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Abstract

This research investigates the potential for widening the scope of Genetic Program-

ming (GP) trading agents beyond constructing decision trees for buy-hold-sell deci-

sions. First, both technical indicators (temporal feature construction) and decision

trees (action selection) are co-evolved under the machine learning paradigm of GP

with the benefit of setting Stop-Loss and Take-Profit orders using retracement levels

demonstrated. GP trading agents are then used to design trading portfolios under

a frequent intraday trading scenario. Such a scenario implies that transaction costs

have a more significant impact on profitability and investment decisions can be re-

vised frequently. Furthermore, existing long term portfolio selection algorithms can-

not guarantee optimal asset selection for intraday trading, thus motivating a different

approach to asset selection. The proposed algorithm identifies a subset of assets to

trade in the next day and generates buy-hold-sell decisions for each selected asset in

real-time. A benchmarking comparison of ranking heuristics is conducted with the

popular Kelly Criterion, and a strong preference for the proposed Moving Sharpe ratio

demonstrated. Moreover, the evolved portfolios perform significantly better than any

of the comparator methods (buy-and-hold strategy, investment in the full set of 86

stocks, portfolios built from random stock selection and Kelly Criterion). Transaction

costs (explicit and implicit or hidden) are important, yet often overlooked, attributes

of any trading system. The impact of hidden costs (bid-ask spread) is investigated.

The nature of bid-ask spreads (fixed or floating) is demonstrated to be important

for the effectiveness of the automated trading system and a floating spread is shown

to have a more significant impact than a fixed spread. Finally, the proposed GP

framework was assessed on non-financial streaming data. This is significant because

it provides the basis for comparing the proposed GP framework to alternative ma-

chine learning methods specifically designed to operate under a prequential model of

evaluation. The GP framework is shown to provide classification performance com-

petitive with currently established methods for streaming classification, and thus its

general effectiveness.
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Glossary

Hereafter the following terminology will be assumed
[69].

Alpha Alpha (the Greek letter α) is a term used in invest-
ing to describe a strategy’s ability to beat the mar-
ket, or it’s edge. Alpha is thus also often referred to
as excess return or abnormal rate of return, which
refers to the idea that markets are efficient, and so
there is no way to systematically earn returns that
exceed the broad market as a whole. Alpha is often
used in conjunction with beta (the Greek letter β).

Ask Price at which broker/dealer is willing to sell. Same
as Offer.

Balance The value of your account not including unrealized
gains or losses on open positions.

Bear Market An extended period of general price decline in an
individual security, an asset, or a market

Beta A beta (the Greek letter β) coefficient is a measure
of the volatility, or systematic risk, of an individual
stock in comparison to the unsystematic risk of the
entire market. In statistical terms, beta represents
the slope of the line through a regression of data
points from an individual stock’s returns against
those of the market.

Bid Price at which broker/dealer is willing to buy..

Bull Market A market which is on a consistent upward trend

Drawdown The magnitude of a decline in account value, either
in percentage or dollar terms, as measured from
peak to subsequent trough

Equities Ownership interest in a corporation in the form of
common stock or preferred stock

xvii



Equity Market An equity market is a market in which shares are is-
sued and traded, either through exchanges or over-
the-counter markets. Also known as the stock mar-
ket, it is one of the most vital areas of a market
economy because it gives companies access to capi-
tal and investors a slice of ownership in a company
with the potential to realize gains based on its fu-
ture performance.

Exchange An exchange is a marketplace where securities,
commodities, derivatives and other financial instru-
ments are traded. The core function of an exchange
is to ensure fair and orderly trading and the efficient
dissemination of price information for any securities
trading on that exchange.

Fibonacci Retracement A Fibonacci Retracement is a popular tool among
technical traders. It is based on the key numbers
identified by mathematician Leonardo Fibonacci in
the 13th century. In technical analysis, a Fibonacci
retracement is created by taking two extreme points
(usually a major peak and trough) on a stock chart
and dividing the vertical distance by the key Fi-
bonacci ratios of 23.6%, 38.2%, 50%, 61.8%, and
100%. Once these levels are identified, horizontal
lines are drawn and used to identify possible sup-
port and resistance levels.

Fundamental Analysis Macro or strategic assessment of where a currency
should be trading on any criteria but the price ac-
tion itself. The criteria often include the economic
condition of the country that the currency repre-
sents, monetary policy, and other fundamental ele-
ments.

Futures An obligation to exchange a good or instrument at
a set price on a future date

Hit Rate The hit rate is the ratio of the total number of
winning trades to the total number of trades. It
does not take into account how much was won, but
simply if they were winners.

xviii



Kelly Criterion The Kelly criterion is a mathematical formula re-
lating to the long-term growth of capital devel-
oped by John L. Kelly, Jr. The formula was devel-
oped by Kelly while working at AT&T’s Bell Lab-
oratories. The formula is currently used by gam-
blers and investors for risk and money management
purposes, to determine what percentage of their
bankroll/capital should be used in each bet/trade
to maximize long-term growth.

Leverage The amount, expressed as a multiple, by which the
notional amount of trade exceeds the margin re-
quired to trade.

Limit Order An order placed with a brokerage to buy or sell a
set number of shares at a specified price or bet-
ter. Limit orders also allow an investor to limit the
length of time an order can be outstanding before
being canceled.

Market Noise Price and volume fluctuations in the market that
can confuse one’s interpretation of market direc-
tion. Used in the context of equities, it is stock
market activity caused by program trading, divi-
dend payments or other phenomena that is not re-
flective of overall market sentiment. In general, the
shorter the time frame, the more difficult it is to
separate the meaningful market movements from
the noise.

Money Management The process of budgeting, saving, investing, spend-
ing or otherwise in overseeing the cash usage of an
individual or group. The predominant use of the
phrase in financial markets is that of an investment
professional making investment decisions for large
pools of funds, such as mutual funds or pension
plans. Also referred to as ‘investment management’
and/or ‘portfolio management’

xix



Moving Average A moving average (MA) is a widely used indicator
in technical analysis that helps smooth out price
action by filtering out the noise from random short-
term price fluctuations.

Pattern In technical analysis, the distinctive formation cre-
ated by the movement of security prices on a chart.
It is identified by a line connecting common price
points (closing prices, highs, lows) over a period of
time. Chartists try to identify patterns to try to
anticipate the future price direction.

Pip The smallest price increment in a currency. Often
referred to as ticks in the future markets. For ex-
ample, in EURUSD, a move of 0.0001 is one pip.

Pivot Point A pivot point is a technical analysis indicator, or
calculations, used to determine the overall trend of
the market over different time frames. The pivot
point itself is simply the average of the high, low
and closing prices from the previous trading day.

Portfolio A portfolio is a grouping of financial assets such
as stocks, bonds, commodities, currencies and cash
equivalents, as well as their fund counterparts, in-
cluding mutual, exchange-traded and closed funds.

Profit Profit describes the financial benefit realized when
revenue generated from a business activity exceeds
the expenses, costs, and taxes involved in sustaining
the activity in question.

Return A return, also known as a financial return, in its
simplest terms, is the money made or lost on an
investment over some period of time.
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Sharpe Ratio The Sharpe Ratio is a measure for calculating risk-
adjusted return, and this ratio has become the in-
dustry standard for such calculations. It was de-
veloped by Nobel laureate William F. Sharpe. The
Sharpe ratio is the average return earned in excess
of the risk-free rate per unit of volatility or total
risk.

Spot Buying and selling forex with the current date’s
price for valuation, but where settlement usually
takes place in two days

Spread The distance, usually in pips, between the Bid and
Ask prices.

Stock Market The stock market refers to the collection of markets
and exchanges where regular activities of buying,
selling, and issuance of shares of publicly-held com-
panies take place. Such financial activities are con-
ducted through institutionalized formal exchanges
or over-the-counter (OTC) marketplaces which op-
erate under a defined set of government regula-
tions. There can be multiple stock trading venues
in a country or a region which allow transactions in
stocks and other forms of securities. Both terms -
stock market and stock exchange - are used inter-
changeably, the latter term is generally a subset of
the former.

Stop-Loss Also called SL. An order to buy or sell when the
market moves to a specific price. A stop-loss order
is designed to limit a loss when the price is moving
in the opposite to the desired direction.

Support and Resistance These terms are used by traders to refer to price
levels on charts that tend to act as barriers, pre-
venting the price of an asset from getting pushed
in a certain direction.

Take-Profit Also called TP. An order to buy or sell when the
market reaches a target price to fix the profit.

Technical Analysis Analysis applied to the price behaviour of the mar-
ket to develop trading decision, irrespective of fun-
damental factors
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Technical Indicator or TI Any class of metrics whose value is derived from
generic price activity in a stock or asset. Techni-
cal indicators look to predict the future price levels,
or simply the general price direction, of a security
by looking at past patterns. Examples of common
technical indicators include Moving Average, Rela-
tive Strength Index, Stochastics, MACD, Bollinger
Bands, etc.

Tick A tick is a measure of the minimum upward or
downward movement in the price of a security. A
tick can also refer to the change in the price of a
security from one trade to the next trade.

Trading Curb A temporary restriction on program trading in a
particular security or market, usually to reduce dra-
matic price movements. Also known as a collar or
circuit breaker

Trading Strategy A trading strategy is a method of buying and selling
in markets that is based on predefined rules used to
make trading decisions. A trading strategy can be
likened to a trading plan that takes into account
various factors for an investor.

Transaction Costs Transaction costs are expenses incurred when buy-
ing or selling a good or service. In a financial sense,
transaction costs include brokers’ commissions and
spreads, which are the differences between the price
the dealer paid for a security and the price the
buyer pays.

Win/Loss Ratio The win/loss ratio is the ratio of the total number
of winning trades to the number of losing trades. It
does not take into account how much was won or
lost, but simply if they were winners or losers.
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Chapter 1

Introduction

1.1 The history of Exchanges and Equity Markets

The history of exchanges, marketplaces where various financial instruments are traded,

extends back to antiquity. Available evidence suggest that even at 2000 years BC an-

cient traders in Babylon used notes and checks and that a currency exchange existed

in Rome as early as second century AD [80]. The first known building that was specif-

ically designed to be used as an exchange market was built in Barcelona in 1393 [80].

In 1608 the world’s first important equity1 or stock market2 — the Amsterdam Ex-

change was founded. That was the biggest exchange by that time. The Amsterdam

Exchange continued to grow and more than 4500 traders worked there every day at the

end of 1722, thereafter the center of trading activity gradually moved to the London

and Paris exchanges [80]. The first North American Exchanges, The New York Stock

Exchange and Philadelphia Stock Exchange (the first US stock exchange), originated

at the end of the 18th century [137].

The growth of Exchanges forced traders to develop ways to analyze markets and

build trading rules — or so-called trading strategies3 to maximize chances to gain a

profit.

There are two major ways to analyze financial markets [92] — fundamental and

technical analysis:

• Fundamental analysis. Reuters [137] defined fundamental analysis as follows:“Security

analysis that seeks to detect misvalued securities through an analysis of the

1An equity market, also known as the stock market, is a market in which shares are issued and
traded, either through exchanges or over-the-counter markets.

2The stock market or stock exchange refers to the collection of markets and exchanges where
regular activities of buying, selling, and issuance of shares of publicly-held companies take place.
These activities are conducted under a defined set of government regulations.

3A trading strategy is a method of buying and selling in markets that is based on predefined
rules used to make trading decisions. A trading strategy can be likened to a trading plan that takes
into account various factors for an investor.

1
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firm’s business prospects. Research [supporting decision making for Fundamen-

tal] analysis often focuses on earnings, dividend prospects, expectations for fu-

ture interest rates, and risk evaluation of the firm. Information such as balance

sheets, income statement, products, management and other market items are

used to forecast a company’s imminent success or failure, and hence the future

price action of the stock.” Thus, fundamental analysis is based on an analy-

sis of the underlying economic conditions associated with a particular stock or

currency and is not a part of this research.

• Technical analysis. Technical analysis uses historical prices to predict future

price movements [92], and this thesis will focus entirely on technical analysis.

Technical analysis might be considered to be a ‘timeless’ method of market and

price behavior such that a trader can make predictions about future market/price

direction. However, there is no written evidence that technical analysis was used in

ancient times [80]. The first known documented case of using technical analysis is

a written set of trading rules, the “Sakata constitution”. It was recorded in 18th

century Japan by Sokyo Honma — a rice trader from Osaka.

One cornerstone of technical analysis is the candlestick chart [145, 139, 124, 80].

It was introduced at the same time as the “Sakata constitution.” It is hard to believe

that today’s candlestick chart, as widely used by traders all around the world (and

possibly now the most widely used charting technique), were only introduced to the

Western world by Steve Nison who published a short article describing them in the

Features Magazine in December 1989 [123] and then authored a book about candle-

stick charts in 1991 [124]. The candlestick summarizes the variance in price ‘tick’4

information over a selected period of time (typical values ranging from one second to

one year) and includes the following attributes (Figure 1.1):

• Open and Close prices. The price at the beginning and at the end of the time

interval respectively. The difference between Open and Close prices shows the

direction of price movement during the time interval. If the Close price is higher

than the Open price, then the body of the candlestick is normally colored in a

light color and in a dark color otherwise.

4A tick is a measure of the minimum upward or downward movement in the price of a security.
A tick can also refer to the change in the price of a security from one trade to the next trade.
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• High and Low prices show respectively the highest and lowest extent of price

movement within the selected time interval.

16 CHAPTER 3 Candlesticks and Their Attributes

candlestick attributes

open

open close

close

high

 real
body

  lower
shadow

low

upper
shadow

Figure 1.1: Candlestick attributes, adopted from [145].

Even though technical analysis history dates centuries back, what we know as

a “modern” technical analysis was re-introduced at the end of the 19th century by

Charles Dow. On July 3, 1884, Dow published the first stock index in the “Customer’s

Afternoon Newsletter.” He calculated the price-weighted average by summing the

prices of 11 stocks in the index and dividing by the number of stocks. That first

index included nine railroads and two industrial stocks [80]. In the first half of the

20th century, the first technical indicators were created. As technical indicator (TI

hereafter) is defined as a class of metrics whose value is derived from generic price

activity in a stock or asset [69]. Technical indicators look to predict the future price

levels, or simply the general price direction, of a security by looking at past patterns.

In 1944 Leonard Ayers proposed a measure of business confidence — the advance-

decline line (A/D line). Richard W. Schabacker, was the financial editor of Forbes

magazine and of the New York Times when he began to recognize candlestick patterns.

He was attributed as the first to use the terms “triangle,” “pennant,” (Figure 1.2)
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and “head-and-shoulders” (Figure 1.3) to describe what we are now considered well

known chart formations [80].

Figure 1.2: Pennant Pattern. Pen-
nant and Triangle chart patterns
only differ by the duration and
the appearance of a ‘flagpole’.
Adopted from [69]

Figure 1.3: Head And Shoulders
Pattern. Adopted from [69]

In 1948 Robert Edwards and John Magee published the first edition of Technical

Analysis of Stock Trends. They demonstrated the technical patterns observed in

hundreds of stocks. That book is still popular today and known as the “bible of

technical analysis” (the ninth edition [50] was published in 2007).

In the 1970s, computers became widely available and traders started to use them

to draw charts more quickly and accurately. In short, computers have changed the

impact of technical analysis by minimizing the effort necessary to build them on a

continuous basis. Conversely, some academics argued that technical analysis was

impossible because prices were randomly distributed. This implies that price data

had no history embedded in them that would be useful for predicting future prices.

However, the popularity of technical analysis among traders has increased as access

to powerful computers and higher-quality data improved [80].

1.2 Modern Technical Analysis

It is generally accepted that the modern technical analysis era started at the end of

19th century by the series of publications made by Charles Dow (Section 1.1). A
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fundamental assumption behind technical analysis is that price movement reflects all

relevant information, and since human (trader) behavior tends to be repetitive, the

price behavior can be repetitive as well [151]. Moreover, studying the historical price

movements enables us to predict the future direction of price movement with a certain

degree of confidence. More detailed basic assumptions behind technical analysis were

presented by Robert Edwards et al. in their classic book “Technical Analysis of Stock

Trends” [50] and summarized as follows:

• Prices are determined solely by the interaction of demand and supply.

• Prices tend to move in trends.

• Shifts in demand and supply cause reversals in trends.

• Shifts in demand and supply can be detected in charts.

• Chart patterns tend to repeat themselves.

In other words, traders who use technical analysis study the actions of the market

itself, assuming that the market is always “right”, often ignoring all other factors that

can influence the market (e.g. political, social, natural disasters, etc.).

Technical traders utilize this approach on all markets and, generally speaking,

we can divide the technical analysis into two major parts: the recognition of price

patterns and price analysis with technical indicators. This thesis research mostly

concentrates on the second part — the price analysis with technical indicators but, at

the same time, assumes price “pattern recognition” using candlesticks as the starting

point. In particular, the thesis investigates the ability of the genetic programming

machine learning approach to automatically build profitable trading strategies for

stock and currencies markets. Specifically, this thesis attempts to identify trading

conditions that might undermine as well as improve the automatic operation of such

an approach.

Price charts and technical indicators are available in most trading platforms and,

the most commonly used TIs — such as Fibonacci Retracements, Stochastic Oscil-

lator, Moving Average Convergence/Divergence (MACD), Moving Averages (MA),

Relative Strength Index (RSI), and support/resistance levels — have proven valid in
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many instances [92]. Traders use TIs to draw out trends that enable them to make

predictions regarding the future behavior of the market. Such predictions provide

the basis for trading actions, e.g., buy, sell, or hold. The combination of TIs with a

decision rule provides the basis for a “trading strategy”.

There are hundreds of technical indicators nowadays, e.g. Colby in his “The

Encyclopedia Of Technical Market Indicators” [31] provides a detailed description

of almost three hundred different technical indicators. Furthermore, the number of

existing technical indicators is constantly growing. Traders continue to create new

technical indicators with the objective of maximizing profit and reducing losses. Some

of these indicators become popular (e.g. Bill Williams’ technical indicators [157, 60])

while others are only used by a few traders. If we also consider that each techni-

cal indicator has not one, but many possible ways of deploying it to make trading

decisions (the trading rules), it becomes apparent that selection of a subset of tech-

nical indicators for designing a successful trading strategy is not a trivial task. In

addition, it is worth noting that there are no formal rules that define how to select

the most appropriate technical indicators, and every trader makes a choice based on

experience [31].

Kirkpatrick and Dahlquist [80] noted that technical analysis is used in two major

ways: predictive or reactive. The predictive approach assumes the goal of technical

analysis is to predict future market state. Generally, experts in predictive analysis

make money by selling their prognosis of the future market state to other traders.

The predictive technical analysts include well-known experts in this domain (e.g. Bill

Williams, the Profitunity Trading Group5). We know them because the publicity

helps to sell their services.

On the contrary, cases in which technical analysis is deployed in a reactive mode

(by commercial trading systems) are often concealed. Technical analysis, in the case of

a reactive deployment, is used to react in real-time to the changing market conditions.

For instance, such a deployment of a trading system can use a TI or a set of TIs

with corresponding rules to define a moment when a position should be opened or

closed. In other words, the trader is watching the market and reacting to when a

specific technical condition is met. In that case, traders and investors make money

5http://www.profitunity.com

http://www.profitunity.com
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trading stocks or currencies for themselves or on behalf of their clients. In this case,

institutions might be concerned that if many traders use the same strategy it could

affect (change) the market behavior and reduce the effectiveness of the strategy. As a

result, we know mostly about works from academia that describe various automated

trading systems, but as will be shown below they are often based on assumptions

that do not well represent the real trading conditions.

The popularity of technical analysis grew increasingly with the introduction of

personal computers in the 1970s. On February 4, 1971, electronic trading was born.

On that day, the first electronic stock market was founded — National Association

of Securities Dealers Automated Quotation or NASDAQ. In 1987, the CME Group

opened Globex trading system which gave access to electronic trading of treasury

bonds, commodities, and currency exchanges [130]. The explosive development of

information technologies at the beginning of the 21st century has boosted the sig-

nificance of electronic trading even more. All leading stock exchanges made massive

investments into information technologies and that accelerated the shift from the clas-

sic trading floors to electronic trading [130]. This shift to embrace information tech-

nology reflects an underlying trading advantage that trading using electronic means

potentially provides. In April 2011, Robert Greifeld, NASDAQ CEO, was quoted as

commenting: “It is over. The trading that existed down the centuries has died. We

have an electronic market today. It is the present. It is the future” [19].

The introduction of electronic trading paved the road for the introduction of al-

gorithmic or automated trading systems. Before giving an overview of automated

systems and their classification, we need to look into the more general classification.

Aldridge [2] has defined this as follows:

• Electronic trading — trading based on electronic transmission of trading orders.

• Algorithmic/automated trading — the systematic execution process — that is,

the optimization of buy-and-sell decisions once these buy-and-sell decisions were

formulated by another part of the systematic trading process or by a human

portfolio manager.

• Systematic trading — computerized trading in which computer systems process

real-time data and then formulate and go on to execute buy-and-sell decisions.
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At the same time, Aldridge noted [2]: “To this day, the term ‘algorithmic trading’

usually refers to the systematic trading.” Based on that, this work uses the terms

‘algorithmic/automated trading’ and ‘automated trading systems’ interchangeably.

That is to say, computerized trading is one in which computer systems process real-

time data and then formulate and go on to execute buy-and-sell decisions.

Algorithmic/automated trading systems appeared in the 1970s, shortly after the

introduction of electronic trading, and immediately became popular. But ever since,

they have been surrounded by controversy about their effectiveness and influence

on markets. For example, in 1986 Pamela [125] showed that some forms of trading

programs (generally involving arbitrage between the stock market and the stock-index

futures market) can contribute to sudden, sharp movement in stock prices. Tseng et

al. [149] mentioned that “it has also been documented that algorithmic traders use

their technological advantage to extract rent from other market participants and

thereby increase their transaction costs.” Some sources [69] include factors such as

the risk of mechanical failure and over-optimization.

Conversely, the number of positive arguments in support of automated trading

significantly outnumbers the negative ones. Gomber [57] stated that the prevailing

negative opinion about algorithmic trading, especially HFT, is driven in part by media

reports that are not always well informed and impartial. Todorovic et al. [146] con-

cluded that automated trading may reduce the impact of human emotions on decision

making and can overcome problems that arise due to neglect or lack of concentra-

tion. Moriyasu et al. [119] found that algorithmic trading increases stock liquidity

by narrowing spreads and increasing market depth. Furthermore, algorithmic trad-

ing increases commonality in liquidity at both high and low frequencies. Aggarwal

et al. [1] also found that securities with higher algorithmic trading have lower liq-

uidity costs, order imbalance, and order volatility, as well as evidence that higher

algorithmic trading leads to lower intraday liquidity risk and a lower incidence of

extreme intraday price movements. Vuorenmaa [154] discussed the pros and cons

of automated high-frequency trading (HFT). By HFT, he implied automated trad-

ing executed at intra-daily intervals, but such that it excludes trading to minimize

transaction costs. He mentioned that there is much confusion about HFT, regarding

whether is it “good, bad, or ugly” In his work, the “Ugly” category mostly contained
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negative writings against HFT as reported by news media. In the “Bad” category,

he included more detailed research arguments against HFT. Finally, he concluded,

that surprisingly to non-professionals, the “Good” arguments outweigh the others.

He stated that “Good” arguments are often ignored in media and should be brought

to the fore of the discussion to be fair. Specifically, one of the most well known and

most likely the “ugliest” argument against HFT is the Flash Crash of May 6, 2010.

US stock market indices, stock-index futures, options, and exchange-traded funds ex-

perienced a sudden and unprecedented increase in volatility. However, Vuorenmaa

noted that the conclusion the Securities and Exchange Commission and Commodity

Futures Trading Commission (CFTC/SEC) came to, after the investigation (2010)

was that “HFT firms did not trigger the crash, and cannot be blamed for it, but their

trading response to a sudden selling pressure by an institutional seller exacerbated

volatility.” Kirilenko et al. [79] studied this event using E-mini S&P 500 stock index

future data and came to the same conclusion.

Despite the controversy and often seen critique in popular media, the popularity

of algorithmic trading has been steadily increasing ever since it was introduced, and

in 2012 its market share was 85% (Figure 1.4).

day, as well as the changing market environment (discussed above). These

trends are shown in Figure 1.9. Over the years there have been various

sources providing algorithmic trading estimates. For example, Tabb Group

and Aite Group have published participation rates for buy-side algorithmic

trading usage that are lower than our figures reported in this book. Our esti-

mates include the execution’s end product. So, even if the investor did not

trade directly with an algorithm but did in fact route the algorithm to a bro-

ker who ultimately transacted the shares with an algorithm, those shares are

included with the algorithmic trading volume figures.

The decade 2000!2010 was also associated with changing investor styles

and market participants. We analyzed market participant order flow by sev-

eral different categories of investors: traditional asset managers (including

mutual funds, indexers, quantitative funds, and pension funds), retail inves-

tors, hedge funds (including statistical arbitrage and proprietary trading

funds), market makers, and high frequency traders. In our definition, the high

frequency trader only consisted of those investors considered liquid or rebate

traders. We discuss the different types of high frequency trading below.

In 2003!2004 market volumes were led by asset managers, accounting

for 40% of total volume. High frequency traders had almost negligible per-

centages in 2003 but grew to about 10% of the total market volumes in

2006. During the financial crisis, high frequency/rebate traders accounted

for about 33% of volumes followed by hedge funds (21%). The biggest

change we have observed over 2000!2012 is the decrease in asset

manager volumes from 40% (2003) to about 23% (2012), and the increase

in high frequency trading from 1!3% to about 30% of total volumes.
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■ Figure 1.9 Algorithmic Trading Percentage of Market Volume.

12 CHAPTER 1 Algorithmic Trading

Figure 1.4: Algorithmic Trading Percentage of Market Volume. Adopted from [81].

Independent market analysts predict that the market size of algorithmic trading

will continue to grow at a Compound Annual Growth Rate6 (CAGR) of 11.1% (the

6Compound annual growth rate (CAGR) is the rate of return that would be required for an
investment to grow from its beginning balance to its ending balance, assuming the profits were
reinvested at the end of each year of the investment’s lifespan. [69]
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prediction horizon covers 2019 – 2024 years) [111].

The first automated trading algorithms simply replicated human traders’ behavior

and utilized existing trading methods and technical indicators: Various Moving Av-

erages (simple, weighted and exponential), Relative Strength Index, Bollinger Bands,

etc. Since then they have became significantly more autonomous (capable). Various

technical analysis methods are commonly used for data mining and preprocessing the

assets’ prices, and new techniques have been developed to improve the performance of

the automated trading systems. The two general approaches of PairS Trading (PST)

and Machine Learning (ML) have received the most attention [67].

Pairs trading. PST is in everyday use by many market participants, such as

hedge funds and other investors who rely on a ‘Risk arbitrage’ investment strat-

egy [47]. Robert Kissell [81] described pairs trading as follows: “A simple statistical

arbitrage strategy is pairs trading which aims to capitalize on the imbalances be-

tween two assets in the hope of making money once the imbalance is corrected. Pairs

trading is a pure relative value strategy between two (possibly more) assets: Given

two securities which historically moved together, take a long-short position as they

diverge and realize a profit as the spread, the mispricing dynamics, converge back to

the long-run mean.” Even though PST is a long-term strategy, it can be effectively

applied for short time windows and is an important part of High-Frequency Trading7

(HFT) [5].

Machine Learning. Financial markets’ price data can be described as a data

stream that is fundamentally non-stationary, non-linear and noisy [67, 68, 148, 159].

Traditional statistical methods fall short in that case because they assume that the

process driving data stream content is linear and (or) stationary. Machine learning

algorithms have the potential to address this issue [67]. In this regard, Artificial

Neural Networks (ANN) and Genetic Algorithms (GA) are among the most often

seen machine learning methods used as the basis for automated trading systems.

Automated trading systems have made a huge step forward over the years and

became a dominant technology in financial markets (Figure 1.4). Still, they have not

solved all the problems and have not answered all the questions. There are always

7There is still a controversy about the definition of High-Frequency Trading (HFT). Different
authors define it differently. In this case, the author defines it as follows: “HFT is the use of
computers to trade very quickly and at high speed.”
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challenges that automated trading will have to overcome and solutions to be found.

Some of the challenges are new and arise from automated trading itself, and some

belong to technical analysis that lies in the base of automated trading. Challenges of

particular relevance to the development of this thesis include:

1. Results of testing of many algorithmic/automated trading systems show that

classical technical analysis of historical price feeds does not guarantee positive

results. Park et al. [127] reviewed in their 2004 report 92 academic studies

published between 1986 and 1990 years that tested the profitability of techni-

cal analysis strategies. Fifty-eight of reviewed studies concluded that positive

results could be gained from using technical analysis. Still, twenty-four of the

studies found that the use of technical analysis led to negative outcomes.

2. Supply and demand are among the fundamental forces that drive market prices,

and the stock market is no exception. If many traders use automated systems

that rely on the same set of traditional technical indicators and trading rules

and that generate the same trading signals, it can affect the supply and demand

and, therefore, change the market behavior and price movement.

3. There can be significant reduction to the timespan during which newly devel-

oped/evolved trading systems/rules will stay productive.

4. Technical analysis is based on the assumption that human behavior tends to

be repetitive [50, 80, 139]. In contrast, the behavior of some machine learn-

ing techniques, such as evolutionary methods, might be unpredictable and not

repetitive, such that makes the already challenging task of predicting the future

price movement even more difficult.

This work relies on Genetic Algorithms and Genetic Programming8 in an attempt

to address the mentioned challenges and build an effective automated trading system

for stock and foreign exchange markets. The specific approach adopted will be to

coevolve both decision trees (DT) and technical indicators (TI) simultaneously. Thus,

a unique TI-DT coupling is evolved relative to the current market situation. It also

8Under this application domain, the end result is a model, and therefore the distinction between
GA and GP is not important.
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links the fitness expressed at the level of DT to the TI without having to define any

surrogate performance functions for the TI.

In brief, this thesis research attempts to address the mentioned challenges by

adopting the following combination of mechanisms:

• Coevolution of decision trees and technical indicators allows unique technical

indicators to evolve and, therefore, provide the basis for trading behavior to

appear that is different from automated trading systems that rely on traditional

TIs and trading rules. This helps to address challenges 1 and 2.

• The introduction of Stop-Loss9 (SL) and Take-Profit10 (TP) orders and their

verification and adjustment with the support and resistance levels11 helps to

address challenge 1. In particular, if the market’s volatility does not experience

rapid and intense movements, the system operates in predictive mode — open

positions are closed by the limit orders alone. Otherwise, it evolves trading

agents to react to the price movement quickly — open positions are closed by

the limit orders and (or) trading signals.

• Retraining criteria are introduced to address challenges 2 and 3. The retraining

criteria are a set of three metrics that enables the continuous performance mon-

itoring of the deployed trading agent. If its performance falls below the target

level a retrain process is initiated and a new trading agent is evolved.

• The introduction of a multi-agent version of the FXGP algorithm is investigated

for improving the overall quality of trading signals generated by the system

(challenge 1).

• The stock selection algorithm significantly improves returns generated by the

proposed automated trading system and is intended to address challenges 1–

3. Also, its ability to quickly switch between trading assets helps to address

challenge 4.

9Also called “SL”. An order to buy or sell when the market moves to a specific price. A stop-loss
order is designed to limit a loss when the price is moving in the opposite to the desired direction.

10Also called “TP”. An order to buy or sell when the market reaches a target price to fix the
profit.

11Support and resistance levels are used by traders to refer to price levels on charts that tend to
act as barriers, preventing the price of an asset from getting pushed in a certain direction.
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• Understanding the effect of hidden trading costs (Bid-Ask spread)12 on the

effectiveness of automated trading systems. This is a factor frequently ignored,

but underlies challenges 1 and 3.

The thesis is structured as follows:

• Chapter 2. Provides an overview to related work that use different methods

of indicator selection and their incorporation into different automated trading

systems. In essence there are two basic approaches to constructing automatic

trading agents:

1. Accept a set of prior man-made TIs and deploy a machine learning al-

gorithm to identify the conditions under which buy, hold, sell orders are

placed.

2. Attempt to identify parameters for man-made TI using an optimization

algorithm and then deploy a machine learning algorithm to identify the

conditions under which buy, hold, sell orders are placed.

In this work GP is used to simultaneously construct TI and rules to define

conditions under which buy, hold, sell orders are placed. The approach to

achieve this is based on genetic programming and coevolve both TIs and trading

rules (DTs) simultaneously in order to minimize the impact of prior decisions.

• Chapter 3 provides an overview of the core part of the proposed automated

trading system - a genetic algorithm (ForeX Genetic Programming or FXGP

hereafter) that evolves trading agents able to generate trading signals (buy, sell

or hold). [97, 98, 99].

– Section 3.1 provides an overview of the first version of the FXGP algo-

rithm. Innovations specific to the approach pursued by this work may be

highlighted as follows:

1. Simultaneous coevolution of TI and trading rules. Very few researchers

have managed to perform both tasks simultaneously. In doing so we

12The difference between the Bid and Ask prices, where this has an impact on the actual risk as
experienced by a trading agent, autonomous or otherwise.
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effectively avoid introducing unwanted biases into each step. Natu-

rally, the trading rules are dependent on the quality of the TI, which

in themselves represent a process of temporal feature construction.

2. Validation partition of data. The purpose of validation is to identify

a single ‘champion’ trading agent for performing trading.

3. Retrain criteria. The following three quality criteria to monitor and

identify the moment when the current trading agent should be replaced

were introduced: drawdown13, the number of consecutive losses and

the number of consecutive candlesticks without trading activity.

4. Support for tuning of Stop-Loss orders. SL orders are used to define

limits on how much loss is acceptable before pulling out of a stock.

This section also includes performance evaluation and critique of the first

version of the FXGP algorithm.

– Section 3.3 addresses the issues (Section 3.2) that were discovered after

the evaluation of the first version of the FXGP algorithm (Section 3.1). A

following set of changes has been introduced to the first version:

1. The original set of TI functions that contained seven instruction types

was reduced to three instructions. Multiplication that produces a TI

with the wrong scale, two division functions and a square root func-

tion that frequently resulted in illegal operations (e.g. division by zero

or square root of negative value) were all dropped from the instruc-

tion set. That removed instructions that typically resulted in intron

behavior.

2. Originally three types of TI were supported: Value, MA and WMA,

whereas the new set of the TI parameters contains only two types:

Value and MA.

3. The decision tree (DT) intron nodes detection and removal.

4. The Take-Profit orders were introduced in addition to SL orders.

– Section 3.4. Evaluation of a prior TI with evolved trading rules under a

prior portfolio versus coevolution of both TI and trading rules (FXGP)

13The magnitude of a decline in account value, either in percentage or dollar terms, as measured
from peak to subsequent trough
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under the same portfolio. Runs are repeated 100 times in each case and

the consistency of the outcome when using coevolution is shown to be

higher than without. Moreover, the region of profitability for each system

is distinct.

– Chapter 4. Evaluation of the FXGP coevolutionary framework under a

completely different application domain — predicting the movement in

electricity utilization data. The objective of this is two fold: 1) permit sim-

plification of FXGP as various features of potential utility to stock markets

are no longer necessary; and, 2) enable comparison with streaming classi-

fication algorithms that are also appropriate to this simpler task. Within

this context including the candlestick ‘pre-processing’ provides a signifi-

cant benefit over that of current practice (which deploys the streaming

algorithm directly to the original data). Significantly better accuracy than

available from the Naive Bayes and Hoeffding Tree algorithms (available

from the well known MOA toolkit) was also achieved. This is a partic-

ularly important result, because Hoeffding Trees also attempt to identify

temporal features (from the stream) as well as constructing a decision tree

for the purpose of describing classification rules, i.e. properties that are

shared with those from FXGP. Finally, this work also draws attention to

the capacity of FXGP to operate under real-time conditions. Construc-

tion of an entirely new solution (i.e., 1000 generations) is concluded within

2.5 seconds and typically less than 1.5 seconds. This work appeared at a

Special Topics session at IEEE WCCI 2016 [101].

– Chapter 5. This chapter presents the results of the performance improve-

ment of the proposed FXGP algorithm by introducing and assessing an

approach for limit orders (SL and TP) verification with the support and
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resistance levels. The investigation of three types of support and resis-

tance levels — Moving Average14, Pivot Point15 and Fibonacci Retrace-

ment16, has shown that SL and TP orders verification based on Fibonacci

Retracement significantly improves the performance and outperforms two

other methods. This work appeared at a Special Topics session at IEEE

2015 [100].

– Chapter 6 represents the capability to migrate funds within the portfolio17

of stocks during trading. This work assumes that the stocks constituting

such a portfolio have been defined a priori (e.g. stock available over the

trading period, and traded at a sufficient frequency). The main interest

is in demonstrating the capacity for moving funds around such a portfolio

automatically in real-time under a intra day ‘frequent trading’ environment

(minute-to-minute trading). Some of this work was accepted to appear

in [102].

– Chapter 7. This chapter investigates the influence of the Bid-Ask spread on

the performance of the proposed automated trading system. The results

show that the importance of Bid-Ask spreads is significantly underesti-

mated and that floating spreads can dramatically degrade the performance

of automated trading. Recommendations are made for identifying condi-

tions under which the impact of Bid-Ask spreads can be reduced (lower

frequency of trading in particular).

• Chapter 8. Summarizes the contributions of this thesis research.

14A moving average (MA) is a widely used indicator in technical analysis that helps smooth out
price action by filtering out the “noise” from random short-term price fluctuations.

15A pivot point is a technical analysis indicator, or calculations, used to determine the overall
trend of the market over different time frames. The pivot point itself is simply the average of the
high, low and closing prices from the previous trading day.

16A Fibonacci Retracement is a popular tool among technical traders. It is based on the key
numbers identified by mathematician Leonardo Fibonacci in the 13th century. In technical analysis,
a Fibonacci retracement is created by taking two extreme points (usually a major peak and trough)
on a stock chart and dividing the vertical distance by the key Fibonacci ratios of 23.6%, 38.2%, 50%,
61.8%, and 100%. Once these levels are identified, horizontal lines are drawn and used to identify
possible support and resistance levels.

17A portfolio is a grouping of financial assets such as stocks, bonds, commodities, currencies and
cash equivalents, as well as their fund counterparts, including mutual, exchange-traded and closed
funds.



Chapter 2

Background and Related Work

The proposed automated trading system and its components are designed provide

the basis for answering questions about the deployment of automated trading agents.

As such the approach to designing a generic automated trading agent for operation

under different markets and frequency of trading. Due to the number of covered tasks

and different nature of the source data (financial and non-financial data streams), this

chapter will be divided into separate sections. Each of them will provide background

and overview works related to the respective Chapters 3–7. The approach adopted, by

necessity, is therefore quite specific to GP. This does not mean that other approaches

are not relevant, but that our objective to to identify a process for automating the

design of training agents such that it is then possible to move forward and answer

questions about the significance of transaction costs, asset selection heuristics, and

the impact of bid-ask spreads on the automated trading agent.

2.1 Genetic Programming and Non-stationary Data Streams

GP constitutes an approach to model building in which multiple candidate solutions

are maintained (the population) [84, 117]. Each candidate solution is expressed as a

genotype and requires decoding into a phenotype (expressing a program) before it

can be applied to a task, such as expressing a TI or DT. For example, in the case of

a linear representation, the genotype is described in terms of a sequence of integers

or genes [21]. Each integer value is decoded into a legal instruction and executed on

a virtual machine (i.e. the ‘fetch-decode-execute’ cycle is simulated). Prior decisions

are necessary in terms of defining what instructions to support. Indeed, this thesis

will later show that a simpler instruction set can be adopted than was previously

assumed (i.e. [98, 97]), resulting in faster evolution, without negatively impacting

on the quality of the trading agents. Selection operators define which individuals

become ‘parents’ therefore producing new candidate solutions that form the basis for

17
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a new population as well as defining which individuals ‘survive’ between consecutive

training epochs or generations. The selection operator may use performance criteria

to guide this process. Variation operators modify the genotype of parents to define

new candidate solutions or ‘offspring’. Such operators either exchange sequences of

the genotype between two parent individuals (crossover) or modify specific genes

(mutation). Crossover therefore creates new programs through a process of mixing

material that currently exist in the population, whereas mutation may introduce

(genetic) material that does not currently exist in the population.

Unlike most machine learning algorithms, evolutionary methods need not enforce

tight constraints between representation, performance function, and credit assign-

ment. This means that evolutionary methods have the potential to adopt perfor-

mance objectives specific to the task domain. Moreover, adopting a co-evolutionary

approach provides the basis for mixing multiple representations, so increasing the

range of tasks that can be solved simultaneously. For example, in constructing both

TI (as opposed to merely selecting from a set of predefined TI) and DT, performance

is only directly expressed at the level of the DT. A symbiotic coevolutionary ap-

proach was previously proposed to link the fitness expressed at the level of DT to

the TI (Figure 2.1) without having to define surrogate performance functions for the

TI [98]. This is important because such surrogate performance measures can intro-

duce unwanted biases (limitations) to the type of DT discovered. In this thesis the

same coevolutionary approach will be assumed as the starting point. However, this

will be extended to support multi-agent operation, stop-loss and take profit orders,

and more efficient execution. The latter is particularly important because without

this, real-time operation at minute-to-minute intervals would not be possible.

In attempting to place GP within a wider context of what is necessary to ef-

ficiently construct models under environments displaying non-stationary properties,

three generic properties are often identified [40, 63]: Evolvability (plasticity), memory,

and diversity. Evolvability (plasticity) reflects the efficiency with which ‘useful’

phenotypic variation is generated from the current state of the environment.1 One

of the properties that contributes to the evolvability of a representation in GP is

1The ‘state’ of the environment is characterized by the sample of price information used to identify
a trading agent. This typically takes the form of a finite sample of the most recent historical data,
quantized in the form of a sequence of candlesticks (see Chapter 1).
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DT Population TI Population

Figure 2.1: DT–TI interaction, symbiotic co-evolution. Fitness is only directly ex-
pressed at the DT population. Each DT may index a subset of TI. Each TI can
appear in more than one DT. If a TI fails to be used by any DT it is considered not
useful and deleted.

support for modularity, especially under non-stationary tasks [152, 63]. Under the

trading agent task, the division of duties between identification of suitable TI and

DT results in a natural metaphor for modularity. That is to say, the proposed system

is not merely choosing between a predefined set of TI, but evolving a unique set of

TI (relative to the current characterization of price information). Specifically, it si-

multaneously coevolves both the TI and DT in independent populations (Figure 2.1).

Thus, as effective TI are discovered, their variants more frequently reproduce within

the TI population. However, performance is only ever expressed through the quality

of the DT, to do otherwise would require the introduction of a surrogate metric for

the true performance objective. Hence, TI quality is only ever a function of their uti-

lization by individuals from the DT population. Moreover, maintaining independent

populations for TI and DT allows one to freely adopt representations appropriate to

each task.

Memory refers to how multiple sources of genotypic information are recombined

to construct new candidate solutions. This provides the basis for pursuing multiple

solution properties simultaneously and is central to how evolutionary methods go

about discovering solutions [136]. Diversity under non-stationary environments is

considered through both the scheme adopted to interface FXGP to the data and the
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action of the variation operators. In the case of the FXGP interface, it adopts a change

detection approach [97, 63]. That approach assumes that price data is described by

a non-stationary process in which changes can be detected by (multiple) criteria

describing poor trading outcomes relative to the trading agent currently deployed.

On detecting poor trading behavior the FXGP training process is re-triggered from

a completely new (set of) initial DT–TI population.

2.2 Discovering Trading Agents Using GP (Chapter 3)

The Foreign Exchange Market (Forex) is the world biggest financial market which pro-

duces 1/3 of all financial transactions in the world [120]. The average daily turnover

of Forex was almost $4 trillion in 2010 and it was 20% higher in April 2010 than

in April 2007 [140]. The global Forex market daily turnover hit $6.6 trillion at the

beginning of 2020 [53]. A Forex market consists of currency pairs which are weighted

by economic conditions for that specific denomination versus any or all others in the

marketplace. Thus, the perceived value of a currency is a reflection of the market’s

ranking for that denomination’s economy on any given day. An Forex market is tech-

nically ‘purer’ than a stock market, i.e. a currency price action reacts more strongly

to resistance and support levels than equity market do [129]. All the above factors

make Forex markets very attractive for traders and expand the demand of automated

trading systems, albeit under demanding conditions.

Neely at al. [121] examined intraday trading strategies using four currency pairs

— USDDEM, USDJPY, GBPUSD, and USDCHF using historical half-hour bid and

ask quotes for spot Forex rates over 1996. They compare two methodologies, a ge-

netic program that can search over an extensive class of (possibly nonlinear) trading

rules and linear forecasting models. They concluded that when assuming realistic

transaction costs and trading hours, neither of the methods show evidence of excess

return.

Mendez at al. [115] used a genetic algorithm to optimize a set of trading rules

that constituted a trading system for the Forex market. They used a set of classical

technical indicators and trading rules, such as long and short term averages, position

in a trading range, etc. They evaluated the proposed trading system over 2006–2010

using two currency pairs (EURUSD and GBPUSD) and four different time intervals
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(1, 5, 15 and 60 minutes). They concluded that the developed strategies showed

difficulty in achieving positive results if transaction costs were taken into account.

Godinho [56] used a genetic algorithm for parameter optimization of traditional

trading strategies based on four popular technical indicators: Exponential Moving

Average (EMA), Relative Strength Index (RSI), the Stochastic Oscillator (%k) and

a three-period moving average of the stochastic oscillator (%d). The algorithm was

tested on four currency pairs — USDHKD, USDSGD, EURUSD, and GBPUSD using

5 and 15 minute averages of tick-by-tick prices from September 2008 to February 2011.

The results of the four mentioned currency pairs were compared with each other. He

concluded that the proposed genetic algorithm was to be able to generate positive

returns in the case of the USDSGD, even with transaction costs taken into account,

but could not reliably do so for other currency pairs.

Cirillo et al. [30] proposed a Genetic Programming architecture to generate Forex

trading strategies. They evolved free-form strategies that did not rely on any prior

models. The system was tested on 5 minute candlesticks of four currency pairs

(AUDUSD, EURUSD, GBPUSD and USDJPY). They considered only explicit trans-

action costs matching those applied by Citigroup on live trading: 15 USD were ap-

plied per every million USD transacted, appropriately converted for non-USD based

currency pairs. They declared the overall best annual return at the level of 19%. How-

ever, the authors mentioned that “Performing a comparison between works in this

field is not straightforward, given the many variable aspects involved in automated

trading strategies and systems.”

Manahov et al. in [110] offered Forex forecasts by applying a special adaptive form

of the Strongly Typed Genetic Programming (STGP) to currency pairs. The STGP

forecasting performance was compared with linear forecasting models. They found

evidence of statistically significant excess return even with appropriate transaction

costs after applying their system to 5 minutes data of six currency pairs: EURUSD,

USDJPY, GBPUSD, AUDUSD, USDCHF and USDCAD.

Vasilakis et al. presented in [153] a genetic programming trading technique in

an attempt to forecast the next day’s return for the EURUSD currency pair. They

compared their system with three traditional strategies (naive strategy, MACD, and

a buy-and-hold strategy) and a hybrid evolutionary artificial neural network. They
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applied transaction costs of 1 pip per trade, and returned the most profitable trading

strategy with the proposed method.

In short, trading costs can be a significant source of uncertainty in deploying

automatic trading strategies for Forex markets, on account of the bid-ask spread

(Chapter 1). Additionally, the underlying data describing such trading environments

is typically non-stationary. Thus, assuming the classical approach of training over

fixed partitions of data (e.g., training, validation and test) results in brittle solutions

that could be specific to the partition on which they are evolved [40].

One solution proposed to this problem is to train on a continuous basis — a ‘rolling

window’ approach [68, 115], while explicitly maintaining population diversity [40] in

which a sequence of data (or window) is used for training (Nt) and the champion

individual is deployed as the trading agent for the next δ data points. On reaching the

end of the trading period the training window ofNt is realigned with the end of trading

and training recommences using the content of the current population. Questions

potentially arise regarding the number of generations to achieve best performance [40].

This is related to the degree of non-stationary (or appropriateness of any model

bias) associated with the transition between training and trading periods. Indeed

other authors have adopted training at every sliding window location [158]. Another

approach might be to coevolve a subset of the training partition [114] or to combine

coevolution of the training partition with an explicitly streaming context [7].

The approach adopted by this thesis assumes that retraining of the automated

trading agent is explicitly triggered by performance of the champion agent. That

is to say, when performance of a previously satisfactory model degrades below a

threshold, the process generating the data has probably changed. This approach was

previously benchmarked under a currency exchange setting [97, 98], and informed by

developments under streaming data [63]. In adopting multiple performance objec-

tives, it was possible to more closely reflect the multi-criteria nature of trading agent

operation [97, 98].

A third theme that potentially impacts on the performance of autonomous trad-

ing strategies is the design of the technical indicators themselves. Specifically, the

design of TI has a considerable impact on how the trading data is ‘interfaced’ to

the trading data. Thus, not only the type of TI, but the parameterization of the TI
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need to be considered [52]. Some previous research has been reported with respect to

the evolution of technical indicators (TI) alone [52]. One of the goals of evolving TI

independently is to provide parameterizations for basic statistics such as moving av-

erages, that are particularly appropriate for the data in question [155]. More recently

separate TI were evolved for buying and selling [64]. Several authors have evolved

trading rules or decision trees (DT) relative to a set of a priori selected TI [41, 66].

One of the most well known instances of GP in this context is ‘EDDIE’ [147]; the

resulting IF–THEN rules are sampled by a human trader to determine which to use.

Most recently, systems have been proposed to first evolve parameters for a fixed set

of TI with the identification of DT e.g., [68]. To do so, a representation is assumed in

which all of the information for the TI and DT appear in the same genome. This work

considers this problematic as both components need to be correct for an individual

to be successful. As emphasized by the study [40], it is recognized that under non-

stationary environments a modular representation can be beneficial. There are many

ways of potentially achieving this. This work adopts a symbiotic approach [46] to

coevolve trading indicators together with trading decision trees. Thus, the crafting of

uniquely appropriate rules and technical indicators for the current underlying market

dynamic is supported. This led to the development of FXGP [97, 98, 99] which will

represent the starting point for the framework ultimately proposed by this research

(Chapter 3).

One final topic worth recognizing is that, as an explicitly temporal task, then

reinforcement learning approaches have been considered for automating the design

of trading agents [118]. Reinforcement learning explicitly designs a reward function

such that an agent is rewarded for maximizing the cumulated reward over a possibly

infinite time horizon [144]. However, this says nothing about the structure of the

agent or its ability to represent temporal properties (the emphasis of the approach to

designing agents taken in this thesis). Reinforcement learning is typically formulated

as a process for continually updating the free parameters of a model through the

method of temporal differences (a gradient method). Conversely, approaches based

on evolutionary computation that attempt to address reinforcement learning problems

typically assume an episodic formulation in which the model is only updated after

some end condition is encountered [156].
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In summary, adopting a genetic programming approach to constructing trading

strategies provides the basis for answering questions about which inputs to use as

well as how to construct a model. This property is shared by other machine learning

approaches, such as decision tree induction. Interestingly, decision tree methods

are rarely applied to the financial trading application domain, but have been widely

applied to the more general topic of streaming data analysis. Moreover, the streaming

data scenario also represents a setting in which the underlying process might be non-

stationary.

2.3 Non-Financial Streaming Data Analysis (Chapter 4)

The goal of financial forecasting is to make predictions regarding the state of the

market at the next time step, i.e. will the market move up, down or experience

no (significant) change [74, 75]. From a wider perspective, this general requirement

appears in prequential classification tasks under streaming data [15, 54]. Specifically,

a machine learning model is attempting to predict the direction of a feature at the next

time step before the direction is actually known. However, as the feature advances

(i.e. the outcome is known), the model is allowed to perform an update (it does not

necessarily have to update). A widely used application example of this is predicting

whether the consumption of a utility (e.g. water, gas, electricity) will increase or

decrease at the next time step relative to the recent past.

Despite the wide range of research conducted in evolving agents for financial trad-

ing and forecasting tasks, there has not been as much interest in applying such frame-

works to the related task of streaming data classification [63]. Recent noteworthy

examples include Vahdat et al. [152] who applied GP to streaming data under finite

labelling budgets. They assumed the Symbiotic Bid-Based GP (or SBB) approach to

coevolving programs into teams [91]. They showed that the GP can be successfully

applied to streaming data classification tasks and highlighted two factors of particu-

lar significance: 1) active learning can be used to decouple GP from the immediate

stream content, with the objective of manipulating the distribution of classes, 2) sup-

port for the coevolution of teams of programs implied that it was easier to react to

the changing dynamics of stream content than classifiers defined by single programs.

Khanchi et al. [77] built on this SBB streaming framework for botnet detection
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under data label budgets and very imbalanced class distributions. The results were

compared to Naive Bayes and Hoeffding tree classifiers from MOA framework [17]

employing thirteen datasets from the CTU-13 network security dataset collection.

Specifically, it was demonstrated that active learning heuristics could be designed to

develop strong classification performance under low levels of label budgets. In both

cases, however, each exemplar is entirely self contained (i.e. exemplar order is not

important). In short, there is no requirement to construct temporal features capable

of capturing relationships between sequences of inputs. This is not the case in the

trading scenarios encountered in this work. Indeed, this represents a central require-

ment of this thesis. Indeed, several works that use GP in forecasting applications

do not address the issue of temporal feature construction, but instead assume all the

data to be simultaneously available and concentrate on the regression task alone, e.g.

[36], [25].

Requiring GP to construct temporal features might be avoided if instead a pre-

processing step is performed in which the original temporal data is described using

temporal features. For example, Khanchi et al. used ‘flow’ based pre-processing of

network data [77] and Maheswaran and Khosa assume Wavelets [107]. Indeed, even

Deep Learning approaches to trading agent design currently make extensive use of

feature preprocessing [12]. Conversely, a sliding window of the last ‘n’ exemplars

might be assumed, with GP then learning how to index such exemplars to construct

temporal features [142]. At the time of writing this thesis a ‘generative’ formulation of

GP was proposed in which only the current exemplar x(t) is input to the model, and

the use of memory ‘internal’ to GP used to develop recurrent properties that were suf-

ficient for predicting time series sequences [76]. In the case of financial data, and this

thesis in particular, we adopt the case of previously calculated TI as an example of

temporal feature construction through pre-processing, and perform an ablation study

using GP with and without the proposed temporal feature construction approach.

In summary, both stock and Forex markets represent environments in which the

underlying process is potentially non-stationary, implying that it is particularly im-

portant to address the issue of when to rebuild agents. In the context of streaming

data classification, making decisions under non-stationary tasks is frequently equated
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with ‘shift’ and ‘drift’ [63, 44]. Models may either take the form of ensembles of mul-

tiple decision makers and (or) incrementally react to each and every sample from the

stream. A body of research has also been developed for characterizing stream con-

tent statistically and relating this to change detection (e.g. Hoeffding Trees) [54, 15].

This provides a unique opportunity to compare the utility of the proposed approach

for coevolving TI–DT with statistical methods for constructing decision trees un-

der prequential streaming classification tasks. Thus, the utility (or otherwise) of the

coevolutionary approach can be established outside the specifics of trading agent func-

tionality which are often difficult to replicate, yet significant to financial applications.

2.4 SL and TP Orders Verification With Fibonacci Levels (Chapter 5)

The goal of this part of the thesis is to extend the proposed FXGP framework to

incorporate the use of ‘retracement,’ or the tendency for a financial asset’s price

to move between an upper and lower bound. The upper bound is known as the

‘resistance’ level, and the lower bound is known as ‘support.’ The identification

of support and resistance levels characterize the direction of movement of a price

and therefore form the basis for predictive sell or buy strategies. The support and

resistance levels are used for the purpose of creating stop-loss (SL) and take profit-

orders (TP). Specifically, support levels define a price at which downward trends do

not pass beyond, and hence they appear as if they bounce off the support level. That

is, a downward price movement is expected to most often hit the support level, not

pass through it, and then start a climbing price movement. However, should the price

actually manage to break through the support level, then the drop is likely to continue

until a new support level appears. Conversely, resistance levels define the price that

an upward trend is observed to repeatedly bounce against. Likewise, should the price

push through this resistance level, then it will continue until another resistance level

is encountered. The challenge of achieving the greatest profits using these methods

is to find support and resistance levels before they explicitly occur i.e., proactively

determine support and resistance. A range of schemes have been proposed for this

purpose, including comparisons of price against pivot points (e.g., [132]), moving

average envelopes (e.g., [88, 139]), or Bollinger bands (e.g., [88, 23, 24, 33]).

This part of the thesis presents the FXGP component that attempts to utilize
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retracement levels for the purposes of dynamically characterizing the size of SL and

TP orders. SL orders represent an a priori rule structured to stem further losses [104].

The converse, take profit orders, act in the predicted direction and result in closing a

trading order at a profit. Earlier research assumed that the SL orders were evolved

based on the training partition of data [97, 98, 99]. The proposed system with this

component successfully evolves trading strategies that both minimize the number of

times that a SL order is triggered and minimize the average size of SL orders. To

accomplish these goals, it combines the SL orders with the trading rules evolved by

FXGP such that they are more proactive and less sensitive to specific thresholds

than was previously the case. To do so, this component provides functionality for the

three major schemes for SL and TP orders verification and adjustment: Pivot point2,

moving averages, and Fibonacci ratios3. The proposed extension of FXGP and it’s

benchmarking study are detailed in Chapter 5.

2.5 Stock Selection Algorithm for Frequent Intraday Trading (Chapter

7)

Portfolio4 optimization in the most general of settings attempts to answer the ques-

tion of how an investor should distribute funds across an available set of investment

opportunities.

The pioneering work of Markowitz formulated an approach to portfolio optimiza-

tion in terms of the following two insights [112, 83]: 1) quantify the return and risk

(of specific investments) using statistical estimates of expected return and variance;

2) allocate funds between investments in proportion to the combined return to risk

trade-off. These insights also led to the general principle of portfolio diversification.

2A pivot point is a technical analysis indicator, or calculations, used to determine the overall
trend of the market over different time frames. The pivot point itself is simply the average of the
high, low and closing prices from the previous trading day.

3A Fibonacci Retracement is a popular tool among technical traders. It is based on the key
numbers identified by mathematician Leonardo Fibonacci in the 13th century. In technical analysis,
a Fibonacci retracement is created by taking two extreme points (usually a major peak and trough)
on a stock chart and dividing the vertical distance by the key Fibonacci ratios of 23.6%, 38.2%, 50%,
61.8%, and 100%. Once these levels are identified, horizontal lines are drawn and used to identify
possible support and resistance levels.

4A portfolio is a grouping of financial assets such as stocks, bonds, commodities, currencies and
cash equivalents, as well as their fund counterparts, including mutual, exchange-traded and closed
funds.
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That is to say, a portfolio’s risk is proportional to the correlation between the invest-

ments. Previous to Markowitz’s formulation, the prevailing approach was to instead

concentrate on identifying the single asset (stock) that offered the highest future re-

turn given the current or historical valuation. Conversely, the approach of Markowitz

is based on a ‘mean-variance optimization’ (MVO) in which a portfolio should be

identified as that which has the smallest variance; any other portfolio is considered

‘inefficient’, i.e. will subject the investor to a higher risk [83].

Since its original formulation, MVO has been widely studied [83]. However, some

issues that potentially work against the widespread use of MVO include:

• Estimation errors in forecasted returns and the variance-covariance are poorly

behaved [71], where this can result in equally weighted portfolios (i.e. invest in

all assets equally) outperforming MVO under practical conditions [38].

• The MVO formulation might result in portfolios that do not reflect the un-

derlying goals of the investors [85]. Alternative formulations such as minimum

variance (i.e. ignores the mean returns of an asset, emphasizing instead the

correlation between investments) might result in better long term strategies

[38]. Likewise, explicitly minimizing the extreme down side investment exposure

could capture an underlying investment goal, where the ‘conditional value-at-

risk’ formulation potentially represents an approach for achieving this purpose

[138].

• In practice any portfolio is subject to transaction costs which need to be reflected

in the MVO formulation. There may also be market specific constraints, such

as the ability to short sell (or not), which also need to appear in the investment

strategy in order to build a valid portfolio [83].

Another popular stock selection method for long-term investment is the Kelly

Criterion [135, 106, 26, 87]. Markowitz portfolios, as shown in [131], do not necessarily

minimize risk. However, a Kelly Criterion5 based portfolio explicitly averages the

5The Kelly criterion is a mathematical formula relating to the long-term growth of capital de-
veloped by John L. Kelly, Jr. The formula was developed by Kelly while working at AT&T’s Bell
Laboratories. The formula is currently used by gamblers and investors for risk and money man-
agement purposes, to determine what percentage of their bankroll/capital should be used in each
bet/trade to maximize long-term growth.
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long-term return and turns a multi-period optimization problem into single-period

optimization problem [131]. The Kelly Criterion does have its own disadvantages,

such as assuming that trading activities are performed over a sufficiently long period

of time [78]. This issue also limits MVO (see [83], Section 4.3). Conversely, several

researchers have also demonstrated that the Kelly criterion can outperform other

strategies despite such limitations [13, 122, 131].

In summary, one can note that portfolio analysis is typically a static undertaking

applied to asset selection to fund stocks based on fundamental analysis6 [83] as op-

posed to, say, stock selection through technical analysis. Indeed, the forecasting of

returns and estimation of variance for different assets is difficult enough in settings

for which past performance is based on monthly or yearly data. Attempting to apply

MVO to frequent intraday trading is significantly harder because the variation of price

data at minute intervals is subject to a high degree of variation. Specifically, price

data expressed over 10 second intervals [9] (or even 10 minute intervals [108]) has been

observed to possess properties such as fat tails (high skewness or kurtosis), where this

is particularly undesirable from a risk minimization perspective [9]. These undesir-

able properties are often referred to as ‘microstructure noise’. Approaches assumed

for addressing this issue typically take the form of optimizing the sampling windows

over which covariance estimates are made. As a consequence the resulting investment

models still take the form of weighted combinations of stock from a portfolio.

This work concerns intraday ‘frequent trading’. This is distinct from both the

high-frequency trading context [59] and the case of asset selection as applied to fund-

ing stocks based on fundamental analysis [83]. As were mentioned in Chapter 1, there

is still controversy about high-frequency trading (HFT) definitions. One of them char-

acterizes high-frequency trading as relying on the ability to move between short term

positions very quickly (microseconds (10−6) or less) at high volumes with profits per

trade that might be a fraction of a cent. Research with GP in this context has made

recommendations regarding the frequency of trades necessary to improve market sta-

bility [109]. Conversely, asset selection based on fund fundamentals we consider a

static undertaking, for which the MVO models of Markowitz are well known. Instead

6Macro or strategic assessment of where a currency should be trading on any criteria but the
price action itself. The criteria often include the economic condition of the country that the currency
represents, monetary policy, and other “fundamental” elements.
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we are interested on the ability to utilize short candlesticks (minutes) within a single

trading session (day) (intraday trading) [113, 94].

While there is a growing number of articles covering the development of intraday

automated trading systems, the number of works on autonomous asset allocation for

such algorithms is limited. Turcas et al. point out the necessity for constructing an

optimal portfolio under a frequent trading context [150]. Liu [94] used S&P 500 five-

minutes and daily returns to rebalance the portfolio and found that daily rebalancing

based on the five-minutes returns gave a performance gain compared to monthly

rebalancing.

Ha [61] proposed an intraday trading strategy to absorb the shock to the stock

market when an online portfolio selection algorithm is rebalancing a portfolio. The

proposed algorithm optimizes both the number of intraday trades and an intraday

trading path for a multi-asset portfolio. He used 30 randomly selected NASDAQ 100

components for backtesting and showed that the proposed algorithm was effective for

large capital investments and applicable to several portfolio rebalancing strategies.

Borges et al. [161] evaluated the economic benefits of 5, 15, 30, 60, 90 and 120

minutes data for portfolio selection with 30 assets of the Brazilian stock market.

They used intraday data (from 5 to 120-minute candlesticks) and compared them

with estimators based on daily data. The portfolios were rebalanced daily, weekly

and monthly, and are analyzed according to their performance regarding average

performance, standard deviation, Sharpe ratio, and turnover. A daily rebalanced

portfolio based on the 60 minute returns resulted in a portfolio with lower standard

deviation. They concluded that a return sampling frequency ranging from 15 and 120

minutes suggested better performance rather than 5-minute returns. Goumatianos et

al. [58] used 1 minute candlesticks of 300 randomly selected stocks from the S&P500

index to build long/short portfolio (10 stocks for long positions and 5 for short).

Common themes that appear in these works include: 1) an emphasis on optimizing

the shared temporal window properties over which covariance statistics are estimated;

and 2) the use of scalar rebalancing of the investment across the portfolio for the

duration of the following trading period. In contrast, this work lets GP trading

agents discover trading strategies for each stock. This means that instead of assuming

that statistical trends detected in some historical period for a specific stock will just
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‘carry over’ to the next trading period, we actively make use of properties developing

within the microstructure of each price signal. This will have implications for both

the ranking of stocks (to be traded in the next period), and the ability to make

use of price signals within the (intraday) trading period. Other approaches to risk

management might include the approach of delta hedging (designing a portfolio such

that the value remains unchanged when the value of stock vary), for which a GP

approach was recently proposed [160]; and combining both fundamental and technical

indicators [32]. However, this work concentrates on quantifying the significance of

ranking metrics within portfolios identified by GP trading agents for intraday trading

with 1 minute candlesticks. Generally available works let us assume that this is the

first time that such an undertaking has been performed.

2.6 On the Effect of Hidden Trading Costs on the Proposed Automated

Trading System (Chapter 7)

Trading or transaction costs7 are one of the most important attributes of any trading

system. Elton et al. [51] defined three major sources of trading costs, summarized as

follows:

• Commission to the broker, plus any taxes applied to the trade.

• Bid-Ask spread8, which is defined as a difference in bid and ask prices of a

financial asset (stock or a currency pair). This represents a ‘roundtrip’ cost to

the investor buying or selling. The spread can also reflect asymmetries between

illiquidity and information [116].

• Potential price impact of a large sale or purchase.

While the first form of transaction cost (commission to the broker plus taxes on the

trade) represents explicit (or visible) costs, the other two are implicit (or hidden)

costs.

Loistl et al. [103] modeled Xetra9 and NASDAQ electronic trading systems and

compared them in terms of transaction costs (Commission and Bit-Ask spread) for

7Transaction costs are expenses incurred when buying or selling a good or service.
8The distance, usually in pips, between the Bid and Ask prices.
9Xetra is the electronic trading system of Frankfurt Stock Exchange.
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small (up to 1000 shares), medium-sized and block-sized orders (10000 or more

shares). They demonstrated that NASDAQ is much preferable for investors with

small orders while Xetra has advantages in case of medium- and block-sized orders.

Duran et al. [48] described a profitable trading and risk management strategy for

daily financial decision making. They found that the proposed strategy was profitable

for 168 S&R 50010 and 213 Russell11 2000-listed stocks assuming 1% commission for

each change of position.

Azencott et al. [8] established a theoretical foundation to a generic framework for

real-time market analysis. They describe a methodology for automatically discovering

reasons for performance degradation of algorithmic trading, albeit with a focus on

transaction costs. However, the quantification of the more variable/hidden sources of

trading costs remained elusive.

Li et al. proposed the ‘Transaction Cost Optimization’ framework to improve ex-

isting online portfolio selection strategies. They concluded that the proposed frame-

work might effectively address ‘reasonable’ transaction costs. However, the bid-ask

spread was beyond the scope of their research [89].

Goumatianos et al. [58] described a stock selection system based on knowledge

discovery in large databases. The proposed pattern mining algorithm for time-series

was tested by considering only a low fixed commission per trade ($4.95). In short,

the hidden costs were not included.

Dempsey et al. [39] reported on the performance of an on-line evolutionary auto-

matic programming methodology for uncovering technical trading rules for the S&P

500 and Nikkei 225 indices, assuming a flat fee model ($10 upon changing of position)

with average monthly return as the fitness function. Mabu et al. [105] considered

only explicit transaction costs of SBI Securities Co., Ltd which depended on the size

of buy or sell order alone. Das et al. [37] introduced an efficient online algorithm for

portfolio selection. They demonstrated the effectiveness of the proposed algorithm

assuming only proportional transaction costs.

10The S&P 500 is a stock market index that measures the stock performance of 500 large companies
listed on stock exchanges in the United States.

11The Russell 2000 Index is a market index of the smallest 2,000 stocks in the Russell 3000 Index.
It was started by the Frank Russell Company in 1984.
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Several authors have noted the negative impact of bid-ask spread on the perfor-

mance of funds in general:

Ha and Zhang in [61] proposed an intraday trading strategy to absorb the shock to

the stock market when an online portfolio selection algorithm rebalances a portfolio.

The results of backtesting from the historical limit order book data of NASDAQ-

traded stocks show the effectiveness of the proposed trading algorithm. They consid-

ered different types of transaction costs and noted that they excluded trading at the

market opening because bid-ask spreads are much higher at that time than mid-day

or day closing.

Demsetz in [42] investigated the cost of transacting on the New York Stock Ex-

change (NYSE) and noted that in case of NYSE two elements comprise almost all the

transaction cost — brokerage fees and bid-ask spreads. He characterized the service

provided by dealers on NYSE in terms of the ‘immediacy’ of a transaction. Thus, bid-

ask spreads reflect cost per share for supporting the immediacy of a trade. Stoll [143]

extended the investigation by introducing a dealer cost function that attributed cost

to risk, thus the bid-ask spread reflects a dealer’s exposure to risk. Amihud et al. in

[4] studied the effect of securities’ bid-ask spread on their returns and concluded that

market-observed expected return is an increasing and concave function of the spread.

In addition, it has been noted that bid-ask spreads can reflect trade execution costs

and therefore represent indicators of market quality [14].

Edelen et al. [49] applied an estimate of the trading cost (brokerage commission,

bid-ask spread, and price impact) for each position changed and concluded that that

hidden trading costs have a detrimental effect on fund performance, where this is at

least as material as that of the visible trading costs. Kocinsky [82] noted that the

expected value of transaction costs, which takes into account the transaction’s volume

and duration, may be considered an important measure of a liquidity of a traded stock.

Formulations were presented for expected transaction cost, as a function of bid-ask

spread and market impact.

Bryant et al. [22] reported on an analysis of spreads before and after the intro-

duction of automation of trading in commodity (futures) markets and noted that

spreads have increased since the introduction of automated trading systems. Thus,

lower order processing costs in automated trading can be outweighed by increased
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transaction costs. Moreover, some of the benefits experienced in financial futures

markets might not appear under commodity markets as the latter tend to have lower

volumes. In addition, other researchers have noted that different commodity mar-

kets can exhibit different levels of underlying volatility (e.g. NASDAQ (high) versus

NYSE (low)) [73]. The bid-ask spread can also be influenced by the types of traders

participating in a market. Informed traders posses information about the true value

of an asset, whereas uninformed traders trade for liquidity needs [27]. The potential

implication here is that automated trading systems would typically be an example

of an ‘uninformed’ trader, and therefore more susceptible to the negative impact of

spreads.

Chapter 7 investigates the impact of the bid-ask spreads on the results of back-

testing (and, therefore, the potential impact on the real-time trading) of a genetic

programming based automated trading system. Our results concentrate more on the

impact of the nature of the spread (fixed or floating) rather than the size of the fixed12

or floating spreads. A ‘fixed spread’, in this case, can vary for different trading assets

but remain constant throughout the time regardless of the trading asset price or mar-

ket conditions. Usually, fixed spreads are bigger than the average value of a floating

spread but, at the same time, fixed spreads provide more stable trading conditions.

This work investigates to what degree (if any) automated trading systems that utilize

historical rates to build trading rules for real-time trading may benefit from fixed

versus floating spreads.

Early research reported on trading agents identified by genetic programming (GP)

with data sourced as spot tick data [41]. However, this data was then converted to

midpoint prices that were then aggregated into bars of various frequencies. Unfor-

tunately, this then removes the spread information. Similar limitations appear in

[126, 121] where out-of-sample performance of intraday technical trading strategies

is selected using two methodologies, a genetic program and an optimized linear fore-

casting model. Authors of those works concluded that “When realistic transaction

costs and trading hours are taken into account, we find no evidence of excess returns

to the trading rules derived with either methodology.”

Holmberg et al. [65] applied their intraday Open Range Breakout strategy to

12Bid-Ask spread is fixed when the difference between Bid and Ask prices has a fixed value in
pips.
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a time series of U.S. crude oil futures prices. They observed that the commission

fees and bid-ask spreads will have a negative impact on the profits reported, while

the particular nature of the commodity futures market tends to provide a bias to-

wards short-selling. Bitvali et al. [18] performed a trading simulation including fixed

transaction costs at 0.6% of the transaction value and concluded that, as expected,

transaction costs eroded the profit.

Cirillo et al. [30] assumed tick-level historical price data of four currency pairs and

then aggregated this into 5-minutes bars. However, the money management scheme is

not detailed and the transaction cost is only reported in terms of the total transaction

cost incurred over the evaluation, thus precluding comparative backtesting. Baron et

al. [11] investigated risk and return in high frequency trading (HFT) using historical

FTSE market data and showed that aggressive HFTs as a whole lose money on shorter

time scales; presumably as a result of the bid-ask spread and price impact, although

quantification of this did not appear.

Bid and ask prices of two currency pairs (EURUSD and GBPUSD) were used by

Mendez et al. [115] to simulate trading using a genetic algorithm. It was concluded

that including transaction costs made it significantly more difficult to identify prof-

itable strategies. Vasilakis et al. [153] presented a GP trading technique to forecast

the next day returns when trading the EURUSD exchange rate based on historical

data. Issues with transaction costs impacting the performance of the GP trading

agents again appear with the authors adopting a posteriori ‘filtering’ approach in an

attempt to weed out the more costly trading strategies, an approach also adopted in

[110].

Finally, in the special case of executing large institutional orders,13 genetic pro-

gramming has been used to design appropriate trade execution strategies [35]. Nat-

urally, such an approach is specific to the case of large institutional orders, taking 5

hours to execute, as opposed to the frequent trading scenario considered in this work.

13A sufficient number of stocks are traded at a single time to result in moving the prices against
their own order.
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2.7 Summary

The number of topics investigated in this work and specifics of the application do-

main make the task of establishing a comparison baseline for the proposed system

challenging. Various works, including those mentioned in this Section are designed

for different assets and even different markets and tested assuming different trading

conditions. As a compromise, this work adopts the following approach. The core of

the proposed framework for automating trading agent design consists of a coevolved

TI and DT. This will be subject to an ablation study in which the DT is evolved with-

out the benefit of TI, using popular human designed TI, as previously recommended

by Hitoshi Iba [68]. This represents the case of evolving trading rules while assuming

preprocessed temporal features. The process will be repeated for both Foreign Ex-

change markets (half hour bars) and intra-day trading on NASDAQ stocks (5 minute

bars). At the same time, the proposed process for coevolving TI and DT will be

compared to widely used Hoeffding Tree approach for streaming classification. Thus,

justifying the use of coevolved TI and DT. The claim is not made that the approach

is ‘the best’, but that the approach to automated trading is competitive with current

methods. This will then enable us to concentrate on the impact of transaction costs,

asset selection heuristics, and the impact of bid-ask spreads on the automated trading

agent.



Chapter 3

Proposed Automated Trading System

3.1 The FXGP Algorithm

The FXGP algorithm is a genetic trading algorithm that utilizes historical prices of

a trading asset (currency pair exchange rate, stock price, etc.) to evolve trading

agents that then generate real-time trading signals ‘buy’, ‘sell’ or ‘hold’ to open/close

a trading position or to wait when the market conditions do not favor trading. FXGP

is the core part of the proposed automated trading system. The first version of FXGP

(’Base FXGP’ hereafter) was developed as a part of MCS Thesis and was described

in [95, 97, 98]. This section summarizes previous results [95, 97, 98] and gives an

overview of the Base FXGP algorithm.

3.1.1 Overview of Base FXGP Approach to Constructing Trading

Agents

Agents are evolved assuming a ‘Train–Validate–Trade’ cycle (Figure 3.1). Train and

Validate represent two sequential historical partitions of the data from which Base

FXGP evolves trading agents (DTs with linked TIs) and the best agent is then used

for trading. Thus, given train sequential records1 of the Training partition, the TI and

DT populations are coevolved. The next test sequential records from the Validation

partition are used to verify and identify a single champion DT–TI combination (the

champion agent). It is possible that the result of model validation is a failure to

identify a champion agent, in which case the training cycle would be reinvoked from

an entirely new initialization of the DT–TI populations. Assuming that a champion

agent is identified then Trading may commence until one of several retrain criteria

triggers the identification of a new trading agent. The retrain criteria provide the user

with the ability to impart their trading preferences on the operation of the agent (e.g.,

1Actually expressed as a candlestick tuple ⟨open, high, low, close⟩.

37
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conservative versus aggressive). This results in the reinitiating of the ‘Train–Validate–

Trade’ cycle relative to the point at which retraining was triggered (Figure 3.1).

Naturally, the Train and Validate partitions are of a fixed duration, whereas the

duration of the ‘Trade’ partition is set by the performance of the champion DT–TI

agent. The following subsections will explain each step in more detail.

Retrain signal is detected

Train (Nt) Validate (Nv) Trade

Train (Nt) Validate (Nv) Trade

Figure 3.1: The Train–Validate–Trade cycle. Independent populations are evolved
during Training partition train and validated during Validation partition test
(adopted from [97])

3.1.2 Training

3.1.2.1 Initializing DT–TI Populations

At the beginning of any training cycle, the population of TI and then the population

of DT are initialized.

The TI population is randomly initialized with the minimum size defined by the

user (Table 3.3). TI individuals assume a linear GP representation (e.g., [21]) with

instruction set summarized by Table 3.1. In this case, the genotype is described in

terms of a sequence of integers or genes [21]. Each integer value is decoded into a

legal instruction and executed on a virtual machine (i.e. the ‘fetch-decode-execute’

cycle is simulated). Moreover, each TI has a header defining the basic TI properties:

links, type, scale, period, shift and length (Table 3.2). However, the size of the TI

population is not fixed and can incrementally vary between consecutive generations

(Section 3.1.3) but, cannot shrink below the TIp (Table 3.3) limit. Moreover, one

would desire more flexibility in how TIs are designed, hence rather than choose from a

fixed set of TIs or concentrate on parameterizing predefined TI, the explicit evolution

of the TIs is preferable. With this in mind the linear GP representation [21, 158] is

adopted to generate unique TI with a set of instructions (Table 3.1) [99]. Each TI is
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characterized by the set of properties stored in a TI header (Table 3.2). The header

represents information used to characterize the individual and is later used within the

context of selecting individuals for replacement and/or guide application of variation

operators (Section 3.1.3).

Function Definition

Addition R[x]← R[x] +R[y]
Subtraction R[x]← R[x]−R[y]
Division 1 R[x]← R[x]÷ 2
Division 2 R[x]← R[x]÷R[y]
Division 3 R[x]← 1÷R[x]
Multiplication R[x]← R[x]×R[y]

Square root R[x]←
√︁
R[y]

Table 3.1: TI functions. R[x] denotes the content of the register x and R[y] denotes
the content of either: 1) the register y, 2) a price, or 3) a price TIshift candlesticks
back in price history (where x ̸= y). Note the three forms of division.

Note that “price” here and hereafter can be any one of four candlestick prices:

“Open”, “High”, “Low” or “Close” if not specified explicitly.

Header field Description

TIlinks How many DTs nodes use the TI
TItype Value, Moving Average (MA) or

Weighted Moving Average (WMA)
TIscale Crosses price or 0 (Figure 3.2)
TIperiod MA period (ignored if TItype is Value)
TIshift Price shift, candlesticks back in a price history
TIlength Number of functions (Table 3.1) in the TI’s program

Table 3.2: TI properties. Mutable fields: TItype, TIscale, TIperiod and TIshift.

The TI program assumes a register level transfer language in which Regs (Ta-

ble 3.3) registers can be addressed. The R[0] register is used as an output register

and contains a TI value after program execution. The last appearance of the R[0] as

a target register (R[0] ←) in the TI program is defined as TIlength and is stored in

the TI header.2

2GP does not enforce sequential dependence between instructions, thus code flow does not follow
classical properties that human authored code generally possess. Indeed, significant amounts of
‘code bloat’ (introns) are generally observed [21]. This is a general property of many forms of GP.
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Parameter Description Default

TIp Minimum TI population size 100
TIs Maximum TI program size, steps 6
Regs Number of TI program registers 2
DTp DT population size 100
DTgap Number of DTs replaced in each generation 25
DTmut Relative probability of DT or TI mutation 0.5
DTs Maximum DT size, nodes 6
Gmax Maximum number of generations 1000
Nt Training partition size 1000
Nv Validation partition size 500
SLmax Maximum SL order size, pips 100
SLmin Minimum SL order size, pips 10
τ Training plateau length, generations 200
αv DT-TI validation fraction 0.9
Lrow Maximum number of consequent losses 3
Dd Maximum drawdown, pips 400
Hrow Maximum number of consequent candlesticks 72

without trading activity

Table 3.3: Base FXGP parameterization.

Figure 3.2: TI scales examples (adopted from [95])

The moving average of a TI (MA) is calculated as (3.1) whereas the WMA type

of TI is calculated as (3.2),
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MAi =

∑︁i
j=n Vj

TIperiod
(3.1)

WMAi =

∑︁n
i=1

Vi

i+1∑︁n
i=1

1
i+1

(3.2)

where Vi is a TI value and n = i− TIperiod

The TI header fields (Table 3.2) are initialized as follows:

• TIlinks is set to 0.

• TItype is randomly initialized with 0 (Value), 1 (MA) or 2 (WMA).

• TIperiod is randomly initialized with an integer that satisfies the following con-

dition: 1 < TIperiod ⩽ period or ignored if TItype is Value.

• TIshift is randomly initialized with an integer that satisfies the following condi-

tion: 0 ⩽ TIshift ⩽ shift.

The TIscale is detected after initialization3 and then checked following application

of the mutation operator in order to detect a degenerate4 TI. If the scale is not

valid, the TI is discarded and initialization is repeated until the scale condition is

satisfied. Figure 3.3 shows the distribution of TI programs’ length (instructions)

after the cycle of training which indicates that TI typically consist of between 2 and

5 instructions. Hence, although ‘short’ they are not merely referencing single price

points, but constructing a temporal feature. (See also program examples in Appendix

B).

Following initialization of the TI population, the DT population size of DTp (Ta-

ble 3.3) is initialized with tree individuals. The DT population assumes a tree struc-

tured representation describing what will become ‘trading rules’. Such rules represent

antecedent–consequent pairs that GP uses to define trading decisions resulting in one

of three outcomes: {buy, hold, sell}. Each DT is characterized by a set of properties

stored in the DT header (Table 3.4). Moreover, each DT can vary in size, however, the

3A TI with positive and negative values is said to be zero crossing 0 imply that TIscale = 0. A
TI with values crossing the stock’s price value imply that TIscale = 1

4“Degenerate” TI is a TI that does not cross the price or 0.
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Figure 3.3: TI programs’ length (instructions) distribution after the cycle of training.

number of nodes is limited as follows: 1 < DTsize ⩽ nodes. The DTscore is measured

in pips.

Base FXGP makes use of Stop-Loss (or SL) orders to limit a loss when the price is

moving in the opposite to the desired direction. A SL order can be a fixed size (fixed

SL) or can be evolved (floating SL). In the last case, its size can vary between SLmin

and SLmax (Table 3.3). The actual size of the SL order is stored in the DT header

(DTsl field). In case of floating SL, the DTsl is initialized with a randomly selected

value between the minimum (SLmin) and maximum (SLmax) SL order sizes.

Header field Description

DTsize DT size, nodes
DTscore DT score, pips
DTtrades Number of trades
DTsl SL order price, pips

Table 3.4: DT properties. DTsl is the only mutable fields.

Each DT node is represented as one of the following conditional statements [99]:
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• IF (Xi > Yi) THEN ⟨arg1⟩ ELSE ⟨arg2⟩

• IF ((Xi > Yi) and (Xi−m < Yi−m)) THEN ⟨arg1⟩ ELSE ⟨arg2⟩

where m is a time shift (candlesticks) back in a price history, Xi ̸= Yi and Xi and Yi

are randomly selected and can be: 1) zero, 2) a price, or 3) a TI. However, in order

to enforce meaningful comparisons the following restrictions are enforced:

1. if Xi is 0, then Yi must be a TI that crosses 0.

2. if Xi is a TI that crosses 0, then Yi must also be a TI that crosses 0.

3. if Xi is a price or a TI that crosses the price, then Yi must also be a price or a

TI that crosses the price.

Likewise, arg1 and arg2 are randomly assigned as either a pointer to a next node, or

one of the following trading signals: {buy, hold, sell} subject to the constraint that

arg1 ̸= arg2. Note also that additional TI can be generated during the DT population

initialization if there are no TI in the TI population that satisfy the restrictions of

the above three conditions.

Poli at al. in [133] mentioned that grow and full are two simplest methods of

tree initialization. Their combination is known as Ramped half-and-half [84]. In all

cases, trees are initialized to not exceed the user-specified depth. The full method

generates trees with all leaves at the same depth, while the grow method results in

trees of varied sizes and shapes. At the same time, the grow method is highly sensitive

to the sizes of function and terminal sets. If the number of terminals is greater than

the number of functions, the grow method will generate short trees. Otherwise, it

will behave almost like the full method. This work relies on the grow method to

allow trees of various shapes and sizes. In this case, each node represents a single

trading rule in its simplest form. The trees’ size limited not by the depth but by the

total number of nodes or rules. To overcome the dependence of the grow method

sensitivity to the sizes of function and terminal sets, the type of the branch (function

or terminal) is randomly selected with the uniform probability and then the function

or the terminal is randomly chosen (uniform probability) from the corresponding set.

DT population statistics collected after a single initialization are shown on Figures

3.4 and 3.5.
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Figure 3.4: DT size distribution over a single population of 100 trees.

Figure 3.5: DT shape (number of nodes in the left and right parts) distribution over
a single population of 100 trees.)
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3.1.3 Selection and Variation

At least DTgap (Table 3.3) DT individuals are replaced per generation. DT individ-

uals are selected for replacement based on statistics collected in the header fields of

DT individuals when they are evaluated (Table 3.4). Specifically, the DTtrades and

DTscore fields are used to prioritize DT individuals for replacement during a two stage

selection process:

Stage 1: The first n DT individuals with DTtrades == 0 are selected for replacement.

Stage 2: IF n < DTgap THEN the next DTgap − n trees with the lowest DTscore

are selected for replacement.

After identifying the DTgap DT for replacement, the corresponding TI used by

these DT have their TIlinks counter decremented. Any TI with a TIlinks == 0 are

considered useless and deleted resulting in a decrease in the size of the TI population

by a variable amount. The DT population in contrast always looses (and gains)

DTgap individuals at each generation.

Variation operators modify the genotype of parents to define new candidate so-

lutions or ‘offspring’ (Section 2.1). Variation operators exchange sequences of the

genotype between two parent individuals (crossover) or modify specific genes (muta-

tion). Hence, crossover creates a new individual by mixing material that currently

exists in the population, while mutation can introduce new genetic material to the

population. Chellapilla in [28] empirically demonstrated that crossover does not nec-

essarily lead to better results than mutation on a suite of 14 benchmarks. Angeline

in [6] argued that subtree crossover is the main cause of bloat if compared to subtree

mutation. Moreover, Banzhaf et al. [10] demonstrated the positive effect of extensive

use of the mutation on generalization in GP using sparse data sets. Considering the

above and performance reasons, this work utilizes the mutation as the only variation

operator.

Following replacement, mutation is used to add DTgap DT offspring. Parent DT

are selected randomly among the remaining trees−DTgap individuals. A two stage

process is assumed in which a parent is first cloned and a target for the mutation

operation identified as either the DT or a linked TI. The DTmut (Table 3.3) prob-

ability sets the relative probability of mutating a DT or (linked) TI. Only one DT
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node or one (linked) TI can be mutated. If the mutation target is a DT node, one of

the following mutation operations is applied:

• New conditional function.

• New shift parameter m.

• New Xi.

• New Yi.

• Interchange Xi and Yi within the same node.

• Switch content of then and else clauses.

• New then clause content.

• New else clause content.

• New SL order size.

If the mutation target is a TI, the parent TI is cloned replacing an existing TI with

TIlinks == 0 or creating a new TI (implying an increase in the size of the TI popu-

lation) and then one of the following mutation operators is applied:

• New TItype (V alue, MA or WMA).

• New TIperiod (if TItype is MA or WMA).

• New TIshift.

• Generate a new instruction (Table 3.1).

• Delete an instruction (if TIlength > 1).

• Insert an instruction (if TIlength < length).

In both cases (DT and TI mutation), if the mutable parameter can take more than

two values, the new value is randomly chosen with uniform probability. Training

stops when the maximum number of generations (generations) is reached or when

the best DT score remains the same for specified number (plateau) of consecutive

generations.
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3.1.4 Validation

As highlighted in Section 3.1.1, a Validation partition, containing price data inde-

pendent from the Training partition (Figure 3.1), is used to verify the quality of the

whole DT–TI population and then, if the DT–TI population passes the test, identify

the DT–TI agent with the best DTscore. The latter step establishes a single champion

DT–TI individual that will then be used as the trading agent.

The DT–TI population quality control is performed in order to verify performance.

Specifically, the subset of DT–TI individuals that are within αv = 90% of the best

DT–TI after the training is identified. This subset of individuals is then evaluated on

the Validation partition to identify the the champion. With this in mind, validation

has the following form:

1. Compare the scores of all trading agents on the Training partition against the

best agent’s score DT best
score;

(a) IF DTscore > αv × DT best
score THEN reset DT header fields DTscore and

DTtrades to 0;

(b) Apply the DT–TI agent over the test data from the Validation partition

(Figure 3.1);

(c) IF DTtrades > 0 after Validation THEN increment the DT agent’s counter

n (Algorithm 1, line 11);

2. IF n ⩾ (trees−gap) after validation THEN select DT–TI agent with the highest

score for trading (Algorithm 1, lines 12 to 16);

3. ELSE discard the DT and TI populations and repeat training on Training par-

tition (Algorithm 1, line 4).

3.1.5 Trading

The next component of Base FXGP answers the issue of how long the current DT–

TI champion(s) should be deployed (Figure 3.1). Base FXGP continuously monitors

the trading performance of the trading agent(s) (Algorithm 1, lines 16. . . 18) against

which a set of change detection criteria (Table 3.3) are deployed as follows:
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Algorithm 1: The core Base FXGP algorithm. Retrain refers to one of the

retrain criterion
Input: The historical FOREX or Stock data

Output: Trading rule (DT with linked TIs)

1 t = first candlestick of the first day // define start of trading

2 while t ⩽ last candlestick of the last day do

3 best = NULL // reset DT-TIs champion

4 while best == NULL do

5 initialize TI population

6 initialize DT population

7 evolve DT and TI populations over (train)

8 n = 0 // DT-TIs agent count

9 for i = 0 to trees do

10 if (validate DTi over test) == TRUE then

11 n++

12 if n >= (trees−DTgap) then

13 for i = 0 to n do

14 find (DT-TIs)i agent with the highest score

15 best = i // update DT-TIs champion

16 while Retrain == False do

17 trade

18 t++

• Dd — the maximum account balance drawdown

• Hrow — the maximum period of time (price candlesticks) without trading

activity

• Lrow — the maximum number of consecutive losses

When any one of these criteria is satisfied, Base FXGP stops trading and initiates

a new Train–Validate cycle to build a new multi-agent team. Such an approach is
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adopted on account of the inherently non-stationary nature of price data on which

trading decisions are made. A previous study confirming that explicitly trapping and

then retraining was preferable than attempting to continuously incrementally train

Base FXGP individuals [97]. Naturally, the above criteria are a reflection of the

particular preferences of the user, without a claim of their optimality. Indeed, users

would be free to assume any number of parameterizations or combinations of criteria

for the purpose of detecting changes to the underlying price data.

3.1.6 Performance Evaluation

3.1.6.1 FOREX Historical Rates

To evaluate the performance of the Base FXGP algorithm historical rates of the

three major currency pairs were used: EURUSD, USDCHF, and EURCHF. The

one-hour candlestick historical rates were obtained from the Forex Historical Data

repository.5) over the trading period from January 2, 2009 to December 30, 2011

(approx. 18,500 hours). These pairs are actively traded on all markets around the

world i.e., a trading day consists of 24 one-hour candlesticks (except on weekends and

holidays). Sampling at the rate of one-hour intervals was chosen to reduce the impact

of “trading noise” [70]. The Skewness and Kurtosis metrics of all three currency pairs

(’Close’ prices) are shown in the Table 3.5.

Currency pair Skewness Kurtosis

EURUSD -0.29507 2.63075
USDCHF -0.41103 2.43596
EURCHF -0.08153 1.87149

Table 3.5: The Skewness and Kurtosis metrics of currency pairs

Skewness is a dimensionless descriptive statistic that characterizes the degree of

asymmetry present in a distribution. Positive Skewness characterizes the direction

and relative magnitude of deviation from the normal distribution. Thus, positive

(negative) Skewness implies that more than half the distribution lies to the left (right)

of the mean, but the majority of the largest deviations are to the right (left) of the

mean [128]. Kurtosis characterizes the frequency of extreme deviations (outliers) from

5http://fxhistoricaldata.com

http://fxhistoricaldata.com
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the mean. In the case of univariate normal distributions, a Kurtosis less than 3 implies

that there are proportionally less outliers than experienced in a normal distribution.

Conversely, as the Kurtosis increases beyond a value of 3, the frequency of outliers

increases (w.r.t. those expected from a normal distribution).6 Table 3.5 therefore

indicates that for this particular 3 year trading period there is an underlying negative

trend (reflected in the Skewness), and the EURCHF currency pair had considerably

less Skewness and outlier frequency than EURUSD and USDCHF.

3.1.6.2 Evaluation of Specific Base FXGP Features

Experimental setup. Specific Base FXGP features are evaluated using historical

rates of the most widely traded currency pair EURUSD using 1-hour candlesticks,

Section 3.1.6.1. The historical rates cover the three year period July 2009 to November

2012 (or ≈ 17, 860 hrs) and is described in terms of the following fields: Pair, Date,

Time, bid price Open (Open), bid price Low (Low), bid price High (High) and bid

price Close (Close). For evaluation purposes, the fixed spread value of $0.00002 was

assumed. The spread value was defined based on the FxPro Group average EURUSD

spread value.7 Specifically, the relative contribution of the following parts of Base

FXGP was evaluated:

• Criteria based re-triggering of the retraining event (Section 3.1.5) versus the

widely assumed case of continuously evolved trading agents as described below.

• Significance of including a validation partition. Base FXGP assumes that the

champion individual is identified by a validation partition. However, this also

implies that the most recent data is not available for training. The inclusion

and non-inclusion of the validation partition will also be considered.

• Degree of support for evolving market specific thresholds. This case considers

two different forms of SL thresholds (Section 3.1.2.1). Either a fixed threshold

(DTsl = 100 pips) or thresholds evolved over a market specific spread interval

(DTsl = 5 . . . 100 pips) (Table 3.4).

6https://www.jstor.org/topic/kurtosis/
7http://www.fxpro.co.uk

https://www.jstor.org/topic/kurtosis/
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Framework for continuous re-evolution. Base FXGP adopts a retriggering

scheme for determining when to deploy a new trading agent (Section 3.1.5). How-

ever, we also want to understand the significance of assuming continuous models of

evolution for evolving trading agents e.g., [40, 68]. To do so, the ‘rolling window’

approach to evolution was assumed [68]. The DT–TI trading agents are evolved in

the same way as Base FXGP (over the training and validation partitions Nt and Nv

respectively). Then the champion trading agent is deployed and trading is performed

over a fixed number of candlesticks (trading partition Ntrade) (Figure 3.6). Also, in

the case of an open trade by the end of the period, the position will not be closed until

the closing signal is generated, and that can result in an extended trading partition.

After the end of a trading period Ntrade, the training and validation partitions are

realigned and retraining is restarted (Figure 3.6).

This means that the existing DT–TI populations are either:

Train (Nt) Validate (Nv) Trade (Ntrade)

Train (Nt) Validate (Nv) Trade (Ntrade)

Figure 3.6: Identifying a new champion trading agent through rolling window. The
Train–Validate–Trade cycle. Independent populations are evolved during Training
partition train and validated during Validation partition test. Trading is performed
for a fixed number of cycles (Ntrade) before a new cycle of evolution is performed
(adopted from [97])

• Used to continue evolution. This approach is adopted by modern researchers

(e.g., [40, 68]) and will be referred as continuous evolution or ContEv. This

naturally leads to exploiting previously evolved rules and makes impossible to

use the validation criteria from Section 3.1.4.

• Discarded and new DT and TI populations are initialized. Hence, any previously

evolved DT–TI trading agents are replaced with new ones after the first cycle of

evolution. This approach emphasizes exploration and is similar to the approach

adopted in [158], and will be referred to as stepwise evolution or StepEv. Also,

this case allows the use of a validation partition.



52

In total, four cases were evaluated: Base FXGP, StepEv (stepwise evolution),

ContEv (continuous evolution; representing current practice) and Static. The Static

represented a baseline DT–TI model in which no retraining is performed after the

initial cycle of training and just one trading agent is used over the whole period of

time from January 2, 2010 to November 30, 2012.

Results. Figure 3.7 provides a high-level summary for all four cases. The returns

were collected over 100 runs in each case.

The default parameterization (Table 3.3) was used during the experiments. The

default values of the parameters were determined8 via experiments performed in pre-

vious works [98] and [97].

In short, the following general trends were apparent at that stage [95]:

• Retaining population content between cycles of retraining (ContEv) appears to

be detrimental to providing new trading agents capable of reacting to the next

cycle of trading. However, neither ContEv nor StepEv appear to match the

effectiveness of Base FXGP (dynamically identifying retraining intervals).

• Both Base FXGP and StepEv (the latter for trading periods of 1 to 4 weeks)

have a strong preference for including the validation partition. Interestingly for

the longer trading period under StepEv (Ntrade = 1500) there was no benefit in

including a validation partition.

• Enabling the evolution of SL thresholds did not result in a general pattern of

preference for or against its inclusion. However, it does appear to be useful

w.r.t. ordering Base FXGP.

• In the case of the lengths of trading considered with StepEv and ContEv —

Ntrade ∈ {120, 500, 1500} — the longest trading period was most effective with

ContEv, but least effective with StepEv. Further research would be necessary

to obtain a clearer picture of the dynamics behind this.

• It is possible that any configuration can result in profitable (unprofitable) runs.

However, in most cases at least 25% of runs are unprofitable. Given that it is

8No claims regarding optimality of the parameters are made.
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not a priori possible to determine which runs will be profitable over the invest-

ment period, this means that it is very important to characterize performance

over multiple runs. If only best-case runs are considered, then even the static

configuration is ‘profitable’.

• Training once at the beginning of the three year period and then assuming that

the resulting champion individual will be effective clearly does not work. This

illustrates that the FX trading task is essentially non-stationary. Naturally,

the use of a validation partition is irrelevant as 1 month of validation data is

not sufficient for characterizing the following three years of trading when the

underlying process is non-stationary.

●

●

●

Base FXGP StepEv 500 ContEv 1500 Static

−60
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Figure 3.7: Comparison of distribution of returns for Base FXGP, StepEv, ContEv
and Static cases. 100 runs per distribution
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3.2 Base FXGP Critique

While the above results have provided an initial ‘proof-of-concept’ for the effective-

ness of the Base FXGP algorithm, drawbacks of the Base FXGP approach can be

summarized as follows:

1. R[x] and R[y] can be negative or ≈ 0. Therefore, two division functions (R[x]←
R[x]÷R[y] and R[x]← 1÷R[x]) and a square root R[x]←

√︁
R[y] (Table 3.1)

require additional checks and decisions to be made in case of illegal operations.

This work does not utilize the protected operators [84] since any “adjustment”

of a TI value can result in a bad trading decision and, therefore, can lead to a

significant loss.

2. Each TIscale TI’s header field requires that a scale check be performed and mark

a TIs as ‘bad’ if the scale does not satisfy requirements.

3. Calculation of WMA (3.2) requires much more computational time than MA

(3.2), especially for big WMA or MA periods TIperiod but at the same time, the

advantage of using WMA over MA is not clear.

4. The size of DTs tends to grow and reaches the limit (DTs) within the first

generations. This can be explained by the growing number of intron nodes in

the DT.

5. The proposed framework supports only one type of limit orders — SL orders.

However, the introduction of Take-Profit orders (TP) can help to fix the profit

when the price reaches a desirable level.

6. There are three tests applied to assess the validity of the DT (end of Section

3.1.2). Unfortunately, there is currently no guarantee that children will satisfy

these tests. It would be much more efficient if DT could be constructed in such

a way so as to always lead to valid tests.

7. Lack of trustability to deployed trading agents. While FXGP demonstrates the

high median profitability over 100 simulations, the distribution of results due

to initial conditions is undesirable and lies in the range from -30% loss to more
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than 50% profit (Figure 3.7, ‘Base FXGP’). Given that a trader would not be

in a position to know a priori which runs to ignore, identifying a scheme for

increasing the certainty of results would be beneficial.

The first four mentioned drawbacks result in the growth of computational over-

head, and their elimination is essential for developing a real-time trading system.

Improving the functionality to TP orders would improve the algorithm’s performance

without increasing complexity. Likewise, addressing drawback 6 would also improve

the efficiency of the search process, whereas addressing the last drawback would sig-

nificantly improve the usability of an autonomous trading agent.

3.3 The FXGP Algorithm, Revised

The issues summarized in Section 3.2 prompted a review of the Base FXGP algorithm

(Section 3.1) resulting in this thesis proposing the following improvements:

In the case of issue 1 the original TI function contains seven instruction types

(Table 3.1), whereas analysis of the programs of the resulting TIs indicated that

only three functions where typically employed (Table 3.6). Thus, multiplication that

produces a TI with the wrong scale, two division functions and a square root function

that frequently resulted in illegal operations (e.g. division by zero or square root of

negative value) were all dropped from the instruction set. Needless to say, this also

removes instruction types that have a longer (computational) latency i.e., division and

square root; thus an expected improvement to TI execution, where it is the evaluation

of TI that account for the majority of CPU time. Table 3.6 summarizes the updated

set of TI functions.

Function Definition

Addition R[x]← R[x] +R[y]
Subtraction R[x]← R[x]−R[y]
Division R[x]← R[x]÷ 2

Table 3.6: The updated set of the TI functions. R[x] denotes the content of the
register x and R[y] denotes the content of either: 1) the register y, 2) a price, or 3) a
price TIshift candlesticks back in price history (where x ̸= y and x and y ∈ {0, 1}).

In the case of issue 3 there was originally three types of TI were supported:
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Value, MA and WMA 3.1. This will be revised to support only two types: Value and

MA (Table 3.6). The calculation of the WMA requires more computational resources

compared to estimation of the MA (Section 3.2). At the same time experimentation

indicated that the effectiveness of the WMA failed to improve on that using TI based

on MA alone, resulting in the simplified set of TI parameters. In short, supporting

more complex moving average definitions does not appear to have any functional

benefits.

In the case of issue 2, the TIscale parameter was dropped, along with the in-

troduction of DT intron node detection and removal as described below. Table 3.6

summarizes the updated set of the TI properties.

Header field Description

TIlinks How many DT nodes use the TI
TItype Value original Moving Average (MA)
TIperiod MA period (ignored if TItype is Value)
TIshift Price shift, candlesticks back in a price history
TIlength Number of functions (Table 3.1) in the TI’s program

Table 3.7: The updated set of the TI properties.

To implement DT intron node detection and removal two more fields were added

to each node: Nthen and Nelse transition counters. The Nthen and Nelse counters

of each node are set to ‘0’ when the new DT is initialized, i.e. generation of the

initial DT population or after mutation of a parent DT. During fitness evaluation

(Section 3.1.2), if any of the conditional statements is satisfied, the corresponding

counter (Nthen or Nelse) is incremented. As a consequence, all DT nodes with either

transition counter (Nthen or Nelse) equal to ‘0’ are considered introns and removed.

The TIlinks (Table 3.7) counters of the corresponding TIs are decremented, so remov-

ing all redundant TIs (e.g. TIs with invalid scales, etc.). In summary, dropping the

‘TIscale’ parameter makes redundant the enforcement of conditional statements as

listed at the end of Section 3.1.2 (issue 6), whereas the introduction of DT intron

node detection and removal resolves issue 4 from Section 3.2.

To address the issue 5, Section 3.2, the TP order field was added to the DT

header (Table 3.8) and two more parameters (TPmax and TPmin) were added to the

base FXGP parameterization (Table 3.9).
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Header field Description

DTsize DT size, nodes
DTscore DT score, pips
DTtrades Number of trades
DTsl SL order price, pips
DTtp TP order price

Table 3.8: The updated set of the DT properties.

Parameter Description

TIp Minimum TI population size
TIs Maximum TI program size, steps
Regs Number of TI program registers
DTp DT population size
DTgap Number of DTs replaced in each generation
DTmut Relative probability of DT or TI mutation
DTs Maximum DT size, nodes
Gmax Maximum number of generations
Nt Training partition size
Nv Validation partition size
SLmax Maximum SL order size, pips
SLmin Minimum SL order size, pips
TPmax Maximum TP order size, pips
TPmin Minimum TP order size, pips
τ Training plateau length, generations
αv DT-TI validation fraction
Lrow Maximum number of consequent losses
Dd Maximum drawdown, pips
Hrow Maximum number of consequent candlesticks

without trading activity

Table 3.9: The updated FXGP parameterization.

The set of the mutation operation (Section 3.1.4) was updated according to all

changes. If the mutation target is a DT node, one of the following mutation operations

is applied:

• New conditional function.

• New shift parameter m.

• New Xi.
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• New Yi.

• Interchange Xi and Yi within the same individual.

• Switch content of then and else clauses.

• New then clause content.

• New else clause content.

• New SL order size.

• New TP order size.

If the mutation target is a TI, the parent TI is cloned replacing an existing TI with

TIlinks == 0 or creating a new TI (implying an increase in the size of the TI popu-

lation) and then one of the following mutation operators is applied:

• New TItype (V alue or MA).

• New TIperiod (if TItype is MA).

• New TIshift.

• Generate a new function.

• Delete a function (if TIlength > 1).

• Insert a function (if TIlength < length).

Finally, with regards to issue 6, the set of conditional statements (Section 3.1.2)

was updated. Each DT node is now represented as one of the following conditional

statements [99]:

• IF (Xi > Yi) THEN ⟨arg1⟩ ELSE ⟨arg2⟩

• IF (Xi−m < Yi−m) THEN ⟨arg1⟩ ELSE ⟨arg2⟩
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where m is a time shift (candlesticks) back in a price history, Xi ̸= Yi and Xi and Yi

are randomly selected and can be: a price or a TI. The meaning of arg1 and arg2 was

left unchanged.

The updated set of conditional statements improved the performance of the pro-

posed FXGP algorithm, made the DT easier to decode and analyze, and has improved

the flexibility of the DT by increasing the number of multi-conditional (chained) state-

ments the algorithm can build.

3.3.1 Multi-Agent FXGP

This section describes the new addition to the proposed algorithm, which allows the

use of multiple trading agents (’Teams’ further on) to suggest the trading action

(hereafter in this section FXGPT). As will be shown below, the simultaneous use of

multiple trading agents (teams) helps to improve the median profit and reduce the

sensitivity of results due to initial conditions (issue 7, Section 3.2).

3.3.1.1 Constructing FXGP Teams

Multiple FXGP populations are to be evolved relative to the current historical trading

data. That is to say, each time the retraining criteria flags poor trading behavior, all

populations will be re-evolved.9 The team is built in two ways:

Mode 0: Given P independent FXGP populations, identify one champion trading

agent from each using the validation data, Nv (Figure 3.8).

Mode 1: As per mode 0, however, all FXGP individuals passing the validation

criteria form the basis for a new population, p∗. This population continues evolution

with respect to partition Nteam (Figure 3.8). Note that each individual from p∗ is still

treated as an independent trading agent.

Post evolution, each trading agent in the team returns one of three actions per

trading interval (hourly in this section), where actions are mapped to an integer

value using the following assignment: Sell = −1; Stay = 0; Buy = 1. The scheme

adopted for combining the recommendation from each agent assumes the following

form: a =
∑︁

i∈A ai where ai ∈ {−1, 0, 1} corresponds to the three possible actions

9FXGP utilized three criteria: 1) max. single drawdown, 2) max. number of consecutive loss
making trades, 2) maximum number of candlesticks without trading activity 3.1.
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Retrain signal is detected

Train (Nt) Validate (Nv) Trade

Train teams (Nteam)

Train (Nt) Validate (Nv) Trade

Train teams (Nteam)

1

Figure 3.8: The Train–Validate–Train–Trade cycle. Independent populations are
evolved during Training partition Nt and a subset of sFXGP individual identified
from each using the Validation partition Nv. The FXGP teams are trained over
partition Nteam (mode 1 only). The point at which retraining is invoked corresponds
to three trading criteria.

that each champion can assume and A is the strongest subset of agents from p∗ at the

last generation. The resulting number line is then re-mapped into one of the three

actions using the following rule (3.3):

IF (a ≥ b) THEN (buy) ELSE IF (a ≤ −b) THEN (sell) ELSE (hold) (3.3)

Naturally, the value for the threshold b needs to be defined by the user and remains

the same throughout the trading activity. The use of the user-defined threshold

instead of simple voting allows users to implement a ‘veto’ mechanism for each trading

agent on a team by adjusting the threshold value. Also, noted that the generic form of

this model has been adopted in the past for discretizing the output of (single) neural

network trading agents into long and short positions [47] and ‘risk management’ in

the case of boosted DT (γ0 parameter in [34]).

The introduction of teams adds to the base FXGP parameters (Table 3.3) a set

of team-specific parameters as listed in the Table 3.10.

The updated structure of the multi-agent FXGPT algorithm is shown below (Al-

gorithm 2):

3.3.2 Validation of the Updated Algorithm

This section pursues two main goals:
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Parameter Description Value†

Tsize Number of trading agents in a team 3
(number of independent DT–TI populations)

b Team’s trading signal threshold (3.3) 2
mode 0 - team is built with champion agents 0 or 1

1 - team is evolved
Tp Teams’ population size (|p∗|) 100
Tgap Number of teams to be replaced per generation 25
TGmax Max number of teams’ population generations 1000
Tτ Team training plateau length, generations 200
Tt The data partition size to evolve teams 500

Table 3.10: Team specific parameters. Value† represents the parameterization used
to perform experiments in this section.

1. Validate the effectiveness of the introduced changes and assure that they do not

reduce the performance of the algorithm.

2. Investigate the influence of different trading conditions, namely the fixed and

floating Bid-Ask spreads, on the results of the trading simulation and, therefore,

on the results of real-time trading.

3. Validate the effectiveness of the multi-agent approach and define the best way to

build a team of trading agents (utilize the best agents in each DT-TI population

or evolve the team over the Nteam partition of data).

The EURUSD tick-by-tick prices10 were converted into one hour candlesticks and

used to define market activity during the period from January 3, 2010 to November

30, 2012. To achieve the first goal and establish a baseline for comparison, the same

period of time as in Section 3.1.6.2 is used. The results in Section 3.1.6.2 were

obtained with the assumption of a fixed spread value of 0.00002 USD based on the

FxPro Group average EURUSD spread value.11. Therefore, to achieve the second

goal, the downloaded historical rates include the real floating Bid-Ask spreads. The

distribution of floating spreads (the difference between Ask and Bid prices) of the

hour candlesticks during trading (Open, High, Low and Close prices) are shown in

the Figures 3.9 and 3.10.

10http://www.truefx.com
11http://www.fxpro.co.uk
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Algorithm 2: The multi-agent FXGPT algorithm. Retrain refers to one of

the retrain criterion
Input: The historical FOREX or Stock data

Output: Trading rule (Tsize DTs with linked TIs)

1 t = first candlestick of the first day // define start of trading

2 while t ⩽ last candlestick of the last day do

3 teams = NULL // no DT-TIs agents identified

4 for k = 0 to Tsize do

5 best = NULL // reset DT-TIs champion

6 while best == NULL do

7 initialize TI population

8 initialize DT population

9 evolve DT and TI populations over (train) detecting and removing

intron DT nodes in each generation

10 n = 0 // DT-TIs agent count

11 for i = 0 to trees do

12 if (validate DTi over test) == TRUE then

13 n++

14 if n >= (trees− gap) then

15 for i = 0 to n do

16 find (DT-TIs)i agent with the highest score

17 best = i // update DT-TIs champion

18 teamk = best // add DT-TIs champion to the team

19 while Retrain == False do

20 trade

21 t++

The following experiments were performed within this section:

• FXGP — original Base FXGP version of the algorithm as described in Sec-

tion 3.1 i.e., wider range of TI and DT.
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Figure 3.9: Spreads distributions. Internal box-plot provides quartile statistics. Vio-
lin profile characterizes the distribution. All spreads (0. . . 0.02 USD).

• sFXGP — FXGP simplified/revised version of the algorithm i.e., limited TI

and DT (Section 3.3).

• FXGPT(3) — teams formed using three sFXGP champions under teaming

mode 0 (Table 3.10).

• FXGPT(3e) — teams formed using three sFXGP champions under teaming

mode 1 (Table 3.10)

Both updated versions of the algorithm (sFXGP and FXGPT) inherit the pa-

rameterization of the original FXGP (as described in 3.1.6) with the addition of the

parameters, specific for the evolution of teams (Table 3.10). All runs were performed

on a 2.8 GHz iMac computer with Intel Core i7 CPU, 16GB RAM and Mac OS X

10.7.2. Where indicated, use is also made of the Apple GCD enqueue application

which identifies tasks for simultaneous execution against the available CPU cores.

Each experiment includes 100 simulation runs.

Table 3.11 provides the overview of both the number of profitable runs and the

respective quartile statistics. Comparing FXGP to FXGP†indicates that removing
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Figure 3.10: Spreads distributions. Internal box-plot provides quartile statistics.
Violin profile characterizes the distribution. Spreads within the range 0. . . 0.0005
USD.

Algorithm Profitable Scores, pips (quartiles)
runs, % min 1st median 3rd max

FXGP 73 -3459 -63 996 1905 4160
sFXGP 74 -3154 -95 989 1918 4055
FXGPT(3) 78 -2219 70 1117 2145 6291
FXGPT(3e) 81 -1877 289 1489 2463 4362
FXGP† 82 -3088 383 1523 2640 5299

Table 3.11: Quartile performance of trading agents (pips). FXGP†was the best pre-
vious result using the original FXGP algorithm with prior knowledge of spread (fixed
spread of 0.00002 pips). FXGP is the same algorithm without accurate spread infor-
mation (floating spreads). sFXGP, FXGPT(3) and FXGPT(3e) represent the pro-
posed single agent and two 3 agent formulations.

the prior knowledge regarding spread limits results in an immediate significant reduc-

tion in performance. The simplifications introduced to provide sFXGP (from FXGP)

have no measurable impact on the quality of trades. Introducing the simplest form
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of multi-agent behavior, FXGPT(3) (sampling a single champion from each indepen-

dently evolved population), results in a ≈ 13% improvement to the median score.

Introducing evolution using teaming mode 1 (FXGPT(3e)) results in a tightening of

the distribution of scores, as well as providing a 50% improvement relative to the sin-

gle agent case (Table 3.11). This also results in FXGPT(3e) managing to match the

performance of FXGP†, where the latter makes use of prior information in selecting

an optimal spread. The p-values for a Student t-test at the 95% confidence interval

as applied between each pairwise test of FXGPT(3e) against FXGPT(3), sFXGP and

FXGP are shown in the Table 3.12. And the p− values (⩾ 0.05) of the Shapiro-Wilk

test of normality (Table 3.13) confirm the hypothesis of normality for all distributions.

●

●
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Figure 3.11: Distribution of scores in pips over trading simulation period of time.
Quartile information appears in the box plot (illustrating the information from Ta-
ble 3.11). The contours of the violin mimic the actual distribution of the underlying
data.
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Figure 3.12: Distribution of number of retraining events over trading simulation pe-
riod of time. Box plot define the quartile information and violin the actual distribu-
tion.

FXGPT(3e) vs. FXGPT(3) FXGPT(3e) vs. sFXGP FXGPT(3e) vs. FXGP

0.161 0.047 0.008

Table 3.12: p-values for pairwise Student t-test of FXGPT(3e) against FXGPT(3),
sFXGP and FXGP

FXGPT(3e) FXGPT(3) sFXGP FXGP

0.285 0.264 0.583 0.317

Table 3.13: Shapiro-Wilk test of normality, p-values for FXGPT(3e), FXGPT(3),
sFXGP and FXGP cases

In order to characterize the computational costs of each algorithm, the total num-

ber of retraining events and the cost of any single retraining event is reported. Fig-

ure 3.12 summarizes the total count of retraining events over the three year trading
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period. In the case of both single agent algorithms (FXGP and sFXGP), a significant

reduction in the number of retraining events occurs. Given that there was no trading

benefit in assuming the (original) FXGP framework over sFXGP, this reduction in

the number of retraining intervals appears to indicate that sFXGP agents are more

general. Conversely, there is a significant increase in the number of retraining events

when teams of trading agents are assumed (either mode of FXGPT).

●

●

●
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Figure 3.13: Distribution of average training times (over a run) per population (FXGP
and sFXGP) and per team of three populations (FXGPT).

Figure 3.13 summarizes the cost of performing any single retraining event. It

is immediately apparent that sFXGP is significantly faster than FXGP as originally

conceived. Thus, the cost of supporting multiple types of moving average and division

operators as well as a square root operator (TI population) does not result in any

better trading performance while reducing the computational overhead by 65 – 70 %

w.r.t. sFXGP. FXGPT is able to maintain the computational overhead at ≈ 40%,
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albeit with use of the coarse grained parallelism available through Apple GCD.12

Finally, Figures 3.14–3.18 show the statistics about the deployed sFXGP (Table

3.11) trading agents. The statistics cover 13289 deployed sFXGP agents over 100

runs. Figure 3.14 shows the distribution of returns (%) per a deployed trading agent,

Figure 3.15 shows the distribution of SL and TP orders (pips) per a deployed trading

agent, Figure 3.16 shows the distribution of DT sizes (nodes) per a deployed trading

agent, and Figures 3.17 and 3.18 shows the distribution of number of trades per a

deployed trading agent. In short, the majority of trading agents consist of 2 to 3

nodes, and participate in 4 to 13 trades, i.e. a reactive as opposed to a predictive use

of technical analysis (Chapter 1). The long tail of the trades per trading agent would

be more indicative of a successful predictive instance of technical analysis. That said,

it is not possible to a priori identify which agents will be reactive and which would

be predictive, effectively rendering all agents reactive.

−5
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Return

●

%

Figure 3.14: Distribution of returns (%) per a deployed trading agent (statistics
collected over 100 runs) (sFXGP in Table 3.11). Min -4.02, 1st quartile -1.53, median
-0.48, 3d quartile 1.12, max 21.69, average 0.15.

12GCD does not facilitate speeding up evaluation of a single population.



69

50

100

150

200

SL TP

●

●

Pi
ps

Figure 3.15: Distribution of SL and TP orders (pips) per a deployed trading agent
(statistics collected over 100 runs) (sFXGP in Table 3.11). SL: min 10, 1st quartile
50, median 70, 3d quartile 90, max 100, average 66.82. TP: min 10, 1st quartile 80,
median 120, 3d quartile 160, max 200, average 118.12.
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Figure 3.16: Distribution of DT sizes (nodes) per a deployed trading agent (statistics
collected over 100 runs) (sFXGP in Table 3.11). Min 2, 1st quartile 2, median 2, 3d
quartile 3, max 6, average 2.34.



71

0

50

100

150

200

250

Number of trades

●

Tr
ad

es

Figure 3.17: Distribution (linear scale) of number of trades per a deployed trading
agent (statistics collected over 100 runs) (sFXGP in Table 3.11). Min 0, 1st quartile
4, median 6, 3d quartile 13, max 273, average 10.39.
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Figure 3.18: Distribution (logarithmic scale) of number of trades per a deployed
trading agent (statistics collected over 100 runs) (sFXGP in Table 3.11). Min 0, 1st
quartile 4, median 6, 3d quartile 13, max 273, average 10.39.
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3.4 Benchmarking the Coevolution of TI and DT Versus the Evolution

of DT Against a Fixed Set of TI

In this section, the FXGP algorithm will be compared with a trading system generator

that utilizes a fixed set of eight popular technical indicators (fixed set of TI) [68]. The

goal is, therefore, to determine the utility of employing coevolved TI.

In order to evaluate the effectiveness of the coevolution of TI and DT popula-

tions, the FXGP algorithm 3.3 was modified to obtain a benchmarking framework

that evolves DT population against a fixed set of the following popular technical

indicators [68]:

• SMA — Simple Moving Average.

• WMA — Weighted Moving Average.

• EMA — Exponentially Weighted Moving Average.

• RSI — Relative Strength Index.

• MACD — Moving Average Convergence Divergence.

• DMI — Directional Movement Index.

• ADX — Average Directional Movement Index13.

• Stoch — Slow Stochastic.

The trading simulation was performed over the period of time from January 2010

to November 2012 — the same period as was used to perform the trading simulation

in 3.3.2 and for the same currency pair (EURUSD, one hour time intervals). The TIs’

values were calculated with popular TA-Lib library14 that is used by many commercial

trading terminals15. The full set of technical indicators and trading rules associated

with them are listed in the Table 3.14. The three moving averages (SMA, WMA

and EMA) were calculated for six periods each (three periods for the fast and three

13The ADX requires a sequence of calculations due to the multiple lines in the indicator. ADX
and ADXR (Table 3.14) denote different lines of the ADX indicator implemented in the TA-Lib
library.

14http://ta-lib.org
15http://ta-lib.org/hdr_dev.html

http://ta-lib.org
http://ta-lib.org/hdr_dev.html
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periods for the slow moving averages), all other TIs were calculated using default

TA-Lib parameters (Table 3.15). Therefore, the resulting TI population includes 23

technical indicators.

TI Trading signal (at time t)

SMA Buy: SMAfast
t−1 ⩽ SMAslow

t−1 and SMAfast
t > SMAslow

t

Sell: SMAfast
t−1 ⩾ SMAslow

t−1 and SMAfast
t < SMAslow

t

Hold: otherwise

WMA Buy: WMAfast
t−1 ⩽ WMAslow

t−1 and WMAfast
t > WMAslow

t

Sell: WMAfast
t−1 ⩾ WMAslow

t−1 and WMAfast
t < WMAslow

t

Hold: otherwise

EMA Buy: EMAfast
t−1 ⩽ EMAslow

t−1 and EMAfast
t > EMAslow

t

Sell: EMAfast
t−1 ⩾ EMAslow

t−1 and EMAfast
t < EMAslow

t

Hold: otherwise
RSI Buy: RSIt−1 ⩽ 30 and 30 < RSIt < 70

Sell: RSIt−1 ⩾ 70 and 30 < RSIt < 70
Hold: otherwise

MACD Buy: MACDt−1 ⩽ Signalt−1 and MACDt > Signalt
Sell: MACDt−1 ⩾ Signalt−1 and MACDt < Signalt
Hold: otherwise

DMI Buy: PDIt−1 ⩽ MDIt−1 and PDIt > MDIt
Sell: PDIt−1 ⩾ MDIt−1 and PDIt < MDIt
Hold: otherwise

ADX Buy: ADXt−1 ⩽ ADXRt−1 and ADXt > ADXRt

Sell:ADXt−1 ⩾ ADXRt−1 and ADXt < ADXRt

Hold: otherwise
Stoch Buy: %D < 20 and %Kt−1 ⩽ %Dt−1 and %Kt > %Dt

Sell: %D > 80 and %Kt−1 ⩾ %Dt−1 and %Kt < %Dt

Hold: otherwise

Table 3.14: Fixed set of technical indicators and associated trading rules.

3.4.1 Results of Comparison Between the Coevolution of TI and DT

Versus the Evolution of DT Against a Fixed Set of TI

To compare the result of the benchmarking framework with the results of the FXGP

algorithm (Section 3.3) 100 simulations were performed over the same period of time

as for FXGP— from January 2010 to November 2012 using the same parameterization

as in Section 3.3. The results are summarized in Table 3.16 and Figure 3.19.
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TI Parameters

SMAfast timeperiod: 4, 8 or 12
SMAslow timeperiod: 24, 48 or 72
WMAfast timeperiod: 4, 8 or 12
WMAslow timeperiod: 24, 48 or 72
EMAfast timeperiod: 4, 8 or 12
EMAslow timeperiod: 24, 48 or 72
RSI timeperiod: 14
MACD fastperiod: 12

slowperiod: 26
signalperiod: 9

DMI plus di timeperiod: 14
minus di timeperiod: 14

ADX adx timeperiod: 14
adxr timeperiod: 14

Stoch fastk period: 5
slowk period: 3
slowk matype: 0
slowd period: 3
slowd matype: 0

Table 3.15: TI parameters. All names of parameters are adopted from TA-Lib and
defined in Table 3.14.

Algorithm Profitable Score (pips)
runs (%) min 1st quartile median 3rd quartile max

FXGP† 74 -3154 -95 989 1918 4055
Fixed set of TI 31 -4637 -1839 -788 386 4735

Table 3.16: Single trading agent comparison. Unpaired Student t-test p-value =
7.066e-11. † — adopted from [100].

Table 3.16 summarizes the result of conducting statistical hypothesis testing be-

tween the FXGP algorithm (coevolution of DT and TI populations) and the same

framework, but limited to evolving DT alone (given a fixed set of TI). The coevolution-

ary framework significantly outperforms the benchmarking framework that evolves

DT over a fixed set of TI (Figure 3.19). This topic will also be returned to within the

context of the more challenging context of frequent intraday trading (Section 6.7).
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Figure 3.19: Distribution of cumulative scores in pips over trading simulation period
of time.

3.5 Discussion

The following observations are made regarding the revised FXGP framework:

• The use of real prices with floating spreads (Table 3.11, sFXGP) significantly

affects the trading results and reduces the number of profitable solutions and

scores compared to trading with assumed fixed spreads as previously reported
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(Table 3.11, FXGP†).

• Both single agent variants (FXGP and sFXGP) return a very similar number

of profitable solutions and scores (Table 3.11). Moreover, the simplifications

introduced to sFXGP did not reduce the performance of the algorithm and,

at the same time, the training time was reduced by 65% (Figure 3.13). The

average number of retrains was also reduced (Figure 3.12).

• The use of teams of champion trading agents (Table 3.11, FXGPT(3)) im-

proves the negative spread of runs compared to that of a single trading agent

(Table 3.11, sFXGP). At the same time the CPU cost for maintaining a team

of champion agents is still significantly ≈ 40% lower than that for the original

FXGP.

• The use of evolved teams (Table 3.11, FXGPT(3e)) outperformed all other con-

figurations and demonstrated the best results in all categories: trustability (the

percentage of profitable runs) and quartile scores. Indeed, this configuration

provides statistically significant improvements over the single population models

(95 percentile) and adds > 350 pips to the median performance of FXGPT(3).

• Removing the capability to coevolve TI has a very negative impact on the

quality of the resulting trading strategies. Thus, TI designed for the benefit of

informing humans does not imply that they represent an effective starting point

for an automated trading system. That said, it could be that some combination

of human designed TI might be useful, it is just not possible to a priori identify

such a set.

The modified multi-agent version of the FXGP algorithm (sFXGP and FXGPT

in this section) will be referred to as FXGP hereafter.



Chapter 4

Non-Financial Streaming Data Analysis

The basic goal of this part of the research is to apply FXGP for non-financial streaming

data analysis and, therefore, to identify:

1. the relevance of candlestick preprocessing to a task outside of TI for financial

applications and;

2. to quantify to what degree FXGP is able to provide results comparable with

those from algorithms explicitly designed for streaming data classification.

The task of predicting/forecasting the direction of movement of an indicator in a

time sequence has recently received increased interest, particularly within the context

of streaming data classification [54, 15, 16, 63]. It is interesting to note that although

many EC approaches have been proposed for prediction within the context of financial

markets (Chapter 2), there is no evidence of them also being deployed under streaming

data contexts. This section utilizes the FXGP algorithm to predict the change in

power consumption (increase, decrease, no change) at the next time step for the

individual household electric power consumption dataset (IHEPC hereafter).

With this in mind, the prediction horizon of the FXGP algorithm was limited to

the next candlestick only, unused (FXGP) functions were disabled and trading signals

were converted into labels according to Table 4.1. Retraining is triggered after every

ten classification errors.1

The original IHEPC dataset consists of household electricity consumption as mea-

sured at one-minute intervals over a period of 47 months (December 2006 — November

2010) [90].2 This dataset has a higher resolution with respect to the units of time

than the frequently employed ‘Australian New South Wales Electricity Market’ data

1Naturally, more formal schemes could have also been considered, such as statistical formulations
from streaming data analysis [55]. However, our interest lies in the particular contributions of the
candlestick preprocessing and coevolution, as opposed to the development of a change detector.

2http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+

consumption
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Trading signal Label

Buy ‘1’
Sell ‘-1’
Hold ‘0’

Table 4.1: Trading signals to labels conversion.

(five-minute intervals) [62]. The high level of sampling available implies that mul-

tiple datasets can be constructed from the same source data by assuming different

periodicities for constructing source statistics.

Table 4.3 summarizes the attributes of the original dataset, hereafter ‘Dataset 0’.

The Skewness and Kurtosis metrics of ‘a1’ attribute (global active power) are shown

in the Table 4.2. It is apparent that relative to the ‘baseline’ of a normal distribution,

the underlying properties of the global active power dataset are a positive skew and

the frequency of outliers is significantly higher. Note, however, this does not imply

that consecutive time periods need be correlated, i.e. past positively skewed trends

are not necessarily a guarantee of future positively-skewed trends [141]. This property

will be demonstrated in the following empirical study through the use of a ‘no change

classifier’ (Section 4.1.1).

Attribute Skewness Kurtosis

a1 (global active power) 1.78623 7.21867

Table 4.2: The Skewness and Kurtosis metrics of global active power

The ‘Dataset 0’ data is then preprocessed and converted into five separate datasets

named ‘Dataset 1’ through ‘Dataset 5’ and described below. All the resulting datasets

assume an ARFF format that is accepted by frameworks for data stream mining such

as MOA [17]. Specifically, the goal is to predict the movement in the ‘global active

power’ attribute (a3, Table 4.3).

Dataset 1 was obtained by summing the one-minute measurements within consec-

utive 30 minute intervals and labelling as shown in Table 4.4. Dataset 1 will represent

the base case dataset.

Dataset 2 represents a characterization of the original ‘a3’ attribute using the ag-

gregation of ‘open-high-low-close’ information over the 30 minute period (Table 4.5).
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Attribute Description (one-minute measurements)

a1 date
a2 time
a3 global active power: household global minute-averaged active power

(in kilowatt)
a4 global reactive power: household global minute-averaged reactive

power (in kilowatt)
a5 voltage: minute-averaged voltage (in volt)
a6 global intensity: household global minute-averaged current intensity

(in ampere)
a7 sub metering 1: energy sub-metering No. 1 (in watt-hour of active en-

ergy). It corresponds to the kitchen, containing mainly a dishwasher,
an oven and a microwave (hot plates are not electric but gas powered)

a8 sub metering 2: energy sub-metering No. 2 (in watt-hour of active
energy). It corresponds to the laundry room, containing a washing-
machine, a tumble-drier, a refrigerator and a light

a9 sub metering 3: energy sub-metering No. 3 (in watt-hour of active en-
ergy). It corresponds to an electric water-heater and an air-conditioner

Table 4.3: Dataset 0 — Original individual household electric power consumption.
Attribute information.

This corresponds to the widely employed ‘candlestick’ representation for price data

in financial or stock data as assumed earlier (i.e. a preprocessing step that potentially

reduces the amount of noise in the original measurements). Note that the criteria for

the label are still relative to the definition for attribute ‘b3’ in Dataset 1.

Dataset 3 assumes the same preprocessing of the attributes into 30 minute candle-

stick’s, but casts the labelling task into one of three categories (less, approximately

the same, or more) as opposed to one of two. The overall distribution of class labels

is summarized in Table 4.7.

Dataset 4 and Dataset 5 were processed in the same way as Dataset 2 and

Dataset 3 respectively, but with candlesticks estimated over consecutive 15 minutes

intervals. Table 4.7 provides a summary of the static properties of each dataset

(number of attributes, instances, etc).
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Attribute Description

b1 date (first ‘a1’ value within 30 minutes interval)
b2 time ‘t’ (first ‘a2’ value within 30 minutes interval)
b3 sum of a3 within 30 minutes interval
b4 sum of a4 within 30 minutes interval
b5 sum of a5 within 30 minutes interval
b6 sum of a6 within 30 minutes interval
b7 sum of a7 within 30 minutes interval
b8 sum of a8 within 30 minutes interval
b9 sum of a9 within 30 minutes interval

label ‘1’ IF b3(t+ 1) ≥ b3(t)
‘-1’ otherwise

Table 4.4: ‘Dataset 1’ dataset. Attribute information (30 minutes grouping).

Attribute Description

c1 date (first ‘a1’ value within 30 minutes interval)
c2 time ‘t’ (first ‘a2’ value within 30 minutes interval)
c3 first ‘a3’ value within 30 minutes interval
c4 highest ‘a3’ value within 30 minutes interval
c5 lowest ‘a3’ value within 30 minutes interval
c6 last ‘a3’ value within 30 minutes interval

label ‘1’ IF b3(t+ 1) ≥ b3(t)
‘-1’ otherwise

Table 4.5: Dataset 2 — Attribute information (30 minute candlesticks, 2 class classi-
fication). Note that attributes c3 through c6 represent those potentially indexed by
a TI

Attribute Description

c1 date (first ‘a1’ value within 30 minutes interval)
c2 time ‘t’ (first ‘a2’ value within 30 minutes interval)
c3 first ‘a3’ value within 30 minutes interval
c4 highest ‘a3’ value within 30 minutes interval
c5 lowest ‘a3’ value within 30 minutes interval
c6 last ‘a3’ value within 30 minutes interval

label ‘1’ IF b3(t+ 1) > 1.1 ∗ b3(t)
‘-1’ IF b3(t+ 1) < 0.9 ∗ b3(t)
‘0’ otherwise

Table 4.6: Dataset 3 — Attribute information (30 minutes candlesticks, 3 class clas-
sification). Note that attributes c3 through c6 represent those potentially indexed by
a TI
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Dataset Attributes Instances Classes Class distribution

Dataset 0 9 2075259 n/a n/a
Dataset 1 9 68320 2 32893, 35427
Dataset 2 6 68320 2 32893, 35427
Dataset 3 6 68320 3 23946, 25181, 19193
Dataset 4 6 136632 2 65924, 70708
Dataset 5 6 136632 3 46649, 48622, 41361

Table 4.7: Datasets summary.
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4.1 Results of Application of FXGP to Non-Financial Streaming Data

Analysis

Each preprocessed dataset was divided in two parts. The data from the end of 2006 to

December 2007 was used to define the FXGP parameterization, whereas the data from

January 2008 to November 2010 was used for the data stream experiments. Thus,

the first DT–TI champion was deployed, starting from January 1, 2008, whereas

the last week of the 2007 was used to train and validate agents during the very

first Train–Validate–Label cycle (336 and 672 candlesticks for 30-minute and 15-

minute candlesticks respectively) in case of FXGP and to do initial training of MOA

classifiers. The performance is measured with streamAUC metric (AUC hereafter)

that was introduced in [43] (see also [101]) and over duration of data stream has the

form:

streamAUC =
1

T

∑︂
t=[1,...,T ]

DR(t) (4.1)

where DR(t) is a multi-class detection rate (DR) at time t and is calculated as:

DR(t) =
1

C

∑︂
c=[1,...,C]

DRc(t) (4.2)

where DRc(t) is a per-class detection rate at time t and is calculated as:

DRc(t) =
tpc(t)

tpc(t) + fnc(t)
(4.3)

where t is the exemplar index, and tpc(t), fnc(t) are the respective online counts for

true positive and false negative rates for class ‘c’ up to this point in the stream.

Note that streamAUC represents an arithmetic process for approximating the ‘area

under the curve’ and is different from the receiver operating characteristic (ROC) [72]

The parameterization with the default values that were used during the experi-

ments is shown in Table 4.8.

4.1.1 Impact of Candlestick Preprocessing

The FXGP algorithm assumes data in the form of price time series, i.e. data prepro-

cessed as candlesticks (datasets Data 2. . . Data 5, Table 4.7). Several models from
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Parameter Description Default

TIp Minimum TI population size 100
TIs Maximum TI program size, steps 6
Regs Number of TI program registers 2
DTp DT population size 100
DTgap Number of DTs replaced in each generation 25
DTmut Relative probability of DT or TI mutation 0.5
DTs Maximum DT size, nodes 6
Gmax Maximum number of generations 1000
Nt Training partition size 672. . . 13334
Nv Validation partition size 336. . . 6666
τ Training plateau length, generations 200
hitMax Maximum number of errors to retrain 10

Table 4.8: FXGP parameterization.

the open-source MOA framework [17] are used to characterize the effectiveness (or

otherwise) of the data pre-processing into candlesticks. Specifically, the ‘No Change’

classifier, Naive Bayes and Hoeffding Trees will be used.

The No Change classifier represents a 1-bit state-machine in which the ‘pre-

diction’ reflects that of the last prediction as long as the last prediction was correct.

A missed prediction results in the state changing to predict the new class. Such a

predictor does not make any use of the attribute information, only knowledge of the

labels. Previous research has demonstrated that such a naive model is capable of

surprisingly strong performance when there is a low amount of mixing (turnover) in

consecutive labels [16].

Both the Naive Bayes and Hoeffding Tree classifiers represent well known algo-

rithms for streaming data classification and appear in a number of monographs [54,

15]. In particular, the Naive Bayes model makes use of change detection to formu-

late when to concentrate updates to the model [55], whereas the Hoeffding Tree

makes use of statistical sequence analysis to characterize under what conditions the

decision tree is developed. Specifically, the number of observations necessary to pro-

vide an a priori level of predictive accuracy associated with an attribute is identified

mathematically through the Hoeffding bound [45]. As such, this gives the Hoeffding

Tree the ability to construct temporal features, a property that FXGP also addresses

through the use of the TI population.
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Figure 4.1: MOA framework. Full set of attributes (Dataset 1) vs 30 minutes candle-
sticks (Dataset 2).

The results obtained in the case of all available attributes (Dataset 1) and 30-

minute candlesticks are shown in Figure 4.1. Naturally, the No Change classifier is not

impacted by the preprocessing of the attribute data (it never employs any attribute

information). Conversely, the Naive Bayes classifier and Hoeffding Tree do not show

any particular preference for or against candlestick preprocessing. Expressing this

using the stream AUC metric from Equation 4.1 indicates that this does not affect the

effectiveness of all three classifiers (Table 4.9). Hereafter the candlestick preprocessing

for the remainder of the study (Dataset 2 through 5) will be assumed.

4.1.2 Dataset 2 and 3 — 30 Minute Candlesticks

Each experiment includes a single run for MOA (‘Hoeffding Tree’, ‘Naive Bayes’ and

‘No Change’) and 100 independent runs for FXGP. The results for binary classifi-

cation of 30-minute candlesticks are shown in Figure 4.2 and the results of ternary
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Classifier Dataset AUC

MOA Hoeffding Tree Dataset 2 0.623
MOA Hoeffding Tree Dataset 1 0.623
MOA Naive Bayes Dataset 2 0.572
MOA Naive Bayes Dataset 1 0.572
MOA No Change Dataset 2 0.426
MOA No Change Dataset 1 0.426

Table 4.9: AUC summary statistics. Raw data versus Candle preprocessing

Classifier binary (Dataset 2) ternary (Dataset 3)

FXGP best 0.684 0.554
FXGP median 0.673 0.540
FXGP worst 0.667 0.532
MOA Hoeffding Tree 0.623 0.493
MOA Naive Bayes 0.572 0.459
MOA No Change 0.426 0.354

Table 4.10: AUC summary statistics, Dataset 2 and 3: 30 minute candlesticks, binary
and ternary classification

classification (30-minute candlesticks) are shown in Figure 4.3. Table 4.10 details the

streaming AUC statistic for both binary and ternary classification tasks.

Given the formulation adopted for labelling the data, adding a third class will

only increase the potential for label mixing relative to the binary case, hence the

reduction in performance as measured by the stream AUC statistic reflects this bias.

Indeed, all classifiers return a reduction in detection rate when going from the binary

to ternary formulation. The relative ranking of the models (in terms of Detection

Rate) between each formulation of the dataset remains unchanged; in particular, No

change < Naive Bayes < Hoeffding Tree < FXGP.

4.1.3 Dataset 4 and 5 — 15 Minute Candlesticks

The results of assuming preprocessing using the 15-minute candlesticks are shown in

Figure 4.4 and Figure 4.5, for the binary and ternary classification tasks respectively.

Table 4.11 summarizes the resulting quantification as reflected by the stream AUC

metric.

The No Change class classifier again represents the worst case detection rate
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Figure 4.2: Dataset 2: 30 minute candlesticks, binary classification task.

Classifier binary (Dataset 4) ternary (Dataset 5)

FXGP best 0.685 0.566
FXGP median 0.675 0.559
FXGP worst 0.675 0.550
MOA Hoeffding Tree 0.625 0.503
MOA Naive Bayes 0.563 0.468
MOA No Change 0.443 0.358

Table 4.11: AUC summary statistics, Dataset 4 and 5: 15 minute candlesticks, binary
and ternary classification
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Figure 4.3: Dataset 3: 30 minute candlesticks, ternary classification task.
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Figure 4.4: Dataset 4: 15 minute candlesticks, binary classification task.

throughout. Likewise, the relative ranking of the other models is unchanged from

the case of candlesticks estimated over a 30 minute interval. However, what is now

interesting is that comparing FXGP performance using 15 minute candlesticks and

30 minute candlesticks returns an increase in performance when estimating the can-

dlestick over the shorter period. Indeed, testing for the significance of this using an

unpaired two-tailed student t-test (99% confidence interval) indicates that a statis-

tically significant improvement appears in the case of FXGP on Dataset 4 versus 2

and Dataset 5 versus 3.3 The p-values (⩾ 0.05) of the Shapiro-Wilk test of normality

(Table 4.12) confirm the normal distribution of results in case of all datasets (Datasets

2. . . 5).

Also of note is that the eventual DR at the end of the stream might be higher

in the case of the 30-minute scenarios under FXGP (compare Figures 4.2 to 4.4 and

likewise Figures 4.3 to 4.5). However, in the case of the 15-minute scenarios the point

3Corresponds to a p-value < 2.2× 10−16 in both cases.
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Figure 4.5: Dataset 5: 15 minute candlesticks, ternary classification task.

Dataset 2 Dataset 3 Dataset 4 Dataset 5

0.5504 0.4821 0.5638 0.7879

Table 4.12: Shapiro-Wilk test of normality, p-values of classification results of four
cases (Datasets 2. . . 5)

in the stream at which, say, a 55% DR is first reached is much earlier. Given that

there is little or no regression in DR, the corresponding stream AUC is significantly

higher.

4.1.4 Quantifying the Role of Retraining

Sections 4.1.1 to 4.1.3 implicitly assumed that the individual household electric power

consumption dataset would benefit from retraining or an explicitly online/ streaming

approach to model building. In order to provide some quantification for this perceived
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benefit the retraining step for FXGP is explicitly turned off . Thus, the first ‘Train—

Validate’ cycle is performed (relative to the same one week of data) and thereafter

the DT–TI champion identified during the Validate stage is deployed to make the

predictions thereafter. Figure 4.6 reflects the distribution of DR across the remainder

of the stream (30 minute candlestick, binary classification).
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Figure 4.6: Dataset 2: 30 minute candlesticks, binary classification task — 100 runs
of FXGP without retraining. Hoeffding Tree, Naive Bayes and No Change classifier
retain retraining.

Note that for comparative purposes, DR for the curves for Hoeffding Tree, Naive

Bayes and No Change classifier still reflect training throughout the stream, whereas

the FXGP curves reflect performance without retraining. Previously, FXGP was able

to return worst case performance that exceed the best baseline model. Now, without

retraining, best case performance fails to reach that of the Hoeffding Tree and worst

case performance is considerably worse than Naive Bayes (although still better than

the No Change baseline). Indeed, the worst case profile reflects a detection rate
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of ≈ 50% or no better than labelling the data all one class. The wide variation

in performance of FXGP reflects the difficulty in choosing a model when it is not

possible to guarantee that the training data is representative of the underlying task

(as is the case when non-stationary properties exist). Moreover, note that this is

the same set of GP models that when retraining is enabled perform better than all

baseline streaming classifiers.

4.2 Quantifying the CPU Cost of Retraining

FXGP does not train incrementally, but when retraining is triggered, then the con-

tent of TI and DT populations are both reset and evolution begins from a completely

new initialization of random individuals. Such an approach was assumed following a

benchmarking study comparing incremental evolution (some or all of the population

is retained between evolutionary cycles) to the ‘flush-and-restart’ methodology as-

sumed here [97]. Naturally, this also has implications for the (computational) cost of

rebuilding a champion solution, potentially setting a limit to the degree to which real-

time operation can be supported. Figure 4.7 quantifies this cost from the perspective

of the CPU time to coevolve an entirely new DT–TI pair .4

Given that the time between retraining events is several orders of magnitude lower

than the interval between new data samples (15 or 30 minutes) it is readily apparent

that FXGP is capable of real-time operation under this task domain. Naturally, the

number of re-trigger events is a function of the number of classes (difficulty of the

task) and cardinality of the data stream, but in all cases remains < 1% of stream

content. Thus, between ≈ 200 to ≈ 1000 retraining events are sufficient to maintain

synchronization with the non-stationary properties of the stream. However, without

retraining, it is generally not possible to identify good predictors (Figure 4.6).

42.8 GHz iMac, Intel Core i7 CPU.



93

0.5

1.0

1.5

2.0

2.5

 

●

R
et

ra
in

 ti
m

e,
 s

ec
.

Figure 4.7: CPU time in seconds necessary to coevolve a completely new DT–TI
champion. Distribution estimated over 100 runs.

4.3 Discussion

Based on the results the following conclusions can be made:

• FXGP with retraining typically out performs prequential (predictive sequential)

classifiers based on the widely used Hoeffding Tree and Naive Bayes formula-

tions. Specifically, the Hoeffding Tree framework decomposes the classification

task into two processes. A statistical characterization identifies when sufficient

data is available to revise the classifier and the classifier is represented as a

decision tree. Conversely, FXGP uses the TI population to construct temporal

features, and again defines classification in terms of a decision tree.

• GP can be applied to streaming data classification tasks and remain computa-

tionally feasible without recourse to specialist hardware/software support (e.g.

no use was made of multi-threading or multi-core execution).

• Preprocessing data using a candlestick representation did not improve on the

original form. However, this might also imply that the data is less noisy than

experienced in financial setting. Naturally, the candlestick representation as-

sumes that there is sufficient data present in the stream for construction of each

candlestick.



Chapter 5

SL and TP Orders Verification With Fibonacci Levels

(Specialized Functionality)

The main goal of work presented in this chapter is to improve the results of the

proposed FXGP algorithm by proposing and assessing an approach for introducing

limit orders (SL and TP) with the support and resistant levels often used by traders.

This represents a generalization of issue 6 identified in Section 3.2). The level that

lies in the direction of the price trend is known as the ‘resistance’ level, and the

level that lies in the direction opposite to the price trend is known as ‘support.’ The

identification of support and resistance levels characterize the direction of movement

of a price and therefore form the basis for predictive sell or buy strategies. The

support and resistance levels are used for the purpose of creating stop-loss and take-

profit orders. For example, in case of an upward trend, support levels define a price

level at which the price will likely bounce off in the case of the backwards movement

and will continue an upward trend. And vice versa, the resistant levels define a

price level at which the price will likely bounce back, and the upward trend will

turn into a downward one. However, should the price manage to break through

the support or resistance level, then it will likely to continue the movement in this

direction until new support or resistance level appears. The challenge of achieving

the greatest profits using these methods is to find support and resistance levels before

they explicitly occur i.e., proactively determine support and resistance. A range of

schemes have been proposed for this purpose, including comparisons of price against

pivot points (e.g., [132]), moving average envelopes (e.g., [88, 139]), or Bollinger bands

(e.g., [88, 23, 24, 33]).

This section investigates the case of introducing retracement levels to dynamically

characterize the size of stop-loss (SL) and take-profit (TP) orders. Stop-Loss orders

represent an a priori rule structured to stem further losses [104]. The converse,

take-profit orders, act in the predicted direction and result in closing a trading order

94
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at a profit. Previous instances of FXGP assumed that the SL (Sections 3.1.2 and

3.3) and TP (Section 3.3) orders were evolved based on the training partition of

data [98, 97]. These assumptions were continued in the extended versions of FXGP

that was present in Section 3.3. FXGP successfully evolves trading strategies that

both minimize the number of times that a SL order is triggered and minimize the

average size of SL orders. To accomplish these goals, the SL orders were combined

with the trading rules evolved by FXGP such that they are more proactive and less

sensitive to specific thresholds than was previously the case. To do so, the three major

schemes from which different families of SL and TP orders are derived: pivot points,

moving averages, and Fibonacci ratios are considered. The proposed extension of

FXGP is detailed below.

For the purpose of this research three commonly used technical indicators are

selected for designing SL and TP orders: Fibonacci ratios, Pivot point and Moving

average. Moving averages form the basis for the indicator known as ‘Bollinger Bands,’

as discussed below. The following section summarizes the basic scheme assumed for

each.

5.1 Moving Average

The Moving average (MA) over a period of n candlesticks from time index i is calcu-

lated as (3.1), where Cj is a Close price (Figure 5.1).

MAi =

∑︁n−1
j=0 Ci+j

n
(5.1)

SL and TP orders can then be defined relative to the MA, in particular MA±θ for

some value θ to define a moving average envelope around the MA. The special case

of θ set to some multiple k of the n-period standard deviation above and below the

n-period MA of that series of prices gives rise to Bollinger bands. In such a case, the

higher and lower band vary as a function of market volatility. In the context of genetic

programming a stop-loss order might take the form of MA-θl for a lower bound θl

whereas a take-profit order might take the form of MA+θp for a chosen upper bound of

θp, where θl and θp are evolved thresholds. Leung et al. noted that the more general

case of MA was preferable to Bollinger bands [88], whereas Butler and Kazakov
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recommended adapting the θ and n parameters on a continuous basis [23, 24].

Classically, the MA based form for a stop-loss order might take the form of MA-θl

whereas a take-profit order might take the form of MA+θp (buy order or long position)

or otherwise in case of sell order or short position:

• Buy order: IF price(t) > MA(t) THEN SL = MA − θl ELSE (DO NOT

TRADE)

• Sell order: IF price(t) < MA(t) THEN SL = MA + θp ELSE (DO NOT

TRADE)

where θl and θp are evolved thresholds.

Figure 5.1: Moving average example, where the red line indicates MA relative to the
candlestick price statistic. Image produced using the MetaTrader 4 Forex trading
platform https://www.metatrader4.com

5.2 Fibonacci Ratios

Fibonacci ratios used as a trading strategy that involves determining support and

resistance levels based on the Fibonacci sequence. In particular, the ratios are derived

by dividing a number in the Fibonacci sequence by some following number in the

sequence. These ratios are then used as the divisor for the distance between two

extreme points on the chart. Fibonacci ratios are frequently observed to be used

with various trading strategies for identifying trends’ turning points and SL and

https://www.metatrader4.com
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TP order prices. Fibonacci ratios should not be taken to be exact indicators of

support/resistance levels. They appear to approximately coincide with points of

retracement, but need to be tuned when reading the market given a trader’s risk and

investment goals [139]. In general, any system that attempts to construct rules of

investment based on support and resistance levels need to be capable of adapting

and revising the rules as the market conditions will undoubtedly change over time.

Many applications for currency trading therefore include Fibonacci-derived levels for

retracement, but leave the interpretation of where to make ‘stop-loss’/’take-profit’

decisions to the trader.

Fibonacci ratios (Fibo) may be used to define the position against which a SL or

TP order is expressed. Fibonacci ratios or levels for trading (Figure 5.2) most often

involve the use of the following typical cases [139]:

1. Key levels: 0 (0%), 0.236 (23.6%), 0.382 (38.2%), 0.618 (61.8%) and 1 (100%).

2. Other levels: 0.5 (50%) is derived by dividing the number 1 (third number in

the Fibonacci sequence) by 2 (forth number in the Fibonacci sequence), 0.764

(76.4%) is derived from the levels 1 and 0.236 as follows: 0.764 = 1− 0.236

3. Extension levels: 1.618 (161.8%), -0.618 (-61.8%)

The 0 and 100 levels are identified through recent historical low and high prices

(Figure 5.2). New low or high prices result in a recalculation of the intervening

Fibonacci levels in a high-to-low or low-to-high trend. Figure 5.2 shows Fibonacci

levels between 0 and 100 drawn through recent significant low and high prices. Note

how prices appear to drift down/up to these levels before ‘pushing’ through. One can

also note that a strong retracement occurs after the first instance of the Fibonacci

level of 100. A red line joins the lowest to the maximum price point that are used to

establish the Fibonacci levels.
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Figure 5.2: Illustration of Fibonacci retracement. Image produced using the Meta-
Trader 4 Forex trading platform https://www.metatrader4.com

5.3 Pivot Point

The Pivot point (P ) is the average of the High (H), Low (L) and the Close (C)

prices of the previous trading session. This information is used to provide candidate

support and resistance levels that then can be utilized while setting the SL and TP

orders (Figure 5.3). Typical definitions for pivot point and corresponding support

and resistance levels are defined as follows [132]:

• Pivot point: P = (H + L+ C)/3

• Resistance Level 1 (R1): R1 = 2× P − L

• Support Level 1 (S1): S1 = 2× P −H

• Resistance Level 2 (R2): R2 = P +H − L

• Support Level 2 (S2): S2 = P −H + L

• Resistance Level 3 (R3): R3 = P − S1 +R2

• Support Level 3 (S3): S3 = P −R2 + S1

https://www.metatrader4.com
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Figure 5.3: Example of support and resistance levels defined using Pivot Points.
Image produced using the MetaTrader 4 Forex trading platform https://www.

metatrader4.com

5.4 FXGP With Trading Orders Validation

Whenever a sell or buy action is generated, it is verified against one of four forms of

SL or TP order, as follows:

• TP orders. When a trading agent generates a buy or sell action, FXGP can set

a TP order along with the buy or sell and SL orders. The minimal size of the

TP order (smin) is defined by the user. Please see Table 5.1.

• Fibonacci based SL orders verification mode. In this case the SL order is verified

by the Fibo levels. The buy and sell rules are described in the Table 5.2.

• Pivot-based SL orders verification mode. In this case the SL order is verified

by the Pivot levels. The buy and sell rules are described in the Table 5.2.

https://www.metatrader4.com
https://www.metatrader4.com
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• MA-based SL orders verification mode. In this case the SL order is verified by

the MA. The MA’s period is defined by user and the buy and sell rules are

described in the Table 5.3.

Signal TP order rule

buy IF ([price(t).levelhigh − θ] > [price(t) + tpMin])
THEN (TP = price(t).levelhigh − θ) ELSE (!valid trade)

sell IF ([price(t).levellow + θ] < [price(t)− tpMin])
THEN (TP = price(t).levellow + θ) ELSE (!valid trade)

Table 5.1: Fibonacci and Pivot based TP orders verification modes. price(t) is the
current ‘open’ price; TP (t) is the evolved size of a TP order from the GP individual;
TP (t).levellow is the nearest Fibo (Pivot) level below TP (t); TP (t).levelhigh is the
nearest Fibo (Pivot) level above TP (t); θ is the TP order threshold.

Signal SL order rule

buy IF ([price(t)− SL] < [price(t).levellow − θ])
THEN (SL = price(t).levellow − θ) ELSE (!valid trade)

sell IF ([price(t) + SL] > [price(t).levelhigh + θ])
THEN (SL = price(t).levelhigh + θ) ELSE (!valid trade)

Table 5.2: Fibo and Pivot based SL orders verification modes. price(t) is the cur-
rent ‘open’ price; SL is the evolved size of a SL order from the GP individual;
price(t).levellow is the nearest Fibo (Pivot) level below price(t); price(t).levelhigh

is the nearest Fibo (Pivot) level above price(t); θ is the SL order threshold.

Signal SL order rule

buy IF ((price(t) > MA(t)) AND ([price(t)− SL] < [MA(t)− θ]))
THEN (SL = MA(t)− θ) ELSE (!valid trade)

sell IF ((price(t) < MA(t)) AND ([price(t) + SL] > [MA(t) + θ]))
THEN (SL = MA(t) + θ) ELSE (!valid trade)

Table 5.3: MA based SL orders verification mode. An additional test is inserted to
check that the price is on the relevant side of the moving average. MA(t) is the scalar
moving average at time step ‘t ’ as estimated by equation (5.1); SL is the evolved size
of a SL order from the GP individual; θ is the SL order threshold.
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5.5 Experimental Setup

The experimental setup is described below. In all cases FXGP employs the single

trading agent mode and uses the same data set, currency pair (EURUSD), and the

same parametrization. All parameters were optimized for the 2009 historical rates,

as in Section 3.1.6. Please see Table 5.4 for summary of the parameters. To establish

the bases for comparison, the trading activity for the same period Jan. 2010 — Nov.

2012 was simulated1.

Parameter Value

TIp (Minimum TI population size) 100
TIs (Maximum TI program size, steps) 8
Regs (Number of TI program registers) 2
DTp (DT population size) 100
DTgap (Number of DTs replaced in each generation) 25
DTmut (Relative probability of DT or TI mutation) 0.5
DTs (Maximum DT size, nodes) 6
Gmax (Maximum number of generations) 1000
Nt (Training partition size) 1000
Nv (Validation partition size) 500
SLmax (Maximum SL order size, pips) 100
SLmin (Minimum SL order size, pips) 5
TPmax (Maximum TP order size, pips) 300
TPmin (Minimum TP order size, pips) 30
τ (Training plateau length, generations) 200
αv (DT-TI validation fraction) 0.95
Lrow (Maximum number of consequent losses) 3
Dd (Maximum drawdown, pips) 400
Hrow (Maximum number of consequent candlesticks 72

without trading activity)

Table 5.4: Main FXGP parameters.

A total of five configurations are considered. The first configuration is the FXGP

without trading orders verification (SL orders are evolved from training data). The

second and third configurations use Fibonacci retracement in which two forms for the

min–max definition are considered. The motivation behind these two configurations

are that the close for a given candle statistic is more robust than the high/low price

1All runs were performed on a 2.8 GHz iMac computer with Intel Core i7 CPU, 16GB RAM and
Mac OS X 10.7.2.
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swing. The remaining configurations assume MA and Pivot TIs respectively. The

configurations involve particular thresholds and associated rules:

1. FXGP mode: Unmodified version of FXGP, hence SL orders are limited to a

simplistic threshold comparison.

2. FXGPFhl mode: The SL orders are verified by the Fibo levels (Table 5.2).

The 0 and 100 Fibo levels are set to the recent significant Swing Low and Swing

High prices (Figure 5.2). The TP order is placed 15 pips below the 161.8%

level (“buy” signal) or 15 pips above the -61.8% level (“sell” signal). If the

difference between the trading order (“buy” or “sell”) price and the TP order

is less than tpMin, then the trading signal is ignored and trading order is not

opened.

3. FXGPF mode: The SL orders are verified by the Fibo levels (Table 5.2).

The 0 and 100 Fibo levels are set to the recent significant Swing Close prices

(Figure 5.4). The TP order is placed 15 pips below the 161.8% level (“buy”

signal) or 15 pips above the -61.8% level (“sell” signal). If the difference between

the trading order (“buy” or “sell”) price and the TP order is less than the

threshold tpMin, then the trading signal is ignored and trading order is not

opened.

4. Pivot mode: The SL orders are verified by the Pivot levels (Table 5.2). The

TP order is placed 15 pips below the R3 resistance level (“buy” signal) or 15

pips above the S3 support level (“sell” signal). If the difference between the

trading order (“buy” or “sell”) price and the TP order is less than tpMin,

trading signal is ignored and trading order is not opened.

5. MA mode: The SL orders are verified by the MA (Table 5.3). The MA periods

are set to 48 candlesticks (MA48), 72 candlesticks (MA72) or 96 candlesticks

(MA96). TP orders performed significantly worse, so for clarity they are not

reported here.
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Figure 5.4: Fibonacci retracement. The 0 and 100 levels are drawn through recent
significant Swing Close prices. Image produced using the MetaTrader 4 Forex trading
platform https://www.metatrader4.com

5.6 Results

The results of all experiments are summarized in Table 5.5. Each experiment in-

cludes 100 simulations. Results are ranked in terms of the median number of pips2

accumulated at the conclusion of the trading period. A Student’s t-test (Table 5.6)

confirms the independence of the distributions relative to the top ranked configura-

tion. The p-values of Shapiro-Wilk test of normality for algorithm modes (Table 5.5)

are shown in the Table 5.7. It is clear that validation of buy/sell orders using specific

configurations of MA and Fibonacci derived levels was more effective than any other

scenario. Moreover, MA is more sensitive to the specific parameterization assumed

for the length of the moving average calculation. Conversely, the only design decision

playing a role in the definition for the Fibonacci levels is the statistic, i.e., either close

or high/low used to configure the 0 and 100 percent levels (compare Figure 5.2 with

Figure 5.4). Employing the ‘swing close’ prices from the summary statistic of the

2Under the EURUSD market, a move of 0.0001 is equivalent to one pip.

https://www.metatrader4.com
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candle is typically more robust than swing high or swing low prices. It is also clear

that basing the TI on levels identified by pivot points is universally ineffective, albeit

with respect to this currency pair and period.

The average number of trades per run and SL orders’ statistics are summarized in

the Table 5.8 for each mode in Section 5.5. Both of the top two TI configurations —

FXGPF and MA72 — perform more valid trades than any other configuration other

than Pivot based TI. However, the number of triggered stop-losses (as a fraction of the

number of trades) under FGPF is significantly lower than any other configuration.

This implies that the rules generated from this parameterization relied less on the

‘corrective’ effect of SL orders. Moreover, the Fibonacci levels based on the close

prices were able to filter more of the noise effects than Fibonacci levels initialized

under high–low prices. All adaptive schemes for validating SL orders resulted in a

smaller SL order than the original SL thresholding scheme (FXGP) and therefore lost

less through SL orders.

The champion configuration FXGPF was deployed as an ensemble of 3 trading

agents (FXGPFT 3) and the results of 100 simulations were compared with the ver-

sion without verification (FXGPT 3). The results are summarized in the Table 5.9.

Comparison with Table 5.5 demonstrates that the ensemble version pushes the tail of

the distribution up in each case. This makes the resulting trading agents less sensitive

to initial conditions (more dependable) as, for example, 98 percent of the FXGPFT

3 runs now avoid recording a loss over the trading period. Figure 5.5 illustrates this

phenomena in terms of a combined violin/box plot summarizing the distribution of

cumulative pips for all 100 runs for each of the pairs of trading agent. Figure 5.6

provides an illustration of the cost of training/retraining under single and ensemble

frameworks. Given that trading information characterizes 1 hour intervals, one can

note that both forms of the algorithm operate in ‘real-time’.3 And finally, Figure

5.7 shows the distribution of the first time occurrences of the drawdown over trading

simulation periods.

A final experiment is performed with the winning FXGPF configuration. Previous

practice in the academic literature has been to describe performance of an investment

strategy as the cumulative profit/loss collected over a total investment period. This

3The General Central Dispatch utility available as part of the Apple OS is used to schedule the
execution of multiple threads during the ensemble experiments.
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Algorithm’s Profitable Score (pips)
mode runs (%) min 1st quartile median 3rd quartile max

FXGPF† 96 -993 1145 1847 2633 4474
MA72 90 -1193 766 1420 2121 3492

FXGPFhl 80 -2217 131 1190 1843 4146
FXGP† 74 -3154 -95 989 1918 4055
MA96 94 -1791 329 828 1647 3529
MA48 71 -2541 -208 534 1334 2827
Pivot 49 -3281 -715 -66 396 2263

Table 5.5: Single trading agent comparison. Results are sorted with respect to the me-
dian scores. † indicates the runs that are illustrated by the distribution of Figures 5.5
and 5.6.

FXGPF vs FXGPF vs FXGPF vs FXGPF vs FXGPF vs FXGPF vs
MA72 FXGPFhl FXGP MA96 MA48 Pivot

5.56× 10−3 2.54× 10−7 9.00× 10−6 5.78× 10−9 8.29× 10−16 9.00× 10−25

Table 5.6: p-values for pairwise Student t-test.

FXGPF MA72 FXGPFhl FXGP MA96 MA48 Pivot

0.9293 0.4411 0.2712 0.5832 0.0635 0.3890 0.0182

Table 5.7: Shapiro-Wilk test of normality, p-values for algorithm modes (Table 5.5)

Description FXGPF MA72 FXGPFhl FXGP MA96 MA48 Pivot

Average #
of trades, 558 440 422 428 412 438 4845
per run

Average #
of triggered 204 208 199 194 195 242 252
SL, per run
Average % of
of triggered 37 47 47 45 47 55 52
SL, per run
Average SL
order size, 44 39 44 73 40 36 38

pips

Table 5.8: SL algorithms comparison. Average number of trades and SL statistics.
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Figure 5.5: Distribution of cumulative scores in pips over trading simulation period
of time for single (FXGP and FXGPF) and ensemble of 3 champion trading agents.

SL Profitable Score (pips)
Algorithm runs (%) min 1st quartile median 3rd quartile max

FXGPFT 3† 98 -512 1383 2067 2648 3961
FXGPT 3† 81 -1877 289 1489 2463 4362

Table 5.9: Ensemble trading agent comparison for k = 3. Results are sorted with re-
spect to the median scores. † indicates the runs that are illustrated by the distribution
of Figures 5.5 and 5.6.

means that early successes can potentially mask latter losses. See for example, the

first four rows of Table 5.10. With this in mind a trader actually using FXGP in

practice might periodically revisit the parameterization using historical data. Thus,

the final row of Table 5.10 illustrates the effectiveness of re-parameterizing FXGP

using the data from 2012 and deploying this during 2013.
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Figure 5.6: Distribution of average training times (over a run) per population (FXGP
and FXGPF) and per team of three populations (FXGPT 3 and FXGPTF 3).

Year Profitable Score (pips)
runs (%) min 1st quartile median 3rd quartile max

2010 100 223 1166 1672 2168 3570
2011 84 -979 178 675 1201 3127
2012 0 -1842 -1204 -947 -680 -59
2013 25 -1048 -430 -180 -4 481
2013† 81 -628 84 464 755 1758

Table 5.10: FXGPF annual results. 2013 vanilla and 2013 optimized† lines include the
first 10 months of the year 2013. 2013 optimized† line shows result after optimization
of the algorithm parameters based on the 2012 year historical rates.
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Figure 5.7: Distribution of the first time occurrences of the drawdown over trading
simulation periods of time starting from January 2010 (2010), January 2011 (2011)
and January 2012 (2012). 500 candlesticks period is approximately equivalent to a
month.
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5.7 Discussion

This section examined the usage of three different techniques for identifying retrace-

ment opportunities in the FXGP framework, namely moving average, pivot points,

and Fibonacci ratios. The strategies based on the Fibonacci series clearly had the

best performance of the three techniques. Moreover, Fibonacci retracement with 0%

and 100% levels drawn through the Swing Close prices (FXGPF) is more efficient

than Fibonacci retracement with 0% and 100% levels drawn through the Swing Low

and Swing High prices for FXGP. The use of Fibonacci retracement to define the SL

order position increased the median score by 86.7%, increased the percent of prof-

itable trades by 29.7% (Table 5.5), and reduced the average size of a SL order by 51%

(Table 5.8) compared to the FXGP without orders verification. The use of Fibonacci

retracement to define the SL order position reduced the retraining time of the team

of three trading agents (Figure 5.6) by 12%. This reduction likely occurs because the

use of Fibonacci levels to define the SL order position increases chances of a DT–TI

population passing the validation process. Of the different modes of FXGP, FXGPF

had the biggest average number of trades per simulated period of time and the lowest

percent of triggered SL orders (Table 5.8). Teams of trading agents were confirmed

to be more likely to return profitable trading strategies than single trading agents

(Table 5.9). Note, however, that these results are likely to be sensitive to the trading

conditions, trading assets and time period(s). Specifically, it is anticipated that the

floating Bid-Ask spread will significantly affect the performance of automated trading

agents, as was shown in Section 3.3 under the case of Foreign Exchange markets.



Chapter 6

Asset Selection Algorithm for Frequent Intraday Trading

Portfolio optimization represents an attempt to distribute investment (funds) across

a set (or subset) of available assets to achieve a tradeoff between risk and return.

While there are many fundamental works and novel research on how to select a long

term portfolio of trading assets and distribute funds within it (Section 2.5), it is

apparent that there is a lack of research that answers the same question in case

of frequent intraday trading. Attempts to apply traditional methods of long term

portfolio selection to intraday trading on short time intervals1 (hereafter frequent

trading) may not be optimal since the variation of the price is different and transaction

costs are potentially a much higher proportion of the cost of trading (Section 2.5).

This chapter attempts to answer the question of how an investor should select the

subset of trading assets for intraday trading and how to distribute funds across the

selected trading assets. To do so, the NASDAQ 100 historical rates are used. The

NASDAQ 100 Index is a set of most actively traded companies listed on the NASDAQ

stock exchange [69]. Moreover, data from the NASDAQ exchange has previously been

observed to have higher levels of volatility than from the NYSE [73].

In light of the above goals, the FXGP algorithm (Section 3.3) will be deployed to

estimate the return for each stock independently in a ‘bag’ of 86 stocks (identified

in Section 6.1). The returns are ranked, and the top one or more stocks traded dur-

ing the following day (while simultaneously simulating the returns for all available

stocks). Two simple ranking criterion/ heuristics are investigated for defining the

intraday portfolio: Moving average of daily returns and Moving Sharpe ratio. Their

performance was compared to the full portfolio (86 stocks), random stock selection

and Kelly criterion [86, 26] to find optimal intraday portfolio size (for the proposed

configuration). Unlike the earlier sections, FXGP is now deployed with respect to

price data for stocks (not foreign exchange currency data). Moreover, FXGP trading

1Up to a minute, but no less than a second.
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decisions are now used to potentially develop a policy for multiple stocks simultane-

ously.

6.1 Properties of the Stock Selection Dataset

The NASDAQ 100 historical rates (‘Mid’ prices) for the period from August 1, 2014, to

August 31, 2017, are used in this Chapter. All stocks with missing or out of range date

and time stamps and stocks with missing, ‘0’ or negative prices were excluded. The

remaining stock data is then preprocessed into a candlestick representation assuming a

1-minute duration with each candle expressing: open-high-low-close price information

for the 1-minute interval with a total of 390 candlesticks or 6.5 hours per trading day,

i.e. ≈ 280800 candlesticks per stock over the 3 year interval.

The resulting portfolio includes the following 86 NASDAQ 100 stocks: AAL,

AAPL, ADBE, ADI, ADP, ADSK, AKAM, ALXN, AMAT, AMGN, AMZN, ATVI,

BIDU, BIIB, BMRN, CA, CELG, CERN, CHKP, CMCSA, CSCO, CSX, CTAS,

CTRP, CTSH, CTXS, DISCK, DISH, DLTR, EA, EBAY, ESRX, FAST, FB, FOX,

FOXA, GILD, HAS, HOLX, HSIC, IDXX, ILMN, INCY, INTC, INTU, ISRG, JBHT,

KLAC, LBTYK, LRCX, MAR, MAT, MCHP, MDLZ, MSFT, MU, MXIM, NCLH,

NFLX, NTES, NVDA, ORLY, PAYX, PCAR, PCLN, QCOM, ROST, SBUX, SHPG,

SIRI, STX, SWKS, SYMC, TSCO, TSLA, TXN, ULTA, VIAB, VOD, VRSK, VRTX,

WBA, WDC, WYNN, XLNX, XRAY. This work assumes that all 86 stocks stay in

NASDAQ 100 and do not split during the simulated period of time.

The annual Skewness and Kurtosis metrics of all 86 stocks are listed in the Ta-

ble A.1, and the distributions are shown in Figures 6.1 and 6.2, respectively. In short,

the trends as captured by the Skewness and Kurtosis metrics differ significantly on a

year-to-year basis. During 2015 there are 17 stocks with a Kurtosis greater than 3,2

whereas in 2016 there are 23 such stocks of which only 6 are common with the stocks

observing this characteristic in 2015. In 2017 there are 18 such stocks, of which 5 are

common with those in the previous year. Moreover, as captured by the violin plots of

Figures 6.1 and 6.2, there is a significant difference in the magnitudes of the metrics,

particularly between 2015 and 2016/17. Finally, it is worth noting that there is also

a lack of continuity in the Skewness statistic. For example, there is little correlation

2Indicates a frequency of outliers above that experienced by a normal distribution.
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in the sign of Skewness between consecutive years of the same stock.
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Figure 6.1: Distribution of annual Skewness of NASDAQ 100 stocks.
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Figure 6.2: Distribution of annual Kurtosis of NASDAQ 100 stocks.

6.2 Framework

Figure 6.3 provides an overview to the stock selection framework. A cold start period

provides data from which GP-trading agents are evolved for each of the N stocks in the

portfolio. Stock data is described in terms of 1-minute candlesticks. Each GP agent

learns to maximize their respective stock’s return independently by simultaneously

designing the technical indicators and determining the buy-hold-sell signals. At the

end of the trading day, the return from each agent is used to rank each stock from

the portfolio, and the stocks with the highest S ranks are selected for trading at the

next trading day (Section 6.3). During trading day t + 1, the S agents selected to

make investments, trade with a money management policy, whereas the remaining

GP agents continue to trade under simulated conditions.
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GP agent(1)
Stock 1
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Returns
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Stock k
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(6.5 hr trading 

period)

Trading day ‘t+1’
(6.5 hr trading 

period)

Intra day period
(17.5 hr between trading 

periods)

Figure 6.3: Overall framework for intraday stock selection and trading. During trad-
ing day, t, all agents estimate their return. These returns are then ranked using the
Portfolio Selection Metric. The best stocks are then traded in the following trading
period, t + 1. Solid boxes indicate agents selected to perform intraday trading (part
of the ‘portfolio’) in any particular period, with the remaining agents simulating their
return.

6.3 Stock Selection Algorithms

Three intraday portfolio selection algorithms are examined: Moving Average of Daily

Profits (MAR), Moving Sharpe Ratio (MS) and, in addition, the Kelly Criterion

(Kelly) which is used as a comparator mechanism for stock selection where the metric

defines a probabilistic formalism for stock selection [86]. Thus, the evaluated stocks

are sorted in descending order according to the corresponding metric: MAR, MS or

Kelly (hereafter the ‘weight’) and the best S stocks3 are used for intraday trading.

A trading account balance is distributed among the stocks in proportion to their

weights. For example, a ranking by the Moving Sharpe Ratio for the top S = 3 stocks

3S is a number of stocks that can be traded in the daily portfolio (Figure 6.3).
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returns metric values of 0.9, 0.6, 0.1 respectively. The 1st stock will see 0.9÷ (0.9 +

0.6 + 0.1) or 0.5625 of the account invested in this stock (a trading share), the 2nd

stock will see a weight of 0.6÷ (0.9 + 0.6 + 0.1) or 0.375 of the account invested and

the 3rd stock will receive 0.1 ÷ (0.9 + 0.6 + 0.1) or 0.0625 of the account balance

invested.

6.3.1 Moving Average of Daily Returns

This research will adopt the following moving average of a stock’s daily returns (profits

or losses) for any day i, calculated as follows:

MARi =

∑︁d
j=1 Pj

d
(6.1)

where d is the MAR period (number of previous daily returns) and Pj is a daily

return of a day j. Such a metric implicitly accounts for profit and loss as the MAR

is estimated over a sequential set of daily returns

6.3.2 Moving Sharpe Ratio

The Sharpe Ratio attempts to quantify the likelihood of seeing a return in an in-

vestment relative to its risk. Thus, given the Sharpe Ratio for two assets, the asset

with the higher Sharpe Ratio is more likely to result in an excess return. A Moving

Sharpe ratio is a Sharpe Ratio that is calculated based on previous daily returns as

follows [93]:

MSi =
(Rmean −Rfree)

Rdeviation

(6.2)

where MSi is the Sharpe ratio on a day i, Rmean is the mean portfolio return over the

d previous days, Rdeviation is the standard deviation of d previous daily returns and

Rfree is the best available risk-free rate of return. For the stock selection purpose,

the relative value of the Sharpe Ratio of each stock is important. Hence, this work

assumes that Rfree is equal to 0.
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6.3.3 The Kelly Criterion

The Kelly Criterion represents a strategy for optimal ‘bet sizing’ for higher returns

over repeated trials, i.e. maximizing the expected logarithm of wealth. As such the

Kelly Criterion has seen use for classical investment decision making [86], but also

shares similar drawbacks to MVO, such as the need to have reliable estimates of the

forecasted probability distributions. The Kelly Criterion is calculated as follows:

Ki = W − 1−W

R
(6.3)

where W is a winning probability and R as a win/loss ratio. The W and R are

calculated based on the returns of all trades for the last d days [86].

6.4 Trading Conditions and Experimental Methodology

The following trading conditions/approach to money management were assumed:

Initial account balance $10,000,000, with a flat rate $5 per trade and fixed spread

$0.01. Only 10% of the account balance at the beginning of each day is used to

trade stocks. To provide ‘Bid’ and ‘Ask’ prices with the fixed spread $0.005 was

subtracted/added from/to downloaded ‘Mid’ prices.

A total of 50 sets of simulation runs are performed where each set includes trad-

ing signals for all 86 stocks and covers 2015–2017 years. The MAR, MS, and Kelly

(Section 6.3) were calculated for 3, 5, 10, 20 and 40 days, where different estima-

tion periods might impact on the quality of the investment strategy (e.g. under low

frequency strategies, longer estimation periods are recommended for larger portfo-

lios [38]). Four different intraday portfolio sizes were investigated: S = {1, 3, 5, 10}
stocks for MAR, MS, Kelly and the random stock selection or 86 stocks for the full

portfolio.

In the following, a baseline for the case of no GP trading agents (buy-and-hold

strategy, full portfolio, and random stock selection) was developed. The framework of

Section 6.2, Figure 6.3 is then adopted with each of the three ranking metrics: Kelly

Criterion, Moving Average of Daily Returns, and Moving Sharpe Ratio.

In all cases results are expressed in terms of the average annual performance from

50 simulation runs using the following performance metrics:
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• Profit (%) — the difference between opening account balance (10, 000, 000 USD,

Section 6.4) and balance at the end of the period including any transaction costs.

• Sharpe ratio (monthly returns) — defined using Equation (6.2) with Rmean and

Rdeviation estimated monthly over the entire year (12 months).

• Hit rate (%) — attempts to express the accuracy of buy/sell signals relative to

the outcome of the following candlestick. Thus, if the GP trading agent issued

a buy (sell) signal and the price increased (decreased) at the next candlestick,

this would be considered a ‘hit’.

• Average profit per trade (USD) — calculated as a sum of all trades within a

year with a positive value divided by the number of such trades.

• Average loss per trade (USD) — calculated as a sum of all trades within a year

with a negative value divided by the number of such trades.

• Number of trades — is the raw count of the number of trades placed by the GP

trading agents in total.

6.5 Results

6.5.1 Buy-and-Hold Strategy

The Buy-and-Hold investment strategy for all 86 stocks in the portfolio4 results in the

investment outcomes of Table 6.1. Exceeding the performance of a Buy-and-Hold pol-

icy is not a forgone conclusion, with previous research employing a GP trading agent

failing to better the Buy-and-Hold strategy, e.g. [29, 3, 134]. Other recent research

using deep learning approaches also rely solely on Buy-and-Hold baselines [12]. One

reason for use of the Buy-and-Hold baseline is that the strategy explicitly minimizes

the transaction cost. Moreover, as noted in a recent survey article of GP in finance

and economics [20], positive economic development will tend to benefit a Buy-and-

Hold strategy, where this is apparent in the increasing Profits recorded in Table 6.1

for 2016 and 2017. In addition, it can be noted that as the interval describing price

movements becomes smaller, it becomes increasingly difficult to identify underlying

4All stocks from the portfolio are held, as there is no basis for selecting a subset of specific stock.
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trends as the price signal becomes more unpredictable. All three of these factors

(transaction fee, Nasdaq was flat in 2015, but gained considerable value in 2016 and

2017,5 TI defined over 1-minute interval) play to the advantages of a Buy-and-Hold

strategy.

Investment period Profit (%)
2015 0.83
2016 1.22
2017 1.74

2015 to 2017 4.41

Table 6.1: Buy-and-hold strategy investment outcomes.

6.5.2 Full Portfolio and Random Stock Selection

This section summarizes the results for the control cases in which there were no GP

trading agents involved (Tables 6.2 — 6.4, one table per year). Specifically, the case

of investing in a full 1
N

portfolio of all 86 stocks is considered6 and the case of the

intraday portfolios in which 1, 3, 5 or 10 stocks are randomly selected from the full

set of stocks. Figures 6.4 — 6.9 show the distribution of annual profits and Sharpe

ratios over 50 runs for each of the three calendar years (2017 covers the first 8 months

for which data is available). It is readily apparent that, even under the context

of random stock selection, increasing the number of stock traded in the portfolio

decreases the variance. However, it is also apparent that although variance decreases

with increasing portfolio size, the average return decreases. This implies that some

subset of stock, for some subset of the 50 runs, can be profitable (indeed the top

quartile for the S = 1 portfolios in all three years can be profitable/have a positive

Sharpe Ratio). However, as the number of trades are also growing with a number of

stocks in a daily portfolio, then the commission paid is growing as well. The next

step is to introduce an agent to perform the stock selection and trading.

5https://www.macrotrends.net/2489/nasdaq-composite-index-10-year-daily-chart
6Implies that each stock is invested in equally each day, subject to the 10% account balance and

flat rate rules from Section 3.1.5.

https://www.macrotrends.net/2489/nasdaq-composite-index-10-year-daily-chart
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Metric Intraday portfolio, stocks
1 3 5 10 86

Profit (%) -0.32 -0.73 -1.01 -2.11 -17.92

Sharpe ratio (monthly returns) -0.03 -0.16 -0.28 -0.77 -3.61

Hit rate (%) 31.89 32.34 32.27 32.12 30.43

Average profit per trade (USD) 4982.53 1639.75 966.41 477.69 44.25

Average loss per trade (USD) -2372.32 -802.26 -474.88 -241.07 -33.76

Number of trades 2103 6168 10538 20878 178926

Table 6.2: Full portfolio and random stock selection, 2015

Metric Intraday portfolio, stocks
1 3 5 10 86

Profit (%) 0.33 -0.36 -0.8 -1.72 -17.17

Sharpe ratio (monthly returns) 0.06 -0.1 -0.25 -0.65 -3.23

Hit rate (%) 32.3 31.7 31.38 31.47 28.75

Average profit per trade (USD) 5037.48 1640.9 972.78 481.12 46.56

Average loss per trade (USD) -2401.59 -772.16 -456.95 -233.52 -32.67

Number of trades 1979 6044 10107 20154 90196

Table 6.3: Full portfolio and random stock selection, 2016

Metric Intraday portfolio, stocks
1 3 5 10 86

Profit (%) -0.33 -0.16 -0.49 -1.13 -10.5

Sharpe ratio (monthly returns) -0.07 -0.06 -0.29 -0.93 -4.22

Hit rate (%) 30.94 30.89 30.53 30.56 25.6

Average profit per trade (USD) 4119.55 1364.82 816.73 399.53 42.04

Average loss per trade (USD) -1908.05 -619.26 -371.51 -189.22 -27.77

Number of trades 1235 3670 6163 12288 105966

Table 6.4: Full portfolio and random stock selection, 2017

6.5.3 The Kelly Criterion

This section summarizes results of stock selection based on: 1) GP trading agent

estimation of the daily returns for each of the 86 stock and, 2) ranking of agent

returns for stock selection using the Kelly Criterion (Section 6.3.3). As can be seen
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from Table 6.5 and Fig. 6.14, only two cases were profitable. In both cases, a small

profit is returned (0.1% and 0.15%) over the eight months of 2017 and only in the

case of trading one stock per day. Indeed, the visualization of portfolio size (S )

and estimation periods for the ranking metric are generally not profitable (Fig. 6.10

through Fig. 6.15), with the dependent (z -axis) variable dominated by negative values.

In general, with an intraday portfolio size of 1 to 10 stocks, this method gives almost

the same results as random stock selection from Section 6.5.2, and fails to approach

the return of the Buy-and-hold strategy (Table 6.1).
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Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 -0.97 -1.74 -1.87 -2.13
5 -1.56 -1.62 -1.60 -1.90

2015 10 -1.22 -1.25 -1.33 -1.75
20 -0.75 -1.31 -1.41 -1.87
40 -1.70 -1.54 -1.76 -1.99

3 -1.20 -1.02 -1.05 -1.19
5 -0.79 -0.97 -0.90 -1.15

2016 10 -1.06 -0.85 -0.77 -1.03
20 -0.87 -0.63 -0.74 -1.15
40 -1.53 -1.03 -0.79 -1.26

3 -0.20 -0.12 -0.24 -0.57
5 -0.17 -0.20 -0.31 -0.56

2017 10 -0.16 -0.22 -0.47 -0.67
20 0.10 -0.31 -0.41 -0.72
40 0.15 -0.25 -0.34 -0.68

Table 6.5: Kelly Criterion stock selection: Profit, %

6.5.4 MAR of Daily Profits

Stock selection will now be formed using GP trading agent estimation of the daily

returns for each of the 86 stocks followed by ranking of agent returns for stock selection

using the MAR of daily profits. Profitability is now demonstrated in all cases when
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Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 -0.13 -0.41 -0.52 -0.69
5 -0.22 -0.39 -0.47 -0.70

2015 10 -0.19 -0.30 -0.38 -0.65
20 -0.13 -0.33 -0.45 -0.74
40 -0.27 -0.43 -0.59 -0.84

3 -0.16 -0.23 -0.29 -0.42
5 -0.10 -0.21 -0.23 -0.37

2016 10 -0.15 -0.18 -0.19 -0.32
20 -0.12 -0.14 -0.22 -0.37
40 -0.22 -0.24 -0.21 -0.41

3 -0.03 -0.07 -0.15 -0.49
5 -0.06 -0.08 -0.20 -0.48

2017 10 -0.03 -0.09 -0.27 -0.55
20 0.03 -0.15 -0.26 -0.61
40 0.03 -0.14 -0.23 -0.57

Table 6.6: Kelly Criterion stock selection: Sharpe ratio
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Figure 6.11: Kelly Criterion stock se-
lection (2015): Sharpe ratio

the daily portfolio included five or less stocks (Table 6.11 and Fig. 6.16, 6.18, 6.20).

In general, a smaller number of stocks per day and a longer estimation period (of
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lection (2017): Profit, %
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Figure 6.15: Kelly Criterion stock se-
lection (2017): Sharpe ratio

the ranking statistic) lead to higher profit and better Sharpe ratio (Table 6.12 and

Fig. 6.17, 6.19, 6.21). This tendency remains the same over all three years (2015 –

2017). At the same time, reducing the number of stocks per day improves the ‘Hit

ratio’ (Table 6.13) and increasing of the MAR period from three to 40 days improves

by more than 50% the ‘Average profit’ to ‘Average loss’ ratio (Tables 6.15 and 6.16).
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Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 44.04 43.21 43.03 42.42
5 44.05 43.31 43.26 42.65

2015 10 44.30 43.85 43.34 41.78
20 44.61 43.60 42.92 40.11
40 43.61 42.56 40.96 35.98

3 45.00 44.63 44.40 43.52
5 45.50 44.72 44.56 43.03

2016 10 45.63 44.99 44.80 41.26
20 44.89 44.50 42.12 32.96
40 44.41 41.11 35.75 28.43

3 45.91 45.56 45.19 44.03
5 45.48 45.07 44.80 43.98

2017 10 44.78 44.83 44.34 43.55
20 45.93 44.67 44.48 42.13
40 46.47 45.22 44.45 36.20

Table 6.7: Kelly Criterion stock selection: Hit rate, %

Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 432 1329 2315 5226
5 411 1319 2332 5482

2015 10 412 1332 2394 6079
20 411 1366 2547 8267
40 411 1554 3414 12781

3 421 1330 2324 5217
5 406 1313 2300 5367

2016 10 405 1318 2327 6115
20 416 1383 2700 11454
40 427 1725 4889 24305

3 291 874 1520 3350
5 272 858 1495 3363

2017 10 270 865 1524 3443
20 264 853 1506 3775
40 255 833 1510 5901

Table 6.8: Kelly Criterion stock selection: Number of trades
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Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 8552.43 2758.13 1614.29 759.08
5 8224.27 2724.21 1589.14 731.15

2015 10 8428.21 2747.19 1597.24 700.70
20 8240.55 2663.91 1513.14 563.72
40 8000.13 2473.70 1270.00 453.98

3 7857.96 2643.22 1579.66 759.33
5 8153.98 2679.84 1582.39 750.21

2016 10 8249.74 2688.74 1587.10 710.26
20 8347.12 2690.88 1518.41 516.56
40 8214.99 2479.46 1176.13 328.99

3 6342.42 2158.50 1276.12 616.13
5 6654.42 2201.49 1301.88 620.14

2017 10 6956.19 2239.10 1312.81 619.07
20 6758.22 2189.52 1279.14 575.21
40 6703.45 2188.26 1274.75 461.98

Table 6.9: Kelly Criterion stock selection: Average profit per trade, USD

Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 -7128.20 -2328.02 -1361.44 -630.00
5 -7147.78 -2299.01 -1332.75 -604.12

2015 10 -7235.54 -2314.08 -1321.73 -553.93
20 -6973.77 -2230.61 -1239.60 -419.85
40 -6921.48 -2021.24 -982.19 -284.47

3 -6947.90 -2268.61 -1342.55 -625.66
5 -7158.92 -2300.43 -1342.81 -604.76

2016 10 -7396.57 -2316.58 -1348.31 -531.18
20 -7173.03 -2245.47 -1166.77 -273.74
40 -7253.24 -1896.03 -721.50 -138.53

3 -5505.78 -1831.85 -1080.93 -515.28
5 -5649.78 -1847.54 -1093.04 -516.67

2017 10 -5730.33 -1862.79 -1100.00 -512.44
20 -5659.02 -1833.23 -1073.86 -453.62
40 -5694.05 -1860.65 -1060.48 -288.02

Table 6.10: Kelly Criterion stock selection: Average loss per trade, USD
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Moreover, the profile of the portfolio size (S ) and estimation period for the ranking

metric now demonstrate a smooth increase/decrease as parameters are varied, hence,

providing more certainty to parameter tuning, e.g. compare Profitability of Kelly

Criterion in each year (Fig 6.10, 6.12, 6.14) with that under MAR (Fig 6.16, 6.18,

6.20).

Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 5.94 4.31 2.60 -0.74
5 7.98 5.48 3.42 -0.53

2015 10 14.33 9.19 5.60 0.45
20 20.84 12.59 7.52 1.32
40 22.28 15.29 9.30 2.71

3 15.46 9.98 6.43 1.47
5 23.94 14.64 9.55 3.11

2016 10 36.88 20.28 13.14 5.39
20 45.89 25.04 16.26 7.63
40 47.41 27.86 19.11 10.37

3 4.26 2.43 1.38 -0.62
5 5.21 3.20 1.85 -0.49

2017 10 7.73 4.67 2.55 -0.40
20 10.16 6.18 3.40 0.19
40 12.76 7.92 4.49 1.01

Table 6.11: MAR stock selection: Profit, %

6.5.5 Moving Sharpe Ratio

Stock selection will now be performed with GP trading agent estimation of the daily

returns for each of the 86 stocks and the ranking of agent returns for stock selection

using the Moving Sharpe ratio. Relative to the MAR case, the average profitability

over each year increases in all parameterizations other than for the 3 day estimation

period (Table 6.17 and Figures 6.17, 6.19, 6.21) and improves the Sharpe ratio in all

but 5 of 60 parameterizations (Table 6.18 and Figures 6.23, 6.25, 6.27). Reducing the

number of stocks per day improves the ‘Hit ratio’ (Table 6.19) and increasing of the

estimation period (of the ranking statistic) from three to 40 days improves ‘Average

profit’ to ‘Average loss’ ratio (Tables 6.21 and 6.22). Parameter sensitivity is again
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Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 0.43 0.54 0.43 -0.20
5 0.56 0.64 0.52 -0.14

2015 10 1.01 1.14 0.89 0.11
20 1.50 1.51 1.26 0.34
40 1.92 1.93 1.60 0.71

3 0.75 0.84 0.75 0.28
5 0.99 1.11 1.03 0.53

2016 10 1.43 1.47 1.31 0.84
20 2.02 1.80 1.53 1.05
40 2.52 2.05 1.74 1.29

3 0.80 0.75 0.62 -0.39
5 0.96 1.13 0.92 -0.30

2017 10 1.26 1.31 1.06 -0.24
20 1.76 1.69 1.34 0.12
40 2.78 2.23 1.83 0.64

Table 6.12: MAR stock selection: Sharpe ratio
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Figure 6.16: MAR stock selection
(2015): Profit, %

40... Period, days ...3
10... 

Portfo
lio,

 sto
cks

 ...
1

1.93       ...       −0.20

0.0

0.5

1.0

1.5

Figure 6.17: MAR stock selection
(2015): Sharpe ratio

improved with much broader shoulders to the curves than appearing under MAR. In

short, employing the Moving Sharpe ratio produces a better characterization of profit
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Figure 6.18: MAR stock selection
(2016): Profit, %
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Figure 6.19: MAR stock selection
(2016): Sharpe ratio
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Figure 6.20: MAR stock selection
(2017): Profit, %
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Figure 6.21: MAR stock selection
(2017): Sharpe ratio

versus risk than available when using either Kelly Criterion or MAR.
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Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 30.71 28.91 28.43 28.10
5 29.25 27.63 27.33 27.38

2015 10 27.04 26.02 26.10 26.67
20 25.24 24.94 25.20 26.41
40 24.47 24.04 25.03 26.55

3 26.76 26.25 26.03 26.21
5 25.88 25.25 25.21 25.73

2016 10 23.96 24.10 24.49 25.49
20 22.50 23.70 24.32 25.55
40 21.46 23.84 24.55 25.71

3 27.16 26.53 26.25 26.01
5 26.44 25.33 25.09 25.25

2017 10 25.53 24.07 23.90 24.45
20 24.23 22.97 23.33 24.27
40 22.16 22.54 23.22 24.33

Table 6.13: MAR stock selection: Hit rate, %

Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 6324 19074 30134 52243
5 8485 24585 37805 61635

2015 10 13506 36278 51279 72893
20 19418 47915 63010 81293
40 22969 58466 70882 87161

3 12226 29178 41504 62184
5 17585 38251 51362 70539

2016 10 27748 52332 63624 78732
20 35998 62059 71073 83308
40 40227 67347 75240 86969

3 4150 11276 17316 30242
5 5451 14916 22492 35899

2017 10 8174 22498 31198 43005
20 11877 31578 38775 47720
40 16322 38036 43327 50838

Table 6.14: MAR stock selection: Number of trades
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Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 4359.91 1353.82 796.85 397.61
5 3677.60 1172.65 701.50 363.74

2015 10 2972.14 982.10 617.17 348.35
20 2479.20 862.87 572.45 345.11
40 2191.47 780.10 553.90 349.91

3 2754.67 996.70 633.09 352.90
5 2316.12 888.66 584.29 341.51

2016 10 1941.77 786.20 547.56 341.19
20 1731.07 740.10 537.81 351.00
40 1623.78 721.29 545.56 368.19

3 3279.04 1054.41 630.23 314.17
5 2749.59 884.29 536.26 285.39

2017 10 2051.19 678.45 438.96 260.30
20 1635.66 561.53 396.83 255.43
40 1362.46 509.92 386.75 258.25

Table 6.15: MAR stock selection: Average profit per trade, USD

Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 -1802.64 -519.31 -304.68 -157.38
5 -1393.32 -417.62 -251.57 -138.33

2015 10 -958.23 -311.25 -203.26 -125.88
20 -694.81 -251.78 -176.90 -121.68
40 -584.17 -212.49 -167.43 -122.23

3 -834.32 -308.29 -201.88 -122.16
5 -625.71 -249.06 -172.05 -112.39

2016 10 -437.30 -198.55 -150.28 -107.55
20 -338.14 -176.98 -142.57 -108.12
40 -293.76 -171.40 -143.87 -111.39

3 -1082.31 -351.63 -213.53 -113.26
5 -858.34 -271.45 -168.76 -98.21

2017 10 -576.98 -187.81 -127.14 -85.48
20 -411.78 -142.03 -109.32 -81.34
40 -288.12 -121.45 -103.49 -80.39

Table 6.16: MAR stock selection: Average loss per trade, USD
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Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 4.26 2.59 1.17 -1.45
5 11.68 6.71 3.87 -0.19

2015 10 21.08 12.02 7.25 1.57
20 25.57 15.84 9.96 3.26
40 27.22 17.73 11.66 4.77

3 12.33 8.66 6.01 1.78
5 28.30 16.65 10.89 4.30

2016 10 45.64 25.16 16.48 7.75
20 49.08 29.22 19.94 10.51
40 49.60 30.94 22.59 13.42

3 2.97 1.80 0.92 -0.68
5 6.06 3.52 1.95 -0.47

2017 10 11.47 6.23 3.46 0.35
20 13.35 7.91 4.70 1.19
40 13.43 8.99 5.71 2.06

Table 6.17: Moving Sharpe ratio stock selection: Profit, %

Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 0.49 0.50 0.30 -0.47
5 1.11 1.16 0.90 -0.09

2015 10 1.65 1.48 1.25 0.45
20 2.25 1.87 1.57 0.81
40 2.58 2.22 1.89 1.15

3 1.03 1.08 0.92 0.40
5 1.48 1.49 1.31 0.83

2016 10 2.19 1.91 1.70 1.27
20 2.46 2.14 1.92 1.45
40 2.50 2.26 2.04 1.63

3 0.76 0.77 0.47 -0.51
5 1.34 1.34 1.06 -0.34

2017 10 2.31 1.97 1.55 0.27
20 3.33 2.40 1.97 0.80
40 3.51 2.65 2.33 1.41

Table 6.18: Moving Sharpe ratio stock selection: Sharpe ratio
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Figure 6.22: MS ratio stock selection
(2015): Profit, %
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Figure 6.23: MS ratio stock selection
(2015): Sharpe ratio
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Figure 6.24: MS ratio stock selection
(2016): Profit, %
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Figure 6.25: MS ratio stock selection
(2016): Sharpe ratio
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Figure 6.26: MS ratio stock selection
(2017): Profit, %
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Figure 6.27: MS ratio stock selection
(2017): Sharpe ratio

Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 24.79 25.21 25.77 26.69
5 22.95 24.11 25.00 26.32

2015 10 21.34 23.76 24.75 26.08
20 20.38 23.66 24.60 26.06
40 19.70 23.77 24.80 26.28

3 24.28 24.70 25.04 25.76
5 23.38 23.90 24.43 25.40

2016 10 22.50 23.77 24.34 25.44
20 21.75 23.82 24.44 25.54
40 21.51 24.07 24.64 25.69

3 23.81 23.89 24.14 24.81
5 22.15 22.67 23.16 24.12

2017 10 21.11 22.20 22.76 23.84
20 20.55 22.28 22.83 23.93
40 20.03 22.44 23.02 24.06

Table 6.19: Moving Sharpe ratio stock selection: Hit rate, %



134

Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 7482 20181 30500 50920
5 14384 31552 42854 61812

2015 10 25488 46304 56161 71727
20 32581 55488 64507 78495
40 35667 61049 70420 84953

3 11234 28262 40996 61695
5 23227 44667 55655 71388

2016 10 36489 59336 67088 78570
20 40599 65923 72213 82584
40 41615 69128 75374 86125

3 4624 13024 19965 32697
5 9248 21306 28668 39811

2017 10 16688 31483 37185 45351
20 20783 36276 41044 48354
40 22370 38702 43465 51102

Table 6.20: Moving Sharpe ratio stock selection: Number of trades

Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 2728.04 953.96 598.26 324.03
5 2105.66 807.68 530.68 308.56

2015 10 1720.45 725.27 507.72 314.23
20 1594.78 713.52 516.56 327.75
40 1551.42 703.11 520.87 338.36

3 2220.52 800.89 513.49 297.82
5 1795.48 718.72 489.89 303.01

2016 10 1650.64 706.65 504.73 324.57
20 1605.37 711.42 526.68 348.38
40 1581.20 708.66 545.96 372.92

3 2124.15 711.06 443.63 246.99
5 1493.31 565.55 380.44 231.16

2017 10 1166.23 491.79 355.19 231.75
20 1065.57 482.71 362.14 241.65
40 1006.61 487.81 371.86 250.81

Table 6.21: Moving Sharpe ratio stock selection: Average profit per trade, USD
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Year Period, Intraday portfolio,
days stocks

1 3 5 10

3 -827.00 -304.52 -202.53 -121.85
5 -522.26 -228.67 -164.94 -110.65

2015 10 -361.94 -192.04 -149.89 -107.93
20 -309.68 -183.86 -148.03 -109.90
40 -285.72 -181.10 -149.69 -112.94

3 -567.83 -222.10 -151.97 -99.47
5 -389.13 -176.78 -132.49 -95.09

2016 10 -317.81 -164.77 -129.87 -97.51
20 -291.77 -164.20 -133.79 -102.38
40 -281.51 -165.73 -138.74 -107.93

3 -579.58 -205.22 -135.15 -84.28
5 -341.20 -144.51 -105.85 -75.03

2017 10 -224.89 -114.91 -92.59 -71.52
20 -194.76 -110.32 -92.31 -72.77
40 -177.09 -111.18 -94.11 -74.14

Table 6.22: Moving Sharpe ratio stock selection: Average loss per trade, USD
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6.6 Probability of Stock Selection

This section gives insight into how often stocks were included in the intraday port-

folio for the three ranking heuristics (MAR, MS, and Kelly). Table 6.23 shows the

probability of each stock being selected for an intraday portfolio within each year for

all portfolio sizes: 1, 3, 5 or 10 stocks (for clarity, only the top 10 most frequently

occurring stock selections are reported). Figures 6.28 — 6.39 show the daily proba-

bility of the top five stocks (in 2015) as included in an intraday portfolio and, again,

repeated for all portfolio sizes (1, 3, 5 or 10 stocks).

The strong preference for a very specific subset of stocks is again underlined.

Indeed, the same stocks are always ranked 1, 2 and 3 for both the Moving Sharpe

Ratio and Moving Average (Price) ranking heuristic. Increasing the size of each

portfolio tends to result in the favored stocks being selected 100% of the time, with

additional stocks then being added. Moreover, as the Intraday portfolio size increases,

so does the likelihood of specific stocks being selected. Also of note is that there are

orders of magnitude in the differences in the average stock price associated with the

top ranked stocks, for example: PCLN or PIMCO Mutual Fund (≈ $5.50 per stock),

ISRG or Intuitive Surgical Inc. (≈ $580 per stock), BIIB or Bilgen Inc. (≈ $235

per stock), AMZN or Amazon.com Inc. (≈ $1840 per stock), NTES or NetEase Inc.

(≈ $270 per stock). This appears to imply that during intraday trading, the GP

trading agent is attempting to maximize returns from the change in stock value.

The Kelly Criterion, on the other hand, appears to not represent an effective stock

selection heuristic, with very little distinction appearing between the ranked stocks by

the metric. Indeed, the stocks selected by Moving Sharpe Ratio and Moving Average

(Price) were ranked very low by the Kelly Criterion (IDXX was the highest ranked

at 39th). Conversely, both the Moving Sharpe Ratio and Moving Average (Price)

ranking heuristics resulted in the same 7 stocks appearing in their respective top 10

selections, albeit not necessarily in the same order (Table 6.23), and with different

intraday trading behaviors.
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Figure 6.28: Daily portfolio of 1 over 2015 (a) MS (b) MAR (c) Kelly.
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Figure 6.29: Daily portfolio of 3 over 2015 (a) MS (b) MAR (c) Kelly.
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Figure 6.30: Daily portfolio of 5 over 2015 (a) MS (b) MAR (c) Kelly.
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Figure 6.31: Daily portfolio of 10 over 2015 (a) MS (b) MAR (c) Kelly.
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Figure 6.32: Daily portfolio of 1 over 2016 (a) MS (b) MAR (c) Kelly.

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pr
ob

ab
ilit

y

PCLN

ISRG

AMZN

ULTA

ORLY

(a) MS

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pr
ob

ab
ilit

y

PCLN

ISRG

AMZN

INCY

ILMN

(b) MAR

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pr
ob

ab
ilit

y

CMCSA

MU

CA

FAST

SYMC

(c) Kelly

Figure 6.33: Daily portfolio of 3 over 2016 (a) MS (b) MAR (c) Kelly.
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Figure 6.34: Daily portfolio of 5 over 2016 (a) MS (b) MAR (c) Kelly.
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Figure 6.35: Daily portfolio of 10 over 2016 (a) MS (b) MAR (c) Kelly.
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Figure 6.36: Daily portfolio of 1 over 2017 (a) MS (b) MAR (c) Kelly.
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Figure 6.37: Daily portfolio of 3 over 2017 (a) MS (b) MAR (c) Kelly.
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Figure 6.38: Daily portfolio of 5 over 2017 (a) MS (b) MAR (c) Kelly.
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Figure 6.39: Daily portfolio of 10 over 2017 (a) MS (b) MAR (c) Kelly.
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Year
2015 2016 2017 Average

Intraday portfolio size, stocks. prob.
1 3 5 10 1 3 5 10 1 3 5 10

Selection using Moving Sharpe Ratio (MS)

PCLN .948 1 1 1 .998 1 1 1 .885 1 1 1 .986
ISRG .052 .942 .973 .992 .002 .989 .996 .999 .115 .988 .996 1 .754
BIIB .000 .349 .568 .772 0 .021 .066 .191 0 .055 .128 .257 .201
AMZN 0 .06 .183 .371 0 .243 .351 .491 0 .052 .192 .397 .195
NTES 0 .012 .042 .104 0 .018 .053 .153 0 .268 .406 .548 .134
ORLY 0 .046 .116 .225 0 .043 .129 .251 0 .026 .084 .224 .095
IDXX 0 .034 .096 .241 0 .018 .078 .199 0 .034 .111 .298 .093
ILMN 0 .025 .093 .231 0 .027 .067 .174 0 .035 .091 .211 .08
TSLA 0 .012 .046 .148 0 .02 .079 .198 0 .018 .119 .289 .077
ULTA 0 .018 .043 .118 0 .045 .141 .281 0 .011 .055 .195 .076

Selection using Moving Average of Daily Returns (MAR)

PCLN .417 .957 .999 1 .924 1 1 1 .424 .987 1 1 .892
ISRG .402 .852 .952 .988 .072 .913 .974 .994 0 .894 .965 .997 .75
BIIB .042 .314 .587 .803 .001 .017 .056 .194 .007 .066 .133 .27 .207
NTES .003 .038 .089 .192 .001 .049 .114 .237 0 .381 .536 .665 .192
INCY .11 .242 .347 .475 0 .083 .178 .305 0 .017 .055 .138 .163
ALXN .003 .076 .18 .358 0 .057 .204 .369 .005 .03 .075 .174 .128
TSLA .001 .027 .074 .2 0 .044 .144 .29 .003 .051 .255 .421 .126
ILMN 0 .027 .107 .298 0 .06 .128 .258 .006 .075 .171 .313 .12
AMZN 0 .013 .064 .271 0 .195 .295 .419 0 .001 .019 .154 .119
BMRN .014 .105 .264 .438 0 .018 .054 .118 .002 .008 .053 .144 .102

Selection using Kelly Criterion (Kelly)

SYMC .021 .062 .099 .171 .035 .108 .165 .259 .104 .234 .309 .421 .166
CMCSA .048 .109 .154 .238 .049 .123 .181 .285 .034 .093 .145 .261 .143
LBTYK .031 .098 .152 .254 .024 .065 .1 .181 .05 .128 .19 .289 .13
MAT .036 .101 .142 .221 .015 .05 .086 .167 .059 .121 .175 .268 .12
DISCK .018 .064 .103 .173 .032 .085 .139 .228 .047 .106 .148 .23 .114
CA .035 .082 .123 .2 .055 .12 .164 .247 .013 .051 .093 .175 .113

XRAY .024 .068 .105 .187 .014 .047 .079 .157 .039 .114 .182 .319 .111
SBUX .003 .02 .038 .096 .027 .08 .123 .209 .052 .142 .209 .333 .111
FOX .023 .066 .098 .171 .042 .094 .127 .184 .044 .103 .144 .218 .109
VOD .046 .107 .151 .239 .033 .076 .113 .178 .023 .061 .092 .146 .105

Table 6.23: Probability of stock selection for 10 highest ranked stocks as defined
across average across all portfolios.
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6.7 Fixed Set of TI

In order to evaluate the dependence/independence of the proposed intraday stock

selection algorithms from the trading signal generating algorithm, the second set

of trading signals was generated with a benchmarking framework that evolves DT

population against a fixed set of the popular technical indicators and trading rules

as described in Section 3.4. The average results over 50 simulation runs with a fixed

set of TIs for two proposed intraday stock selection algorithms (MAR and MS), and

Kelly Criterion is shown in Tables 6.24, 6.25 and 6.26 respectively.

Profit, % Sharpe ratio
Year Period Intraday portfolio, Intraday portfolio,

days stocks stocks
1 3 5 10 1 3 5 10

3 -2.45 -2.40 -2.47 -2.74 -0.29 -0.49 -0.64 -0.98
5 -2.30 -2.18 -2.27 -2.58 -0.30 -0.47 -0.61 -0.90

2015 10 -0.96 -1.51 -1.79 -2.22 -0.14 -0.35 -0.54 -0.91
20 0 -2.07 -2.02 -2.40 0 -0.47 -0.59 -0.95
40 -2.21 -2.17 -2.22 -2.55 -0.32 -0.53 -0.68 -1.06
3 -0.02 -0.93 -1.05 -1.56 -0.02 -1.18 -0.24 -0.48
5 -0.04 -1.05 -1.23 -1.66 -0.01 -0.22 -0.31 -0.56

2016 10 -0.69 -1.25 -1.48 -1.81 -0.10 -0.27 -0.40 -0.66
20 -0.52 -0.95 -1.33 -1.63 -0.08 -0.20 -0.35 -0.59
40 -1.89 -1.78 -1.77 -2.00 -0.25 -0.44 -0.55 -0.85
3 -0.89 -1.22 -1.34 -1.51 -0.26 -0.52 -0.73 -1.14
5 -1.27 -1.28 -1.33 -1.46 -0.37 -0.61 -0.87 -1.27

2017 10 -0.67 -1.01 -1.01 -1.20 -0.18 -0.52 -0.67 -1.05
20 -1.71 -1.45 -1.39 -1.40 -0.54 -0.78 -0.94 -1.29
40 -1.37 -1.10 -1.12 -1.28 -0.43 -0.65 -0.84 -1.31

Table 6.24: Fixed set of TIs. MAR stock selection: Profit and Sharpe ratio
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Profit, % Sharpe ratio
Year Period Intraday portfolio, Intraday portfolio,

days stocks stocks
1 3 5 10 1 3 5 10

3 -1.69 -1.86 -1.93 -2.34 -0.27 -0.49 -0.60 -0.91
5 -1.89 -1.59 -1.78 -2.24 -0.33 -0.44 -0.60 -0.96

2015 10 -0.80 -0.89 -1.32 -2.01 -0.14 -0.27 -0.50 -1.02
20 -0.25 -1.25 -1.64 -2.14 -0.06 -0.41 -0.66 -1.21
40 0.61 -0.80 -1.28 -1.93 0.18 -0.28 -0.57 -1.08
3 -0.90 -1.06 -1.15 -1.41 -1.14 -0.31 -0.39 -0.56
5 -0.24 -0.50 -0.84 -1.45 -0.05 -0.16 -0.31 -0.61

2016 10 0.845 -0.33 -0.72 -1.37 0.14 -0.11 -0.28 -0.67
20 1.39 0.04 -0.47 -1.32 0.26 0.01 -0.17 -0.63
40 2.47 0.32 -0.35 -1.21 0.61 0.11 -0.15 -0.66
3 -0.48 -0.77 -0.94 -1.23 -0.17 -0.39 -0.64 -0.97
5 -0.71 -0.78 -0.91 -1.25 -0.23 -0.38 -0.54 -1.04

2017 10 -0.95 -0.93 -0.95 -1.17 -0.34 -0.56 -0.71 -1.14
20 -0.42 -0.78 -0.99 -1.23 -0.18 -0.61 -0.91 -1.44
40 0.63 -0.28 -0.59 -0.98 0.55 -0.24 -0.60 -1.25

Table 6.25: Fixed set of TIs. MS stock selection: Profit and Sharpe ratio

Profit, % Sharpe ratio
Year Period Intraday portfolio, Intraday portfolio,

days stocks stocks
1 3 5 10 1 3 5 10

3 -1.64 -1.98 -1.06 -2.39 -0.28 -0.55 -0.70 -1.02
5 -2.04 -1.91 -1.95 -2.19 -0.33 -0.53 -0.65 -0.91

2015 10 -2.05 -1.88 -2.04 -2.28 -0.37 -0.55 -0.70 -1.00
20 -2.79 -2.37 -2.43 -2.58 -0.55 -0.71 -0.92 -1.34
40 -2.55 -2.50 -2.46 -2.57 -0.48 -0.79 -0.93 -1.29
3 -1.47 -1.02 -1.06 -1.43 -0.23 -0.30 -0.38 -0.60
5 -1.35 -1.53 -1.70 -1.80 -0.29 -0.47 -0.61 -0.80

2016 10 -1.66 -1.50 -1.59 -1.77 -0.34 -0.50 -0.60 -0.82
20 -1.27 -1.66 -1.73 -1.85 -0.24 -0.51 -0.64 -0.88
40 -1.73 -1.72 -1.63 -1.85 -0.36 -0.55 -0.64 -0.95
3 -0.63 -0.65 -0.92 -1.21 -0.19 -0.28 -0.56 -0.98
5 -1.04 -0.95 -0.99 -1.12 -0.37 -0.57 -0.69 -1.05

2017 10 -0.75 -0.89 -0.95 -1.12 -0.28 -0.52 -0.71 -1.07
20 -0.66 -0.88 -0.90 -1.05 -0.27 -0.56 -0.70 -1.03
40 -0.69 -0.75 -0.78 -1.00 -0.25 -0.51 -0.70 -1.16

Table 6.26: Fixed set of TIs. Kelly stock selection: Profit and Sharpe ratio
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Based on the obtained results (Tables 6.24, 6.25 and 6.26) one can conclude that

the results of daily stock selection in the case of two proposed algorithms do not

depend on the way of generating of trading signals. In addition, again it was confirmed

that coevolving both TI and DT together significantly outperforms evolving the DT

based on predefined TI (as in [68]).

6.8 Discussion

A clear preference is exhibited for adopting a ranking based on either a simple Moving

Average, or the Moving Sharpe Ratio (with Moving Sharpe Ratio showing better

results over a simple Moving Average of Daily Returns in all cases), both in terms of

the profitability and the Sharpe Ratio. Moreover, both schemes perform significantly

better than the Kelly Criterion (a popular method for long-term investment [135,

106, 26, 87]).

The Moving Sharpe Ratio outperforms other investigated ways of prioritizing spe-

cific stocks for frequent intraday trading using the proposed FXGP algorithm. Fig-

ures 6.40 and 6.41 summarize the percent Profit and Sharpe Ratio per year over all

50 trials for the preferred parameterization (40 day estimation period for the ranking

statistic, 1 stock selected per intraday trading period). Every run is > 10% profitable

and returns Sharpe Ratios with a minimum of 2. In comparison, adopting a buy-and-

hold investment strategy for all 86 stocks in the portfolio7 results in the investment

outcomes of Table 6.1.

In short, even though the frequent intraday trading scenario incurs a transaction

cost per trade, and there are typically tens of thousands of trades (Table 6.20), only 2

of 20 parameterizations perform worse than the buy-and-hold strategy in 2015 and all

perform better than buy-and-hold in 2016. Only 5 of 20 parameterizations perform

worse than the buy-and-hold strategy in the 8 months of 2017 (Table 6.17).

There are no parameterizations for which a stock ranking performed using the

Kelly Criterion approaches that of either the Moving Average or the Moving Sharpe

Ratio. Performing a t-test between the average % Profit (Sharpe Ratio) of the 50

simulations in Tables 6.5, 6.11 and 6.17 (Tables 6.6, 6.12 and 6.18) confirms that in

all cases the Moving Sharpe Ratio performs significantly better than ranking using

7All stocks from the portfolio are held, as there is no basis for selecting a subset of specific stock.
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Figure 6.41: Moving Sharpe ratio algo-
rithm. Sharpe ratios distribution over
50 simulations

a Moving Average or Kelly Criterion, Table 6.27. To check the distribution of the

results the Shapiro-Wilk normality test was used. The p-values of all test are ⩾ 0.05

that allows us to assume the normality of all distributions (Table 6.28).

Test pair % Profit Sharpe Ratio
MS versus MAR 5.1× 10−8 3.5× 10−13

MS versus Kelly 3.9× 10−11 1.3× 10−24

Table 6.27: Pairwise t-test for significant differences between average Profit (Sharpe
Ratio) over 50 parameterizations of ranking metrics. Assuming a 99% confidence
interval and using the Bonferroni-Dunn Post Hoc Test, then α = 0.01

3
= 0.0033.

All the p-values are smaller than α, implying that the pairwise differences are all
significant.

Metric 2015 2016 2017

MS 0.36 0.19 0.28
MAR 0.15 0.08 0.05
Kelly 0.6 0.8 0.28

Table 6.28: Shapiro-Wilk normality test, p-values

In addition, a general bias towards trading with single stocks per day was evident.

That is to say, although increasing the number of stocks traded per day resulted in

a lower ‘average loss per trade’ the corresponding ‘average profit per trade’ was also

much lower. Thus, the resulting Sharpe Ratio (a measure of average profit-to-risk)
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was actually preferable for the case of performing frequent intraday trading with one

stock per day.8 It is a mark of the accuracy of the estimated returns from the GP

trading agents that such specific recommendations could be made without having a

detrimental effect on the performance of the investment strategy, i.e. risk.

8Naturally, the recommended stock is free to change each day.



Chapter 7

On the Effect of Hidden Trading Costs

Section 2.6 reviewed the significance of transactions costs in automated trading agent

design. The specific interest here is to identify to what degree (if any) an automated

trading system utilizing historical rates to construct trading rules for real-time in-

traday trading may benefit from fixed or floating spreads. This is potentially an

important decision because different brokerages may differ in terms of whether the

bid-ask spread is fixed or floating. Moreover, if there is a difference, how large or small

might the size of a fixed versus floating spread have to be before comparable results

appear? This chapter investigates the impact of the bid-ask spreads, a form of hidden

cost, on the results of backtesting. Backtesting is the general method for seeing how

well a strategy or model would have done using historical data. If backtesting works,

traders and analysts may have the confidence to employ it going forward [69]. It

concentrates on the nature (fixed or floating) of bid-ask spreads (hereafter ‘spread’)

and investigates the different impact of two types of spread on the effectiveness of an

automated trading system [96]. Four fixed spreads (one, two, five and ten pips) and

a floating spread with a median value of two pips are investigated.

7.1 Experimental Framework

Figure 7.1 shows the experimental framework that was used to evaluate the influence

of bid-ask spreads on the effectiveness of the automated trading system. Before each

trading session begins the proposed FXGP algorithm is used to simulate trading of

each stock over 40 preceding trading days using historical rates in the form of 1-

minute candlesticks. The results of the simulation are used to rank each stock from

the portfolio utilizing the best stock selection algorithm — the Moving Sharpe ratio

(Section 6.3), and the stock with the highest K rank are selected for trading at the

next trading day. During trading day t, K stock is selected to make investments and

traded with a money management policy.

146
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Figure 7.1: Experimental framework. Dashed boxes represent agents estimating a
return on stock ‘i ’ over preceding 40 trading days using historical rates. Solid box
indicates the agent that performs intraday trading with the selected best stock.

7.2 Source Data

For continuity with Chapter 6, the source stock data will again take the form of the

NASDAQ 100. Historical rates (‘Bid’, ‘Mid’ and ‘Ask’ prices) were obtained through

an Interactive Brokers Group, Inc. (demo account) for the period from August 1,

2014, to August 31, 2017. Adopting data from the NASDAQ is expected to be rep-

resentative of a market with ‘high’ levels of volatility ([73]). All stocks with missing

or out of range date and time stamps and stocks with missing, ‘0’ or negative prices

and stocks with negative spreads were excluded. The resulting set includes follow-

ing 77 stocks: AAL, AAPL, ADBE, ADI, ADP, AKAM, ALXN, AMAT, AMGN,

AMZN, ATVI, BIDU, BIIB, CA, CELG, CERN, CHKP, CMCSA, CSCO, CSX,

CTAS, CTRP, CTSH, CTXS, DISCK, DISH, EA, EBAY, ESRX, FAST, FB, FOX,

FOXA, GILD, HAS, HOLX, ILMN, INCY, INTC, INTU, ISRG, KLAC, LBTYK,

LRCX, MAR, MAT, MCHP, MDLZ, MSFT, MU, MXIM, NFLX, NVDA, ORLY,

PAYX, PCAR, PCLN, QCOM, ROST, SBUX, SHPG, SIRI, STX, SWKS, SYMC,

TSCO, TSLA, TXN, ULTA, VIAB, VOD, VRSK, VRTX, WBA, WDC, WYNN,

XLNX.
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7.3 Trading Conditions and Experimental Methodology

All experiments were performed assuming the following common trading conditions:

Initial account balance $10 000 000, flat rate $5 per trade and only 10% of the account

balance at the beginning of each day is used to trade stocks. This work investigates

six different bid-ask spreads: 0 pips (0.0 USD), 1 pip (0.01 USD), 2 pips (0.02 USD), 5

pips (0.05 USD), 10 pips (0.1 USD) and floating spread that is defined as a difference

in bid and ask prices of a stock. The distribution of floating spreads of all 77 stocks

over 2015-2017 is shown in the Table 7.1 and Figure 7.2.

min 1st quartile median 3rd quartile max

Spread, USD 0 0.01 0.02 0.05 141.69

Table 7.1: Floating spreads distribution 2015-2017

Bid and Ask prices with specific spreads were established by subtracting (for ‘Bid’

prices) or adding (for ‘Ask’ prices) a half of the spread size from/to the corresponding

‘Mid’ price (Section 7.2). The FXGP algorithm (Section 7.1) was used to simulate

trading activity and performed 501 sets of simulation runs for each spread value,

where each set includes trading signals for all 77 stocks and covers 2015–2017 years.

In addition, a baseline investment strategy using ‘buy-and-hold’ with the same

spreads and trading conditions: 10% of the account balance to buy stocks and dis-

tribute this evenly amongst all 77 stocks will be established. Previous research has

shown that such a ‘naive’ approach to portfolio management can be more effective

than optimization methods, especially when transaction costs are included ([83, 38]).

The profit of a buy-and-hold strategy was calculated annually (2015, 2016 and 2017)

and for the whole period (2015-2017).

To evaluate the performance the following metrics were calculated:

• Profit (%) — is the difference between an opening account balance and a balance

at the end of the period including any transaction costs.

• Sharpe ratio (monthly returns) — defined using Equation (6.2) with Rmean and

Rdeviation estimated monthly over the entire year (12 months).

1Due to a large number of stocks and one-minute candlesticks over three years, we reduced the
number of simulation runs from 100 to 50.
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(a) Full range

(b) 0-0.05 USD

Figure 7.2: Floating spreads distribution 2015-2017 (a) Full range (b) 0-0.05 USD.



150

• Hit rate (%) — attempts to express the accuracy of buy/sell signals relative to

the outcome of the following candlestick. Thus, if the GP trading agent issued

a buy (sell) signal and the price increased (decreased) at the next candlestick,

this would be considered a ‘hit’.

• Number of trades — is the raw count of the number of trades placed by the GP

trading agents in total.

• Average profit per trade (USD) — calculated as a sum of all trades within a

year with a positive value divided by the number of such trades.

• Average loss per trade (USD) — calculated as a sum of all trades within a year

with a negative value divided by the number of such trades.

• ‘Average profit’/’Average loss’ ratio — calculated as ‘Average profit per trade’

divided by ‘Average loss per trade.’

7.4 Results

7.4.1 Buy-and-Hold

A buy-and-hold strategy was used to provide a comparative baseline that is widely

used in practice. As emphasized in Section 6.5.1, buy-and-hold is most competitive

when market volatility is less [20]. From the perspective of the data appearing in

this study, this occurs in 2016 and 2017. Indeed, current benchmarking practice, for

example with deep learning solutions, rely on buy-and-hold baselines [12]. In the

specific context of this chapter, a buy-and-hold strategy minimizes costs because the

number of trades is minimized. Thus, any adaptive scheme for intraday trading has to

be able to offset the cost of potentially performing many trades per day, by achieving

much higher returns. Given that the time period of a price bar is 1-minute, there

are more sources of noise that may hide trends in the data, as well as exasperate the

likelihood of seeing variable spreads.

Profit of the ‘buy-and-hold’ strategy is defined by assuming that one buys the

stocks with the ‘Open’ price of the first 1-minute candlestick of the evaluated period

and sells them with the ‘Open’ price of the last candlestick of the same period. The
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process is repeated for all five fixed spreads and for the floating spread, with the

results summarized in Table 7.2.

In the case of ‘buy-and-hold’ strategy, commission is paid only twice per trading

period: annually or once per three years, i.e. two scenarios are considered, the profit

of a buy-and-hold strategy was calculated annually (2015, 2016 and 2017) or for the

whole period (2015-2017). Thus, from Table 7.2 it is apparent that the fixed spreads

barely affect the results of the ‘buy-and-hold’ strategy. Some degradation of the

profits is seen in the case of floating spreads, and can be explained as follows: the

beginning and the end of a year represent one of the most unpredictable times to

perform trading. As a consequence, the floating spreads at this time can be much

higher, in some cases reaching more than a hundred dollars (Table 7.1 and Figure 7.2).

Also evident is the increasing returns from 2015 through 2016 and 2017. This follows

from the reduced market volatility as the years progress,2 further favoring the buy-

and-hold strategy.

Metric Spread, USD
0 0.01 0.02 0.05 0.1 floating

Profit, 2015 (%) 0.664 0.662 0.66 0.653 0.642 0.474
Profit, 2016 (%) 1.266 1.264 1.262 1.255 1.244 1.19
Profit, 2017 (%) 1.732 1.730 1.728 1.723 1.713 1.618

Profit, 2015-2017 (%) 4.279 4.277 4.275 4.268 4.257 4.051

Table 7.2: Profit, buy-and-hold strategy

7.4.2 Automated Intraday Trading

This section presents the results obtained with the proposed FXGP framework (Sec-

tion 7.1) using rates with a floating and the five fixed spreads. Results are averaged

over 50 simulations (runs) for each spread value, and presented in Tables 7.3, 7.4 and

7.5. Figures 7.3(a), 7.5(a) and 7.7(a) show the annual distribution of profits and Fig-

ures 7.3(b), 7.5(b) and 7.7(b) show the distribution of the Sharpe ratios as averaged

over all 50 simulations for each year.

Unlike the ‘buy-and-hold’ strategy, the results of the automated intraday trading

system are strongly dependent on the nature (fixed or floating) and the size of the

2See for example the decreasing Skewness and Kurtosis of NASDAQ 100 stocks, Appendix A.
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bid-ask spread. Annual profits and Sharpe ratios drop with increasing spread and,

at the same time, the intraday trading algorithm tends to trade less frequently and,

therefore, to reduce the size of the commission paid, i.e. the automation identified

the frequency of the trading necessary to provide this optimization.

The worst results appeared in the case of floating spreads. Even with the fixed bid-

ask spread 0.1 USD, two years were profitable (2016 and 2017) while with the floating

spread all three years were unprofitable. Taking into consideration that the median

value of the floating spread is as low as 0.02 USD and that 75% of all floating spread

values are less than 0.05 USD (Table 7.1), it is save conclude that the nature of the

bid-ask spread is even more important than its magnitude. Specifically, the floating

spread is capable of returning a higher per trade profit (hit rate is twice that of the

fixed spreads) and average profit (per trade) is also always significantly higher, but

this is outweighed by the much higher average loss (per trade). Given the significantly

lower number of trades in each period, it is apparent that the floating spread results

in a trading policy being adopted in which a relatively small number of trades are

placed, but of high value. Conversely, all the fixed spread scenarios result in trading

policies being adopted in which many more smaller value trades are placed. Such a

strategy results in a better average profit to loss ratio being maintained (typically

> 4), thus an annual Sharpe Ratio above unity. This level of trading performance is

never achieved under the variable spread trading environment. Finally, in order to

make more apparent the interaction between different performance metrics and the

forms of spread, all the annual metrics were normalized (Tables 7.3, 7.4 and 7.5) and

plotted: Figures 7.4, 7.6 and 7.8.
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Metric Spread, USD
0 0.01 0.02 0.05 0.1 floating

Profit (%) 31.82 27.22 22.88 10.09 -2.97 -2.6

Sharpe ratio 2.87 2.58 2.25 0.99 -0.386 -0.4

Hit rate (%) 19.78 19.7 19.72 20.74 23.18 42.45

Num. of trades 36727 35667 34312 24702 10883 427

Average Profit (USD) 1561 1551 1537 1550 1746 8471

Average Loss (USD) 277 286 295 355 567 7299

Avg. Profit
5.64 5.43 5.22 4.37 3.08 1.16

Avg. Loss

Table 7.3: Results (averages of 50 runs) of trading simulation over 2015. Sharpe Ratio
is estimated as a monthly return. Both Avg. profit and Avg. loss are estimated per
trade.
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Figure 7.4: Normalized metrics 2015

Metric Spread, USD
0 0.01 0.02 0.05 0.1 floating

Profit (%) 53.96 49.6 45.25 32.8 15 -3.15

Sharpe ratio 2.68 2.5 2.33 1.87 1.06 -0.44

Hit rate (%) 21.9 21.51 21.37 20.69 20.69 41.87

Num. of trades 41729 41615 41189 39585 31657 400

Average Profit (USD) 1601 1581 1561 1505 1428 8731

Average Loss (USD) 283 282 286 288 313 7657

Avg. Profit
5.65 5.62 5.49 5.22 4.57 1.14

Avg. Loss

Table 7.4: Results (averages of 50 runs) of trading simulation over 2016. Sharpe Ratio
is estimated as a monthly return. Both Avg. profit and Avg. loss are estimated per
trade.
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Metric Spread, USD
0 0.01 0.02 0.05 0.1 floating

Profit (%) 14.78 13.43 12.1 7.97 0.98 -0.765

Sharpe ratio 3.69 3.51 3.51 2.1 0.25 -0.31

Hit rate (%) 20.37 20.03 19.65 19.58 21.3 43.93

Num. of trades 22681 22370 22317 19723 10367 260

Average profit (USD) 1001 1007 1004 1039 1103 6361

Average loss (USD) 174 177 178 203 288 5501

Avg. profit
5.75 5.68 5.64 5.12 3.83 1.16

Avg. Loss

Table 7.5: Results (averages of 50 runs) of trading simulation over 2017. Sharpe Ratio
is estimated as a monthly return. Both Avg. profit and Avg. loss are estimated per
trade.
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7.5 Discussion

The research, as presented in this chapter, investigated the influence of hidden trad-

ing costs in the form of bid-ask spread on the effectiveness of a GP based intraday

automated trading system. In total, 50 simulation runs were performed for each of

the five fixed spreads and a floating spread over three years (2015, 2016 and 2017).

The obtained results clearly show that nature and the size of the bid-ask spread dra-

matically affect the performance of an intraday automated trading system. As such

these factors can be considered as one of the key influences that define the success or

failure of a such system.

It has been shown that the floating spread with a median value of 0.02 USD

results in a much worse performance than a fixed spread of 0.1 USD, i.e. an order

of magnitude difference. These results appear to also support the observation that

uninformed traders — as in traders that trade for liquidity needs — will be more

susceptible to the negative impact of spreads [27]. Future work could repeat the

analysis with data from a stock market with historically less volatility (e.g. NYSE

rather than the NASDAQ). Moreover, we note that as fixed spreads are actually

preferable to an automated trading agent, brokers have the opportunity to offer a fixed

spread service while also maintaining a profitable service. However, an investigation

of the parameterization of the fixed spread scenario to maintain a profitable service

is left to future research.



Chapter 8

Conclusion and Future Work

Previous research established an approach for symbiotically coevolving both decision

trees (DT) and technical indicators (TI) simultaneously [95, 97, 98]. Thus, each trad-

ing agent is the result of a unique interaction between TI (temporal features) and DT

(decision tree) as coevolved in response to the specific current market situation. The

symbiotic relation links the fitness expressed at the level of DT to the TI without

having to define any surrogate performance functions for the TI. Specific recommen-

dations from this earlier body of research included the use of use of criteria specifically

designed to detect the onset of poor trading behavior [98] and the complete reinitial-

ization of the DT–TI population before rebuilding trading agents [97]. The results of

this earlier work can be summarized as follows:

• The use of criteria specifically designed to detect the onset of poor trading

behavior, and therefore trigger the identification of a new trading agent, was

demonstrated to be significantly more effective than the use of retraining inter-

vals (with or without continuous evolution). This appears to be a particularly

important factor for improving the quality of results (Section 3.1). In addition,

the worst performance of the Static case confirms the non-stationary nature of

the task.

• Reinitialization of the DT–TI population before retraining improves the per-

formance compared to continuous evolution (Section 3.1). This illustrates the

importance of maintaining the diversity of the DT–TI population. This result

runs against current practice in which continuous evolution of a population

initialized once is the norm.

• The use of the validation partition to test the DT–TI population quality and

to select the best trading agent (if the population has passed the test) is the

159
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second important way to get better results, i.e., exploration appears to play a

more significant role than exploitation.

This thesis began by revisiting the original Base FXGP framework, beginning

with analysis of its weak points (Section 3.2) and its further development (Section

3.3). This provides the core of the FXGP framework assumed in this thesis.

Section 3.3 demonstrated that teams of champion trading agents improves the

negative spread of runs compared to that of a single trading agent. At the same

time the computational cost for maintaining a team of champion agents is still signif-

icantly ≈ 40% lower than that for the original FXGP (e.g. [98]). The use of evolved

teams demonstrated the best results in all categories: trustability (the percentage of

profitable runs) and quartile scores. Indeed, this configuration provides statistically

significant improvements over the single agent mode (95th percentile). In addition,

it was during the evaluation of the proposed FXGP algorithm that the importance

of the nature/type of spread (floating vs. fixed) became a significant factor for the

performance of automated trading systems.

The results of experiments in Section 3.1 were shadowed by the use of the “ab-

stract” average fixed spread for all three currency pairs. This issue was revisited in

Section 3.3 with the historical prices containing the real Bid-Ask spread information.

Section 3.4 demonstrated the significance of coevolving DT and TI under foreign

exchange data with candlesticks constructed over 30 minute intervals. Specifically, the

FXGP algorithm was compared to the same framework, but limited to evolving DT

alone. In the latter case, rather than evolve temporal features (TI) a set of popular

TIs is assumed. The resulting comparison demonstrated that the FXGP algorithm

significantly outperforms the benchmarking framework based on traditional TIs, i.e.

it is limited to evolving decision trees alone. This is important because research using

GP to evolve automated trading systems to date does not attempt to identify both

TI and DT, thus further validating prior research [98].

The application of machine learning to non-stationary streaming data has mo-

tivated an independent body of research on prequential classification. With this in

mind, benchmarking was performed to validate the FXGP algorithm against a task

outside from financial data, that of predicting electricity utilization (Chapter 4).

This is potentially important because decision tree induction under streaming data
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has been a re-occurring theme for a considerable period of time. Specifically, the

Hoeffding Tree method characterizes stream content statistically and relates this in-

formation to change detection. This forms the basis for decision tree methods that

dynamically modify the structure of a classifier when exposed to stream content.

Based on the results, the following conclusions can be made:

• GP can be applied to streaming data classification tasks and remain computa-

tionally feasible without recourse to specialist hardware/software support (e.g.

no use was made of of custom hardware or GPUs), while the performance of the

classifier is competitive with that of algorithms specifically designed for decision

tree induction under streaming data.

• Preprocessing streaming data using a candlestick representation can be effective

for non-financial data. Naturally, such a representation assumes that there is

sufficient data present in the stream for construction of each candlestick. If the

data was only available at, say, 30 minute intervals and this was also the rate

at which predictions were required, then preprocessing using candlesticks would

not be appropriate.

In review, the comparison between coevolved TI-DT with Hoeffding Tree ap-

proaches to streaming classification stripped away the components of FXGP that

were specific to the automatic trading agent scenario (SL, TP, and retracement).

This removed a significant number of parameters from the FXGP algorithm and clar-

ified the contribution of coevolving TI with DT. In short, the explicitly evolutionary

components of the FXGP algorithm were demonstrated to be competitive with cur-

rently well established methods.

Chapter 5 examined the use of three different techniques for identifying retrace-

ment opportunities in the FXGP framework, namely Moving average, Pivot points,

and Fibonacci ratios. In summary, the limit (SL and TP) order verification and ad-

justment with support and resistance levels significantly improves overall profitability

and helps address the challenges listed in Chapter 5.

The strategies based on the Fibonacci series clearly had the best performance

of the three techniques. Moreover, Fibonacci retracement with 0% and 100% lev-

els drawn through the Close prices (FXGPF) appeared to be more efficient than
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Fibonacci retracement with 0% and 100% levels drawn through the High and Low

prices, at least in case of FXGP. The use of Fibonacci retracement to define the SL

order position increased the median score by 86.7%, increased the percent of prof-

itable trades by 29.7%, and reduced the average size of a SL order by 51% compared

to the FXGP without orders verification. The use of Fibonacci retracement to define

the SL order position reduced the retraining time of the team of three trading agents

by 12%. This reduction likely occurs because the use of Fibonacci levels to define

the SL order position and increases the likelihood of a DT–TI population passing the

validation process. Of the different modes of FXGP, FXGPF had the biggest average

number of trades per simulated period of time and the lowest percent of triggered

SL orders. Teams of trading agents were confirmed to be more efficient than single

trading agents.

Due to a significant amount of time and resources required to perform simulations.

The proposed approach was tested on only one currency pair and within a limited

time frame. To make future conclusions about its applicability for different trading

assets and markets, future work can include a wider set of trading assets and more

recent price data. The development of a robust algorithm for Fibonacci retracement

base level (0% and 100%) detection is also of interest. Moreover, the use of a genetic

programming based approach is as much a personal choice, based on familiarity with

the method. The observations from Chapters 3 and 5 are used to support the hypoth-

esis that the FXGP formulation is capable of identifying profitable trading strategies.

The remaining two chapters therefore attempt to build on this to highlight the im-

pact of attempting to operate under more demanding market conditions, i.e. intraday

trading with one minute price candlesticks.

The research of Chapter 6 addresses challenges to technical analysis in general

and automated trading in particular utilizing a multi-asset approach (challenges 1, 2

and 3) and frequent intraday trading with short (1 minute) time intervals (challenge

3). Results are presented that demonstrate a clear preference for adopting a ranking

based on either a simple Moving Average or the Moving Sharpe Ratio (with Moving

Sharpe Ratio showing better results over a simple Moving Average of Daily Returns

in all cases), both in terms of the profitability and the Sharpe Ratio. Moreover, both

schemes perform significantly better than the Kelly Criterion (a popular method for
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long-term investment [135, 106, 26, 87]). The Moving Sharpe Ratio outperforms other

stock prioritizing heuristics for frequent intraday trading (with FXGP estimating the

returns). In comparison, adopting a buy-and-hold investment strategy for all 86

stocks in the portfolio1 resulted in significantly worse results. In short, even though

the frequent intraday trading scenario incurs a transaction cost per trade, and there

are typically tens of thousands of trades, only 2 of 20 parameterizations perform worse

than the buy-and-hold strategy in 2015 and all perform better than buy-and-hold in

2016. Only 5 of 20 parameterizations perform worse than the buy-and-hold strategy

in the 8 months of 2017. There are no parameterizations for which a stock ranking

performed using the Kelly Criterion approaches that of either the Moving Average or

the Moving Sharpe Ratio.

In addition, a general bias towards trading with single stocks per day was evident.

That is to say, although increasing the number of stocks traded per day resulted in

a lower ‘average loss per trade’ the corresponding ‘average profit per trade’ was also

much lower. Thus, the resulting Sharpe Ratio (a measure of average profit-to-risk)

was actually preferable for the case of performing frequent intraday trading with one

stock per day. It is a mark of the accuracy of the estimated returns from the GP

trading agents that such specific recommendations could be made without having a

detrimental effect on the performance of the investment strategy, i.e. risk.

The experiments performed in Chapter 5 assumed a fixed spread of 1 cent. Such

an assumption is not realistic, but was adopted in this case because the main goal

was to evaluate the relative performance of the proposed asset selection algorithms

and as compared to a well known traditional approach (buy-and-hold). The future

work may include the real fixed (normally 2, 5, 10 cents and higher individual for

each stock) and floating spreads and different markets.

Chapter 7 investigated the influence of hidden trading costs in the form of bid-

ask spread on the effectiveness of a GP based intraday automated trading system,

where this effect was first noticed during the evaluation of the FXGP algorithm in

Section 3.3. FXGP is again deployed on the same subset of NASDAQ stock from the

portfolio experiment where the NASDAQ is known to have more volatility than other

stock markets such as the NYSE. It is empirically demonstrated that the nature and

1All stocks from the portfolio are held, as there is no basis for selecting a subset of specific stocks.
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the size of the bid-ask spread dramatically affects the performance of the intraday

automated trading system. As such these factors can be considered as one of the key

influences defining the success or failure of a such system.

In addition, it was observed that the floating spread with a median value of 0.02

USD results in a much worse performance than a fixed spread of 0.1 USD, i.e., an

order of magnitude difference. This can be explained by recognizing that a floating

spread represents a continuously changing trading environment. As a consequence,

the trading conditions under which the GP algorithm is trained and then forced to

trade are different, and it is this that results in a significant degradation of its perfor-

mance. Therefore, it is crucial to choose a broker with fixed spreads for automated

trading algorithms using genetic programming and possibly other machine learning

techniques. These results appear to also support the observation that uninformed

traders – as in traders that trade for liquidity needs – will be more susceptible to the

negative impact of spreads ([27]).

In summary, the trading conditions are integral to and one of the most important

parts of any trading system. Understanding their role, especially the role of the

hidden trading costs such as Bid-Ask spread, is essential for building a profitable

trading algorithm. As such, addressing the influence of hidden trading costs can

help to reduce the impact of all the challenges outlined in Chapter 1. This thesis

systematically investigated the impact of floating and fixed spreads, demonstrating

that fixed spreads that are an order of magnitude larger are potentially preferable to a

floating spread. How a broker might use this to, on the one hand, attract automated

trading agents while also maximizing service revenue is left for future research.

Future work could repeat the analysis with data from different stock markets

(e.g. NYSE rather than the NASDAQ) and data from brokers that offer fixed stock

spreads. Algorithm modifications supporting profitability of intraday trading on 1-

minute intervals would be of particular interest. In comparison, current state of

the art in financial forecasting assume 30-minute intervals [12], which is sufficient

for informing interday trading, but not automated trading under intraday trading

conditions.



Appendix A

Skewness and Kurtosis of NASDAQ 100 stocks

Stock Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

2015 2015 2016 2016 2017 2017

AAL 0.4937 2.2027 0.1395 2.8054 0.1373 2.4184

AAPL -0.2039 1.7290 0.0457 1.7177 -0.6536 2.8716

ADBE 0.5141 2.4686 -0.5685 3.0411 -0.3523 1.9521

ADI 0.2769 2.3129 0.4916 2.8514 -0.5054 2.9175

ADP -0.7786 3.0167 0.4986 3.8358 1.4456 6.9099

ADSK -0.4453 2.3183 0.1776 2.2629 0.1394 1.3875

AKAM -0.8726 2.5455 0.6736 3.0457 0.2039 1.4965

ALXN 0.0281 2.9833 0.9156 4.0237 -0.8057 3.4714

AMAT 0.2269 1.8512 -0.0732 1.6965 -0.2861 1.8618

AMGN -0.3517 4.3520 0.3439 1.9848 -0.0299 2.0572

AMZN 0.3713 2.1593 -0.5269 2.0701 -0.2191 1.7754

ATVI 0.6833 2.3256 -0.1609 2.1701 -0.3732 1.9276

BIDU -0.8594 2.5110 0.0782 2.7708 1.4803 3.8632

BIIB -0.0320 1.4923 -0.0311 2.0426 -0.0094 2.2902

BMRN 16.3986 269.9169 -0.2147 3.1455 -0.0325 3.4423

CA -0.0744 1.8038 -0.6908 2.9426 1.1711 3.8793

CELG 0.8215 3.6072 0.7062 2.6236 0.2933 1.9964

CERN -0.1105 1.9061 0.1306 2.1967 -0.4826 1.9341

CHKP 0.0710 2.2264 -0.1379 1.8535 -0.8273 3.8040

CMCSA 0.1888 2.4939 -0.3510 2.3637 0.0174 2.4698

CSCO -0.4609 2.6283 -0.9057 3.1202 0.2437 1.7901

CSX -0.2488 1.5788 0.8420 3.0423 -1.2743 5.1646

CTAS 0.1102 2.3000 0.1629 1.5621 0.2970 2.2291

Continued on next page
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Table A.1 – continued from previous page

Stock Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

2015 2015 2016 2016 2017 2017

CTRP 0.4869 2.6558 -0.1436 2.4859 -0.1725 1.9664

CTSH -0.6731 3.8113 -0.4972 2.6783 0.0322 1.6294

CTXS 0.2604 2.1329 -1.0652 3.2578 -0.4658 2.5573

DISCK -0.4365 2.0510 -0.0466 2.0687 -0.8977 3.1996

DISH -0.0209 1.9297 -0.0707 2.2317 -0.6453 2.8687

DLTR -0.6667 2.1398 0.6918 2.1098 -0.5640 2.6637

EA -0.5353 2.4209 -0.4268 1.8390 0.0339 1.4065

EBAY 0.2452 1.9148 0.2970 1.5250 -0.6372 3.2989

ESRX 0.2800 2.6491 0.9205 4.3922 0.5152 2.0691

FAST 0.0871 3.1701 -0.3539 2.2576 0.2868 1.5113

FB 0.4918 1.9721 -0.5081 2.8516 0.1612 2.2414

FOX -0.6119 2.1361 -0.0386 2.1812 0.1718 1.7072

FOXA -0.4874 1.9006 -0.0816 2.2299 0.1290 1.6948

GILD 0.6087 2.2987 0.4097 2.3984 0.5164 3.0622

HAS -0.7341 2.4960 -0.8148 3.1568 -0.4415 2.9069

HOLX -0.5112 2.3469 0.0567 1.7356 -0.2456 1.8703

HSIC 0.7283 2.9393 -0.1067 1.9890 -0.2881 2.2160

IDXX -0.1777 1.9723 -0.0531 1.5758 -1.1527 3.4775

ILMN -0.6382 3.2497 0.3124 1.8859 -0.2349 4.1568

INCY -0.6505 2.7652 0.4852 2.4277 0.1283 3.1007

INTC -0.1898 2.2069 -0.0092 1.8523 -0.3609 2.8027

INTU -0.3579 2.0112 -0.4237 2.3792 0.1574 1.5247

ISRG -0.0744 3.3155 -0.4967 2.3454 -0.1395 1.5899

JBHT -0.1138 1.9341 0.3951 3.9539 -0.0301 1.9009

KLAC -0.1266 1.8588 0.2764 2.6239 -0.3083 2.6769

LBTYK -0.4520 2.3561 -0.6415 3.4798 -0.4820 2.1485

LRCX -0.7840 3.1710 0.1019 2.0264 -0.1994 1.5252

Continued on next page
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Table A.1 – continued from previous page

Stock Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

2015 2015 2016 2016 2017 2017

MAR -0.2597 2.2576 0.9388 4.1423 -0.1906 1.6100

MAT 0.1081 2.4980 -1.1741 4.1692 0.0838 2.7244

MCHP -0.3588 2.2879 0.0048 1.6892 -0.3407 2.2469

MDLZ -0.1111 1.7282 -0.7326 3.7706 -0.1069 4.0174

MSFT 0.8367 2.6990 0.2963 2.0573 0.1515 1.6540

MU 0.1473 1.4168 0.5658 2.2375 -0.3304 1.9445

MXIM 0.8447 3.0327 -0.5538 2.4231 -1.0953 5.4731

NCLH -0.6722 2.5631 0.4763 2.2921 0.0047 2.2773

NFLX -0.2795 1.9282 0.8533 2.5783 0.6714 2.7557

NTES 0.5177 2.5209 0.2633 1.7479 -0.4920 2.8003

NVDA 1.2262 3.2045 0.8016 2.9065 0.3103 1.3960

ORLY -0.1897 2.2794 -0.8726 3.5769 -0.6440 2.0463

PAYX 0.3898 2.6704 -0.2921 2.2126 0.0441 2.2046

PCAR -0.8267 2.2865 -0.0114 3.2392 -0.3640 2.0360

PCLN -0.0972 3.2997 -0.6303 3.0208 -0.3519 2.5801

QCOM -0.4877 1.9772 0.0431 1.6705 1.4537 5.2046

ROST 0.0164 2.1958 0.3016 1.9799 -0.5425 1.9119

SBUX -0.2835 2.0964 0.1421 2.2952 0.2706 2.6016

SHPG -0.1907 1.7939 -0.1632 2.0893 -0.8391 3.4261

SIRI -0.6186 3.6434 -0.0115 2.9828 -0.1027 2.2129

STX -0.3876 2.2016 -0.5663 2.3169 -0.5176 2.2078

SWKS 0.2584 2.0219 -0.2719 1.8760 -1.5139 5.2746

SYMC -0.1391 1.5457 0.0656 1.5235 -0.8064 3.8018

TSCO -0.6699 3.5137 -0.5996 2.0924 0.1200 1.4521

TSLA 0.0680 1.9133 -0.1378 3.4323 -0.0979 1.8211

TXN -0.5376 2.1951 -0.2097 1.7215 -0.7202 2.5903

ULTA -0.2023 2.7413 -0.5715 2.0507 -0.7881 3.8707

Continued on next page
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Table A.1 – continued from previous page

Stock Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

2015 2015 2016 2016 2017 2017

VIAB -0.3189 1.4452 0.0587 2.1217 -0.1474 1.8090

VOD 0.2768 2.1390 -0.7746 2.8448 0.0288 1.4825

VRSK -0.5912 3.3785 -1.0157 3.5749 0.4393 2.9026

VRTX -0.3797 3.0387 1.0318 5.4493 0.2287 1.9336

WBA -0.1023 3.0741 -0.2078 3.3044 -0.0838 2.3811

WDC -0.2226 1.9513 0.6685 2.8717 -0.2199 1.9889

WYNN 0.1770 1.7693 -1.5115 4.6062 -0.4109 1.7099

XLNX 0.2677 1.9286 0.6144 3.0976 0.0757 1.6460

XRAY 1.0834 2.7328 -0.2197 2.8914 -1.0025 2.7336

Table A.1: The annual Skewness and Kurtosis metrics of NASDAQ 100 stocks



Appendix B

Sample Decision Trees

TI17i > TI26i

Openi > Closei Sell

TI6i > TI23i and
TI6i−2 < TI23i−2

Buy

Hold Sell

yes
no

yes

no

yes
no

Figure B.1: Sample DT (Base FXGP, Section 3.1), Trades: 5

where:

• Openi, Highi, Lowi and Closei are, respectively, Open, High, Low, and Close

prices at moment i.

• TI6 = MA24(Lowi−5)

• TI17 = MA64(Closei−1)

• TI23 = MA44(Lowi)

• TI26 = MA24(Highi)
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Closei > Lowi

Lowi > TI37i TI34i > Lowi

TI12i > TI19i TI5i > Closei

Buy Buy

Hold

Sell Buy

Hold

yes
no

yes no yes

no

yes
no yes

no

Figure B.2: Sample DT (FXGP, Section 3.3), Trades: 3

where:

• Openi, Highi, Lowi and Closei are, respectively, Open, High, Low, and Close

prices at moment i.

• TI5 = MA2(Highi)

• TI12 = MA7(Lowi)

• TI19 = MA30(Openi)

• TI34 = MA22(Closei − Closei−1 +Highi)

• TI37 = MA7(Openi)
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TI74i > Highi

Lowi−2 < TI76i−2
Lowi−1 <
Openi−1

Highi > TI37i

Sell Sell

Buy

Buy

Hold

yes

no

no yes
no

yes

yes
no

Figure B.3: Sample DT (FXGP, Section 3.3), Trades: 18

where:

• Openi, Highi, Lowi and Closei are, respectively, Open, High, Low, and Close

prices at moment i.

• TI37 = MA54(Highi −Openi + Close1)

• TI74 = MA90(Lowi−3 + (Openi − Close1)/2)

• TI76 = MA86(Lowi−3 + (Openi − Close1)/2)
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TI29i > Closei

TI5i > CloseiSell

Buy Hold

yes

no

yes
no

Figure B.4: Sample DT (Base FXGP, Section 3.1), Trades: 32

where:

• Openi, Highi, Lowi and Closei are, respectively, Open, High, Low, and Close

prices at moment i.

• TI5 = MA14(Closei + (Highi − Closei−2)/2)

• TI29 = MA18(Lowi)

All moving averages are calculated as (3.1).
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