tends to be more on the angles. This is con-
sistent with behaviour where the primary goal is not to jackknife the cab and semi,
even if this comes at the cost of running into the obstacle or the y-axis away from
the origin. This is a reasonable strategy since jackknifing results in a reward of zero.
An additional property of the solutions is that every feature is used by at least one
symbiont in the best host as no zero values are observed. Further breaking down the
level 0 counts by considering the actions associated with the symbionts, Figure 7.9,
it becomes clear that the programs associated with the +30° actions tend to use the
x and y coordinates less than the programs associated with the 0° action. Thus, a
strategy common to some of the solutions may be to set the steering angle straight
unless there is a risk of jackknifing, a condition identified by considering the angles,

at which point the wheel would be set to the left or to the right to mitigate the risk.
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Figure 7.5: Complexity of the SBB solutions evolved under the truck reversal domain
with respect to the single best individual broken down by level (the best SBB individ-
ual at each level was selected independently as described in Section 7.2.4). Analogous
SBB-2k as well as SBB-2k-bh counts are included for comparison. Each distribution
represents 60 initializations.
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Figure 7.5: Continued.

7.3.3 Analysis of a Solution

The structure of the best SBB solution, chosen as the one solving the most test cases,
is illustrated in Figure 7.10. Using rectangles to represent hosts, the figure shows
a level 1 host that contains eight symbionts referencing a total of five level 0 hosts.
Thus, there are certain level 0 hosts which are referenced by more than one symbiont
at level 1, indicated by a count next to the connector, e.g., the level 0 host labeled
2 appears three times as an action in the level 1 host, though the bid program of
each symbiont is unique. The level 0 symbionts are grouped into sets, denoted by
the ovals at the bottom of the figure, to indicate if there is overlap in the contents of
the level 0 hosts. Each level 0 symbiont appears in exactly one of these subsets, and
for each subset, the actions that is contains are indicated. For example, the leftmost
subset contains six symbionts of action 30° and one symbiont of action —30°, and
furthermore, the symbionts in that subset are unique to the host labeled 1. The host
labeled 1 contains one additional symbiont, of action —30°, which is also referenced by
host labeled 5. In total, there are thirty level 0 symbionts and eight level 1 symbionts
in the solution, where each symbiont provides a unique context, i.e., bid program, for

its associated action.
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Figure 7.6: Complexity of the best single-individual SBB and NEAT solutions evolved
under the truck reversal domain. The NEAT complexities are expressed in terms of
the number of nodes and links in the network. The SBB complexities are expressed
in terms of the number of unique symbionts across both levels of the solution, or
equivalently, the number of bid programs in the solution. Each distribution represents
60 initializations.
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Figure 7.7: Mean number of unique features accessed per symbiont in the best host
broken down by level (the best SBB individual at each level was selected indepen-
dently as described in Section 7.2.4). Fach point represents the mean taken across
all symbionts in a given best host, and each distribution contains a point for each of
the 60 initializations.
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Figure 7.8: Proportion of symbionts in the best hosts accessing each attribute (the
best SBB host at each level was selected independently as described in Section 7.2.4).
For each attribute, z-axis, the proportion of symbionts in the host accessing that
attribute is shown, y-axis, i.e., the calculation is performed across the symbionts in
each host separately. The distributions, broken down by level, represent the best host
in each of the 60 initializations.
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Figure 7.9: Proportion of symbionts in the first-level best hosts accessing each at-
tribute broken down by action, distributions are otherwise as in Figure 7.8. Specif-
ically, the mean is calculated as in Figure 7.8, but when considering a given action
the symbionts in the best host associated with the two other actions are not counted.
Only 28 points are plotted under the 0 degree action since that action was not rep-
resented in 32 of the 60 runs, and only the first level is considered since there are 60
actions at the second level.
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Figure 7.10: The best SBB solution under the truck reversal domain. The level 1 host
(rectangle labeled 0) contains eight symbionts which reference a total of five level 0
hosts (rectangles labeled 1 through 5); multiple references to the same level 0 host are
indicated by a count next to the connector, though the program associated with each
reference is unique, i.c., it associates a unique context for the action represented by
the level 0 host. The five level 0 hosts then reference a total of 30 level 0 symbionts
which are grouped into sets to indicate which subsets of level 0 symbionts are common
across the level 0 hosts. For each group, the number of times each action is represented
within it is shown, i.e., the sum of the counts reflects the number of symbionts in the
group. The solution therefore contains a total of 38 symbionts (unique programs):
the 8 symbionts at level 1 and the 30 symbionts at level 0.



242

The best host, depicted in Figure 7.10, solved 840 of the 1000 test cases, Figure
7.11a. Of the 160 episodes corresponding to the tests where the solution failed, Figure
7.11b, 92 ended when the back of the semi crossed the y-axis, 45 ended when the back
of the semi ran into the obstacle, and 17 ended when the cab and semi jackknifed,
leaving a number of states when the episode was terminated because the time ran

out®. The configurations at the moment of failure are shown in Figure 7.11c.

To gain insight into the control strategy employed by the best solution, the cab
and semi configurations at times steps 100, 200, 300, and 400 are plotted across all the
test points, Figure 7.12. The number of configurations that are plotted decreases as
the time step count goes up since episodes may be terminated before the limit of 400
time steps is reached, e.g., if a configuration representing a solved state is reached.
From the figure, it appears as though the strategy used is to approach the origin at
a diagonal starting in the region to the left of the top of the obstacle. If the cab and
semi are not in that region, they are steered towards it. For example, if the cab and
semi start in the lower-right of the plane, they tend to circle around the top of the

obstacle in a counter-clockwise direction.

For six different test points that were solved by the best solution, configurations
of the cab and semi were plotted every 10 time steps resulting in a set of trajectories,
Figure 7.13. The trajectories are consistent with the strategy interpreted from Figure
7.12, but they also reveal a peculiar behaviour. On two of the points, points 39 and
615, a spiraling trajectory is observed. This behaviour was likely learned in order to
avoid jackknifing, a terminal condition that always results in the minimum reward.
It appears to be exploited in order to direct the cab and semi towards a region of the
state space where the solution knows how steer the cab and semi back to the origin,
that is, the region to the left of the top of the obstacle. Though it is not the most
efficient strategy, under the environment formulation that was used, Section 6.2, it
results in a high number of solved test cases.

For two of the trajectories in Figure 7.13, additional information is plotted, Figures
7.14, and 7.15. Figure 7.14 shows the actions used to solve the point for which the
trajectory loops around the top of the obstacle, including the level 0 host chosen at
each time step. Based on the figure, certain roles become apparent among the first-
level hosts. For example, the host denoted by the e is the cornerstone of the solution
as it guides the cab and semi towards the origin along the diagonal as shown. The

host denoted by + appears to take control when the cab and semi move roughly up

8Sometimes two of these terminating conditions were in effect at the same time.
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Figure 7.11: Best SBB solution on the truck reversal problem, solved and unsolved
test cases. The solution, depicted in Figure 7.10, solved 840 of the 1000 test cases.
Shown are the initial states for the cases that were solved, and the initial and final
states for the cases that were not solved. As noted before, the back of the semi is
denoted by a e, and the cab and semi are aligned in all initial states.
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Figure 7.12: Cab and semi configurations at four different time steps across all test
points. For the best single-individual SBB solution, Figure 7.10, the cab and semi
configurations across all points are plotted at time steps 100, 200, 300, and 400. If,
given a specific initial configuration, the episode ended earlier than the indicated time
step, the associated state is omitted from the subplot.
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Figure 7.13: Solution trajectories across six test points. The states resulting from the
application of the single best SBB solution, Figure 7.10, to six different test points
are plotted every 10 time steps.
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and down on the plane, while the host denoted by A tends take control when the
motion is roughly side to side. Similar information is plotted for point 615, Figure
7.15, where control tends to switch between the level 0 hosts more often likely due
to the more intricate trajectory. This figure suggests that the spiraling behaviour
is learned at the second level since no single first-level host takes control during the
entire execution of a single loop.

Similar to Figures 7.7 through 7.9 presented in Section 7.3.2, additional analysis
was performed on the attributes used, but here it was done with respect to the final
host population in the run that generated the best solution in Figure 7.10. Figure
7.16, analogous to Figure 7.7, shows the mean number of features accessed by the
symbionts in each host in the final population broken down by level. In contrast to
the counts observed in solutions across multiple runs, Figure 7.7, when the solutions
at the end of this single run are considered the feature counts increase from level
0 to level 1. A two-tailed Mann-Whitney test applied to the level 0 and level 1
counts confirms a difference at a 0.01 significance level. This in turn suggests more
sophisticated bidding behaviours at level 1.

Figures 7.17 and 7.18 are analogous respectively to Figures 7.8 and 7.9. Compared
to Figure 7.8, the distributions in Figure 7.17 suggest that the solutions rely less on the
y-coordinate, while the cab and semi angles appear to remain relatively important.
This is again observed in Figure 7.18, where in addition, the different proportions
observed under the two non-zero degree actions suggest a level of asymmetry in the
control strategy. These counts are consistent with the behaviour observed in Figures
7.11 through 7.15. In particular, once the cab and semi reach the region to the upper-
left of the obstacle, the trajectory is always similar and so control need not rely on the
y-coordinate. At the same time, the trajectories are highly asymmetric. Figure 7.18
also reveals a number of hosts that employ the zero degree action even though this
action was not present in the best solution, Figure 7.10, where these solutions may
complement the single-best individual in contributing to the population-wide solved

counts.

7.4 Summary of Results

This chapter compared multi-level SBB solutions against NEAT as well as single-
level SBB solutions evolved using equivalent computational overhead (in terms of the
number of fitness evaluations). Based on the results presented in Section 7.3, the

following conclusions can be drawn:
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Figure 7.14: Actions used by the best SBB solution in solving test case 25. At each
time step plotted in the trajectory for point 25, Figure 7.13, shown is the steering
angle (negative or positive, top of figure), and the level 0 host employed (each denoted

by a different symbol, bottom of figure).
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Figure 7.15: Actions used by the best SBB solution in solving test case 615. At each
time step plotted in the trajectory for point 615, Figure 7.13, shown is the steering
angle (negative or positive, top of figure), and the level 0 host employed (each denoted
by a different symbol, bottom of figure).
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Figure 7.16: Mean number of unique features accessed per symbiont in each host
in the final population broken down by level. The distributions represent the 60
individuals in the host population at the end of the run that generated the best
solution, Figure 7.10.
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Figure 7.17: Proportion of symbionts accessing each attribute. For each attribute,
z-axis, the proportion of symbionts in the host accessing that attribute is shown,
y-axis, i.e., the calculation is performed across the symbionts in each host separately.
The distributions, broken down by level, represent the hosts in the final population
at each level in the run that generated the best solution, Figure 7.10.
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Figure 7.18: Proportion of symbionts in the first-level hosts accessing each attribute
broken down by action, distributions are otherwise as in Figure 7.17. Specifically,
the mean is calculated as in Figure 7.17, but when considering a given action the
symbionts in the host associated with the two other actions are not counted. Only
28 points are plotted under the 0 degree action since that action was not represented
in 32 of the 60 hosts (the same count is observed in Figure 7.9 by coincidence), and
only the first level is considered since there are 60 actions at the second level.
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1. Asillustrated in the case of the SBB framework, hierarchical model building can
lead to significantly better performance compared to the construction of single-

level solutions. Naturally, the hierarchical models tend to be more complex.

2. The SBB algorithm outperformed NEAT on the truck reversal environment
both in terms of the single best individual and the population as a whole.
This establishes the relatively high effectiveness of the SBB algorithm in this
temporal sequence learning task, though a more complete evaluation would

involve additional problems.

3. Under the SBB algorithm, higher-level hosts were observed to combine multiple
lower-level hosts in order to evolve behaviour that was both more complex and
more effective. This provides additional support in favour of hierarchical model

construction given challenging tasks.

4. The relatively poor performance of NEAT established the high difficulty of the

truck reversal problem formulation used in this thesis, Section 6.2.

Furthermore, it is suggested that in contrast to classification, under temporal sequence
learning increased solution complexity may be warranted — this is because in general
temporal sequence learning represents a more difficult class of problems. This is
especially true if the best of current practice, in this case NEAT, is not able to
produce satisfactory results. Moreover, the multi-level SBB models, even if they are
more complex, are not ‘black box’ solutions since they can be relatively easily analyzed
in terms of their constituent parts and behaviours, e.g., as is done in Figures 7.10
and 7.14. Here ‘relative’ is primarily with respect to traditional ensemble approaches
where individuals with highly overlapping behaviours are combined under a voting
mechanism, making it difficult to interpret the contributions of individual solution
subcomponents. Finally, it is emphasized that the increased complexity, in this case
through layered learning, is made possible through the specific properties of the SBB
architecture, i.e., the ability to learn context for specific actions and then perform
a combinatorial search for a mutualistic mix of behaviours. Thus, complexity in
this case is not a side-effect of evolution as in, e.g, the case of code bloat, but is
instead a deliberate mechanism built into the framework, which, as demonstrated in
this chapter, makes the approach effective on challenging temporal sequence learning

problems.



Chapter 8

The Rubik’s Cube

The Rubik’s Cube presents a challenging problem for ML algorithms and is therefore
the subject for this last investigative chapter. Though hand-crafted approaches for
solving the cube exist, learning to solve arbitrary instances with minimal a priori

knowledge is hard for the following reasons:
1. The state space, consisting of 4.33 - 10 possible configurations, is vast.

2. Using existing representations, a small number of cube twists typically results

in large perceived changes.
3. An efficient distance function between two cube states is not obvious.

Together, these characteristics of the problem make the specification of an appropriate
cost function, and consequently the learning process, challenging. Though symmetries
with respect to the colours exist and could be taken advantage of, finding a way to
exploit them poses a challenge in itself.

In this chapter, the SBB algorithm is applied to the 3x3, six-coloured, Rubik’s
Cube. In contrast to the previous chapter, where a random point sampling heuristic
was used, the algorithm formulation used here reverts back to the original version
that takes advantage of the structure in the state space, i.e., the formulation used in
Chapter 6. In contrast to most previous computational methods, where solutions take
the form of a sequence of actions and require relearning on each each new problem
instance, the goal of this chapter is to evolve models capable of solving arbitrary
Rubik’s Cube configurations.

This chapter is organized as follows. Section 8.1 summarizes previous computa-
tional approaches to solving the Rubik’s Cube. In Section 8.2, the environment for-
mulation that is used is described along with the associated domain-specific functions.
Section 8.3 presents the experimental methodology and also attempts to characterize
the problem with respect to a random solver. Results are presented in Section 8.4,

and the findings are summarized in Section 8.5.
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8.1 Previous Approaches to Solving the Rubik’s Cube

Numerous hand-crafted approaches to solving the Rubik’s Cube, varying in difficulty
and efficiency, have been developed. The most famous of these is likely the layer-by-
layer approach [164]. These approaches apply precise combinations of moves under
specific conditions and tend to result in long overall move sequences. In contrast,
the focus of the computational approaches described below has been to reduce the
maximum number of twists that is required! given an arbitrary starting configuration.

An upper bound of 52 moves required for solving any configuration of the Rubik’s
Cube was obtained in the early 1980s by Morwen Thistlethwaite. Thistlethwaite’s
strategy involved organizing the space of cube configurations hierarchically into five
nested sets, where each set was defined by restricting the moves that could be used in
generating its members (assuming the solved state as a starting point). The largest
of these sets contained all 4.33 - 10* cube configurations, whereas the smallest was
the singleton containing the solved state. To solve a given instance of the Rubik’s
Cube, the smallest of the sets containing that instance was considered. A lookup
table was then used to obtain a sequence of moves that, when applied to that in-
stance, resulted in a configuration that was also in the next-smallest set — in this way,
the cube configuration was transformed towards the solved state?. The key behind
Thistlethwaite’s strategy was to organize the state space into nested sets, restricting
the moves allowed in each of the four stages, and limiting the size of the lookup tables
to enable the efficient identification of the required move sequences.

The way in which Thistlethwaite’s algorithm structured solutions meant that, in
terms of the number of twists, the resulting move sequences were likely to be sub-
optimal. The first approach to compute optimal solutions to arbitrary configurations
of the Rubik’s Cube used an iterative-deepening-A* search [93], though only a limited
number of initial states were considered. This form of depth-first search requires a
heuristic for pruning excessively long branches. In this case, the heuristic was based
on precomputed tables known as pattern databases which stored lower bounds on the
number of moves required to solve particular sub-problems. Of the ten random cubes
that were solved, the median number of required moves was eighteen. More recently,

it was shown that no more than twenty-six twists® are required to solve any instance

!The sequence length is normally expressed in terms of the number of face turns, regardless of
whether the rotation is a quarter- or half-turn.

2The longest move sequences at each of the four possible stages involved 7, 13, 15 and 17 twists
resulting in the upper bound of 52 moves.

3Lower bounds have since been obtained but, as of this writing, the work has not yet been
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of the Rubik’s Cube problem [99]. This approach used insights from group theory
and relied on parallel computation, high-performance hardware, and lookup tables to

calculate the number of moves required to solve arbitrary problem instances.

In summary, what could be called traditional approaches to solving the Rubik’s
Cube tend to formulate the solution as a search for the sequence of moves that trans-
form an initially scrambled cube to the solved state. The search is repeated from the
start for each new problem instance, i.e., the solution is not a general strategy. To deal
with the massive search space, they tend to use ideas from Thistlethwaite’s original
algorithm, in particular, they use domain knowledge, e.g., group theory, to organize
the space of cube configurations and rely on lookup tables that contain precomputed
information. Despite efforts to tame the search space, the resulting algorithms still
require large amounts of computational resources, in terms of processing capacity,

memory, or bandwidth, or in some cases all three [99)].

There are a handful of documented attempts at applying techniques from EC to
the Rubik’s Cube problem. Early work [66] relied on turn patterns that, unlike half-
and quarter-turns, resulted in gradual changes to the state of the cube. Since a turn
pattern consists of multiple twists, the resulting move sequences were very long. More
recently, a four-stage algorithm based on Thistlethwaite’s approach was proposed [40).
The algorithm effectively replaced the lookup table used to transform the cube at
each stage by the execution of an ES, concatenating the four subsequences of moves
obtained. In both cases, as in the previously-described non-evolutionary methods,
the approach is formulated as a search for a specific sequence of moves as opposed to
a policy.

The SBB algorithm used in this work differs from these previous computational
approaches in two significant ways. First, whereas all of the previous approaches relied
in part on expert domain knowledge, the proposed approach remains generic. Second,
the solution output by previous approaches was always a sequence of moves, i.e., it was
only applicable to a single starting cube configuration, requiring a separate application
of the algorithm to solve a different configuration. In this work, the solution output
by the SBB algorithm is a model, and as such, it is likely to incorporate knowledge
that is discovered automatically. Given that the goal is to evolve models that can
solve multiple cube configurations, the compromise made is that move sequences of

sub-optimal length are likely to be required if general strategies can be discovered.

The single known exception where models were evolved on the Rubik’s Cube

thoroughly documented.
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problem was the economy-based Hayek framework [12]. Though minimal domain
knowledge was used, several cube models, point presentation schemes, and fitness
functions were investigated. This led to little success, and a underlying result was
initial progress followed by an indefinite period of stagnation. This was attributed to
the ‘step back to move forward’ nature of the Rubik’s Cube problem, namely, that as
the cube configuration approaches the solved state it becomes increasingly difficult

to advance further without (at least temporarily) undoing previous progress.

8.2 The Rubik’s Cube Environment

In the following sections, the Rubik’s Cube environment assumed in this work is
detailed. An overview of the environment, including the structure of the state space,
is first presented in Section 8.2.1. Sections 8.2.2 and 8.2.3 respectively describe point
creation processes as well as the function used to measure the distance between two
cube configurations; the latter forms the basis for the reward function described in
Section 8.2.4. It is noted that in the version of the SBB algorithm used in this chapter
the genotypic point diversity reward is applied in calculating point fitness, Section
3.2.6. For completeness, the implementation-specific state representation that was

used is described in Section 8.2.5.

8.2.1 Overview

The 3x3 Rubik’s Cube, Figure 8.1, has six faces each organized into a grid of nine
facelets. Each facelet is assigned one of six colours, and in the solved state, all the
facelets on a given face share the same colour. The cube can be broken down into
twenty-six three-dimensional cubies each of which exposes one, two, or three facelets.
There are six center cubies, one on each face, which expose a single facelet. The
center cubies remain fixed and therefore define the colour associated with the face
they appear on. There are twelve side cubies and eight corner cubies each exposing
two and three facelets respectively. The set of colours on the facelets of a given cubie
is unique and as such determines the location and orientation of the cubie in the
solved state.

The Rubik’s Cube is manipulated by rotating its faces. In the environment for-
mulation used here, twelve moves were defined that could be used to manipulate the
state of the Rubik’s Cube. The first six moves, denoted as F, B, U, D, L, and R,
turn the front, back, up, down, left, and right face respectively by ninety degrees in

the clockwise direction (when viewing the face head-on). The remaining six moves,
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\ edge cubie

exposes 2 facelets

e < .

/ corner cubie

center cubie exposes 3 facelets
exposes 1 facelet

Figure 8.1: The 3x3 Rubik’s Cube consists of six faces each associated with one of
six colours. Each face in turn consists of nine facelets. The colour of a given face is
defined by the single facelet on the center cubie.
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’ Number of twists ‘ Number of states ‘
1

12

114
1068
10011
93840
878880

DO | W N O

Table 8.1: Number of unique states reachable under the Rubik’s Cube environment
using quarter-turn move sequences of different lengths. States counted under shorter
sequences are not included in the counts corresponding to longer sequences, i.e., the
counts exclude sequences that include moves that cancel each other out.

denoted as F', B’, U’, D/, I, and R/, are inverse operations that turn their respective
faces by ninety degrees in the counter-clockwise direction. Each of the moves affects
four side and four corner cubies. Using these twelve moves, roughly 4.33 - 10! unique
cube states can be reached from the solved state.

The choice was made not to include the half-turns, which would increase the
number of moves to eighteen, but potentially reduce the length of the move sequences
that would be required. As a result, under this scheme, the upper limit of twenty-six
moves required to solve the cube [99] likely does not hold. By eliminating half-turns
from the set of legal moves, the size of the action set was reduced without limiting
the capability of the models that could be evolved. In effect, the space of possible
models has been reduced due to limited computational resources.

The number of unique states reachable under the Rubik’s Cube environment using
the twelve quarter-turn moves described above is shown in Table 8.1. For example,
starting at any state (including the solved state), 1068 different configurations can be
reached using exactly three twists. The counts exclude move sequences that contain
twists that cancel each other out. Even after restricting the move set from eighteen
moves to twelve moves, the number of reachable states grows very quickly. The counts
in Table 8.1 were obtained using a brute-force calculation, and as such, calculating
the number of states reachable using seven or more twists was found to be infeasible

given the available computation resources.

In the experiments presented in this chapter, a maximum of twenty time steps,
i.e., moves, was allowed in a single simulation. If the cube was solved before this

twist limit was reached, the episode was terminated. At the end of a simulation, the
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cube was solved, the twist limit was reached, or both of these conditions were true.

At that point, the reward corresponding to the final state, Eq. 8.2, was returned.

8.2.2 Point Initialization and Generation

In contrast to Chapter 7, where the SBB algorithm was modified so that the point
population was updated using a random point sampling heuristic, the SBB formula-
tion used in this chapter reverts back to the original which employs point operators
that take advantage of the structure in the state space; here, point initialization and
generation is described. The genotypic distance measure and the reward function,
both forming the basis for the full-fledged point fitness function as described in Sec-
tion 3.2.6, are described in subsequent sections.

All points were created using some sequence of legal moves, Section 8.2.1, applied
to the solved state. Illegal configurations, such as those that would be reachable with
the disassembly of the cube, were therefore not possible.

During point initialization and point generation, Sections 3.2.1 and 3.2.3, random

points were created as follows:

1. A twist count ent;,;; between one and initTwists inclusive was selected with

uniform probability.

2. Starting with the solved state, a total of cnt;,;; moves, each selected with uni-

form probability, was applied to the cube.

3. If, after the previous step, the cube was in the solved state, the previous step

was repeated.

Using this point creation procedure, it was possible that some twists canceled each
other out. A point created using cnt;,;; twists could therefore be solvable in fewer
than ent;,;; moves.

To generate an offspring point from a parent point, Section 3.2.3, a sequence of

moves was applied starting from the parent’s configuration as follows:

1. A twist count cntg.,, was selected as one plus the absolute value of a normally

distributed deviate with a mean of zero and a standard deviation of genTwists.

2. Starting at the parent’s state, a total of cnty,, moves, each selected with uniform

probability, was applied to the cube.
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3. If, after the previous step, the cube was in the solved state, the previous step

was applied to the solved state.

In the experiments, initTwists was set at 10 while genT'wists was set at 3. Points
that were created randomly could therefore always be solved under the upper limit
of twenty moves, and in particular, this was true of the points used to evaluate
test performance. Points created from other points, however, could potentially be

unsolvable given the maximum number of steps that was allowed.

8.2.3 Genotypic Distance

Defining a meaningful distance between two configurations of the Rubik’s Cube is not
a straightforward task. For example, using a count of the facelets on each face that
match the center facelet may be misleading because, under this definition, a cube
configuration may be assigned a relatively large distance from the solved state even
if it is close to being solved. This is due in part to the fact that a single twist may
result in a disproportionate perturbation in the mix and positioning of the facelets on
the affected faces (and why previous approaches resorted to the use of turn patterns
to mitigate this effect [66]).

In this work, the raw distance between states cube; and cube; used in calculating
the genotypic diversity reward, Eq. 3.5 in Section 3.2.6, as well as the reward function

described in the next section, was calculated as

0 if cube; is 0 twists away from cube;;,

1 if cube; is 1 twist away from cube;,

drubir(cube;, cube;) = (8.1)

4 if cube; is 2 twists away from cube;,

16 otherwise,

where the twist counts refer to the minimum number required. Under this definition,
pairs of points that are three or more twists away are viewed as equidistant. This
distance function could be made more informative, e.g., by checking points that are
three, four, five or more twists away, though this would result in significantly higher

computational overhead as more points would need to be considered, Table 8.1.

8.2.4 Reward Function

The reward scheme, used during evaluation to define the outcome of applying a host

to a point, Section 3.2.5, was based on the genotypic distance between points, Eq.
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8.1. Specifically, the reward associated with a final cube configuration cubey was a
function of the genotypic distance between cubey and the configuration corresponding

to the solved state, cubey, defined as

1

8.2
drupir(cube g, cubey)? + 1 (82)

where d,x is the genotypic distance function, Eq. 8.1. Thus, final configurations
farther away from the solved state were associated with a lower reward. Since the
genotypic distance function is sensitive to within two twists, i.e., pairs of states three
or more twists apart are viewed as equidistant, the reward function can distinguish
between solutions that transform a given starting configuration to any of the 127
configurations closest to the solved state and all other solutions. A maximum reward
of one is awarded for solving the cube, thereafter the reward decreases exponentially.
Despite being informative on only a minuscule region of the state space, this
reward function was found to be more useful than some alternatives, e.g., a measure
of entropy reflecting the number of facelets on each face matching the center cubie
and a function that explicitly considers the location of facelet combinations [66]. This
is due in part to the fact that, as noted earlier, a single twist of the Rubik’s Cube
can result in a disproportionate change in the configuration of the cubies. Thus,
the degree to which a cube is scrambled often provides little information about how
close the cube is to the solved state*. Equivalently, there are many states where
the cube is scrambled to a similar extent but whose distance to the solved state
varies significantly. In contrast, the reward function used here provides an accurate
indication of how close the cube is to being solved when the configuration is in the
immediate vicinity of the solved state, but no information in all other situations.
The more general problem faced in defining an appropriate cost function under
the Rubik’s Cube problem is that it is not obvious how to efficiently provide an ac-
curate monotonic reward scheme, i.e., one which accurately reflects the distance to
the solved state, with respect to even one percent of all the possible states. The cost
function in Eq. 8.2, based on the genotypic distance defined in Eq. 8.1, provides a
gradient only with respect to the 127 of the 4.33-10'? states closest to the solved con-
figuration, leaving approximately 4.33-10' states where the cost function provides no
information. Alternatively, functions that compare cubie locations and orientations

tend not to be monotonic. Finally, it is noted that even though the state space is

4Assuming, for example, the count of facelets that match the center as the measure quantifying
how scrambled the cube is.
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massive, the point population in the SBB algorithm will tend to support points that
provide a learning gradient, so it is expected that given the reward function specified

above the focus will be on starting states in the vicinity of the solved configuration.

8.2.5 State Representation

The cube state was represented using a 54-dimensional vector specifying the colour
at each location on the cube’s surface, Figure 8.2. Integers 0 through 5 were used to
represent each of the colours, and there were always nine instances of each colour in a
state vector. Since the six center facelets on each face remain fixed, the corresponding
vector components were constant; these were included in the state vector regardless
as they identified the colour associated with each face. This representation is an
initial attempt and therefore it is acknowledged that it may not be optimal, and in
particular, alternate representations that consider symmetries in the cube may lead

to improved performance.

8.3 Experimental Setup

This section details the experimental setup including the SBB parameters used, Sec-

tion 8.3.1, as well as the overall evaluation framework, Section 8.3.2.

8.3.1 Parameters

With two exceptions, the SBB parameters were set as in Chapter 7, Section 7.2.3; both
changes were made in order to encourage a greater degree of problem decomposition.
The first change was to increase the maximum host size, w, from 10 to 24. The second
change to was to decrease the maximum program size, max ProgSize, from 48 to 24.
Together, these changes enabled larger solutions in terms of symbiont counts, although
the bid programs themselves were more restricted in terms of the instruction counts.
By limiting the capability of the symbionts, the goal was to have each associate itself
with a smaller portion of the state/feature space. As in previous experiments, 60
initializations were performed using each algorithm configuration (described in the

following section).



cube

uo

Ut

u2

u3

U4

us

ue

u7

us

LO | L1

L2

FO

F1

F2

RO

R1

R2

vector

plr R R
o e o [ ]

L3 | L4

L5

F3

F4

F5

R3

R4

R5

L6 | L7

L8

F6

F7

F8

R6

R7

R8

Figure 8.2: The 3x3 Rubik’s Cube state representation.
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Shown is how the cube

configuration is mapped to a H4-dimensional vector, with the left-hand side showing
a cube that has been ‘unfolded’. Front, right, down, left, up, and back facelets are
denoted by F, R, D, L, U, and B respectively. The vector components with the bold
border remain fixed during state transitions and define the colour of their associated
face. For example, the first nine indices of the vector represent colours on the front
of the cube.
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| | SBB | SBB-bh | SBB-bp |

levels 2 1 1
tinaz 1000 | 2000 2000
w 24 36 24
mazxProgSize | 24 24 36

Table 8.2: Three SBB configurations compared under the Rubik’s Cube problem. The
two-level configuration is compared against a big host and big program configuration,
with the differences in parameter settings highlighted. All other parameters were set
as described in Section 8.3.1.

8.3.2 Evaluation Methodology

A two-level SBB configuration was compared with two single-level configurations,
SBB-bh and SBB-bp, Table 8.2. In all three cases, the total number of fitness evalua-
tions was kept the same. Under the SBB-bh and SBB-bp configurations, the number
of training generations, t,,q., was set at 2000 since they only involved a single level.
The SBB-bh, or ‘big host’, configuration, was included in the comparison to determine
the benefit of having two levels versus evolving just a single level but increasing the
maximum host size. Thus, under this configuration, the maximum host size, w, was
increased to 36 from 24. The SBB-bp, or ‘big program’, configuration, was included
to allow comparison against a single level with an increased maximum program size,
mazxProgSize. In this case, the maximum program size was increased to 36 from
24. In all three cases, parameters were set as indicated so that the upper bound on
the computational overhead in terms of overall instructions executed was the same®.
In addition, the performance of the first level of the two-level SBB configuration was

also considered.

Solution quality was measured as in the experiments on the truck reversal domain,
Section 6.3.2. In particular, the number of test cases solved was considered with
respect to the best individual and the population as a whole. In contrast to the
truck reversal domain where thresholds on the real-valued state components were set,
under the Rubik’s Cube there is only a single state corresponding to a solved state.

As before, the best individual was defined as the individual with the highest mean

5For example, assuming host and point populations of size one, the maximum number of instruc-
tions that can be executed under the SBB configuration is 1000 - 24 - 24 4+ 1000 - 2 - 24 - 24, with the
two main terms corresponding to the overhead at the first and second level respectively. Under the
SBB-bh formulation, the maximum execution count is 2000-36-24. Naturally, this analysis assumes
one step per episode.
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reward, FEq. 8.2, on the validation set, where this may not necessarily correspond
to the individual solving the most cube configurations®, i.e., individuals that nearly
solve many cubes may also receive a high reward on average.

The validation set consisted of 1000 random points where each point was created
as in the point initialization procedure, Section 8.2.2. As points were added to the
validation set, if a new point was found to be a duplicate it was discarded and the
creation process for that point was restarted, i.e., including the re-selection of the
number of twists cnt;,;. Two sets generated independently from the validation set
were then used to evaluate the test performance of the solutions. The first test set
consisted of all points 1-, 2-, and 3- twists away from the solved state and was used to
determine the performance on what would be assumed to be easy instances. In this
set, the number of 1-, 2-, and 3-twist points was 12, 114, and 1068 respectively, Table
8.1. Here, a point will be referred to as a k-twist point if the lower bound on the
number of moves required to solve it is k. The second set consisted of 5000 unique
random points generated in the same way as the validation set. As under the truck
reversal problem, the same validation and test set was used across all initializations.

The distribution of points in the random test set, with respect to the number of
twists cnt;n;; used to create each point, is shown in Figure 8.3. The number of 1-twist
and 2-twist points in the random test set is low because there are, respectively, only
12 and 114 of these points in total. Even the 3-twist counts appear low compared
to the higher twist values. This is because, given the way in which the test set is
created, it is relatively likely that if a cnt;,;; of three is selected, then the resulting
configuration will be a duplicate of an existing point (and in this case a new twist
count, ent;n; is reselected). Inclusion of the test set containing all 1-twist, 2-twist, and
3-twist points compensates for the relatively low count of these point in the random

test set.

8.4 Results

In order to provide a performance baseline, a stochastic guesser was applied to the
random test set, with the associated results presented in Section 8.4.1. The perfor-
mance of the SBB algorithm on the 1-; 2-, and 3-twist points is then presented in
Section 8.4.2, while SBB performance on the random test set is presented in Section

8.4.3. Complexity results are discussed in Section 8.4.4, with an additional analysis

5Though the non-linear distance, Eq. 8.1, and the squaring of the distance in the reward function,
Eq. 8.2, is meant to mitigate this.
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Figure 8.3: Distribution of points in the random test set with respect to the twist
counts. The 5000 test points are binned by the number of twists, cnt;,;, used to
create each point. For each possible number of twists, z-axis, shown is the number
of associated points, y-axis.
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of performance under limited resources summarized in Section 8.4.5.

8.4.1 Random Solver

In order to characterize the problem, the performance of a set of random solvers
on the random test set was considered, Figure 8.4. Here, a random solver is one
that, at each time step, selects a move with uniform probability. Since each move
is stochastically selected, the same random solver is likely to result in two different
action sequences when applied to the same initial cube configurations, i.e., the action
sequence given an initial state is not deterministic.

Performance was measured in terms of an absolute count and a cumulative count,
much like in Section 4.2.3. The cumulative count is defined relative to some ordering
of the solvers and refers to the number of different test cases solved by a solver and all
solvers before it in the sorted list. It effectively provides a snapshot of the population-
wide counts as additional solutions are included. The absolute count refers to the
number of different test cases solved by a particular solver. A set of 600 random
solvers was applied to the random test set”. Since each random solver follows the
same move selection strategy, any difference in performance observed across the set
was due to chance. This was repeated 60 times, the same as the number of SBB
initializations used, leading to the distributions in Figure 8.4.

In Figure 8.4a, the solvers are considered in arbitrary order, i.e., a particular
solver’s index along the z-axis is arbitrary. Here, there is a steady increase in cu-
mulative counts, though some diminishing returns are observed as more and more
solvers are considered. In particular, the median cumulative count at x = 300 is 337,
while at x = 600 it is 500. Regardless, this suggests a relatively low degree of overlap
in the test cases solved by different solvers since the cumulative counts continue to
increase despite the low absolute counts — if there was significant overlap, the curve
would quickly plateau. In Figure 8.4b, the same sets of solvers are considered but a
decreasing ordering with respect to the absolute counts is assumed. That is, solvers
with higher absolute counts are associated with lower indices on the z-axis. There
is a sharper increase in the cumulative counts at lower indices again suggesting that
different solvers solve different test cases. In addition, the absolute counts highlight
that a single solver solves only a handful of cases; the median absolute counts at
x =1, 2z =100, and = = 300 are 9, 5, and 3 respectively.

Assuming a population size of 600, the random solvers were able to collectively

"Equivalently, a single random solver was applied 600 times to the random test set.
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Figure 8.4: Random solver performance on the Rubik’s Cube problem. Shown is the
count of solved cases with respect to the random test set, y-axis, as additional random
solvers are considered, x-axis. The top curve in each subplot denotes cumulative
performance, while the bottom curve denotes absolute performance. In Figure 8.4a,
the solvers are considered in arbitrary order, while in Figure 8.4b, the solvers are
sorted into descending order according to each solver’s absolute count of test cases
solved. The set of solvers in both subplots is identical.
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’ H 1-twist ‘ 2-twist ‘ 3-twist ‘
SBB 1 vs SBB 0 0.04458 | 0.0008872x | 0.0001368%
SBB 1 vs SBB-bh 0.2158 | 0.003993« | 0.003636%
SBB 1 vs SBB-bp 0.4199 0.3693 0.7647%

Table 8.3: Two-tailed Mann-Whitney test results comparing second-level SBB solu-
tion counts with SBB 0, SBB-bh, and SBB-bp on the 1-, 2-, and 3-twist cases. Shown
are the p-values when corresponding distributions in Figure 8.5 are compared, e.g.,
SBB 1 versus SBB-bh on all 1-twist points. Cases where the SBB 1 median value is
higher (better) are noted with a x.

solve almost ten percent of the random test cases. To do so, they relied on non-
overlapping behaviour, indicating that population diversity is likely to be important
if the SBB algorithm is to be successful on this problem. In particular, the median
cumulative count at 60 solvers in Figure 8.4a is 113; this represents a population of
random solvers that is the same size as the final SBB population®. If the models
evolved under the SBB algorithm surpass this baseline level of performance, this

would imply that learning is taking place.

8.4.2 Performance on 1-, 2-, and 3-Twist Points

The proportion of 1-, 2-, and 3-twist points that are solved by the best host decreases
sharply as the lower bound on the required number of twists increases, Figure 8.5.
This is indicative of the relative difficulty of the Rubik’s Cube problem. The SBB
1 solutions appear to outperform the other three on the 1-twist points with 49 of
the 60 initializations producing a best individual that solves all 12 points. On the
2-twist and 3-twist points, SBB 1 appears to outperform SBB 0 and SBB-bh, but its
performance is similar to that of the big program configuration SBB-bp. A two-tailed
Mann-Whitney test comparing SBB 1 with the other three configurations suggests
no difference on the 1-twist points at a significance level of 0.01, Table 8.3. This may
be due in part to the fact that there are only twelve 1-twist points. On the 2-twist
and 3-twist points, the tests support the observations made regarding the relative
performance of the four configurations assuming a significance level of 0.01, and in

particular, the similar performance of SBB 1 and SBB-bp.

The number of moves used to solve the 1-, 2-, and 3- twist points, Figure 8.6,

8The cumulative count at 60 solvers in Figure 8.4b is not considered as this would imply selecting
60 individuals with the highest absolute solved counts out of a population of 600.
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Figure 8.5: Proportion of 1-, 2- and 3-twist cases solved. For each configuration,
x-axis, shown is the number of cases solved by the best host in the final population,
y-axis. The first and second SBB levels in the two-level configuration are denoted
by SBB 0 and SBB 1 respectively, i.e., SBB 1 is constructed on top of SBB 0. The
cases are grouped by the minimum number of twists required to solve them, and each
distribution represents 60 initializations.



number of moves used to solve a case
S

Figure 8.6: Number of moves used by the best host in solving the 1-, 2-, and 3-twist
points. For each configuration, x-axis, the mean number of moves used in solving the
test cases in each subset is shown, y-axis. The distributions are grouped by subset,
and test cases that are not solved are not considered. Each distribution represents 60
initializations.

provides a measure of how efficient the evolved strategies are. The move counts for
all configurations appear to be similar, though the median counts for the two-level
formulation always fall below that of the other configurations — naturally, lower move
counts are preferred. In all cases, the number of moves used appears to be considerably
higher than the lower bound. Application of a two-tailed Man-Whitney test, Table
8.4, suggests that the SBB 1 move counts are lower than the SBB-bp move counts
on the 2-twist and 3-twist points at a 0.01 significance level. Thus, even though both
approaches achieve similar performance on the 2-twist and 3-twists cases, Table 8.3,

it appears as though the layered approach is able to do so more efficiently.
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’ H 1-twist ‘ 2-twist ‘ 3-twist ‘
SBB 1 vs SBB 0 0.2401x | 0.01921x | 0.009153%
SBB 1 vs SBB-bh 0.4976x 0.1374% 0.0534%
SBB 1 vs SBB-bp || 0.02737 | 0.001951x | 0.0007957%

Table 8.4: Two-tailed Mann-Whitney test results comparing second-level SBB solu-
tions with SBB 0, SBB-bh, and SBB-bp with respect to the number of moves used
in solving the 1-; 2-, and 3-twist cases. Shown are the p-values when corresponding
distributions in Figure 8.6 are compared, e.g., SBB 1 versus SBB-bh on all 1-twist
points. Cases where the SBB median value is lower (better) are noted with a *.

’ H Best individual ‘ Population ‘

SBB 1 vs SBB 0 0.002499« | 3.109e-15%
SBB 1 vs SBB-bh 0.1519% | 1.003e-10%
SBB 1 vs SBB-bp 0.5566 | 0.0002617

Table 8.5: Two-tailed Mann-Whitney test results comparing second-level SBB so-
lutions with SBB 0, SBB-bh, and SBB-bp on the random test set. Shown are the
p-values when corresponding distributions in Figure 8.7 are compared, e.g., SBB 1
versus SBB-bh with respect to the population. Cases where the SBB 1 median value
is higher (better) are noted with a *.

8.4.3 Performance on a Random Test Set

Solution counts on the test set containing 5000 random cases are shown in Figure
8.7. The two-level approach, SBB 1, appears to outperform SBB 0 and the big host
configuration SBB-bh both in terms of the single-best individual and the population
as a whole. Compared to the big program configuration SBB-bp, the two-level ap-
proach appears to result in similar single-individual counts, Figure 8.7a, but higher
population-wide counts, Figure 8.7b. A two-tailed Mann-Whitney test, Table 8.5,
suggests that indeed the population-wide performance under SBB 1 is better than
that of the other configurations at a 0.01 significance level. With respect to the single-
best individual, the tests indicate a significant difference only against SBB 0. Thus,
the strength in the multi-level approach appears to lie in its ability to maintain more

diverse behaviours in the population of solutions.

The median value under the SBB 1 distribution in Figure 8.7a is 361 — this can
be interpreted as the expected best host performance on the random test set. In
contrast, no random solver was able to solve more than 12 of these cases, Figure 8.4.

Assuming a random solver population of size 60, the population-wide solved count
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Figure 8.7: Number of random test cases solved. For each approach, x-axis, shown
is the number of cases solved, y-axis. The first and second SBB levels are denoted
by SBB 0 and SBB 1 respectively, i.e., SBB 1 is constructed on top of SBB 0. The
counts are with respect to the best host as well as across the population at the end
of training, and each distribution represents 60 initializations.
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on the random test set was estimated at 113, i.e., when the median cumulative value
at r = 60 in Figure 8.4a was considered. In comparison, the median population-
wide SBB 1 count, Figure 8.7b, is 1195.5. Thus, the models evolved under the SBB
approach are clearly able to improve upon random behaviour.

Based on the number of moves, cnt;,;;, used to create each instance in the random
test set, the test cases were partitioned into ten subsets. The number of cases in each
subset that was solved, as well as the mean number of moves used in solving the cases,
was then considered, Figure 8.8. Here, only the SBB 1 results are shown, though the
trends under SBB-bh and SBB-bp were observed to be similar; with respect to the
test cases solved under each twist count, i.e., considering pairs of distributions under
each of the ten twist counts, a two-tailed Mann-Whitney test did not indicate a
difference at a 0.01 significance level in all ten comparisons with each of the two other
approaches.

Much as in Figure 8.5, a sharp decrease in the number of test cases solved is
observed as the upper bound on the required number of twists in Figure 8.8a increases.
As indicated earlier, Figure 8.3, the total number of points in the random test set
generated using a given number of twists levels off at about five twists, while the
counts in Figure 8.8a continue to decrease. In addition, there appears to be some
limit on the difficulty, as measured in terms of the number of moves from the solved
state, of the cases that the approach is able to solve. That is to say, above z = 6, the
median mean values in Figure 8.8b remain relatively steady and below the twist count
cntin;e indicated on the z-axis. Thus, at best, the approach is able to consistently
solve cases that are six twists away from the solved state.

The goal of partitioning the random test set with respect to the number of twists
used to generate the individual cases was to obtain subsets of increasing difficulty.
As evidenced by Figure 8.8, after this partitioning process, subsets associated with
higher twist counts still tend to contain easy cases, i.e., cases that can be solved in
fewer twists than were used in their creation. This results because later moves may
undo the effects of previously applied moves. This effectively defeats the purpose of
performing the partitioning in the first place. Thus, a more comprehensive comparison

with respect to these subsets was not performed.

8.4.4 Complexity of Evolved Solutions

The complexity of the best hosts is summarized with respect to the effective instruc-

tion counts across the host, the number of symbionts in the host, as well as the
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Figure 8.8: Number of test cases solved by the two-level SBB solutions on the random
test set and the associated mean number of moves used. The test cases are partitioned
into ten subsets, z-axis, based on the number of twists used in their creation. All
counts reflect the best host in the final population. Three initializations were found
where the count in one or more subsets was zero and these were excluded, therefore,
57 initializations are plotted.
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number of effective instructions per symbiont in the host, Figure 8.9. In all cases,
the SBB 1 counts do not include the SBB 0 counts, e.g., the instruction counts at
the first level are not counted again at the second level. The SBB 0 and SBB 1 dis-
tributions in Figure 8.9a indicate the number of instructions across the best host at
the first and second level. Here, compared to the first level, the hosts at the second
level appear to be simpler, though it is not clear why. Despite having the ability to
evolve solutions that consist of the same number of instructions, the SBB-bh solu-
tions appear to be less complex than the SBB-bp solutions in terms of the instruction
counts. This reduction in complexity appears to be a direct result of the increased
capacity for compartmentalization under the SBB-bh configuration, though in general
the performance of SBB-bh was found to below that of SBB-bp.

Considering the two-level configuration in Figures 8.9a and 8.9b, the median host
size at the second level is 7 while the median effective instruction count at the first level
is 39. Thus, the instruction count across both levels can be estimated as 7x39+20.5 =
293.5, assuming a median instruction count of 20.5 at the second level. This is
considerably higher than the overall instruction counts observed under SBB-bh and
SBB-bp, though it is likely an over-estimate that does not account for lower-level
programs that are referenced multiple times. In terms of the number of instructions
that are executed in order to select an action, using the median values once more the
two-level count can be estimated as 39 + 20.5 = 59.5 where this is more competitive

with the other two approaches.

With respect to the number of symbionts per host, Figure 8.9b, comparing SBB
0 with SBB 1 a reduction in complexity is again observed at the second level. No
difference between SBB-bh and SBB-bp is detected at a 0.01 significance level using
a two-tailed Mann-Whitney test, despite the increased upper limit on the host size
under the big host configuration. Given median SBB 0 and SBB 1 symbiont counts
of 10 and 7 respectively, the number of symbionts across both levels in the two-level
configuration can be roughly estimated at 77 — this is clearly higher than the counts
observed under the big host and big program configurations. However, the number of
symbionts that have to be considered in selecting an action in the two-level approach

can similarly be estimated at 10 + 7 = 17, making the runtime cost competitive.

The number of effective instructions per symbiont, Figure 8.9c, highlights the
simplicity of the evolved individuals. Once again, the SBB 1 counts appear lower
than the SBB 0 counts. The big program configuration, SBB-bp, results in the
highest counts, though the third quartile value is still below six.
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Figure 8.9: Complexity of the solutions evolved on the Rubik’s Cube problem with
respect to the best host. For each configuration, z-axis, shown is the number of
instruction across the host, Figure 8.9a, the number of symbionts in each host, Figure
8.9b, and the mean number of instructions per symbiont, Figure 8.9¢. First and second
SBB levels are denoted by SBB 0 and SBB 1 respectively. All instruction counts are
post intron removal, and each distribution represents the best individual in each of
the 60 initializations.
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Figure 8.9: Continued.

In summary, when considering the complexity of the entire solution, i.e., the sym-
biont or instruction counts across all levels, the solutions under the two-level configu-
ration appear to be more complex than the big host and big program configurations.
However, in terms of the number of instructions or symbionts that are engaged dur-
ing a single application of a host, i.e., in calculating an action at one time step, the
overhead under the two-level approach is competitive; this is reflected in the similar
training times under the three configurations, Figure 8.10, which one would expect
given the parameters used, Section 8.3.2. This is a result of the hierarchical organi-
zation of the solution subcomponents in the multi-level configuration. Furthermore,
the complexity at the second level in the two-level approach tends to be smaller than

at the first level, though it is difficult to say why from the current data.

8.4.5 Layering under Limited Computational Resources

No significant difference was found in the best host solved counts when the second-
level SBB individuals were compared with individuals evolved under the big program
configuration, Tables 8.3 and 8.5. Both configurations assume a common set of design
choices such as the fitness and distance functions, the cube state representation, and
the GP instruction set. These design decisions, though independent of the core SBB

algorithm, may ultimately determine the effectiveness of the approach. In particular,
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Figure 8.10: Comparison of the training times on the Rubik’s Cube problem. Training
overhead was measured as described in Section 4.1.4, i.e., accounting for effective
instructions executed in user mode. A two-tailed Mann-Whitney test detected a
difference between the SBB 1 and SBB-bh distributions at a 0.01 significance level,
but no such difference was detected between the SBB 1 and SBB-bp distributions.
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they may impose a ceiling on performance, i.e., a plateau after which no significant
progress can be made without applying a disproportionate amount of computational
effort. A reason for the similar levels of performance may therefore be that given their
common implementation the plateau was reached under both configurations. Similar
behaviour was encountered in previous work on evolving solutions to the Rubik’s

Cube where little progress was made beyond a certain point [12].

Hitting such a ceiling would depend on the choice of parameters because sufficient
computational effort would need to have been applied. It may also be that, if the
ceiling was reached, too much computational effort was applied; since only end-of-
run performance was considered, it is impossible to determine at which point during
training the plateau was reached. With these considerations in mind, one more set of
runs was performed under parameter settings where it was known that further effort
would yield improved performance, that is, the target level of performance in these

additional runs was below previously established levels.

To this end, two SBB configurations were considered. The first, denoted ‘SBB
short’, involved three levels, training each level for 10 generations; otherwise, param-
eter settings were as before, Section 8.3.1. By reducing the number of generations
from 1000 to 10, the performance levels established previously were unlikely to be
reached. The second configuration, denoted ‘SBB-bp short’, was a single-level con-
figuration analogous to the SBB-bp configuration, Section 8.3.2, but where the max-
imum program size was increased to 48 and the generational limit set at 30 to match
the number of fitness evaluations allowed under the SBB short configuration. The
choice was made to increase the maximum program size instead of the maximum host
size because earlier in this chapter the former was found to perform better.

The single-best individual results on the random test set are shown in Figure
8.11. The median values under the SBB short 2 and SBB-bp short distributions fall
well below the median SBB 1 and SBB-bp values established previously, Figure 8.7a.
Thus, significant progress can be made by training for more than 10 generations so
any ceiling, if it exists, is not yet reached. Furthermore, layering is now observed
to have a much stronger impact. Specifically, a two-tailed Mann-Whitney test now
suggests a difference between each successive pair of SBB levels in the three-level
configuration as well as the third SBB level and the SBB-bp short distribution at a

0.01 significance level?.

The results presented thus far, in addition to those in Figure 8.11, suggest that

9In all three cases the p-values fall below 1010,
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Figure 8.11: Number of random test cases solved by the best host assuming limited
computational resources. The plot is analogous to Figure 8.7a but compares a three-
level SBB configuration, SBB short, with a big program configuration using similar
computational resources, SBB-bp short. The SBB short results are further broken
down by level indicating the performance of the best host in the final population at
each level.
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with and without layering, similar levels of performance can be reached given sufficient
computational effort. However, they also suggest that layering is more efficient and
can yield stronger performance under limited resources. Here, the resource limit was
applied artificially, but in practice, the limit may be enforced due to other constraints.
Further work is required to analyze the tradeoff between constructing more layers or

training each layer for a longer period of time.

8.5 Summary of Results

A two-level configuration of the SBB algorithm was applied to the Rubik’s Cube
problem and compared with two single-level configurations, a big host configuration
and a big program configuration. Solving the Rubik’s Cube was found to be a difficult
task, with cube instances three twists away from the solved state already posing
a challenge. Of the three SBB configurations that were compared, the two-level
configuration and the big program configuration were found to be the most successful
in terms of the number of test cases solved, however, in general, higher performance
was expected. Furthermore, the performance of the SBB approach was clearly better
than that of a random solver suggesting that there is sufficient structure in the domain
to support learning, though it is also clear that the current results represent a starting
point in this challenging problem domain.

A distinguishing quality of the two-level solutions was that they tended to be
more efficient in terms of the number of moves used and that they resulted in bet-
ter, or more diverse, population-wide performance. In addition, layering was found
to be particularly beneficial under limited computational resources. One potential
drawback of the two-level solutions was their overall complexity, though in terms of
runtime efficiency they were found to be competitive with the other two approaches.
As such, the hierarchical structuring of solution subcomponents provides a way to
add complexity without increasing computational overhead, which, under difficult
problem domains, is viewed as a very desirable property. This also emphasizes that
when considering the complexity of solutions, the way in which that complexity is
realized should be taken into account, i.e., not all complexity is the same.

What makes the Rubik’s Cube domain, as formulated in this chapter, so difficult is
that no obvious cost function is available. As such, the fitness function used here does
not distinguish between the vast majority of cube states, providing little information
about the quality of candidate solutions with respect to the entire state space. The

lack of an appropriate fitness function may limit the quality of the solutions that can
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be evolved, effectively imposing a low ceiling on the performance levels regardless of
the computation effort applied. Resolving this issue is therefore suggested as a starting
direction for any future work. For example, performance may improve with the use
of an explicitly multi-objective fitness, e.g., with one objective per face. Another
possibility is a lexicographic formulation that augments the function currently used
to provide more information in situations that yield the worst-case distances, e.g., by
considering the number of correctly placed cubies. Alternatively, one could use the
stages in Thistlethwaite’s strategy to define subgoals, though naturally this assumes

some degree of domain-specific knowledge.



Chapter 9

Conclusion

The conclusion of this thesis begins with a summary of the core ideas and motiva-
tions in Section 9.1. Having identified a number of broad research objectives in the
introductory chapter, these are then retrospectively discussed in Section 9.2. The
final two sections of the conclusion then summarize the key contributions made in

this thesis as well as a number of possible directions for future work.

9.1 Summary of Core Ideas and Motivations

In the domain of biological evolution, most tend to recognize the central tenets behind
neo-Darwinism, i.e., the principle of evolution by which populations are believed to
diversify over time. However, there appears to be little consensus about the exact
nature of the mechanisms driving evolutionary change, and in particular, the role
that symbiosis may play in the emergence of complex life forms. In contrast, the
same type of discussion has not taken place in the EC community where the norm
has been to rely on sexual reproduction with little consideration given to alternate
mechanisms of inheritance such as symbiosis. At the same time, there has been
an ongoing debate about the lack of stability in the crossover operator, though the
focus appears to have been directed on improving existing frameworks as opposed to
investigating new mechanisms for the stable and variable transfer of genetic material.
Others have rejected crossover altogether relying solely on mutation for variation,
though by itself mutation is not viewed as an inheritance mechanism, i.e., it is not
capable of combining genes from multiple sources but rather acts as a background

process.

Motivated by the ongoing discussions taking place in the field of biological evolu-
tion, the core idea behind this thesis is therefore the use of symbiosis as an alternative
to sexual recombination in an EC setting. It is not claimed that this is the first work
which considers this substitution, but given the limited attention that symbiosis has

received in the EC community (and in the GP community in particular), the work
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presented in this thesis is nonetheless considered to be novel'. Much like the prod-
ucts of crossover, the partnerships identified under a symbiotic metaphor may not
always be stable, thus, the shift from recombination to symbiosis can on the surface
be regarded as having limited practical significance. However, given the form of sym-
biosis as adopted in this thesis, the metaphor provides an elegant means of problem
decomposition including a biologically-inspired approach to incremental complexifi-
cation, both of which are considered vital in the successful development of solutions

to difficult learning problems.

Specifically, the three-staged process of symbiosis-as-an-operator adopted in this
work not only presents an alternative to sexual recombination, but it also represents
an approach to both lateral and vertical problem decomposition. Often observed in
complex systems, problem decomposition is considered to be an important problem
solving strategy as it is viewed as synonymous with solution transparency, learnability,
and efficiency. In the proposed approach, lateral problem decomposition is realized
during the species coexistence and compartmentalization stages whereby individuals
from distinct lineages may form partnerships onto which natural selection is applied
as a group operator. Key to the compartmentalization of symbionts is the bid-based
approach to context learning, separating the ‘what to do’ from the ‘when to do it’,
and providing a metaphor for communication and consequently cooperation between
the symbionts. Vertical problem decomposition is realized during the joint replica-
tion stage as units at lower levels of organization are incorporated into units at higher
levels, i.e., during hierarchical model construction. Again, the same bid-based frame-
work provides a simple way of incorporating behaviours developed at lower levels in
the hosts at higher levels. A critical requirement in this hierarchical evolutionary
process is the diversity of the lower-level building components since there is little to

be gained in combining like units under the bid-based paradigm.

The bid-based approach to context learning and evolution through symbiosis (as
opposed to sexual recombination) are therefore viewed as two central principles un-
derlying the SBB algorithm. Together, they represent a self-contained framework;
however, it is asserted that in order to apply this framework to truly difficult learning
tasks, i.e., tasks where problem decomposition is likely to play a key role, the issue
of scalability needs to be addressed. Alternatively, an approach capable of problem
decomposition is of little use if the learning process cannot be conducted in an ef-

ficient manner. To this end, a third critical component in the proposed approach

'Specific contributions made are detailed in Section 9.3.
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is the dynamic evaluation of candidate solutions through coevolution, thus allowing
training overhead to remain constant regardless of the number of training scenarios.
In addition, two other benefits are associated with the use of a dynamic cost func-
tion. First, a dynamic evaluation set supports directional natural selection and may
therefore help to prevent premature convergence, where this is particularly impor-
tant in the hierarchical construction process which requires diversity at lower levels.
Second, a dynamic evaluation set may more effectively identify the relevant set of
niches, particularly when the instance space is large, which in turn may complement
the speciation process that is encouraged in the population of candidate solutions.
The above is a digest of the core ideas and motivations behind the SBB approach
as presented in this work. The following section focuses on the research objectives as
stated at the outset of this thesis, Section 1.6, summarizing the key empirical results
that were obtained with the goal of providing tangible support for a number of the

points touched upon above.

9.2 Research Objectives: Post-Mortem

A number of research objectives were stated in the introductory chapter of this thesis,
Section 1.6. Here, these objectives are recounted, and some retrospective remarks
relating how these objectives were satisfied in this thesis are presented. In the process,
the discussion highlights what are viewed to be the most significant empirical results
in Chapters 4 through 8.

Objective 1: To present a novel EC algorithm that incorporates symbio-
sis as a primary mechanism driving evolution and which supports problem

decomposition.

The SBB framework, detailed in Chapter 3, was described in terms of three un-
derlying principles: a bid-based approach to context learning, evolution of solutions
by means of symbiosis, and dynamic evaluation through coevolution. The bid-based
action selection process provides the basis for inter-symbiont communication, casting
GP in a non-traditional role, and thus supports the three-staged process of symbiosis-
as-an-operator as adopted in this work. In contrast to traditional approaches in EC
which rely on sexual recombination or mutation as the primary mechanisms driving
evolution, the SBB framework relies primarily on symbiosis with mutation as a back-
ground operator. Under the symbiotic metaphor that is assumed, both lateral and

vertical problem decomposition emerge naturally. To allow the approach to scale to
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problems with large state spaces, which is a characteristic of domains where problem
decomposition is likely to be important, the framework also included a dynamic evalu-
ation function. The proposed approach is considered to be novel because, by adopting
an abstraction of the biological process of symbiosis as the primary mechanism of in-
heritance, it gracefully combines both lateral and vertical problem decomposition, i.e.,
both context learning and layered learning; specific contributions relative to previous

work are detailed in Section 9.3.

Objective 2: To demonstrate that the proposed approach is effective
versus comparable approaches with a reduced capacity for problem decom-

POsition.

The SBB framework, in which symbionts represent explicit solution subcompo-
nents that together may decompose the problem, was compared with a monolithic
approach on a set of binary classification problems in Chapter 4. The monolithic ap-
proach was formulated in such a way that any benefits associated with an increased
capacity for problem decomposition could be isolated. Based on the evaluation, it
was determined that the symbiotic approach resulted in improved classification per-
formance compared to the monolithic approach and that it also required less com-
putational overhead during training. Initially, it was suggested that the symbiotic
approach may yield solutions that are less complex, however, this claim was not
supported by the results.

In the comparison of Chapter 4, reduced capacity for problem decomposition was
associated with monolithic solutions that did not consist of explicit subcomponents,
i.e., symbionts, and otherwise the two formulations that were compared consisted
of just a single level. In Chapter 7, a two-level SBB configuration was compared
against a single-level SBB configuration under the same fitness evaluation limit — as
such, any benefits associated with the capacity for vertical problem decomposition
could be determined. In terms of the number of test cases solved under the truck
reversal domain, the two-level solutions were found to perform much better, a result
attributed to the diverse behaviours evolved in the first level. In terms of overall
solution complexity, the single-level solutions were simpler. However, it was suggested
that because not all solution subcomponents are engaged in the two-level solutions
at any one time step the associated increase in runtime cost is not proportional to
the increase in complexity. It was also argued that the increased complexity in the
two-level solutions was warranted given that the current state-of-the-art failed to

produce competitive results, and that the way in which solution complexity is added
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should also be considered, i.e., in the case of the SBB algorithm the increase in
complexity was a result of layered learning and not a side-effect of evolution. For
example, naively increasing the host size limit under a single-level configuration did
not yield an improvement in performance, suggesting that a structured approach to
complexification is key.

In the Rubik’s Cube experiments of Chapter 8, a two-level SBB configuration was
compared with a big host and big program configuration each consisting of a single
level and assuming equal overhead in terms of the maximum number of instructions
executed. With respect to the number of cube configurations solved, performance
was lower than expected in all cases and no single configuration stood out. However,
it was demonstrated that despite producing solutions that were more complex, the
training overhead under the two-level configuration was comparable to the training
overhead under the two single-level configurations. This emphasized that the way
in which complexity is added is an important consideration, and in the case of the
hierarchical SBB formulation, complexity can be increased in an efficient manner.
A final result in the chapter suggested that the benefits of layering may be more
apparent when limited computational resources are available, or alternatively, when
one does not have the resources to continue training until a plateau in performance

is reached.

Objective 3: To analyze the nature of the problem decomposition re-

sulting from the application of the proposed approach.

Under classification, the solutions evolved under a single-level SBB configuration
were characterized in Chapter 4. It was found that, in terms of the number of effective
instructions and unique features accessed, the symbionts appeared to be very simple
even with no baseline level of complexity available, i.e., the monolithic approach was
not amenable to such analysis. The simplicity of the solution subcomponents — the
symbionts — suggested a high degree of problem decomposition since the ability of
each subcomponent was limited. Furthermore, each symbiont was found to access a
small number of features regardless of the dimensionality of the attribute space. In
terms of the way in which individual symbionts associated themselves with different
exemplars by way of the bidding process, it was found that typically there was only
one symbiont that won a large portion of instances. Symbionts that used no features,
i.e., bid a constant value, were also observed, suggesting the emergence of default
hierarchies. Considering performance across the final host population, it was found

that typically all instances in the training data were classified correctly by at least one
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non-degenerate host, where this diverse behaviour is attributed to the fitness sharing
mechanisms incorporated into the SBB framework. In Chapter 5, the SBB solutions
were compared with AdaBoost ensembles with respect to the overlap in features
accessed by the symbionts/trees, and here, it was found that relatively speaking the
overlap in features accessed by the symbionts was found to be lower — this despite
the SBB hosts using fewer features on most of the datasets. This result further
emphasized the capacity for problem decomposition under the proposed approach, in
this case, with respect to the attributes used by different subcomponents.

Under temporal sequence learning, SBB solutions on the truck reversal domain
were analyzed in Chapter 7. Here, the focus was more on the ability of the second-
level hosts to leverage the different behaviours learned at the first level, given that the
first-level behaviours could potentially represent solutions to different subproblems.
It was found that indeed the second-level hosts were able to successfully combine
first-level hosts resulting in much improved performance. Furthermore, they were
able to do so in novel ways solving test cases that were not solved at the first level.
In addition, a detailed analysis of a two-level SBB solution illustrated how different

first-level behaviours were exploited in the course of a single episode.

Objective 4: To compare the proposed approach against current state-

of-the-art algorithms on a set of challenging real-world problems.

One approach to the development of a new learning algorithm is to evaluate its
performance on artificial problems under which specific behaviours can be isolated.
However, the results on the artificial task may not carry over to real-world scenarios.
In this work, the aim was to evaluate the proposed approach on real-world problems
directly, thus focusing on performance, while at the same time observing solution char-
acteristics of interest, and in particular, complexities and any problem decomposition
that may emerge. Even though what one considers to be a real-world problem may
be debatable, it is maintained that the problems used in this thesis are representative
of the more difficult tasks encountered in benchmarking studies under classification
and reinforcement learning. This, in turn, justifies the use of an approach that relies
on problem decomposition despite the associated potential for increased overhead.

In Chapter 5, the SBB algorithm was compared with SVM classifiers as well
as AdaBoost ensembles. The classification performance comparison highlighted the
effectiveness of the two baseline algorithms, and especially AdaBoost, which, though
perhaps not as cutting-edge, still yielded strong results. In most cases, the SBB

classification performance lagged behind that of the other two algorithms, suggesting
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a requirement for more consistency under the approach, e.g., through parameter
tuning. On the other hand, the SBB solution complexities were typically found to
be lower, particularly when considering the number of features used, making evident
the complexity-performance tradeoff. An underlying theme in the chapter was that
solutions should be assessed in terms of more than one criterion and that basing
evaluation on a lone factor, e.g., classification accuracy, may fail to provide the whole
picture. In particular, it was suggested that there is a growing need for using, e.g.,
GP, to model interesting relationships in data as opposed to focusing on classification
performance alone.

Under temporal sequence learning, the SBB algorithm was compared against
NEAT. The comparison was restricted to the truck reversal domain where random
sampling was found to be effective and NEAT could therefore be easily applied, i.e., a
more involved point sampling process was assumed under the Rubik’s Cube domain
making any integration with NEAT more involved. Despite using NEAT parameters
specific to the truck reversal domain, and generic parameters under the SBB algo-
rithm, the performance of the latter was found to be much better. This suggested that
the SBB algorithm may be particularly well suited for temporal sequence learning,
though further study is clearly required. Based on the results, it was also conjectured
that the NEAT speciation mechanism may be effective at establishing context for
crossover thus focusing on individual as opposed to population-wide performance. In
contrast, by supporting diversity through implicit and explicit fitness sharing, the
SBB algorithm was found to produce diverse first-level host populations that provide
the basis for strong behaviour at the second level. Furthermore, the poor performance
of NEAT helped to establish the relative difficulty of the truck reversal formulation
used in Chapters 6 and 7.

Objective 5: To explore the design of a dynamic evaluation function
and investigate the conditions under which specific design choices are ap-

propriate.

This objective refers to the interaction between the host and point populations
that allows the SBB approach to scale to problems with many training cases. In
Chapter 6, the design of this algorithm component was considered, and in particular,
the focus was on the policies for managing the point population. Both binary and real-
valued cost functions were considered under the assumption that the latter provide

more information about the quality of the individuals in the host population.
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The experiments of Chapter 6 uncovered a number of insights regarding differ-
ent policies dictating the way in which points are added and removed. First, under
real-valued rewards, it became apparent that the naive but more efficient strategies
such as RSS and SSS are just as effective as the point fitness function in the SBB
algorithm. However, under binary rewards, the naive sampling heuristics were found
to be ineffective relative to the proposed point fitness function. This difference in
behaviour was attributed to the increased amount of information available under the
real-valued scheme, making it likely that a random set of points would provide a
learning gradient; the same is typically not true under binary reward schemes neces-
sitating additional effort to find and maintain an informative set of points. This also
precluded the use of RSS on the Rubik’s Cube problem where the fitness function
provided information about only a small proportion of the possible cube configura-
tions. Chapter 6 also presented a comparison with a formulation of the proposed
point fitness function without a genotypic reward component, as well as the more
traditional distinction-based point fitness commonly found in Pareto-coevolution. In
the former case, including genotypic diversity was found to result in equal or better
performance, where this can be attributed to improved coverage of the state space
by members of the point population. In the latter case, no statistically significant
difference was found between the performance under the distinction-based fitness and
the proposed fitness functions, with both formulations factoring in the genotypic di-
versity reward. However, a preference for the proposed function was suggested on the

basis of computational efficiency.

9.3 Key Contributions

The following are considered to be the key contributions made in the process of de-

veloping, evaluating, and presenting the SBB framework for problem decomposition:

1. Many different definitions of symbiosis — the living together of different organ-
isms [8] — are observed in EC literature, though often the definitions are narrow
as they are typically based on the specific cost-benefit characterization of the
relationship [31], i.e., symbiosis is viewed as a state. A notable exception is the
work on compositional versus accretive mechanisms of genetic inheritance [189)
where a defining characteristic of symbiosis is that it is a process that com-
bines genetic material from different lineages. In this thesis, an even broader

definition of symbiosis is proposed for use in EC which is adopted directly from
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evolutionary biology [121]. Specifically, the three-staged definition of symbiosis-
as-an-operator assumed here is compatible with any cost-benefit characteriza-
tion, and can also be viewed as representative of a compositional mechanism of
inheritance. This formulation of symbiosis also provides an alternative to the
crossover operator often employed in EC which may fail to adequately model

homologous sexual reproduction in nature, i.e., which is variable but unstable.

. Based on the definition of symbiosis assumed in this thesis a framework for
both lateral and vertical problem decomposition is proposed. Whereas lateral
problem decomposition is realized during the species coexistence and compart-
mentalization stages, vertical problem decomposition is realized during the joint
replication stage. A desirable attribute of the proposed approach is that both
forms of problem decomposition emerge from the same biologically-inspired def-

inition of symbiosis.

As suggested in Chapter 2, various approaches to lateral and vertical problem
decomposition have been proposed. However, it is argued here that many of
these approaches are capable of either lateral or vertical problem decomposi-
tion but not both, and furthermore, that compared to the proposed approach
they often require considerably more knowledge to be specified a priori. For
example, GP teaming has traditionally been used as a form of lateral problem
decomposition requiring the a priori specification of the number of cooperating
individuals, e.g., [19, 173], which, in the proposed approach, is determined au-
tomatically. Using layered learning [180], on the other hand, both lateral and
vertical problem decomposition can be achieved, though in doing so intimate
domain knowledge is required. In addition, approaches to lateral problem de-
composition often follow what was referred to in Section 2.2.3 as an ensemble
learning methodology, i.e., they result in a set of highly overlapping behaviours.
In contrast, like the proposed approach, bid-based approaches such as Hayek [10]
and Michigan-style classifier systems [72, 196] aim to identify unique contexts
for specific behaviours, though they fail to structure solutions hierarchically.
Finally, though the proposed approach mirrors the hierarchy observed in SANE
[132], the latter fails to recognize that the two-population architecture can be

applied iteratively to produce multiple levels.

. Having established a symbiotic metaphor that supports both lateral and verti-
cal problem decomposition, this thesis also proposed the bid-based approach to
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context learning as a mechanism for enabling communication among the sym-
bionts in a host. Under this approach, the issues of ‘what to do” and ‘when to
do it” are explicitly separated with the aim of evolving a set of non-overlapping
behaviours — this is in contrast to the norm under approaches following the
ensemble learning methodology. This separation also recognizes that the most
suitable action associated with a given bidding behaviour may change depend-
ing on the context, i.e., the other symbionts in the host, potentially facilitating
the learning process since the same behaviour does not have to be learned from
the beginning if it is to be combined with a different action. In addition to
forming the basis for cooperation among symbionts at same level, the bid-based
metaphor also supports the hierarchical model construction process with no
modifications to the underlying algorithm, i.e., only the action set is redefined
at each successive level; as was already suggested, the hierarchical organization
of solution subcomponents is what differentiates the proposed approach from
other bid-based formulations, e.g., [10, 72, 196].

In this thesis, the decision was made to evolve the bidding behaviours using
GP, though other representations, e.g., neural networks, may also be effective.
This cast GP in a non-traditional role, that is, using programs to map input to
a bid value as opposed to mapping input directly to an output. The choice to
use GP was based in part on historical reasons and in part because it represents

a flexible and robust approach to evolving real-valued functions.

. The investigation of Chapter 6 established conditions under which naive point
sampling heuristics such as RSS, employed in order to reduce computational
overhead, may be suitable. Specifically, a distinction was made between binary
reward schemes, indicating either success or failure, and real-valued reward
schemes that provide considerably more information by allocating partial credit.
It was then suggested that in the case of binary rewards, the naive sampling
heuristics are unlikely to be effective and that greater effort must be expanded
in order to find and maintain an informative set of points, e.g., by explicitly
coevolving a set of points. These results were consistent with other observations
made recently under the proposed approach [113]. In the process, a new point
fitness function was proposed that provides an alternative to the distinction-
based function traditionally used under Pareto-coevolution [46, 139]; though no
significant difference in performance was observed under the two functions, it

was argued that the proposed function is more efficient.
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5. Increased solution complexity is often associated with a reduced capacity for
generalization since it can lead to the memorization of the training data in-
cluding any outliers, i.e., it may result in the models over-fitting the training
data. However, the results of Chapter 7 demonstrated that this need not be the
case and that increased complexity can lead to improved generalization if the
solutions are structured hierarchically. Furthermore, it was suggested that the
computational overhead under the proposed hierarchical models is proportional
not to the overall complexity, in terms of the number of programs across the
solution, but to the number of levels in the hierarchy. This is because not all
subcomponents are engaged at every time step, a property stemming directly
from the use of the bid-based action selection process and the ensuing problem
decomposition. Thus, it has been shown that hierarchical model construction
represents a more efficient approach to increasing complexity than using a com-
parable single-level approach. Alternatively, as suggested by the running time
comparisons in Chapter 8, hierarchical model construction can result in in-
creased complexity given the same computational resource limit. In contrast,
methods that focus on monolithic solutions, e.g., canonical GP, typically fail to

address the issues of scalability and complexity.

This thesis also argued that when evaluating complexity two factors need to be
considered, namely, whether or not additional complexity is warranted and the
way in which complexity grows. For example, it was suggested that in contrast
to classification, where one would expect simple solutions to suffice in many
situations, under the typically more challenging domain of temporal sequence
learning increased complexity may be warranted. With respect to the way in
which complexity is added, it could be the case that growth in complexity is
a side-effect of evolution with little or no benefit in terms of the end-goal. On
the other hand, if additional complexity is added in a structured manner, as
in the proposed approach, then improved performance can result with modest

increases in computational overhead.

Though perhaps not contributions to the greater research community per se, the
following remarks are still regarded as noteworthy. First, the philosophy in evaluating
the proposed approach was to consider a number of factors, where this reflects recent
calls for more comprehensive evaluation in ML [83, 167]. For example, solutions in
the classification domain were not compared solely based on accuracy, instead, the

evaluation included the mecdr measure as well as measures of solution complexity.
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Second, the proposed approach was evaluated on a set of real-world problems from
the outset, as opposed to, e.g., studies on compositional mechanisms of inheritance
which focus on artificial tasks [189]. As such, this thesis assumed a more practical
approach to evaluation. Finally, it is noted that the proposed approach is generic
in that it can be applied directly to classification and temporal sequence learning,
and perhaps with slight modifications, to other problem domains such as regression.
This is in contrast to some of the algorithms used in the comparisons, notably, the
SVM and AdaBoost frameworks which are tailored towards classification. It may
thus very well be the case that slight tweaks to the proposed algorithm guided by the
target domain may lead to improved performance. Related to this is the apparent
robustness of the proposed approach, i.e., the core parameter settings used across all
the experiments was the same. In contrast, an explicit search was performed to find

reasonable problem-specific parameter settings for the SVM and NEAT algorithms.

9.4 Future Work

Previous formulations leading up to the version of the SBB algorithm as presented
in this thesis have assumed various forms, e.g., [110, 111, 112], so if the past is
any indication of the future this suggests that there are many design decisions in
the current framework which may be worth investigating further. The following are
viewed as the most relevant directions for future work, in terms of modifications to

the proposed algorithm as well as other topics of research:

1. The most recent development in the formulation of the proposed approach has
been the inclusion of the hierarchical construction process that iteratively rede-
fines the action set in terms of behaviours learned at lower levels. Accordingly,
this is the algorithm component that has received the least attention so far, and
thus presents the most opportunities for improvement. For example, currently
all hosts from one level form the action set at the next level, whereas it may be
more efficient to eliminate weak or redundant hosts from consideration before
proceeding to the next level. Under the multi-level formulation, it may also be
worthwhile to allow hosts at the topmost level to reference hosts at all lower
levels as well as the problem-specific actions themselves thus resulting in a more
flexible action set. Under temporal sequence learning, instead of evaluating per-
formance with respect to a single goal state, it may be useful to evaluate hosts

at lower levels with respect to arbitrary start and stop conditions with the goal



296

of evolving temporal abstractions, i.e., meta-actions applicable over multiple
consecutive time steps [7]. Finally, in this thesis, the same parameters were
used at all levels, whereas is may be more appropriate to adjust the parameters
according the height of the current level. For example, it may be the case that
at lower levels it is better to evolve a larger population consisting of smaller
individuals, where this is consistent with the goal of evolving a diverse set of

simple behaviours upon which to base subsequent levels.

. The success of the proposed approach hinges on the emergence of appropriate
bidding behaviours in the symbiont population, and so this is viewed as another
algorithm component where further study may lead to significant improvements.
Specifically, it was established in Chapter 4 that, even with no explicit pressure
to do so, the bids may evolve so that there typically exists a discernible margin
between the highest bid and the second-highest bid — still, there is room for
improvement. For example, a symbiont associated with an action that is a poor
choice under the current conditions can still submit a high bid and not adversely
affect the host’s behaviour as long as it is outbid by a symbiont associated with
the optimal action. Placing the over-bidding symbiont in a different context
(host) is then likely to have a disruptive effect hindering the search for effective
symbiont combinations. One approach to improving bidding behaviour may
be to borrow from the XCS classifier system formulation [196] and require a
symbiont’s bid to accurately reflect the degree to which its action suits the

current conditions.

. Allowing the actions to assume real values may lead to improved performance in
domains where the action space is naturally continuous, e.g., the truck reversal
problem. In addition, it may also make the approach applicable to regression
tasks.

. Previous work on modular interdependency has focused on optimization prob-
lems expertly designed to clearly illustrate the concept, e.g., the hierarchical-
if-and-only-if function [189, 191]. The symbionts in the proposed approach
can be viewed as subsystems that are structurally modular but which, through
the bid-based action selection process, exhibit non-trivial behavioural interde-
pendencies. Although one would like to show that candidate solutions under
the proposed approach are a demonstration of modular interdependency under

model building, it is not easy to do so. For example, under supervised learning,
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one could argue that it is possible to narrow down the number of configurations
of a given symbiont that are optimal, regardless of the other symbionts in the
same host, to one, i.e., the configuration where the bid is the maximum when
the symbiont’s action matches the desired output otherwise it is the minimum?.
Combining multiple symbionts of this form (making sure that all actions are col-
lectively represented) would then result in optimal overall behaviour since the
highest bid would always correspond to the desired output, implying that the
system is separable. Under temporal sequence learning, on the other hand, it is
not clear how to define what an optimal configuration of a symbiont is without
the context provided by other symbionts, suggesting that perhaps in this case
the system is non-decomposable. The fact that, under the original definition of
modular interdependency [189], the same system appears to be both separable
and non-decomposable suggests that the definition of modular interdependency

needs to be extended under the model building scenario.

5. Finally, the results of Chapter 7, involving the comparison of the proposed
approach with NEAT, suggest that the SBB framework may be effective on
continuous temporal sequence learning tasks. Recent unpublished results on
the Acrobot handstand problem [174] are consistent with this observation, but
a more comprehensive evaluation on a cross-section of continuous and discrete
problems would help in determining the most appropriate applications of the

proposed approach.

2Tt is noted that the definition of modular interdependency [189] is specified in terms of the
number of configurations of a given module that satisfy some criterion, with no reference to the way
in which one arrives at those configurations.
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